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Integrating Computer Science in Science Classrooms: Learning Computational 
Thinking and Expanding Perceptions of Computer Science 

 
Introduction 

Computing is no longer the exclusive domain of computer scientists. The growth of 
computers in all aspects of modern life has drawn increasing attention to the role that computing 
plays in the professional practice of science. From astrophysicists to zoologists, STEM 
professionals increasingly investigate phenomena salient to their discipline not simply by using 
computers, but by designing computational tools (Denning, 2017), and by translating those 
phenomena in ways that are amenable to such tools. Increasingly, scientists must be fluent 
computational thinkers, and understand the affordances and constraints of different 
computational tools, in order to successfully use such tools (Foster, 2006; Grover & Pea, 2013). 
As such, many scholars have recognized the critical importance of integrating computational 
thinking (CT) into science and mathematics classrooms, in part, to more authentically align 
science and math education with the work of STEM professionals and better prepare students for 
academic and career pathways in STEM (Foster, 2006; Weintrop et al., 2016, Voogt et al., 2013). 
Responsive to this, recent science education standards include CT alongside mathematics as one 
of eight core science and engineering practices, and emphasize the importance of CT to support 
multidimensional science learning (NRC, 2012, NGSS Lead States, 2013). Beyond the ever-
growing importance of computation in STEM workforce contexts, CT and science learning are 
reciprocally supportive from a pedagogical standpoint (Weintrop et al., 2016): science concepts 
are a natural fit for developing learners’ facility with CT, and learning CT helps support students 
in building, deepening, or consolidating their understanding of standards-aligned science 
concept(s) (Dickes et al., 2016; Guzdial, 1994; NRC 2011a, b; Peel et al. 2019,; Sengupta et al., 
2013; Wilensky & Reisman, 2006). CT also affords facile and authentic connections with other 
science and engineering practices (SEPs) long-recognized as core epistemic practices in 
science—and accordingly, in science classrooms—such as scientific modeling and data analysis 
(Lee et al., 2011, Sengupta et al., 2013; Sengupta et al., 2018; Sneider et al., 2014; Weintrop et 
al., 2016; Wilkerson & Fenwick, 2017). 

Context for Study 
Project Goals. The [name anonymized] project is an ongoing effort to create and research 

simulated internship curriculum units that confront barriers to broader participation in computer 
science (CS) and position coding as a tool for doing science. The 10-day [name anonymized] 
units integrate CS concepts and practices, such as computational thinking (CT), in core middle 
school science classrooms and provide teachers with structured, educative curriculum materials 
to support implementation. The [name of project] model seeks to support broader participation in 
CS pathways, with a particular emphasis on females; and enable scalable integration of CT 
learning experiences in core science courses.  

Design of [name anonymized] curriculum units. The units have been designed to 
accomplish project goals by (1) immersing students (Grades 6-8) in simulated internships that 
mirror the collaborative and computational work of practicing scientists, offering a more 
inclusive model of CS work (Buffum et al., 2015; Carter, 2006, Charleston, 2012; Hanks et al., 
2011; Liebenberg et al., 2012; Werner et al., 2004); and (2) positioning coding in service of 
addressing real-world problems to counter negative perceptions of CS endeavors as limited in 
value (Anderson et al., 2008; Carter, 2006; Grover et al., 2014; Margolis et al., 2012); (3) 
gathering evidence that can advance and deepen the field's understanding of how students' 
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computer science knowledge and practices develop within the context of science learning 
experiences; and 4) identifying specific factors, designs, and practices that support CT learning, 
and improve student dispositions toward STEM and CS-related occupations, and that are likely 
to improve the capacity of teachers and districts to support CS education. 

This paper focuses on student CT knowledge and dispositional outcomes in relation to 
one [name anonymized] 10-lesson learning sequence designed as a digitally simulated virtual 
internship. For this simulated internship, students inhabit the role of coding science interns 
working to implement a restoration project to improve the health of coral reef populations. As 
they develop computational thinking and core programming practices, students deepen and apply 
their understanding of ecosystem dynamics and interdependence, human impacts on Earth 
systems, and global climate change to coral reef ecosystems. Students work in teams to program 
a scientific simulation so that it better represents an evidence-based, explanatory account of a 
coral reef ecosystem under threat. The purpose of the simulation is to communicate to 
stakeholders how various threats affect the health of a coral reef and how those threats may be 
mitigated. Through this effort, students debug existing code as well as program additional 
simulation features. Students also write code to program underwater robots to remove threats in 
variable conditions. Students gain first-hand experience with sequences, loops, and conditionals. 
Student teams work together to evaluate their code by testing executed code against expected 
outcomes and real-world data. 

Our pedagogical framework grounds Mitch Resnick’s coding to learn approach to CS 
education (Resnick, 2013) in situative learning theories and, in particular, the construct of 
legitimate peripheral participation (LPP, Lave & Wenger, 1991). Coding to learn, in which 
learning is contextually embedded in authentic tasks, is a natural fit for situative theories, like 
LPP, which posit that knowledge is constructed through activity and in relation to others—thus, 
learning is “situated” in the activity, context, and community in which it occurs (see also Greeno, 
1998). LPP's foundational construct of a community of practice (Lave & Wenger, 1991; Wenger, 
1998), where individuals share a repertoire of knowledge and practices to address a shared set of 
problems, informs the intervention’s commitment to authentic and collaborative problem solving. 
Further, with the simulated internship model, in conjunction with task-embedded supports and a 
gradual release of responsibility, students progress along a trajectory from peripheral to more 
central participation in the practice of coding scientific simulations. The LPP framework is 
tightly aligned with the intervention’s more distal goal of broadening participation in STEM, 
offering a clear vehicle for students to explore and come to identify with CS as a “possible self” 
(Markus & Nurius, 1986). Markus’ theory also dovetails with the widely reported distal impacts 
of students’ early perceptions of STEM subjects as a determinant of whether students enter 
STEM professions (Tai, Liu, Maltese & Fan, 2006). With this body of research in mind, learning 
experiences were expressly designed to encourage a broad range of students to see themselves, at 
least potentially, as both scientists and programmers, and to envision CS as a more appealing 
world to inhabit. 

Methods 
The mixed-methods research agenda for the broader project this study represents is 

guided by three questions: 1) To what extent is there evidence that a CT-S integrated learning 
sequence is likely to improve student learning outcomes and catalyze dispositional shifts toward 
STEM academic and career pathways?; 2) What specific design features and instructional 
strategies of the learning sequence and instructional materials are most important for broadening 
student participation in CS?; 3) What aspects of the learning sequence are most important to 
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support sustainability of CS and science integration? Findings presented for this paper are 
focused on the first of these research questions, with analyses of data for the other two questions 
ongoing.  

Design-based research. The instructional sequence examined in this paper has been 
extensively piloted (instruction led by the research team) and field tested (instruction led by 
classroom teachers) over the two years prior to the research trial reported herein. Based on 
iterative classroom pilot testing (215 students, 10 class sections in two western states) and 
insights from project advisors, we revised the unit, then implemented the revised version in field 
trials in 8 middle school science classrooms in two states during the 2018-2019 school year. 
Findings from this field trial suggested promise for student learning, with significant learning 
gains pre- to post-instruction for n=391 students (Authors, 2020a). The field trials enabled 
researchers to gather validity evidence for administered modifications to the dispositional 
measures (see discussion of measures below), and to focus and refine our professional learning 
supports for teachers. With research ongoing, emerging insights from our DBR process, 
including implications for pedagogical design and scalability are reported elsewhere (Authors, 
2020b). Because reported findings reflect an instructional sequence developed over 3 years of 
iterative design based research, data sources for the broader study are included below. 
 

Data source Sample  

Teacher and district administrator interviews n=8 (5 teachers & 3 administrators; multiple interviews with each) 

Observations of developer-led classroom pilots for 
each of two 10-lesson instructional sequences 

114 total observations across all piloted lessons for each unit 
Unit 1: 215 students in 10 class sections  
Unit 2: 260 students in 9 class sections 

Observations of teacher-led implementation for one 
unit 

15 total observations across 7 lessons in multiple sections for 2 teachers and 
approximately 325 students. 

Teacher surveys and daily reflection logs n=10 middle school science teachers (2018-2019) 
n= 9 middle school science teachers (2019-2020) 

Field Trial 1 (2018-2019)  
Findings reported in (Authors, 2020a & 2020b) 

n=391 middle school science students 

Research Trial  (2019-2020)  
SUBJECT OF CURRENT ANALYSES 

n=381 middle school science students 

Development team and stakeholder meeting notes  Meeting notes cover two years of iterative unit development work with curriculum 
developers, learning science researchers, educators, and an external expert panel. 

Figure 1: Data sources for full study 
 

Analysis of outcomes. Reported outcomes relate to a research trial conducted during the 
2019-2020 school year with n=381 middle school science students in three public school districts 
from two western states. Schools representing just over 1000 students expressed interest in 
participating, and all who were interested were invited to participate. Of that group, 
approximately 600 students completed the unit, and we were able to match pre/post responses for 
381 students. Unmatched responses (e.g., from incorrect user names or absences at pre or post) 
are not included in the current analyses. 

Measures. Reported findings for changes in computational thinking focus on pre/post 
changes in student performance on the Assessment of Computational Thinking (see Snow et 
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al.,  2017 for background on items; see Witherspoon et al., 2017 for technical report on evidence 
for measurement validity). Reported findings for dispositional changes are drawn from the suite 
of Activation Lab measures (Dorph et al., 2016), specifically, the scales for Competency Beliefs 
(Chung et al., 2016) and Valuing Science (Chung et al., 2016). Some items on each of the 
Activation Lab scales were modified to focus on computing and computer science instead of 
science for this administration (e.g., items about the perceived importance of science were 
revised to focus on programming).  

 
Findings 

 
Changes in student knowledge and dispositions over the course of instruction 

Computational Thinking. Analysis using a paired samples t-test of a pre/post survey for 
n=381 students revealed that students who participated in the 2 week/10 lesson integrated 
computational thinking in science learning sequence demonstrated significant learning gains on 
an external measure of CT (0.522***; effect size=0.32).  

Competency-beliefs for STEM. Analysis of a retrospective post instruction survey for 
n=368 students revealed that students who participated in the 2 week/10 lesson learning 
sequence reported significantly greater confidence with STEM after instruction compared to 
prior to instruction (1.129***; effect size=1.01).  

Valuing STEM. Analysis of pre/post mean differences for n=380 students revealed that 
students who participated in the 2 week/10 lesson learning sequence assigned significantly 
greater value to STEM academic and career pursuits after instruction (0.778***; effect 
size=0.95).  

 
Figure 4: Paired samples t-test of mean differences in valuing STEM from pre- to post-instruction 

 
Analysis of variance between subgroups 
The ultimate objective of the instructional sequence is to support broader participation in STEM 
academic and career pathways by confronting long standing gender inequities in the computer 
science domain. As such, we examined each of the constructs reported above for variation 
between gender groups that would suggest inequitable learning experiences.  

Computational Thinking. At the end of the pre and post surveys, students were asked to 
self-identify gender, with options for male, female, non-binary, and “prefer not to say.” To 
examine gender differences, we ran a one-way ANOVA and found no significant differences 
between groups. A Tukey post hoc test confirmed no significant difference between pre-
instruction mean scores for students who identified as female (3.48 ± 1.65; n=178) compared to 
those who identified as male (3.80 ± 1.81; n=173), nor for post-instruction mean scores (4.04 ± 
1.58 for females, compared to 4.37 ± 1.64 for males). Accordingly, learning gains for the two 
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groups were nearly identical, with a mean increase of 0.56 (effect size=0.35) for students who 
identified as girls and a mean increase of 0.57 (effect size=0.35) for students who identified as 
boys.  

Competency-beliefs for STEM. Both males and females reported significant increases in 
competency-beliefs for STEM after instruction. To further examine gender differences, we ran a 
one-way ANOVA test and found a statistically significant difference between groups for both the 
pre- (F(3,366) = 5.333, p = .001) and post- (F(3,354) = 5.852, p = .001) components of the 
retrospective post-instruction survey. A Tukey post hoc test revealed female students reporting 
significantly less confidence with STEM both prior to and after instruction (Pre: 3.08 ± 1.25; 
Post: 4.26 ±0.925) than their male counterparts (Pre: 3.61 ± 1.38; Post: 4.68 ±1.03). There was 
no statistically significant difference between females and either non-binary students or students 
who preferred not to state gender. This suggests that the learning sequence, on its own, is 
insufficient to achieve parity in student beliefs about their own competency for STEM. However, 
there is strong evidence that the learning sequence is making considerable progress toward this 
goal. To wit, females reported a larger increase in competency-beliefs than males, with a mean 
difference of 1.20 (effect size: 1.14; n=175) compared to a mean difference of 1.10 (effect size: 
0.950; n=165) for males. 

Valuing STEM. Both males and females reported significant increases in value assigned 
to STEM after instruction. To further examine gender differences, we ran a one-way ANOVA test 
and found no significant differences between groups.  

 
Discussion 

Taken together findings offer strong evidence of promise for integrating computational 
thinking into core middle school science classrooms, with significant learning gains and positive 
dispositional changes observed. We also found evidence that instructional design focused on 
addressing gender inequities in STEM may have contributed to equitable outcomes across both 
knowledge and dispositional metrics. While outside the scope of the present study, student and 
teacher interviews suggest learning experiences grounded in solving real-world problems was a 
key motivator for equitable engagement.  

Given the increasingly computational world in which we live, and in which much of 
modern science operates, developing evidence-based models for the integration of computational 
thinking in core science classrooms is critical for the teaching and learning of science. 
Accordingly, the evidence presented in this paper demonstrating significant student outcomes for 
this simulated internship model for CT-S integration will be of high interest to the NARST 
community. In particular, given NARST’s goal of helping all learners achieve science literacy, 
we are eager to share with fellow NARST members evidence that an instructional sequence 
emphasizing collaborative learning, with students designing solutions to real-world problems, 
can result in large positive effects for girls’ disposition toward STEM. A conference presentation 
at NARST would also provide an opportunity to explore the instructional design in more detail 
and engage NARST members in discussion of outcomes in relation to that design. 
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