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ABSTRACT: Atmospheric delivery of mercury (Hg) is important to  yatershed Estuary and

the Upper Great Lakes, and understanding gaseous Hg exchange loading —winas Nearshore

between surface water and air is critical to predicting the effects of
declining mercury emissions. Speciated atmospheric Hg, dissolved
gaseous Hg (DGM), and particulate and filter passing total Hg were
measured on a cruise in Lake Michigan. Low mercury levels reflected
pristine background conditions, especially in oftshore regions. In the
atmosphere, reactive and particle-associated fractions were low (1.0
+ 0.5%) compared to gaseous elemental Hg (1.34 + 0.14 ng m™>)
and were elevated in the urbanized southern basin. DGM was
supersaturated, ranging from 17.5 + 4.8 pg L™' (330 + 80%) in the
main lake to 33.2 + 2.4 pg Lt (730 + 70%) in Green Bay. Diel
cycling of surface DGM showed strong Hg efflux during the day due
to increased winds, and build-up at night from continued DGM production. Epilimnetic DGM is formed from photochemical
reduction, while hypolimnetic DGM originates from biological Hg reduction. We found that DGM concentrations were greatest
below the thermocline (30.8 + 13.6 pg L™'), accounting for 68—92% of the total DGM in Lake Michigan, highlighting the
importance of nonphotochemical reduction in deep stratified lakes.
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1. INTRODUCTION

Mercury (Hg) is a ubiquitous and persistent pollutant capable
of long-range atmospheric transport (residence time of 6—12
months) as gaseous elemental mercury (GEM), which can
contaminate even remote regions of the world." Anthropogenic
activities like mining, industrial and medical Hg applications,
and coal combustion have altered the dominant sources of Hg
worldwide and increased concentrations 4—6-fold above
historic levels.” In the atmosphere, Hg undergoes reactions
with oxidants, transforming GEM into reactive and water-
soluble gaseous oxidized mercury (GOM), which is also
susceptible to particle sorption [particle-bound mercury
(PBM)]. Due to the longrange atmospheric transport of
GEM and high deposition velocities of GOM and PBM
species, aquatic ecosystems worldwide are exposed to Hg
through direct atmospheric deposition (wet and dry) to the
water surface and indirectly through watershed inputs.’™”
Once GOM and PBM are deposited, water column processes
result in Hg sedimentation, reduction to GEM [here called
dissolved gaseous Hg (DGM)], partitioning to organic matter,
and microbially mediated transformations of inorganic mercury
to methylmercury.® Among the potential outcomes of the
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deposition of Hg in aquatic systems, the microbial formation of
neurotoxic methylmercury is of particular concern and a
potential threat to aquatic ecosystems and human health.”

Recent studies have shown that the removal of Hg in waste
prior to incineration, air pollution control strategies (like SO,
and NO, abatement), and the conversion from coal-fired
power plants to natural gas have led to a roughly 40%
reduction in Hg emissions in the United States.”” Decreases in
Hg emissions have resulted in changes in Hg cycling in the
environment, evidence that is quantifiable in fish, water, and
sediments, and is especially clear in the Laurentian Great Lakes
where a large proportion of Hg delivered to the lakes is from
atmospheric delivery pathways.

Once GOM and PBM enter aquatic ecosystems, a suite of
redox reactions can occur by both abiotic and biotic reduction
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Figure 1. (A) Gaseous elemental Hg was collected in the atmosphere during the 2013 September cruise onboard the EPA Lake Guardian beginning
in Milwaukee, WI, and traversing counterclockwise around the lake. Dashed lines indicate the average concentration observed over that transect.
(B) Reactive oxidized Hg collected simultaneously with (C) particulate matter-bound Hg. Dashed lines indicate the average concentration
observed over that transect and gray-scale over the transcet path indicates nighttime sampling. Dashed line colors indicate the average
concentration observed over that transect. The inset shows the spatially aligned percent GOM or PBM of GEM. Gray bars represent the average

solar radiation (watts per square meter) for that specific transect.

pathways, reducing the inorganic oxidized mercury back to
DGM. Inorganic oxidized mercury can be photochemically
reduced, a process that is mediated by dissolved carbon species
acting as an electron donor or through light absorption.””"" In
addition, direct and indirect (via the production of reductants)
microbiallzf mediated Hg reduction is important in freshwater
lakes."*™"" Finally, photoreduction mediated by manganese
and iron is possible but is likely insignificant in Lake Michigan
because the solubility of manganese and iron is low in the oxic
water column.'”"® Once formed, DGM may be reoxidized
(cycling back to GOM and/or PBM) or leave the aquatic
system entirely by evasive Hg flux.'”'>"”'** Therefore, DGM
measurements reflect net reduction rather than absolute
production. Due to the low solubility of DGM in freshwater
(5.1 pg L™" at 20 °C), it is often supersaturated, as calculated
by Henry’s law.”'°

(CKy)/Cpaer = % saturation (1)
where C,;, is the air GEM concentration, C,,., is the water
DGM concentration, and Ky, is Henry’s constant. The complex
processes of reduction of deposited oxidized mercury and
emission back to the atmosphere ultimately result in a
significant loss of Hg to aquatic systems; we sought to
investigate the relative importance of each in Lake Michigan
following the large declines in Hg emissions and re-engineering
of the water column from invasive mussels.

Many of the changes to Lake Michigan are common to the
Great Lakes broadly, and to appropriately create a Hg mass
balance for the Great Lakes, re-evaluation of Hg fluxes is
necessary.””' ">’ Here we focus on the air-water flux of

elemental Hg in Lake Michigan, as well as the formation of
DGM, through spatial, vertical, and diel lenses. We compare
Hg flux to meteorological conditions (wind, temperature, and
humidity) and DGM formation to biological, physical,
limnological, and photochemical parameters to better under-
stand atmospherically deposited mercury cycles in Lake
Mic:}ligeln.16’24’25 We continuously measured DGM in Lake
Michigan surface water while simultaneously measuring GEM,
GOM, and PBM in the overlying airshed. At point locations,
we also collected vertical profiles in nearshore and offshore
regions, spanning a gradient of anthropogenic contamination,
to provide a novel perspective on photochemical and microbial
reduction processes.'”'”>%*” Finally, we coupled these results
with molecular dynamics to understand what physical and
chemical processes influence Hg flux and compare the relative
importance of biological and photochemical reduction
processes in Lake Michigan. Additionally, we reveal the
importance of wind-driven turbulence in driving Hg evasion.
These efforts will help us better understand how the lake has
responded to changes in energy flow”® and Hg loading in
recent decades.”’

2. EXPERIMENTAL METHODS

2.1. Sampling Strategy. While underway, we continu-
ously measured GEM, GOM, PBM, and DGM in Lake
Michigan while onboard the U.S. Environmental Protection
Agency R/V Lake Guardian from September 23 to 29, 2013.”
Figures 1 and 2 provide the sampling path (originating in
Milwaukee, WI) that generally follows a counterclockwise
progression. Throughout the mercury sampling, continuous
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Figure 2. (A) Continuously measured surface dissolved gaseous Hg (picograms per liter) via the flow-through system during the 2013 September
cruise onboard the EPA Lake Guardian beginning offshore from Milwaukee, WI, and traversing counterclockwise around the lake. (B) Averaged
surface DGM (blue dots and one standard deviation) for each transect overlaid with a GEM transect value (gray dots) from Figure 1 A. The red
line represents the percent saturation (calculated by Henry’s law) for each step. Black outlined bars represent the average windspeed (meters per
second) for that specific transect, and the gray shading indicates nighttime sampling.

measurements of wind speed, air temperature, GPS location,
and surface water temperature were also taken (Tables S1 and
S2). At discrete sites, the vessel was held stationary while water
was collected in a vertical profile by remotely triggered trace
metal clean Niskin bottles and analyzed for DGM, dissolved
organic carbon (DOC), and filter passing total mercury
(FHgT) (Table S3). At these locations, continuous DGM was
also collected for comparative purposes (Figure S1). Water
quality measurements were taken at the discrete sites,
including temperature, chlorophyll a, turbidity, fluorescent
dissolved organic matter, conductivity, and dissolved oxygen
(Figures S2—S26). This allowed for operationally defined
depth interval sampling (surface to 2 m from the air—water
interface, midepilimnion, thermocline, midhypolimnion, and
bottom to 2 m above sediments).

2.2. Atmospheric Hg Measurement. Speciated atmos-
pheric Hg measurements were performed by the sequential
application of Tekran instrumentation. Sample intake was
through Teflon tubing, with the inlet located on an armature
extending approximately S m off the bow of the ship. Tekran
mercury speciation units 1130 and 1135 were used to separate
the GOM and PBM from the atmospheric sample stream by
capture onto a potassium chloride-coated annular denuder and
regenerable quartz fiber filter (diameter of 22 mm),
respectively. The remaining mercury in the atmospheric
sample stream is GEM, which passes through the speciation
units unchanged, and is analyzed at 5 min intervals by an
automated cold vapor atomic fluorescence spectrophotometer
(CVAFS, Tekran model 2537A). After a 60 min cycle of PBM
and GOM collection and GEM analysis, the instrumentation is
flushed with Hg-free air and the speciation units are heated,
simultaneously desorbing and reducing PBM and GOM to
elemental mercury that is detected®”*" by CVAFS. Calibration
was performed daily (did not exceed 2% from precampaign
calibration) and is described elsewhere.'

2.3. Continuous Surface DGM and Vertical DGM
Profile Analysis. Surface water DGM was measured by

sparging Hg-free air through a continuous supply of surface
water in a custom-designed 30 L flow-through vessel.”” The
flow-through vessel was precleaned to trace metal conditions
and constructed of a polyethylene terephthalate container and
a quartz glass sparging interface. GEM concentrations in the
equilibrated headspace of the flow-through vessel were
measured using a Tekran 2537A CVAFS gaseous Hg analyzer,
and DGM supersaturation was calculated from Henry’s law.””
A method detection limit was estimated at approximately 3 pg
L™". This was determined by shutting off the water inflow until
a constant GEM concentration was measured in the headspace.

Water samples were collected in profiles at discrete sample
sites for DGM analysis in trace metal clean Niskin bottles.
Upon collection, 1 L of water was immediately transferred into
precleaned glass sparge vessels. Raw water samples (without
chemical amendment) were sparged for 20 min (400 mL
min~") onboard the ship with ultrapure nitrogen. The resulting
DGM was captured on gold traps, thermally desorbed, and
analyzed by CVAFS detection.””* Method detection limits
were 3 pg L™!. To compare accuracy between the two DGM
collection methods, results from the discrete sampling sites and
the flow-through vessel were compared and were in good
agreement (R*> = 0.91); however, at lower concentrations (<20
pg L"), the manual method was biased high [35 + 13%
difference (Figure S1)] when compared to flow-through
methods; thus, DGM concentrations below 15 pg L™' should
be treated as estimates.

2.4. Mercury Flux Calculations. At the air-water
interface, the solubility of gases is dependent on the
equilibrium distribution, while the magnitude and direction
of exchange are dependent on multiple physical parameters,
including wind speed, temperature, and, in the case of Hg, the
presence or absence of light [primarily ultraviolet (UV)]. Flux
(F) is calculated as the concentration difference between air
and water (Ac™ ™) multiplied by the wind-corrected gas
exchange transfer velocity (k,):***°
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F = kuACair—water (2)

To obtain more accurate and environmentally relevant values
of k, researchers developed a Schmidt model (Schmidt
number, Sc) using molecular dynamics and empirical
determinations for CO, in fresh water to better estimate flux
over varying wind and temperature conditions. The adaptation
from CO, to Hg includes considerations for the kinetic
viscosity of fresh water ()*” and the diffusivity of Hg (D).*°

Sc=v/D (3)

With this knowledge, a temperature-corrected k, can be
calculated for Hg for gases:

k= k@o(u)(i)_n

600 4)

where n = 0.5 is the recommended correction term for
environmental conditions®”** and kg,(u) is the wind-depend-
ent freshwater Schmidt number for CO,. The relationship
between Scyy, and Scco, was determined by a combination of

gas transfer velocity and kinematic viscosity work developed
elsewhere.”® The diffusion coefficient could ultimately be
determined by

D = Ae B/RT (s)

where for Hg, E, is 16.98 k] mol ™! for freshwater, A is 0.01768
cm?® s, T is the temperature, and R is the ideal gas constant.

2.5. Multiple Regression. To determine which factors
were most important in controlling DGM in Lake Michigan
surface waters, we ran a multiple regression of the DGM values
against measured parameters that are expected to influence
DGM. Parameters included air—water DGM flux, total
phytoplankton biomass, photosynthetic active radiation
(PAR), surface temperature, GEM, and depositional Hg.
Because flux, GEM, GOM, PBM, and DGM were all measured
or calculated continuously and did not always overlap with the
discrete sampling sites at which profiles were measured, we
used an average of the measurements at each site location. We
obtained meteorological conditions and wave data from closest
Great Lakes Observing System buoy at the time interval of
sampling. PBM and GOM are tightly correlated and are both
thought to be major sources of net atmospheric Hg deposition
to aquatic ecosystems,”*”*’ so we combined the two
measurements into depositional Hg to avoid overfitting our
regressions.” While GEM is a component of the DGM air—
water gradient and thus a component in the flux calculations,
flux is thought to be driven largely by wind speed, so we
included both flux and GEM in the model but excluded wind
speed. Water temperature, relative biomass (fluorescence), and
PAR data were taken from the profiles collected at each site
with data available from the Great Lake Environmental
Database. Because the continuous surface DGM was collected
approximately 2 m below the surface, we averaged the water
quality parameters over the top 4 m for the multiple
regressions. Biomass included four narrow bands of excitation
and emission (intending to capture optical properties of four
types of phytoplankton), some of which are important to Hg
dynamics.'"*"** Green Bay sites were excluded from
regressions due to the effect of Hg loading from the Fox
River as well as extensive nutrient loading (leading to increased
biomass) not present in most of the main lake. The multiple
regression was calculated using R base functions (R version
322).%

3. RESULTS AND DISCUSSION

3.1. Atmospheric GOM and PBM Concentrations.
Together, GOM (0.37 + 0.24%) and PBM (0.66 = 0.42%)
constituted on average 1.0 + 0.5% of the GEM signal (Figure
1, inset). Diel cycling of reactive and particle-associated
fractions is clear (Figure 1, inset), indicating GOM and PBM
species are formed during daylight hours. This diel pattern of
oxidation is consistent with observations made previously,
albeit our resulting concentrations are much lower and less
temporally stable than previous results.'” Mechanistically,
Landis et al.”*" surmised that the diel cycling of atmospheric
Hg was dependent on the oxidation of GEM to GOM by
ozone, hydroxyl radicals, and hydrogen peroxide (primarily in
cloudwater),*" and the reduction of GOM to GEM by gaseous
SO, and dissolved SO,>~. Although GOM and PBM are only a
minor fraction of the overall atmospheric Hg pool, it is
considered the largest component of net dry deposition to
aquatic ecosystems.” It is likely that most of the dry
atmospheric deposition that is retained in the Great Lakes as
aqueous Hg is from the GOM and PBM fractions, rather than
from direct GEM deposition.

3.2. GEM and DGM Surface Dynamics. Overall, GEM
concentrations were relatively constant over the course of the
study (1.34 + 0.14 ng m™) and no obvious diel fluctuations
were observed (Figure 2B). GEM concentrations were slightly
higher in the Lake Michigan southern basin (0.23 ng m™3),
likely reflecting the more urbanized airshed. Compared to
recent efforts,” GEM concentrations in our study are 25—45%
lower than previous atmospheric levels, a trend that has been
observed elsewhere in the Northern Hemisphere.®

Overall DGM concentrations averaged 17.5 + 4.8 pg L™ in
the main lake, roughly 40% lower than previous observations in
the 1990s to early 2000s,””* with no measurable difference
between nearshore (without a localized riverine influence) and
offshore regions. In Green Bay, a eutrophic region susceptible
to very high loading of filter passing and particulate Hg from
the Fox River (median unfiltered HgT concentration of 24.8
ng L7' with 93.6% particle bound),”* higher DGM
concentrations were found (332 + 2.4 rg L™"). DGM was
consistently supersaturated in the surface layer at 329 + 84% in
the main lake and 732 + 69% in Green Bay,” indicating
continual reduction of inorganic oxidized Hg in the water
column by direct UV-induced photochemical (mediated
directly by DOC or initiated by excited DOC)*'**® and
microbial processes.12

Surface DGM was also temporally variable, with diel
dependence of DGM loss during the day (Figure 2B), due
to wind-driven flux. This diel observation differs from previous
studies, where DGM increases during the day are attributed to
increased solar radiation and corresponding increased photo-
reduction.'®'”*® Phototrophic cells can also produce DGM
during photosynthesis, which would also lead to increased
DGM production during the day.*” However, in our study,
DGM concentrations increased overnight. DGM production
here could be controlled by microbial Hg reduction using
mercuric reductase (mer operon), which is a dark aerobic
reaction.*® While high levels of Hg are required to induce mer
expression, basal levels of mercuric reductase have been shown
to be sufficient to reduce Hg"’ even at low levels. Lower DGM
levels during the day could also be due to increased Hg flux
rather than lower DGM production. Microbial oxidases that
can oxidize DGM are produced in response to H,O,, which
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Figure 3. DGM (left) measured vertically at operationally defined depths. Color coding differentiates site type (offshore, nearshore, Green Bay, and
offshore data from previous work). Inner box lines represent data median. Box edges represent 25th and 75th percentiles. Edges of the whiskers
represent the 10th and 90th percentiles. Dots represent outliers (Sigmaplot 13). FHgT concentrations (right) over the same depth intervals and

data from the literature (gray).**>>*%>?

builds up during daylight hours.'>*? Additionally, DGM
evasion from the surface water is likely to decrease at
nighttime, when winds are weaker. Here we estimated daytime
DGM production rates to be 0.9—1.2 pg L™ h™!, but DGM
losses as evasive flux are 1.4—1.7 pg L™' h™', confirming DGM
losses exceed production during the day. These estimates and
the supersaturation of DGM in the water column suggest Lake
Michigan is continually undergoing evasive flux of Hg to the
atmosphere. In the eutrophic Green Bay basin, it is likely that
reduction of oxidized mercury by phototrophic microbes in the
epilimnion is even greater than in pelagic Lake Michigan.” In
addition, Green Bay is warmer and contains highly Hg
contaminated sediment, which may further enhance DGM
formation and supersaturation,”’ which is twice that compared
to the value in the main body of Lake Michigan.

Unlike previous research, no relationship was observed
between flux and percent saturation,'® highlighting the
significance of wind as a transport vector of Hg from Lake
Michigan waters to the atmosphere. When a wind speed of 5 m
s~ was used as a breakpoint in data models, fluxes were 0.60 +
0.36 ng m™> h™! (25 + 15 kg month™') and 2.96 + 1.23 ng
m~> h™" (125 + 52 kg month™') for low- and high-wind
conditions, respectively, with the value for the lower-wind
conditions being similar to previous findings in Lake Michigan
(~21 k§ month™!),** but higher than those of the Atlantic
Ocean.”” These fluxes are also comparable to those from a
similar study investigating Lake Ontario where median flux was
estimated to be 2.88 ng m™ h™" and percent saturation ranged
from 476% to 2,163%.'® Ontario fluxes are most likely higher
due to increased FHgT water concentrations, which average
100—200 pg L~" higher than in Lake Michigan (200—400 pg
L7"). Sediment Hg concentrations are also an order of
magnitude higher in Lake Ontario, which likely further
increases the DGM concentrations.” "%

Our multiple-regression data model showed that GEM,
depositional Hg, biomass, and temperature had no effect on
DGM, while flux does influence DGM concentrations (p =
0.005). We also observe that PAR significantly impacted DGM
concentrations (p = 0.016), but unlike other studies, this was a
negative correlation.* Because PAR at the surface can predict
UV light intensity,"’ which is expected to reduce Hg in
circumneutral conditions,”® we would expect to see a positive

correlation between PAR and DGM levels. One potential
explanation is the correlation between wind and PAR during
the daytime. Potentially, this counterintuitive result also signals
a lag in the production of photooxidants because DGM
production continues into the night. Because Lake Michigan
DOC is fairly homogeneous in concentration (2—3 mg L")
and spectral character (more photo-oxidized),*”** we do not
suspect that variance in DOC drives the variance in DGM
formation or flux but do acknowledge it plays a critical role in
the Hg reduction process.'”'”*">>

3.3. Vertical Profiles of DGM and Associated Water
Quality Characteristics. To better understand water column
dynamics and formation of DGM, vertical profiles were
collected at multiple sites. Connecting the biological and
physical limnology of the lake allows for better resolution of
the impact of phytoplankton on DGM formation. Vertical
profiles of temperature, fluorescence for phototrophic pig-
ments, PAR, and dissolved oxygen, combined with the
resulting DGM concentration profiles, show that a strong
separation between the epilimnion and hypolimnion exists for
offshore sites, while mixed water columns are evident in
nearshore sites and Green Bay (see SI). In addition, the
thermocline generally becomes shallower with an increase in
latitude, likely due to the generally cooler atmosphere. Where
available, NOAA monitoring buoys confirmed the temporal
stability of these thermal structures.

To compare DGM and FHgT concentrations of similar
water parcels in Lake Michigan, we used water temperature to
separate the layers of water at stratified sites and grouped sites
by location [nearshore, offshore, and Green Bay (Figure 3)].
For each layer at all sites, the DGM concentrations were
supersaturated in water. Even in the main lake where dissolved
oxygen levels were at or near the point of saturation, DGM
production was occurring. DGM concentrations in the
thermocline, hypolimnion, and benthic layers were elevated
relative to the surface layer, despite lacking the potential for
photochemical reduction. Deeper waters were lower in
dissolved Hg than the surface counterparts,”**>***" eliminat-
ing the possibility that sediment-FHgT efflux was resulting in
increased DGM concentrations. We did not observe clear
evidence that sediment-formed DGM and subsequent DGM
diffusion and accumulation at the thermocline was the primary
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mechanism for hypolimnetic DGM because benthic waters
lacked convincing increases in DGM concentration relative to
directly overlying water. In Green Bay, the high DGM percent
saturation (ranging from 400% to 800%) is due to increased
sediment Hg,> and increased microbial reduction due to
eutrophication and increased biological oxygen demand™” that
support anoxia. The weakly stratified nearshore regions had the
largest and most variable DGM at the midwater column
thermocline. We also noted that the large variation in DGM
concentrations at the midepilimnion and thermocline of the
main lake coincided with increases in the relative fluorescence
(tracing organic molecules and biological productivity) of the
water profile.

Increased DGM concentrations in the thermocline and
hypolimnion likely reflect the capture of microbially produced
DGM below the thermocline in the oxic water column that
cannot evade and is lost to only reoxidation or sorption. Only a
modest amount of mixing occurs across the thermocline, and
the midhypolimnion and benthic regions are absent of
photochemical reduction;*” therefore, Hg reduction is likely
biotic at depth. Bacterial mercuric reductases (mer operon) are
active under oxic conditions at lower efficiencies due to basal
levels of expression of the mer operon under environmental
conditions.”® Other studies have pointed to phytoplankton
biomass, rather than bacterial mer activity, as driving biotic
DGM reduction,""*"**37 which is consistent with the
increased DGM levels coincident with peaks in photosynthetic
pigments. Additionally, one study suggested the production of
DGM was not directly linked to photosynthesis but rather to
intracellular reduction processes or to the excretion of
reductants into the surrounding water.'" We hypothesize that
Hg reduction by primary producers is the dominant
production pathway for DGM in the thermocline where we
see elevated levels of primary production and that deeper
hypolimnetic DGM is primarily mediated by mercuric
reductase.

To isolate the direct or indirect effect of phytoplankton on
DGM dynamics in the presence or absence of light, we
separated sampling depths from the main lake where the PAR
values were 0, which included nighttime and samples at depth,
from surface samples taken during the day. Samples in the dark
included four nighttime surface samples and 31 samples from
the thermocline or hypolimnion. We then summed the relative
fluorescence units for measured wavelengths for green algae,
blue green algae (cyanobacteria), diatoms, and cryptophyta
and assumed it represents total measured phytoplankton
fluorescence. In surface samples with detectable PAR values,
there is a positive correlation between total phytoplankton
fluorescence and DGM (Figure 4A). Surprisingly, we found a
negative correlation between DGM concentrations and total
phytoplankton fluorescence under dark conditions (Figure
4B). This supports our previously stated hypothesis that
photosynthesis can help drive DGM production in surface
waters, which is consistent with previous work.'"”>” Our results
suggest the production of DGM by phototrophs stops at night
with the cessation of photosynthesis, which is consistent with
previous work that observed both lower DGM levels in
phytoplankton layers under oligotrophic conditions and the
cessations of DGM production when photosynthesis was
inhibited.""*"** However, the negative correlation between
phytoplankton and DGM levels under dark conditions is
unexpected and may suggest phototrophs are sorbing or
reoxidizing DGM under dark conditions, as they cease
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Figure 4. Total phytoplankton correlated (A) positively to DGM
levels under light conditions and (B) negatively to DGM levels under
dark conditions. Only samples with undetectable PAR readings were
used to isolate DGM levels from photoreduction by solar radiance
and as a byproduct of photosynthesis. Green Bay sites were excluded.
Linear regressions were run for DGM against total phytoplankton
under both conditions, and the resulting equations are plotted on
their respective graphs. The equations and p values are as follows.
Light conditions: 1.483X + 14.756; p < 0.0001. Dark conditions:
—621X + 45.59; p = 0.010.

photosynthesis. Further investigation is necessary to under-
stand the role of phytoplankton in DGM cycling of the
hypolimnion and nighttime photic zone.

4. CONCLUSIONS

These results are consistent with those found in the literature
suggesting that aquatic systems are mostly supersaturated with
DGM. While Hg reduction pathways may result in excess
DGM, another consideration may include the realization that
the Henry’s law coefficients and fundamental understanding of
the solubility of elemental Hg are difficult to apply. This is the
first work known to include the molecular dynamics
considerations proposed by Kuss et al.** that incorporates a
temperature- and wind-specific consideration into the Schmidt
number for Hg to freshwater. Typically, regressions from CO,
values have been used, dramatically increasing the calculated
flux (as much as 20%).>® Surface water data indicate that for
Lake Michigan, the most important factor controlling DGM
level is the air-water elemental Hg flux, which is largely
controlled by wind speeds. This contrasts with several other
studies in which solar radiance controlled DGM levels by
photoreduction. Phototrophs under light conditions correlated
positively with DGM levels, suggesting that phototrophic
activity can drive DGM formation. However, we observed an
unexpected negative correlation between phytoplankton
abundance and DGM levels under dark conditions, suggesting
that there may be additional and unexplored factors
influencing DGM cycling. Within the main lake (not including
Green Bay), we found that DGM concentrations were greatest
below the thermocline while FTHg concentrations were
greatest in the epilimnion. The zone where photochemical
reduction by UV light is most likely, the upper 7 m,** accounts
for only 3—9% of the total DGM in main basin Lake Michigan
(33—39% in Green Bay). When we include the entire euphotic
zone, defined as the water surface to 26.3 m,*” we can account
for 9—32% of all DGM in main basin Lake Michigan, so >70%
of the 140—170 kg of DGM in main basin Lake Michigan is
produced by nonphotochemical reduction processes that we
believe to be related to biological reduction. While clearing
waters from invasive mussels has changed Hg cycling
dynamics,28 we do not hypothesize that the increased amount
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of photochemical Hg reduction resulted in the lower Hg levels
measured in Lake Michigan. Instead, our observed decreases in
FHgT and DGM in the water column relative to the late 1990s
and early 2000s"***>* likely provide confidence that
reductions in atmospheric Hg® are translating to reductions
in water column Hg of the Great Lakes, a testament to the
local and regional benefits of domestic regulations on Hg
releases in the United States.
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