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ABSTRACT: Over the course of individual lifetimes, luck usually
explains a large fraction of the between-individual variation in life
span or lifetime reproductive output (LRO) within a population,
while variation in individual traits or “quality” explains much less.
To understand how, where in the life cycle, and through which de-
mographic processes luck trumps trait variation, we show how to
partition by age the contributions of luck and trait variation to
LRO variance and how to quantify three distinct components of
luck. We apply these tools to several empirical case studies. We find
that luck swamps effects of trait variation at all ages, primarily be-
cause of randomness in individual state dynamics (“state trajectory
luck”). Luck early in life is most important. Very early state trajec-
tory luck generally determines whether an individual ever breeds,
likely by ensuring that they are not dead or doomed quickly. Less
early luck drives variation in success among those breeding at least
once. Consequently, the importance of luck often has a sharp peak
early in life or it has two peaks. We suggest that ages or stages where
the importance luck peaks are potential targets for interventions to
benefit a population of concern, different from those identified by
eigenvalue elasticity analysis.

Keywords: reproductive skew, lifetime reproductive success, trait
variation, individual stochasticity, Rissa tridactyla, Artemisia tridentata.

Introduction

Over the course of an individual’s lifetime, luck often ex-
plains a large fraction of the between-individual variation
in life span or lifetime reproductive output (LRO) within
a population, often contributing much more to LRO var-
iation than variation in individual traits or “quality” (e.g.,
Tuljapurkar et al. 2009; Steiner et al. 2010; Caswell 2011;
Steiner and Tuljapurkar 2012; van Daalen and Caswell
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2017; Hartemink and Caswell 2018; Jenouvrier et al.
2018; Snyder and Ellner 2018). Here, “traits” are individ-
ual attributes that remain fixed for life, such as genotype,
birth date, spatial location of a sessile organism, or some
measure of individual quality inferred from repeated ob-
servations of individual performance (Cam et al. 2016).
By “luck” we mean what Caswell and collaborators call
“individual stochasticity”—random variation in outcomes
among individuals having identical demographic rates, for
example, identical age- or size-specific survival probability
and distributions of growth and clutch size.

While good traits may be necessary for exceptional suc-
cess, they have not been sufficient in the cases we have
considered: you also need to be lucky (Snyder and Ellner
2018). Exceptional success is, by definition, very unlikely.
The least unlikely route to high LRO is to be above aver-
age (but not exceptional) in traits or quality and to get
lucky. This is true for empirical case studies (cited above)
in a wide range of taxa and for stage- or size-structured
theoretical models incorporating empirical estimates for
the extent of trait and fitness variation in natural popula-
tions (Snyder and Ellner 2018).

The importance of luck for LRO may seem at odds with
the considerable and growing evidence that selection can
be strong in natural populations, causing rapid evolutionary
change.' But luck at the individual level averages out—no-
body escapes the strong law of large numbers—and genes
that improve expected fitness still tend to increase (Snyder
and Ellner 2018, “Selection” section; app. S2 [apps. S1-S7
are available online])). Indeed, whenever reproduction is
dominated by a few individuals (“reproductive skew”), se-
lection will quickly eliminate any genotype conferring no

1. LRO is not equivalent to fitness, but in many situations the evolution-
arily stable strategy life history is characterized by maximization either of
LRO or of population intrinsic growth rate (Mylius and Diekmann 1995;
Metz et al. 2008); moreover, traits that increase LRO without increasing
generation time will generally increase intrinsic population growth rate.
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chance of being one of those few, leaving a population
where luck is important because everyone has some chance
to “win the lottery.” For example, Chen et al. (2019) found
“huge variation in individual fitness” (p. 2161) in a fully
pedigreed population of Florida scrub jays (see their fig. S1;
the top five females fledged more total offspring than the
bottom 250), but their analysis of genomic data revealed
that “drift is the predominant force driving allele frequency
change over time” (p. 2161).

But when luck overwhelms the effects of trait variation,
as it often does, why and how does it do so? Is it because
some individuals enjoy long lives with many years in
high-fecundity states while others’ lives are “nasty, brut-
ish, and short” (Hobbes 1651)? Because some have large
clutches or frequent high breeding success, by chance?
Because some were lucky to be large at birth, or born at
the right time of year or in a good location? Is luck mostly
about getting past some risky phase of life, or is risk
spread more evenly? To answer questions like these, we
need to think about the various sources of luck, and we
need to understand how the relative contributions of luck
and traits play out over the course of an individual’s life. Is
one kind of luck especially important? Is it always more
important to be lucky than good, or are there ages or
stages when good traits are the key to success?

In the process, we will gain a deeper understanding of
how influential luck is at different ages. Some states play a
key role in luck—what happens immediately after leaving
that state weighs heavily on success. If the importance of
luck peaks sharply at one point in life, that indicates an
age when an individual is very likely to be at one of these
critical stages. These states—and the ages at which they
are typically reached—may be targets for management
interventions to benefit a population of concern. By con-
trast, if luck is broadly distributed over the life span, then
there is no period of life in which luck is decisive. Either
no states are especially fraught or the timing of reaching
such a state is spread out.

In this article, we present new tools for partitioning the
contributions of luck and traits at different ages to the
variance of LRO. We further break down luck into contri-
butions from prenatal luck, state trajectory luck, and fe-
cundity luck and show how to partition them into contri-
butions from different ages or different states. Figures 1
and S1 (figs. S1-S4 are available online) are conceptual
summaries of these different kinds of luck. Prenatal luck
shows how random variation in initial state (size at birth,
for many of our examples) affects variance in LRO. State
trajectory luck is about an individual’s course through
life. If we think of life as a series of random transitions,
state trajectory luck is about how the transition made at
a given age (does the individual shrink? grow? die?) af-
fects variance in LRO. Fecundity luck summarizes how

random variation in the number of offspring at a given
age affects variance in LRO. State trajectory luck and fe-
cundity luck can also be written as a sum of contributions
at different states rather than at different ages. Finally, we
partition these three forms of luck, plus the age-specific
contributions of trait variation, into variance generated
by whether an individual ever breeds during its life, versus
variance in LRO among individuals that breed at least
once.

The power of the new tools is illustrated by a set of an-
imal and plant case studies using published models. In
particular, we return to the sagebrush steppe perennial
plants that we previously analyzed (Snyder and Ellner
2018). We knew that a favorable competitive environ-
ment at birth (a trait, in our sense) is key to survival in this
community, yet our analysis showed that its impact is
swamped by luck. What kind of luck and when? The tech-
niques in Snyder and Ellner (2018) only allowed us to
measure the lifetime total effects of luck and trait varia-
tion. Our new tools have shown us that state trajectory
luck in the first 10 years of life, especially the first year,
drives the dominance of luck over the early competitive
environment. The dominance of luck is the result of early
variation in survival and growth, unrelated to competitive
environment. Conveniently, the new methods are com-
putationally simpler than the previous ones that provided
less information. Our empirical case studies mostly focus
on LRO, but our methods all also apply to life span, sim-
ply by modifying the model so that each living individual
has exactly one offspring each year, and LRO then equals
life span.

In most cases, we find that luck swamps the effects of
trait variation, because state trajectory luck is the dominant
component at all ages, and that luck early in life (but not at
birth or immediately afterward) is most important. Very
early state trajectory luck determines whether an individ-
ual ever breeds, likely by ensuring that an individual is
not dead or doomed (by being in a very bad state) early
in life. Less early luck drives variation in success among
those who breed at least once. As a result, the importance
of luck often has a sharp peak early in life. We suggest that
ages or stages where the importance of luck peaks are a po-
tential target for management interventions to benefit a
population of concern. In situations with a constant cost
per individual of intervention rather than a constant cost
per fractional change in a state- or age-specific vital rate, a
“management for luck” criterion may be more appropriate
than standard eigenvalue elasticity analysis.

This article is long because we give an integrated pre-
sentation of methods and applications—but it is shorter,
in total, than if we had made it two articles with much un-
avoidable overlap. It is therefore structured and sign-
posted so that readers who choose to can focus on the
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Figure 1: Conceptual figure showing the sources of variation in lifetime reproductive output (LRO): trait variation, prenatal luck, state tra-
jectory luck, and fecundity luck. Trait x is fixed at birth and could entail, for example, higher survival and/or higher breeding probability.
State z (e.g., body size) changes across life and affects immediate reproductive output. The color in the heat map is expected total repro-
duction from current age until death (which depends on state but not on age); darker/redder colors represent higher expected total repro-
duction. Note that expected reproduction is influenced by state (the heat map gets redder as z increases) and by trait (better traits mean that
more of the heat map is red). The black and gray lines are potential trajectories through life, with an X mark indicating death. In this ex-
ample, the number of offspring at each age is either 0 or 1, with 1 more likely in redder areas. Where an offspring was produced, there is a
black circle. The number of circles on a trajectory thus represents LRO. Pluck is the variation in LRO that comes from an individual’s trait:
which heat map are they born on? Prenatal luck is the variation that comes from their initial state: does their trajectory start in a red area or
a yellow area (black lines vs. gray lines)? State trajectory luck is the variation that comes from the path they take through life (variation
among black or gray lines), which can be short or long and can wander through redder and less red areas. Finally, fecundity luck is the

variation that comes from whether they produce 0 or 1 offspring at each age (circle or no circle).

central concepts, empirical applications, and practical im-
plications rather than the technical derivations.

Background and Assumptions

The underlying model is an integral projection model
(IPM) or matrix projection model (MPM) satistying the
assumptions of chapter 3 of Ellner et al. (2016). The most
important assumption is that the kernel or matrix is
power positive (some iterate of the kernel/matrix is posi-
tive on the entire state space); the others are satisfied by
any MPM and by IPMs with bounded state distributions
and continuous or piecewise continuous kernels. We use
the notation of size-structured IPMs, but the results apply
to any continuous individual-level state variable, a multi-
dimensional state variable (size and age, size and quality,
etc.), or an MPM if integrals are interpreted as sums. We
assume that the maximum survival across states, s,,.., is
<1. This implies that the survival-growth kernel on living
states, P, has dominant eigenvalue <s,,,, <1 and that
maximum survival to age 4 has an asymptotic exponential
decrease proportional to si.. Unlike van Daalen and
Caswell (2017), we consider only models where the dis-

tribution of immediate fecundity (i.e., offspring censused
as new recruits next year) is determined by the current
state rather than the current and subsequent state.

We consider only time-invariant models. However,
this includes “megamatrix” models (e.g., Tuljapurkar and
Horvitz 2006; Metcalf et al. 2009) for species in a time-
varying Markovian random environment, where each in-
dividual experiences its own independent realization of
the environment variable(s) affecting vital rates (e.g., each
tree in a forest experiences a time-varying light environ-
ment, determined by events in its immediate neighbor-
hood). One of our case studies (the bunch grass Psuedo-
roegneria spicata) is of this type, where the environmental
variable is total competitive pressure from neighbors. That
case study also illustrates that the individual-level models
we analyze here are agnostic about density dependence at
the population level. The individual-level models are Mar-
kov chains that act linearly on state probability distribu-
tions, but that is true whether the population-level IPM or
MPM is itself linear (i.e., density independent) or instead
represents a density-regulated population at equilibrium
or stochastic steady state.

Our notation is defined in table 1 as well as in the text.
RO denotes reproductive output, the offspring produced
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Table 1: Notation and definitions

Notation Formula and/or meaning

R Lifetime reproductive output (LRO; random variable)

2, Za Possible value of individual state or state at age a

w Dead; an absorbing state (the dead stay dead) with zero fecundity

Z, 7, Individual state (or state at age a) considered as a random variable

Vi The vector (¥}, ¥j+15 ... » yx); for example, z,, is an individual’s history of states from ages 0 to a, considered as a
random vector

B(z) E[immediate RO] for state z individual, B(z) = [F(z,z)dZ’

0 (2) Var(immediate RO) for state z individual (formula is model dependent)

B.(z) E[(immediate RO)?] for state z individual, 8,(z) = B(z)* + ¢(2)

01(2) E[immediate and future RO] for state z individual

V(z) Variance over next year’s state of p,(2)

02(2) E[(immediate and future RO)?] for state z individual

CO(Z)> CO(Z> -x)

Probability distribution of state (or state and trait) at birth, ¢,(w) = c¢o(w, ») = 0; individuals are age 0 at birth

Po(x) Marginal distribution of trait at birth

o Hadamard product, (f o )(z) = f(2)g(z)

By Restriction of « to states z # w; for example, ¢, W, b

e Vector of all 1s (MPM) or function e(z) = 1 (IPM); in both cases, e’P = state-specific survival probability

F Fecundity kernel

P Survival-growth kernel or matrix without an absorbing state for death; thus, e'P = s(z), state-dependent survival

P, Survival-growth kernel or matrix with an absorbing state for death; thus, e'P, = e because the columns of P, sum
tol

N Fundamental matrix for > N = (I — P)!

P(2) Probability of attempting to breed

Ty o Survival-growth kernels for breeders and nonbreeders, respectively

03 (2) Variance in per capita number of new recruits produced in the current year by a breeder

pa(2) Probability of producing at least one new recruit in the current year

Ba(2), 0%(2)

at least one

Mean and variance in per capita number of new recruits produced in the current year, conditional on producing

Note: P and P. here correspond to U and P in van Daalen and Caswell (2017). p, and p, here correspond to 7 and 7, in Ellner et al. (2016). IPM = integral
projection model; MPM = matrix projection model; RO = reproductive output.

by an individual. LRO denotes lifetime reproductive out-
put, the total RO over an individual’s lifetime. Our nota-
tion is largely consistent with chapter 3 of Ellner et al.
(2016) but deviates somewhat to be consistent with van
Daalen and Caswell (2017). We assume that expected im-
mediate and future RO p, and expected squared immedi-
ate and future RO p, (called 7 and 7, in chap. 3 of Ellner
et al. 2016) have been calculated for the model at hand,
using the appropriate method from Ellner et al. (2016)
or van Daalen and Caswell ( 2017). (See the tutorial code
that accompanies app. S5 if you are unsure how to do this;
all code can be found in the Dryad Digital Repository
[https://doi.org/10.5061/dryad.1gljwstt5; Snyder et al.
2020].) Note that z, is the state at age a considered as a
random variable, while z,, z, and so on denote possible
values of z, and one possible state is dead, z = w. Al-
though functions do not have a transpose, we often write
v" where a row vector would occur in a matrix model cal-
culation. Be warned, however, that this notation hides bin
width (h) factors that are typically present in continuous-

state IPM calculations, such as hxsum(vsc0) for calculat-
ing v"¢, by midpoint rule in R.

We need to use an expanded kernel (or transition ma-
trix) P,(z,z) that includes w as an absorbing state,
P, (w,w) = 1. The dead are assumed to have zero fecun-
dity, so p,(w) = p,(w) = 0. If the underlying model is
an IPM, then P, operates on a hybrid state space, where
state of the living is continuous and w is a discrete point.
The term P, is constructed for numerical calculations by
taking the iteration matrix for P, adding an extra row at
the bottom consisting of the size-dependent probability of
death, adding an extra column of zeros on the right, and
putting 1 in the bottom right corner.

Partitioning without Trait Variation: Theory
Overview

Age partitions of luck can help us identify critical periods
of life in which luck has a large influence on LRO. In the
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following subsections, we define the three forms of luck
discussed in the introduction—prenatal luck, state trajec-
tory luck, and fecundity luck—and show how to partition
them into contributions from different ages or different
states. We can also ask how much of the variance in
LRO is about getting to breed at all versus never breeding
and how much of it is about how many offspring you
leave, given that you leave some. We go on to partition
state trajectory luck into these two components: breeding
or not, and LRO variance among breeders.

In the rest of this section, we give the mathematical
definitions of the luck components and derive the parti-
tionings by age, state, and breeding or not. If that is not
what you are here for, you can skip to “Partitioning with-
out Trait Variation: Case Studies,” where we apply the
results in empirical case studies.

Partitioning Luck by Age

For now, all individuals have the same trait values, so var-
iance in LRO is entirely due to luck. The goal in this
section is to partition the total among-individual variance
in LRO into contributions at each age. Explicitly age-
structured models are a special case (app. S3), but our
main interest is in models where individuals of a given
age can be in multiple states.

The idea behind the calculations in this section is to
first condition the variance in LRO on state at age 0 and
then to condition that result on state at age 1 and so forth,
applying the law of total variance over and over. However,
conditioning a variance on multiple variables is mathe-
matically treacherous. Therefore, we turn to a general var-
iance decomposition derived by Bowsher and Swain
(2012). In appendix S2, we give a self-contained statement
and proof of this decomposition (eq. [S8]).

Let z,, denote an individual’s state history from ages 0
to k. The general variance decomposition says that for
any upper age A,

Var(R) = Var, [E(R|z,)]

prenatal luck

A—1
+ Z [Ezo:mvarzaﬂ\zg;a [[E(R|Zo:a+1)] (1)
a=0

state trajectory luck

+ E,,, Var[R|ze4].
—— —

Z0:A

fecundity luck

The first line in equation (1) can be interpreted as prenatal
luck, being in a good or less good state at birth. This will be
zero in any model where all newborns have the same state.
The second line adds up how luck in state transitions at
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different ages contributes to LRO variance through its ef-
fect on the individual’s state the following year. If we think
of an individual’s life as a route through a garden of fork-
ing paths, state trajectory luck quantifies how much each
state transition between one census and the next affects
future expected LRO. We will see that the final line adds
the effect of luck in the reproductive output at each age
given the individual’s state trajectory: how many offspring
did that individual have this year?

In the rest of this section we will derive analytic, easily
computed formulas for each term in equation (1); those
will imply that we can let A — o to get a partitioning of
luck across all ages. The final result is equation (7); you
can skip directly there if you are willing take it on trust.

Starting with prenatal luck (the first term of eq. [1]),
we have

E(R|z, = z) = p,(z) = €'FN, (2)

where F is the fecundity kernel and N = (I — P) "' is the
fundamental matrix for P. If F and P are matrices, then e
is a vector of all 1s, while if they are continuous kernels,
then e is a function e(z) = 1. At age 0 there has not been
any mortality, so the variance of R across living states
z # w includes the entire population. Using « to denote
restriction of e to living states, if ¢,(z) is the initial state
distribution, then prenatal luck is

Var py(2,) jzo(z)ﬁl(z)z dz — (j 202 (2) dz)

~T ~ ~T~ \2
Cgpf - (Cgpl) .

(3)

Turning to state trajectory luck (the second term of
eq. [1]), we can break R into two parts for each value of
a: total reproduction up though age a, and reproduction
at ages a + 1 and beyond. Conditional on z,,,, reproduc-
tion through age a does not depend on the value of z,.,.
Thus, the Var in state trajectory luck is just the variance
of the expected value of reproduction at ages a + 1 and
beyond, as a function of the value of z,.,. But because
state transition probabilities do not depend on age in ad-
dition to state (this is true even in models with age struc-
ture, because then age is a component of state), expected
total reproduction at a + 1 and beyond (as a function of
state at age a + 1) is calculated the same way as expected
total reproduction from birth as a function of state at
birth. The Var in state trajectory luck is thus the variance
with respect to the conditional distribution of z,,, of

[E(R|Zo = Zo1) = 01(Zas1)- (4)

The Markov property now comes in handy. The dis-
tribution of z,,, conditional on z,, is the distribution
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conditional on z, (including the possibility of being dead
at a), which is P, (z,z,). Conditional on z, = z, the var-
iance of equation (4) is given by

V) Jpl(z')zza (Z,2)de — (Jpl(z'na (2.2) dz’)

piP. — (p1P+)’,

(5)

with the integrals running over all states, including w.
The final step for state trajectory luck is to average V over
the distribution of z,. As V(w) = 0 (the dead stay dead and
have zero future RO), this average only involves the distri-
bution omitting w. State trajectory luck is therefore

A—1 T
> VPG, (6)
a=0

Note that the same formula with P, in place of P and tildes
omitted is also valid because V(w) = ¢,(w) = 0.

As a — oo the age a terms exhibit an asymptotic ex-
ponential decrease because the dominant eigenvalue of
P is at most the maximum size-dependent survival s,,.,,
which is <1 by assumption. Let V., denote the largest
value of V(z). Then the ath term is at most 2.V ...(a),
and the sum of all terms from the ath on is at most
Vinax(@) = st /(1 = Spa). The sum in state trajectory
luck is therefore convergent as A — oo. In practice, for a
sufficiently large, the upper bound will be much smaller
than the sum of the first @ — 1 terms, and calculation of
further terms is not needed.

For fecundity luck (the third term of eq. [1]), we can
divide R into total reproduction at ages 0 to A, plus to-
tal reproduction after age A. Because reproductive output
in different years is conditionally independent given
the state in that year, the variance in total reproduction
at ages 0 to A, conditional on z,.,, is the sum of annual
state-dependent conditional variances in immediate RO,
Zﬁzoaﬁ(zu). Because the chance of survival past age A
decreases geometrically with age, reproduction after age A
decreases at least that fast. Fecundity luck is therefore
Z;\:O[Eaﬁ(za), plus a term that decreases geometrically in
A or faster. This sum includes only the living because
0X(w) = 0. Therefore, Fo?(z,) = (67)"P°C,. This has an as-
ymptotic geometric decrease with age because Pr(z, # w)
has an asymptotic geometric decrease and o;(w) = 0.
We can therefore let A — oo in fecundity luck.

Combining these calculations and letting A — oo, we
get a decomposition of Var(R) into prenatal luck, plus
the contributions at each age from randomness in state
trajectories and from randomness in realized fecundity
conditional on the state trajectory:

—— —

prenatal

~T~ ~T~ = ~ T~
Var(R) = @pi — (Gp)) + ) VPG
a=0

| ——
state trajectory (7)

+ > @)'PE
a=0
————
fecundity
The terms in equation (7) include the effects of variation
in initial state, when it exists. Alternatively, it may be of
interest to see how initial state affects the partition by age,
by doing decomposition for different initial distributions
¢, having only one possible state at birth.
Readers who would like to see the formulas in equa-
tion (7) implemented in R may wish to examine the code

that generates figure S4, a partitioning of the toy model
in appendix S5.

Luck by Age: Another Interpretation

The age-specific terms in equation (7) have an intuitive
interpretation, which becomes essential for dealing with
trait variation below. Specifically, the age a terms in state
trajectory luck and fecundity luck are the additional var-
iance in total LRO that results from letting luck happen
up to age a (but not past that age), compared with having
it happen only up to age a — 1.

To see why that is true, consider a modified life history
in which individuals live a normal, stochastic life up to age
D > 0 and then live deterministically. To implement this,
we let individuals have state transitions up to age D > 0
according to the transition kernel P and then die (if not
already dead). At ages 0 to D — 1 they follow the “normal”
state-dependent fecundity distribution, but their fecun-
dity at age D is (e"FN¢,)(zp), their expected total immedi-
ate and future RO conditional on their state at age D in the
original model without extermination at age D (this is
zero if they are already dead). State-dependent fecundity
followed by certain death is just a mathematical device
for eliminating variance in LRO while preserving the
mean. It is equivalent to letting RO at all subsequent ages
equal its expected value conditional on zp, but instead we
give it as a “lump-sum” payment followed by death.

This modified life history has exactly the same expected
LRO as the original, namely, their expected fecundity at
ages 0,1,2,...,D — 1 plus their expected fecundity at all
later ages. As this is true for any initial state, we have (us-
ing a superscript (D) to denote the modified life history)

E”(R|z) = E(R|z) (8)

for the original model. However, the modified life history
has a lower variance in LRO because luck past age D has
been replaced with everyone getting their expected future



payoff. As D — oo, this reduction in LRO variance con-
verges to zero because expected and actual future RO both
equal zero once the individual dies.

When we apply equation (1) to the modified model,
only a finite number of terms are nonzero because of cer-
tain death at D. Prenatal luck is unchanged. In the state
trajectory luck term, because zp., = zZpy, = -+ = o,
Z,., has zero variance for a > D and therefore

Varlaﬂ\lo;a[[E(R|Z0:a+1)] =0, a=D. (9)

The expectation of the expression in equation (9) is there-
fore zero for a > D, so the infinite sums in the state trajec-
tory luck terms of equations (1) and (7) are actually sums
up to age D — 1 in the modified model. Similarly, in the
fecundity luck term, the conditional variance of R is fully
determined by the states at ages 0 to D — 1 because the
only subsequent payoff (at age D) is fully determined by
Zp, so the sum only runs up to D — 1.

Because the imposed extinction between ages D and
D + 1 does not modify either the state trajectory distribu-
tion or the state-dependent expected future RO prior to
the imposed extinction, all of the nonzero terms in equa-
tion (7) for the modified model are identical to those for
the original model. Deferring extinction by one year adds
one more term to each sum in equation (7)—so as claimed,
each age-specific term in equation (7) is the marginal effect
of letting luck operate for one more year before ending.

Partitioning Luck by State

The Markov property implies that an individual’s trajec-
tory and fecundity variance at each age only depend on
the individual’s state at that age. It therefore makes sense
to associate age-specific luck with the individual’s state
at the time and thus partition luck by state.

Before doing that, recall that prenatal luck is different
from the others in that it does not involve the “forking
paths” of individual stochasticity in state trajectories. It
results from differences in state at birth, which is not de-
termined by the model’s state transition probabilities.
This prenatal stochasticity does not occur at any of the
possible states for living individuals. It can be made a
stand-alone term or just omitted from a partitioning by
state. Either way, our goal here is to reexpress the state
trajectory and fecundity luck terms of equation (7), in
the limit A — oo, as two integrals or sums over possible
states for living individuals.

For state trajectory luck (second term of eq. [7]), the
sum from ages a = 0 to infinity is

VIU+P+P + P+ )5 = V NG. (10)

The right-hand side of the equation is the integral (or
sum) over z of the function Vo(N¢,). Thus, the total
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LRO variance from state trajectory variance is expressed
as an integral or sum over states z.

Doing the same for fecundity luck (third term of eq. [7]),
the sum over all ages is the integral with respect to z of
020(NG,), again a sum of contributions from different states
(which in retrospect is obviously the correct formula).

Subpartitioning: Breeders versus Nonbreeders

One source of LRO variation is that some individuals breed
before dying while others do not; the other source is vari-
ance in LRO among breeders. Here we explain how each
age-specific contribution to LRO variance can be subdi-
vided into these two components. Separating those com-
ponents turns out to be informative because it helps to
explain the pattern of age-specific contributions. In partic-
ular, bimodal patterns (where the importance of luck
peaks, declines, and peaks again with increasing age) can
result from the two components peaking at different ages.

As all nonbreeders have R = 0, conditioning on M =
(1 for breeders, 0 for nonbreeders) and defining p,, =
Pr(M = 1), we have

Var(R) = EyVar(RIM) + VaryE(R|M)
= puyVar(RIM = 1) + py(1 — py)ER|M = 1)* .

among breeders breed or not

(11)
We show how to calculate E(R) and Var(R) conditional on
breeding in appendix S4. In principle, the two terms in
equation (11) may vary differently by age or state. Luck
at some times may be important for whether an individual
breeds at least once; luck at other times or states may
mainly affect whether a breeder has many offspring or few.

The breeding probability p,, and a transition kernel P,
conditional on becoming a breeder can be calculated using
standard Markov chain methods (Caswell 2001, sec. 5.2;
Kemeny and Snell 1960), in ways similar to Snyder and
Ellner (2016, pp. E30-E31). The calculations are detailed
in appendix S4, and a worked example is provided in ap-
pendix S5 and in the code that generates figure S4.

We can then partition the among-breeders component
into the contributions of prenatal, state trajectory, and fe-
cundity luck by age or by stage by applying equations (7)
and (10) using the conditional kernel P,,. The correspond-
ing partition for the breed-or-not term is then obtained as
term-by-term differences between the among-breeders par-
tition and the total variance partition. If individuals vary in
state at birth, the calculations for breeders need to take that
into account by using the distribution of initial state conditional
on breeding (eq. [S23]) along with the conditional kernel.

Exactly how a breeder is defined is in part a matter of
choice, but it is constrained by how much detail the model
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provides about among-individual variability in annual re-
productive success. The results in appendix S4 cover the
following options.

Definition 1. Any model we can consider must specify
the state-dependent mean and variance of immediate
RO. Lacking any additional information, we can define
a breeder to be an individual that reaches a state z with
positive mean immediate RO (i.e., B(z) > 0).

Definition 2. In a model that also includes a state-
dependent probability of attempting breeding p,(z) and
the mean and variance of immediate RO conditional on
breeding, we can define a breeder to be an individual that
attempts to breed at least once before dying.

Definition 3. In a model that includes the full state-
dependent offspring distribution, we can define a breeder
to be an individual that produces at least one offspring be-
fore dying.

These are not exclusive cases. If a model includes the
information needed for definition 3, then any of the
three definitions can be used. Moreover, in some models
pu(2) takes only the values 0 or 1, in which case defini-
tion 2 can be implemented using the simpler definition
1 methods, defining an individual to be a breeder if they
reach a state z where p,(z) = 1. Similarly, if the state-
dependent probability of producing one or more oft-
spring is either 0 or 1, definition 3 can be implemented
using the definition 1 methods.

Partitioning without Trait Variation: Case Studies

In this section we explore how and why luck is distributed
over the course of an individual’s life in three empirical case
studies. We also ask what form of luck is dominant, overall
and at different ages: is it the luck of getting to breed at all or
the luck of being one of the most successful breeders?

Eastern Hemlock (Tsuga canadensis)

Lamar and McGraw (2005) developed projection matri-
ces for eastern hemlock (T. canadensis) on the basis of
studies in a mixed hardwood/hemlock forest in Shenan-
doah National Park. We used the average of the two es-
timated annual transition matrices, obtained from the
COMPADRE database (Salguero-Gomez et al. 2015):

A=F+P =
0.9030 0  0.29900 0.77415 1.95735 6.0251
0.0038 0.96070 0 0 0 0
0 001225 096545 0 0 0
0 0 001735 097595 0 0
0 0 0 0.01205 096335 0
0 0 0 0 0.01835 0.9903

(12)

The six “stages” are diameter at breast height (dbh) size
classes. Diagonal entries (including the top left entry)
are the probability of surviving and remaining in the same
size class, subdiagonal entries are probabilities of surviving
and entering the next-larger size class, and the other top
row entries are per capita average seedling production.
The probabilities of death are 1 minus the sums of the
transition probabilities (1 minus the column sums). See
appendix S7 for details. Van Daalen and Caswell (2017)
presented a sensitivity analysis of the mean and variance
of LRO for this model with respect to stage-specific sur-
vival, growth, and fecundity. We confirmed that our
scripts replicated the moments of LRO reported in their
table 3. We partitioned between breeders and nonbreeders
using definition 1, as there is no information on stage-
specific flowering probability: a breeder is an individual
that survives to enter stage 3.

The partitioning of LRO variance by age (fig. 24, 2B)
aligns with previous case studies where luck when small
and vulnerable is most important (Snyder and Ellner
2016); the largest contributions occur at ages 0-100, dur-
ing which most individuals are in the first three size classes
(fig. 2D). Nearly all LRO variance is due to state trajectory
variation (fig. 2B), and most of the variance (about 95% of
the total) is variance among breeders, individuals that sur-
vive to reach stage 3 (fig. 2C). Variance that results from
breeding versus not breeding occurs very early in life. A
newborn has a roughly 1% chance of surviving to stage 3
(the first with positive fecundity), while a stage 2 individ-
ual has a 31% chance. Luck later in life mostly results from
variance among breeders. Stage 3, 4, and 5 individuals
each have roughly 50:50 odds of surviving to reach the
next stage, and those that reach stage 6 can expect to live
100 years on average and produce more than 600 recruits
before death. The overall importance of luck peaks at
around age 100, when individuals are spread among
stages 2, 3, and 4 and the outcome of stage transitions de-
termines whether they make it into the later, high-fecundity
stages.

The trend in stage-dependent contributions (fig. 2E,
2F) is opposite of the age-dependent trend: larger stages,
reached later in life, make the largest contribution. The
stage-specific contribution of stage 6 is largest, even though
the chance of survival to stage 6 is below 0.2%, because a
year spent in stage 6 contributes a lot compared with other
stages and because individuals reaching stage 6 have a high
mean (=103 years) and very high variance (*11,000) of re-
maininglife span. The low age-specific contributions at high
ages, when most survivors are in later stages, result from the
fact that time in later stages (if it happens) is spread out over
many ages.

Across a wide taxonomic gulf, we found similar pat-
terns in a matrix model (Altwegg et al. 2014) for an urban



B)

© |
c - |
S ;v |
5 c '
£ < 2o |
N c |
g 8 11/
) |
S > '
ko) Sy !
S 59 1 |
| 8o |
Qo |
T _ .
(7] I
8 |
© T T T | o * T T T |
200 400 600 800 e 200 400 600 800
Age Age
© —C) |
! —— Among Breeders (88.4%)
o ! = = Breed or Not (11.6%)
c '
§e] '
s [
S ]
R .
o
Sy | g
g : &
§e] '
=N A :
° Vo
c '
o v
O_ [
v
Y
© =~ T T T )
200 400 600 800 200 400 600 800
Age Age
E) F)
o
S317 S
5 c
£s. £
T 29 |
8 £o
>3 - o]
g® -
8o 5o ]
TO c
SN 3
1
J0) D
53 | ST
(D -
° 3
1 2 3 4 5 6 1 2 3 4 5 6
Stage Stage
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peregrine falcon population (fig. S2; the model and analy-
sis are described in app. S6). Early luck is most important;
the very earliest luck is about becoming a breeder or not,
and later luck determines variation among breeders. In
contrast to Tsuga, the luck by stage partitioning is bimodal
(fig. S2D), because the higher early-stage mortality in
falcons increases the impact of early-stage luck.

Dacrydium elatum

Zuidema et al. (2010) developed an integral projection
model for the tropical rainforest tree D. elatum, which
we have used previously as a case study (Snyder and Ell-
ner 2016). The model has four discrete stages for seed-
lings (<1 cm dbh) classified by height and a continuous
size range for saplings and adults classified by diameter
at breast height. We partitioned between breeders and
nonbreeders using definition 2, as the model includes
a size-dependent flowering probability based on direct
observations. There are no observations on variation in
flower or recruit numbers conditional on flowering, so
as with Tsuga we posited a Poisson distribution resulting
from many seeds with low recruitment probability.

Figure 3 shows the partitioning of LRO variance by age
and size (for plotting, the four seedling stages have been
assigned fictitious sizes of —3,—2,—1, and 0, while the
continuous size range is 0-100 cm dbh). As with Tsuga,
state trajectory luck dominates fecundity luck by orders
of magnitude. (Hence, we are not especially concerned
about whether the Poisson assumption is very accurate.)
As with Tsuga, early state trajectory luck is driven by var-
iance in breeding versus not breeding, while later luck
mostly results from variance among breeders. Because
growth is nearly deterministic (age predicts size well and
vice versa; fig. 3F), the age- and size-dependent decom-
positions (fig. 3A-3D) show very similar trends. All vital
rates are size dependent, so the age-dependent partition-
ing is a smoothed version of the size-dependent partition-
ing resulting from the multiple ages at which individuals
achieve a given size. The small kink at 50 cm dbh (fig. 3C)
corresponds to a peak in the stable size (not shown) and size
at death distributions (Snyder and Ellner 2016, fig. 104),
resulting from deceleration in growth that creates a pileup
of individuals at 50 cm dbh.

The contrast between the Tsuga pattern (largest stage
is most important) and the Dacrydium pattern (interme-
diate sizes are most important) results from the fact that
the largest stage in the Tsuga model includes all individ-
uals above a certain size, so individuals reaching that stage
stay there for a long time on average (fig. 2D). In the
Dacrydium model, large individuals never stop growing,
so they do not spend a long time in any particular portion
of the size range (fig. 3F).

The Tsuga pattern is thus an inevitable outcome of the
model structure. It might also represent biological reality
if the trees truly have determinate growth such that all
older, maximally fecund individuals are fairly similar in
size.

Partitioning with Trait Variation: Theory
Pluck versus Luck

Having seen how we can identify multiple kinds of luck
and partition them by age, we now expand our model to
include persistent trait variation among individuals and
investigate the relative contributions of luck and trait
variation across ages. We use the term “trait” to indicate
an attribute that does not change over an individual’s
lifetime (which others have called “individual heteroge-
neity”). Possible examples are the individual’s genotype
at some locus or loci, their breeding value for a quanti-
tative heritable trait, their location at birth or as seden-
tary adults, or their mother’s age or condition when they
were born. This contrasts with state variables, which are
attributes that change over time in a partially stochastic
manner described by a survival/growth kernel or matrix.
Individual attributes that change over time in a totally
deterministic manner are currently beyond the scope
of our theory (see Ellner et al. 2016, chap. 3, sec. 10.4).

Equation (13) divides the total variance in LRO into a
luck term, which involves the variance of LRO given a
trait value, and a pluck term, which involves the expected
value of LRO given a trait value. The following subsec-
tions are important for understanding how to calculate
the partitions of each term by age and how to further par-
tition these into breed-or-not and among-breeder com-
ponents, but no new conceptual material is introduced.
Readers who are willing to take these results on trust
can skip to the case studies in “Partitioning with Trait
Variation: Case Studies.”

Let x denote the individual trait affecting demographic
rates; state variables are still denoted z. Because x is static,
we can regard it as being assigned at birth. We let ¢,(z, x)
be the joint probability distribution of state and trait at
birth and p,(x) = [ ¢ (2, x) dz the marginal distribution
of the trait at birth.

The starting point is a decomposition of total LRO
variance using the law of total variance:

Var(R) = E.(Var(R|x)) + Var(E(R|x)) . (13)

luck pluck

Caswell (2009) used this approach to quantify the contri-
bution of variation in initial environment state in a model
with time-varying environment, and it has since been ap-
plied to other kinds of traits, as we do here (e.g., Hartemink
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and Caswell 2018; Jenouvrier et al. 2018; Snyder and Ellner
2018). It is equivalent to a one-way ANOVA, in which the
pluck term is variance due to the main effect of the trait.
An important feature of equation (13) for subsequent
steps is the absence of any interaction terms. Luck (e.g.,
randomness in state transitions) affects E(R|x), but this in-
teraction is subsumed into the pluck term. Similarly, trait

values affect the trajectory an individual takes through life
(e.g., those with higher survival will have longer trajectories
on average), but because luck is a population-wide average
of Var(R|x), this interaction is subsumed into the luck
term. Consequently, finer partitioning of Var(R) may be pos-
sible, leading to finer cross partitions by age and/or state.
Here we use the established definition in equation (13),



E000 The American Naturalist

and our goal is to partition each term as we did above for
luck in the absence of trait variation.

Partitioning Luck with Trait Variation

Partitioning Luck by Age. To partition the luck term in
equation (13) by age, we can apply equation (7) to each
possible value of x and then average over the distribution
of x. The result is

E.(Var(Rlx)) = E[é.p1. — (.61.)"]

luck prenatal

+ Y EVIPG,]
a=0

state trajectory

+ > E65) TP,

a=0

fecundity

with the x subscripts indicating that V, ¢}, P, and ¢, can
in general all depend on x. Note that p, in the formula for
V. (eq. [5]) will depend on x as well.

If the trait distribution is discrete, each [, is just a
weighted average of (x, a)-dependent terms with respect
to the distribution of x. For continuous trait distributions,
each term is computed for a set of quadrature points (e.g.,
evenly spaced mesh points for midpoint rule), and the
expectation is done by numerical integration with respect
to the assumed distribution of x.

Partitioning Luck by State. As in the section without trait
variation, we omit prenatal luck when partitioning luck
by state, as it does not occur at any living state. The in-
finite sums in the other two terms in equation (14) are
the integrals with respect to state z of

E[Vie(N.&0)] and E[6]) «(N.&)]  (15)

respectively, thinking of the expressions in brackets as
functions of z for each x.

Partitioning Pluck

Partitioning Pluck by Age. The goal is to partition
Var,[E(R|x) into contributions from trait variation at each
age. The general variance decomposition (eq. [S8]) can
again be applied, but in this case it involves conditional
distributions that we do not know how to compute. We
therefore use the alternative approach based on a modified
life cycle (see “Luck by Age: Another Interpretation”), in
this case one where trait variation is absent beyond a cer-
tain age.

Specifically, let X = (%, %, %,...) be a vector of the
individual’s trait at all ages (up to this point in the arti-

cle, all x; = x), and let x" denote a trait value such that
individuals with trait x" have the average P and F kernels
across the trait distribution. Typically no actual trait value
will have this property, so x is a discrete point added to
the trait space. Define

v, = Var,E(R|X = (x",x",x",...)) = 0,
vy = Var,E(RX = (x,x°,x7,...)), (16)
v, = Var,ER[X = (x,xx",...)),

and so on. In v,, each individual has its actual trait x up
to age a and after that has trait x". The pluck-by-age de-
composition is

pluck = (vo —v_y) + (vy — ) + (v, —v)) + -,

(17)
Each difference (v, — v,-,) is the marginal increase in
Var,E(R) from having trait value x and the corresponding
kernels for one more year, given that you had trait value x
at all previous ages.
We now need to compute the terms. Let P and F be
the averages of the trait-dependent kernels P, and F, with
respect to x, and let N = (I — P) . Then

v, = Var,(po.(x)) = plpt. — (pIpo.)’s where

a—+1 times

poa(x) = ERX = (6%, ...,%,x,%7,...))

= eTFxCO,x + eTFxPxCO,x + -
—— ——
RO at age =0 RO at age =1

+ e'F.P,, + e FNP*'¢,,
RO later
= e F,(I + P, +P:+ -+ Py,

RO at age =a

+ e"FNP ¢y,
e'[F.N,(I —P") + ENP*]c,,,.

(18)
As a check on equation (18), note that when a = 0 the
formula reduces to pgo(x) = e'[F, + FNP,]c,,, as it
ought to, because N,(I — P,) = I. Newborns with trait
x have initial state distribution c¢,, and one year with fe-
cundity kernel F,; total expected RO at all later ages
results from the age 1 state distribution P,¢,, and the av-
erage kernels.

For calculation, write

Poa(x) = A, + bIPZcO,X,where (19)
19
A, = ¢'F.N,c,, and b] = e"(FN — F,N,)P.
For each x, A, and b can be computed once and for all, so
computing all p,.(x) for any one x is only as demanding as
one iteration of the model up to an age at which nearly
all reproduction has occurred, regardless of trait value.



Equation (19) implies that the differences pg .+, (x) — po.(x)
have an asymptotically exponential decrease at a rate given
by the dominant eigenvalue of P,. The same is therefore
true for the variance differences (v,+, — v,), implying that
the series in equation (17) is convergent with an exponen-
tially decreasing tail.

Can We Partition Pluck by State? Can the effects of trait
variation be partitioned sensibly by the individual’s state
when they occur, analogous to the luck-by-state decom-
position (eq. [15])? We think the answer is no. This is be-
cause trait-dependent LRO variance is a comparison across
groups of individuals with different state transition proba-
bilities, which therefore spend different average amounts of
time in each state. If one group is persistently fast growing
and another slow growing, for example, the resulting differ-
ence between them in average LRO is due to events that
happen to one group in one set of states and to the other
group in another set of states. To which set of states should
we credit the difference in average LRO? Some arbitrary de-
cision could be made (e.g., using the average state distribu-
tion), but this does not seem meaningful to us, so we do not
try to partition effects of trait variation by state.

Breeders versus Nonbreeders with Trait Variation

We begin with the usual luck/pluck partitioning, equa-
tion (13); total luck is E,(Var(R|x)). Applying our ear-
lier breeder/nonbreeder partitioning, equation (11), the
among-breeders component of Var(R|x) is Pr(M =
1|x)Var(R|x, M = 1). We can then apply our age decom-
position of luck, equation (1), to Var(R|x, M = 1). The
result is that the age partitioning for the among-breeders
component of luck is given by

E{Pr(M = 1|x)[Varg, [E(R|z,)]],,}

+ E_:[Ex{Pr(M = 1|0)[E,, Var,, |, [ERlz,.)]],,}

+ E{Pr(M = 1x)[Eq, Var[Rla, , 1.},
(20)

»

where the subscript “x,1” indicates that the term in
brackets is calculated for individuals with trait value x con-
ditional on M = 1. The three lines in expression (20) are
the among-breeders components of the prenatal, state tra-
jectory, and fecundity components of total luck. Note that
the outer E, in each line is the unconditional trait distribu-
tion; the Pr(M = 1|x) factor does the weighting of the
trait distribution based on the probability of becoming a
breeder.

With the formulas in equation (7), we calculate ex-
pression (20) in the limit A — o as
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FEAPr(M = 1|x)[e1,p3, — 00101}

E = V. “Coxli
+; APr(M = 1|x)[V Pico.]i } (1)

10)[62.) TP,

+ i E.{Pr(M
a=0

where the subscript 1 again indicates that the term is cal-
culated conditional on M = 1.

Pr(M = 1|x,z) is calculated by methods described in
appendix S4, where it is denoted B(z), using the kernels/
matrices for trait value x. The conditioning of bracketed
terms in expression (21) on M = 1 is done as follows.
First, appendix S4 explains how to compute the condi-
tional P kernel/matrix and fecundity moments for each
of the three definitions of becoming a breeder. These
can be used to compute V and p, conditional on M = 1
for each value of x (or for a grid of x mesh points if x is con-
tinuous). Second, individuals destined to become breeders
have a different distribution of birth states. For individuals
with trait value x, the birth-state distribution (without any
conditioning on M) is

_ clzx)
cx(2) = Teo(n,) du (22)

To compute the corresponding distribution conditional
on M = 1, we imagine that all individuals with trait x
are born into state z with probability ¢, .(z). The distribu-
tion of z at birth conditional on M = 1 for individuals
with trait value x is then (by Bayes theorem)

Cox(2) Pr(M = 1|z, x)
Pr(M = 1|x)

Con(2) = (23)

Appending probability zero of birth at w gives the condi-
tional ¢,, function used in expression (21).

With these ingredients, all terms in expression (21)
can be computed and averaged across the trait distri-
bution. The breed-or-not portion of luck is then parti-
tioned by doing term-by-term subtraction of the among-
breeder partition (21) from the total luck partition (14).
For example, the breed-or-not portion of age 1 fecundity
luck is

E.[(57.)"P.Co.] — E{Pr(M = 1[x)[(6.)TP.Co. 1 }-
(24)

Next, we aim to partition by age the contribution
of trait variation to variation in R among breeders.
From equation (11) the among-breeder variance in R is
Eu(Var(R|M) = pyVar(RIM = 1). We can partition
that as follows, using the fact that R = 0if M = 0:
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Ey(Var(R|M)

i [Equ(Var(R|M, x))]
+ En[Varu(E(R|M, x))]
= pubgu=[Var(RIM = 1,x)]

luck

+ puVaryu_ [ERIM = 1,x)].

pluck
(25)

The luck term above is already dealt with (eq. [21]). What
remains is to age partition Var,y -, [E(RIM = 1,x)] and
multiply each term by p,. We already know how to do
the age partitioning—it is the same as what we have al-
ready done to age partition pluck, except that we condition
on M = 1 at two stages: computing p,.(x), and comput-
ing the variance over trait values x. Specifically, define

Poai(x) = Ay + bllpz,lco,x,n (26)

where
Ax,l = eTFx,l x1
o (27)
bL = e'(F\N, — F. NP,

and as in expression (20), the “x,1” subscript indicates that
the item is calculated for individuals with trait value x con-
ditional on M = 1. Then calculate

Vag = Varx\M:lpo,a,l (x) = pg,lp%,a,l - (pg,lpo,a,l)2> (28)

where p,, is the trait distribution conditional on M = 1,
Poa(x) = po(x) Pr(M = 1|x)/py. As before, the among-
breeder pluck at age a is v,, — v,-1,.

Partitioning with Trait Variation: Case Studies
Sagebrush Steppe Perennial Plants

The new results here let us complete our analysis of luck
across the life span in Idaho sagebrush steppe perennial
plants. Competition with conspecific neighbors has a large
effect on seeding survival. We had hypothesized that the
“happy few” seedlings that established and grew to be large
and fecund adults were individuals that had relatively lit-
tle competition as seedlings and therefore thrived in their
early years of life (Snyder and Ellner 2018). We developed
IPM:s for the shrub Artemisia tripartita (threetip sagebrush)
and the perennial grass Pseudoroegneria spicata (bluebunch
wheatgrass) with individuals cross classified by size and the
strength of competition from neighboring plants. To our
surprise, we found that variation in first-year competition
neighborhood accounted for under 1% of Var(LRO) in
both species. Luck in the first transition (size and competi-
tive neighborhood change between ages 0 and 1) was much
more important, but these two annual contributions (the

only ones we could compute then) contributed under 15%
of the total variance in both species—other forms of luck
made up the rest of the variance.

Here we use the theory developed above to present a
complete partitioning of LRO variance by age, which
clarifies how later-in-life luck can dominate the very vis-
ible impacts of early luck. In this analysis, the effect of ini-
tial competitive neighborhood is the prenatal luck term
because that is the only way in which one seedling differs
from another. The trait in the analysis is spatial location,
to account for spatial variation in demographic rates.
Data analyses (described in Snyder and Ellner 2018) re-
veal that survival of both seedlings and larger plants
(but not growth) vary among spatially clustered groups
of permanent quadrats. However, the limitations of our
previous methods forced us to model a typical location.

Because data on individual seed production is sparse
and year-to-year variation in recruitment is very large,
we consider variance in life span rather than LRO. Life
span is an effective indicator for the highly productive
in this species because growth is nearly deterministic
(Snyder and Ellner 2018, figs. 5, 6) and older plants are
all large and fecund. As we noted above, our methods
for LRO apply to life span simply by giving each individ-
ual exactly one fictional offspring in each year of life.

For both species, pluck (the effect of spatial variation)
is swamped by luck, which accounted for more than
99.5% of the variance in life span in both species. As
we previously found, prenatal luck (i.e., your competi-
tion neighborhood when first censused) contributes very
little in both species (fig. 4). The year between first and
second census makes the largest single contribution to
luck, but later transitions in size and competitive neigh-
borhood together account for most of the total (71% in
Artemisia, 77% in Pseudoroegneria). Because age-specific
luck declines rapidly with age, most of the total variance
is the result of luck in the first 10 years of life (67% in
Artemisia, 63% in Pseudoroegneria).

Kittiwakes

The kittiwake (Rissa tridactyla) remains at the center of
debates about the magnitude and ecological significance
of within-population heterogeneity (Steiner et al. 2010;
Steiner and Tuljapurkar 2012; Cam et al. 2013, 2016;
Authier et al. 2017). Decades-long study of marked indi-
viduals has revealed persistent individual differences that
manifest as correlated variation in age-dependent sur-
vival and breeding probabilities (Cam et al. 2002, 2013).
Because the traits underlying this variation are unknown,
they are collectively referred to as “quality.” We previ-
ously concluded (Snyder and Ellner 2018) that individual
quality was only very weakly predictive of LRO, based
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on extending the Steiner and Tuljapurkar (2012) model
to incorporate the quality variation estimated by Cam
et al. (2002). The Steiner and Tuljapurkar (2012) model
has some imperfections: it was parameterized in ways
that might exaggerate the importance of luck (Authier
et al. 2017); breeding success may depend less on age
(as the model assumes) than on experience (Desprez
et al. 2011), which the model omits; and we find that it
predicts steady-state breeding probabilities lower than
those reported by Cam et al. (2002). Nonetheless, the ex-
tensiveness of the empirical data and the effort that has
gone into analyzing the data still make it one of the best
available animal examples for our purposes.

The effects of luck and quality peak early in life (fig. 5).
Effects of quality probably peak early because quality
includes survival, and the key to having many offspring
is not dying young. Quality becomes more important rel-
ative to luck as age increases, finally exceeding the contri-
butions of luck at advanced ages. However, the high effect
of trait variation at such advanced ages may be an artifact
of the infinite tails in the fitted model’s quality distribu-
tion (Gaussian, on the scale of the linear predictor in lo-
gistic regression). The trait variation that becomes dom-
inant at advanced ages is mostly the difference between
the living and the dead. But the average life span of an av-
erage quality individual is just over 8 years, so living to
age 51 (where the contributions of quality exceed those
of luck) is possible only for birds very far out in the tails
of the quality distribution (fig. 5C).

In the first few years, about half of luck contributions
and a quarter of quality contributions determine whether
an individual gets to breed at all. Birds who have survived

longer than this are likely to have bred, so the contribu-
tions of luck and quality determine how often and how
successfully they bred.

Management for Luck

When eigenvalue elasticity analysis is used to guide man-
agement decisions, we are tacitly assuming that the cost of
a certain percentage increase in a vital rate is the same for
all vital rates, regardless of how many individuals are af-
fected by changing a particular vital rate. High elasticity
results, in part, when many individuals are affected by a
particular transition. But if there is, instead, a constant
cost of shepherding one well-chosen individual through
a particularly important transition, then elasticity analy-
sis would be misleading. Using the new results in this ar-
ticle to “manage for luck,” as we now describe, might then
be a useful alternative.

In populations where state trajectory luck dominates
LRO variance, we might want to intervene at a key point
in a life’s trajectory. State trajectory luck is most decisive
for individuals in the state with the highest value of V, the
variance, over possible transitions from that state, of
expected LRO from that point onward (see eqq. [5], [6]).
From that state, we would like to facilitate the possible
transition yielding the highest expected LRO and prevent
the possible transition yielding the lowest expected LRO
(usually death).

For example, consider a population of kittiwakes with
widely varying quality. In our model, the highest V occurs
for 5-year-old or older failed breeders of the highest quality.
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by the script KittiwakePartitioningNewLuckPluck13.R.

From that state, birds can die or become either non-
breeders, failed breeders, parents of one chick, or parents
of two or three chicks. At this quality level, the living
states have expected LRO varying from 62 to 68. The most
important thing, then, is to help these older, high-quality
failed breeders to survive (death has an LRO of zero) and,
to a lesser degree, to become successful parents (LRO of
68 instead of 62). Exactly what help to provide depends
on what limits survival. If energy stores are limiting, we

could supplement food. If predators are a problem, we
could install predator-excluding barriers.

In contrast, the highest elasticity for the kittiwake model
is the transition from age 5 or older highest-quality parents
of one chick to having one chick again the following year.
This is due in part to there being more one-chick parents
than failed breeders at steady state.

We see similar results for our other models. For Tsuga,
luck peaks (V is largest) in size classes 5 and 6, and the



most important thing is to help these individuals survive
and, to a lesser extent, to help size class 5 individuals to
grow. However, eigenvalue elasticity says that survival
of stage 6 is by far the most important. This reflects the
fact that in the steady-state distribution, size class 6 is
substantially more abundant than size class 5. For the per-
egrine falcons, managing for luck means helping age 1
nonbreeders to survive and ideally breed the next year.
In contrast, the highest elasticity is for survival of breed-
ers, again because of the high abundance of breeders at
steady state. For Dacrydium, management for luck tells
us to enhance the survival of trees with the highest ex-
pectation of future reproduction given their current size
(about 25 cm dbh), while elasticity analysis says to help
the small (either the largest of the four sapling stages
or the smallest postsapling individuals, depending on
whether we include the sapling stages), in large part be-
cause of their higher abundance. Roe deer (app. S6) tell
a similar story. Managing for luck means aiding the sur-
vival of adults with the highest expected LRO—those with
the earliest birthday and the highest body mass—while
elasticity is highest for the most abundant adults, which
are those with intermediate body mass and birth timing.

Discussion

Using the age partitioning we have presented here, we
can see how the balance of luck and trait variation plays
out over an individual’s life. For some organisms luck
peaks sharply early in life (e.g., peregrine falcon, Pseudo-
roegneria spicata, Artemisia tripartita). This indicates a
period of high risk, after which individuals are relatively
safe. For other organisms, luck still peaks early but it de-
clines more gradually: the first step in leaving many oft-
spring is always to avoid dying young, but events later in
life still have substantial influence over reproductive suc-
cess (e.g., Tsuga canadensis, Dacrydium elatum, kittiwakes,
roe deer).

In general, it is better to be lucky than good at all ages.
Our earlier work showed theoretically that good traits
are often necessary but not sufficient for exceptional repro-
ductive success (Snyder and Ellner 2018). The age parti-
tioning presented here shows that the contributions of
luck to LRO variance outweigh those of trait variation at
all ages in our case studies. The relative importance of
traits may peak earlier or later in life, depending on the
traits that vary between individuals, but luck trumps pluck.

Luck comes from different sources. We find that hav-
ing lucky state transitions (in particular, not dying) is es-
pecially influential. The right change in state at the right
age can have an outsize influence on LRO. Random var-
iation in the number of offspring is the second most in-
fluential form of luck, and random variation in birth
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state can also contribute. Liu et al. (2019) provide some
empirical support for the importance of state trajectory
luck. For caged Drosophila populations, maximum likeli-
hood estimates of drift were well above those predicted
by a Wright-Fisher model, which includes fecundity luck
but not state trajectory luck. (Specifically, the drift-effective
population size for a Wright-Fisher model [their table 1]
was far below actual population sizes [their fig. 1].) The evo-
lutionary models underlying genomic data analysis typi-
cally do not include population structure, which amounts
to assuming that state trajectory luck has no effect. Our
findings about state trajectory luck suggest that models
without population structure will typically underestimate
substantially the random component of genetic change.
This does not stop natural selection from acting, as we
noted in the introduction, because effects of luck still av-
erage out in large enough populations. More precisely,
luck adds a correction term to the strength of selection,
which scales as the inverse of population size but vanishes
more slowly when the random variation in LRO is larger
(Snyder and Ellner 2018).

We further partition the age-specific contributions of
luck and traits into contributions toward whether an in-
dividual breeds at all versus how many offspring they
have, given that they breed. These contributions explain
the double-peaked age distribution of luck that we see in
organisms with long reproductive spans, such as trees.
Very early luck in state transitions—probably ensuring
that the individual does not die young—contributes to
whether that individual ever breeds, while less early luck
in state transitions drives variation in the LRO of indi-
viduals who breed at least once.

We have proposed that the partitioning of LRO vari-
ance presented here may offer new insights for popula-
tion management. Eigenvalue elasticities are useful when
one intervention affects all members of a stage (e.g., pro-
tecting adult sea turtles by adding turtle excluder devices
to fishing nets). However, the cost of some interventions
is likely to scale with the number of individuals helped. In
those cases, we may wish to “manage for luck” and help
well-chosen individuals at life stages where the outcome
of their next transition has a large effect. This often pro-
duces different answers than elasticity analysis, in which
benefits are weighted by the abundance of individuals in
a given stage. In many cases, managing for luck leads to
a simple principle: help individuals with the highest ex-
pected total reproductive output over the remainder of
their life.

We believe that luck will always peak early in life be-
cause if you die young, it does not matter how lucky you
would have been once you got older. We further suggest
that state trajectory luck will be increasingly dominant as
life span increases—the longer your life, the greater the
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number of paths through it. Playing with a model with
a flexible life history (the toy model in app. S5) suggests
contingent effects of juvenile maturation rate and juvenile
and adult mortality. More work is needed on the effects of
life history.

Here we have used variance as a measure of variability
in LRO, but higher moments may be important. Tulja-
purkar et al. (2020) show how to calculate the full distri-
bution of LRO and, among other case studies, show that
the LRO distribution for T. canadensis is highly skewed
while that of C. capreolus is multimodal. These distribu-
tions cannot be characterized simply by mean and vari-
ance. However, we know of no good way to partition a full
distribution. The law of total cumulance shows how to
partition higher moments, but anything above variance
quickly becomes unwieldy. We advise readers interested
in characterizing the full range of variation in LRO to
use the techniques in Tuljapurkar et al. (2020) and to
consider the techniques here for exploring some of the
reasons that variation comes about.

Writing this article brought home to us the paucity of
empirical data on distributions of annual reproductive
output. We are prepared to accept Poisson distributions
for plants (many seeds, low survival, no parental care, lot-
tery for survival) or zero-inflated Poisson when there is
information on flowering probability. But for animals this
assumption is dubious. Information on variation in clutch
sizes is even a potential data item in COMADRE. We en-
courage adding this information, when available, to col-
lections like COMADRE, and we encourage efforts to
gather the data in empirical studies. While only the mean
age- or state-specific fecundity matters for deterministic
population projections using a matrix or IPM, because
these do not account for demographic stochasticity, the
full distribution matters when analyzing individual life tra-
jectories. Tools to do that are now available and rapidly
growing (Caswell 2012, 2019; Steiner et al. 2012; van Raalte
and Caswell 2013; van Daalen and Caswell 2015, 2017;
Roth and Caswell 2018; Tuljapurkar et al. 2020).

More generally, we are taking models constructed for
one purpose, population projection, and using them for
another. We have mentioned some potential issues in
the Tsuga and kittiwake models. But using old models
for new purposes is generally problematic because model
selection is always selection for some purpose (Tredennick
et al. 2021). We do not know how to select the best model
complexity or structure for inferring life cycle variability
and its origins, as in this article (how many ages/stages
in a matrix model, degree of smoothing in demographic
rates for IPMs, etc.), or for the many other analyses that
are possible (e.g., Caswell 2019). Our ability to extract in-
formation from population models is running ahead of our
ability to construct those models.
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Appendices

S1 A supplementary figure for understanding different kinds of luck

To make the luck and pluck calculations more concrete, fig. S1 gives some sample life trajectories
for the kittiwake model with average and below-average traits. Trajectories are different between
the trait clusters — most of the average quality individuals live longer and have more offspring
than the below-average quality individuals. This is the way that trait variation contributes to
variance in LRO. However, there is also considerable variability within each cluster — this is the
contribution of luck. It is also worth noting that because of luck, the LRO distributions of average
and low-quality individuals overlap: some average quality individuals live shorter lives and have
fewer offspring than some of the below-average quality individuals. State trajectory luck is the
contribution of path length and route to lifetime reproductive output — the more time spent
in states 4 and 5, the more offspring an individual has. Fecundity luck is the contribution of
clutch size variation — here, whether a state 5 individual has two or three offspring. There is no

pre-natal luck, as all individuals begin in state 1.
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Figure S1: Life trajectories for average and below-average quality kittiwakes. Each colored line
represents a life simulated from the kittiwake model and ends with death. The upper cluster of
lines is for average quality individuals and the lower cluster of lines is for below-average quality
individuals — reduced adult survival and breeding probability. Y-values represent reproduc-
tive states (pre-reproductive, failed reproduction, one chick, two or three chicks) and are offset
slightly for visibility. Each time an individual has offspring, the number of offspring is marked
on the line. Figure produced by script KittiwakeLifeTrajecPlot.R.

S2 The Bowsher and Swain (2012) general variance decomposition

The goal of this Appendix is to state the Bowsher and Swain (2012) variance decomposition for
stochastic dynamic systems and give a self-contained proof, in the case where information about
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system dynamics is represented by a sequence of real-valued random variables. Bowsher and
Swain (2012) consider the more general case where the information is a sequence of o-fields.
But conditional expectations, variances, etc. with respect to o-fields are not familiar to most

ecologists, and for this paper we only need the random-variable case.

We use more explicit notation than Bowsher and Swain (2012) for conditional expectations and
variances. Specifically, Ey|y, Vary|y denote expectation and variance in the conditional distribu-
tion of X given Y. Expectations without a subscript are unconditional, EX = [ X(u)dP(u)
where (Q), F, P) is the underlying probability space, and Var X = E X* — (E X)2.

Conditional Law of Total Variance

Our first aim is to prove the Conditional Law of Total Variance, stated without proof as eqn. [15]
in Bowsher and Swain (2012),

VEH’(Z‘Gl) = IEGZ\Gl (Var(Z|G1, Gz)) + Vaer\Gl (IE‘.(Z|G1, Gz)) (Sl)

Here Z, Gy, G; are three random variables defined on the same probability space; either or both

of the G; may be a vector of random variables. Conditional variance is defined as
Var(Z|X) = E(Z?|X) — E(Z|X)?, (S2)

where X is any random variable, vector of random variables, or o-field on the same probability

space as Z.

A crucial property for the proof is the following general property of conditional expectations:
E(Z|H1) = E(E(Z|H1, Ha)), (53)

where H1, H, are any two o-fields in the probability space where Z is defined. For the case of
o-fields defined by random variables, eqn. (S3) is

E(Z|G1) = Eg,|g,(E(Z|G1,G2)). (S4)

Here G; and/or G; can again be vectors of random variables. In (S4) both sides of the equation
are random variables. If G; has a density, the meaning of (54) is that for all g; where the density
is positive,

E(Z|Gy = g1) = Eg,/6,=¢, (E(Z|G1 = 81, G2)). (S5)

Eqn. (54) is just like nested integrals. If all random variables (or random vectors) have densities
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(using f(z, 81, 82),f(g1,82) and f(g1) as the density over the arguments)

Ec o —. (E(Z|Gi = g1,G2) // fZg1,g2 ay 81824
G2|Gy g1( (Z|G1 = g1,G2) Flg1,22) fler) 2

_ [ S8 8)
_/Zf(gl)dz ng (86)
_ [ Swe) . _

which is exactly the meaning of (54) for this case. Note, however, that (53) implies that (S4) also
applies when G; and G; are vectors of random variables.

We can now derive the Conditional Law of Total Variance. A square outside the brackets fol-
lowing an expectation, e.g. IE(Z)?, means to take the expectation first and then square: (IE(Z))>2.

Starting with the definition of conditional variance,

Var(Z|Gy) = E(Z%|Gy) — E(Z|G;)?
= Eg,c,(E(Z*|G1, G2)) — Eg, (6, (E(Z|G1, G2))?
(sequentially unconditioning, eqn. (54))
= Eg, (g, (Var(Z|Gi, G2) + E(Z|G1, G2)?) — Eg,|c, (E(Z|G1, G2))?
(because Var(Z|G1, Gy) = E(Z2|G1, G2)-E(Z|G1, G2)?) (S7)
= Eg, (g, (Var(Z|Gi, G2)) + Eq, 6, (E(Z|G1, G2)?) — Eg, 6, (E(Z|G1, G))?
(first expectation is additive, just broke it apart)
= ]EGZ\Gl (Vur(Z!Gl, Gz)) + VurGZ‘Gl (E(Z’Gl, Gz))
(definition of variance applied to Y = E(Z|Gy, Gy))

Our eqns. (S1) and (S7) seems to differ from eqn. [15] in Bowsher and Swain (2012), in which both
terms on the right-hand side are conditional on Gy, but this is just a matter of notation. Bowsher
and Swain (2012) denote conditioning with Z|X notation, and it is tacitly understood that you
take the expectation over everything else. Thus V[E(Z|X,Y)|X] in their notation is interpreted
as Evaluate the expectation of Z as a function of the values of X and Y, and then take the variance of that
quantity conditional on X, i.e. with respect to the distribution of Y|X. Technically, conditioning on X
twice is redundant, but they use it to signify the distribution over which the expectation is to be
taken. To accomplish the same thing, we write Vary|x[[E(Z|X, Y)], to be explicit that the variance
is with respect to the conditional distribution of Y given X. It helps us stay out of trouble.
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The general variance decomposition

Let Z be a random variable with finite variance, and Hq, Hp, - - - a set of random variables defined
on the same probability space as Z. Define Hi.,, = (Hy,- -, Hy). We aim to prove that for any

k>0
Var[Z] = VarE(Z|H;)

k
+ Y { Vorg iy, [E(ZIH)) (S8)
j=2

+ E Var[Z|Hy.].

This is eqn. [13] in Bowsher and Swain (2012) written in our notation with conditioning with
respect to random variables, rather with respect to o-fields. Note that here (in contrast with the
main text) following Bowsher and Swain (2012) we start the time index at 1 rather than 0 so that

our derivation more closely parallels theirs.

First, note that the following identity is true because terms on the right-hand side cancel to leave
the identity Var[Z] = E Var|Z]:

Var|Z] = E{— Var[Z|H1] + Var[Z]}
k

+ Y { —EVar[Z|Hy;] + E Var[Z|Hy,j 1] } (S9)
=2

]
+ E Var[Z|Hy.].

The proof consists of showing that (59) and (S8) are equal line-by-line. The third lines of (S8)
and (S9) are exactly the same. Using the (unconditional) Law of Total Variance to write

E Var|Z] = Var|Z] = E Var|Z|Hy] + VarE(Z|Hy),

we see that the first lines of (S8) and (S9) are the same. For the second line, we apply the
Conditional Law of Total Variance (S1) with G; = Hy.j_1 and G, = H; so that (G, G2) = Hy;:

Var[Z|Hy;j 1] = IEJH],‘HL];1 Var(Z|Hy,;) + VarH]_|H1:].71 E(Z|Hy;). (S10)
Taking expectations of both sides,

E Var[Z|Hyj—1] = E IEH]-|H1:]-,1 Var(Z|Hy,;) +E VarH”Hl:],i1 E(Z|Hy,;) S
= E Var(Z|Hy;j) + E VarH],|H1:],_1 E(Z|Hy;j).
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The second line of (S9) is therefore

k
j=2

identical to the second line of (S8), completing the proof.

Why can’t we use this to partition pluck?

In theory, we can. The previous derivations still work if “random variable” is replaced by “ran-
dom vector,” so we could define H; = (xj,z;) in (S8) and apply the partition. The result is
mathematically correct. However, to use the formulas in practice we need to calculate (among
other things) the variance of future LRO over the distribution of H,; conditional on past values
of H —i.e., a variance over size and trait value at some age conditioned on past sizes and traits.
We have not found any effective way of finding the distribution of trait value conditional on past
sizes. Bayes Theorem gives us a formula for that conditional distribution, but as it involves high-
dimensional integrals over past states and trait values, in practice it is computationally infeasible.

S3 Purely age-structured models

Consider now a model where vital rates depend only on age a = 0,1,2, - - - ; in particular there is
no trait variation. Let p, denote survival from a to a + 1, [, survival to age a (with [y = 1), and f,

the offspring production at age a.

For an age-structured model P%cy is a vector of all zeros except for I, as its a + 1 entry. The
age-a contribution from variation in realized fecundity in eqn. (7) is therefore /,07(a), and the
contribution from state-trajectory variation (eqn. 6) is [,V (a). V(a) is the variance (over possible
states at age (a + 1) of expected future RO conditional on state at age a + 1, V(a) = p,(1 —
pa)p1(a+ 1), where

1 a
p1(a+1) = for1 + (los2/lat1) far2 + (lat3/lat1) fars + - = I (RO - lafa) , (S13)
at k=0
where Ry = OZO‘, lofa is expected LRO. The age-a contribution from state-trajectory variation is

k=0
therefore

2
pa(1— pa) <R0_ Zlafa> , (S14)
k=0

la+1
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S4 Conditioning on reaching maturity, attempting breeding, or

producing an offspring

Here we detail the calculations for computing the LRO variance among breeders. The general
methods are the same as Snyder and Ellner (2016, p. E30 - E31), which was based on Kemeny and
Snell (1960, Chapter III) via Caswell (2001, sec. 5.2). We assume that you have read at least one
of these. The new complication is that here we want to consider several different definitions of
“breeder” to accommodate models with different amounts of information about state-dependent

immediate RO. In particular, we want the following options for how “breeder” is defined:

1. Any model we can consider must specify the state-dependent mean and variance of imme-
diate RO. Without any additional information we can define a breeder to be an individual

that attains a state with positive mean immediate RO before dying.

2. In a model that also includes a state-dependent probability of attempting breeding, and the
mean and variance of immediate RO conditional on breeding, we can define a breeder to be
an individual that attempts breeding at least once before dying.

3. In a model that includes the full state-dependent offspring distribution, we can define a
breeder to be an individual that produces at least one offspring before dying.

These are not exclusive cases. If a model includes the probability of attempting to breed, and
the distribution of immediate RO conditional on making the attempt, any of the three definitions
can be used.

In each case, our goal is to derive a model conditional on becoming a breeder before death with
all the necessary components for partitioning LRO variance by age: state distribution at birth,
state-transition kernel, and the state-dependent mean and variance of immediate RO.

Breeder definition 1

For definition 1, let S be the set of immature “small” states with zero fecundity (8(z) = 0), and
M the set of “mature” states with positive mean fecundity. Once an individual has entered M,
conditioning on entering M has no further effect on their transition probabilities. We therefore
need to distinguish between individuals with state in S who have entered M and returned to S,
and those who never entered M. To do this, following Snyder and Ellner (2016, pp. E30-E31), we

expand the state space so that this information is contained in individuals’ state. Specifically, we
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expand the state space to from Z to 7 = 7, UZ, where

Z, ={(z,1),z € S} Has never had state in M including the current year (S15)

Z; = {(z,2),z € Z} Isin M now, or was in some past year

The second coordinate (1 or 2) of a point £ € Z is just a label for which part of Z the individual
isin, e.g. £ = (3,1) is a state-3 individual in Z;, Z = (3,2) is a state-3 individual in Z.

Let 14(z) be the function thatis 1if z € A and 0 otherwise. States 2 = (z,1) or (z,2) will denote
elements of the expanded state space. We can then define a transition kernel on Z so that a

breeder is an individual whose state at death is in Z,, as follows:

from Z, from Z;
P= P(ZI,Z) 0 to Zl , (516)
Im(Z")P(Z',z) P(Z,z) ) to Z,

where 1p(z')P(2/,z) represents ordinary multiplication of the scalars 1p(z') and P(z/,z), with

P P P P
11 P2 ny _ 1111 + Pranp . (S17)
Py Py ) \np Pyyny + Pyny

P says that reaching a state z € M puts you in Z, for life, even if your state is again in S at some

the interpretation that

subsequent time.

Let Q; be the kernel P restricted to Z;, and N; = (I — Q;)~!. For an individual in Z;, the

probability of entering Z; in one step is
apm(z) = / P(,z)dZ z € S. (S18)
M
The probability of reaching Z, before death, starting from state £ € Z, is given by

B(2) = (amNije) = ZMNl(Z) izzgzl (S19)
== ’ 2

(Note: here and below we use semi-colons to separate the components of a state-distribution
vector on different components of an expanded state space.) On the expanded state space, the

state distribution at birth is

. ~ Jeo(z) 2=1(z,1)eZy
(co(2); co(z)1m(z)) = @) l(x) 2= (22)€Zs (520)

D
o
—

N>
N

I
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Averaging across newborn states, the average probability of a newborn reaching Z, before death
is
_ AT
pm = €y B. (521)

The state-transition kernel conditional on entering Z, before death is
P(2,2) = B(2)P(2,2)/B(2). (522)

Note that if B(2) = 1 and P(£/,2) > 0 it must be the case that B(2') = 1, so the conditioning does
not affect the transition probabilities of an individual in Z,. Additionally, if B(2£) = 0 then the
chain conditional on breeding must have zero probability of ever reaching 2, so Pg(2’,2) can be
defined arbitrarily. In particular, the conditional transition chain can be defined so that anyone

reaching a state where B = 0 is killed.

When individuals vary in initial state zg, conditioning on breeding also affects the distribution
of initial state. The conditional distribution follows from (522) by imagining that individuals all
have pre-natal state & and transition to state at birth £ with probability éy(2). Then B(a) = pum
and the conditional state at birth is

to5(2) = B(2)co(£)/ pu. (523)

The state-dependent mean and variance of immediate RO are the those of the original model,
applying on both Z; and Z,.

If individuals entering M can never return to S, we can instead take Z; = S, Z, = M. This
situation is identical to Snyder and Ellner (2016, p. E30), but for completeness we repeat it here.
Let Q be P restricted to S and N5 = (I — Q) 1. For an individual of state z € S, the probability
of entering M in one step is

apm(z) = /M P(Z,z)dZ, z € S. (S24)

The probability of reaching M before death, starting from state z is given by

apmNs(z) z €S

B(Z) = (aMNg;e) = .
1 zeM

(S25)

Equations (521), (522), and (523) hold with the carets * omitted.
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Breeder definition 2

In definition 2, a breeder is defined as an individual who has attempted breeding at least once.
Individuals attempt breeding with probability py(z), and have transition kernels 71, 779, respec-
tively, for those who do and do not attempt breeding in the current year. The overall transition
kernel is P(Z/,z) = pyp(z) (2, 2) + (1 — pp(2)) m0(2, 2).

The Markov Chain theory that we are exploiting tells us how to condition on reaching a particular
set of states before death. To make use of it, we need to expand the state space such that one can
tell retrospectively whether a just-deceased individual was a breeder or a non-breeder just by
looking at their lifetime state trajectory. Otherwise, conditioning on breeding would also affect
the state-dependent fecundity distribution, making the calculations much more challenging. In
addition, the mean and variance of immediate RO must be functions only of the individual’s

expanded state.

For breeder definition 2, we can expand the state space so that individual state is defined jointly

by state z from the original model and by attempted breeding history:

Z, = {(z,1),z € Z} Never attempted breeding, and does not in the current year
Z, ={(z,2),z € Z} Attempts breeding for the first time in the current year . (526)
Z; ={(z,3),z € Z} Has attempted breeding in some past year

A breeder, then, is an individual who enters Z;, and then moves to Z3 if they survive to the next

year.

The initial state distribution on this expanded state space is

¢o = (co(z)(1 — pv)(2);co(z)pu(2);0). (527)

The transition kernel/matrix is

from Z, from Z, from Z3
(1—pp(2'))mo(2, 2) 0 0 to Z;
P=l p(@)m(2,2) 0 0 |toz, - (528)
0 my(Z',z) P(Z,z) ) toZ3

which can be understood as follows:

e Individuals in Z; are by definition not attempting to breed this year, so their state transition
kernel/matrix is 7t9. Whether they are in Z; or Z, next year depends on whether or not they
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attempt breeding at their new size, determined by the value of p; at that size.

e Individuals in Z; either move to Z3 or die (i.e., the “from Z2” portion of (528) is 0 outside the
“to Z3” portion). By definition they are attempting to breed this year, so their state transition

kernel /matrix is 71;.
e Individuals in Z3 either stay in Z3 or die. Within Z3 there are no subdivisions based on
breeding history, so they are governed by the overall kernel/matrix P.

Finally, the mean and variance of immediate RO on the expanded state space are given by:

(529)

B=(0; B+; p)
52 C g2 2

i, = (0, 0% 07),
where B (z), 0% (z) are the state-dependent mean and variance of immediate offspring number
conditional on attempting to breed (B and o7 are the unconditional mean and variance, as usual,

and we have B = B/py).

With the model specified, the rest of dealing with breeder definition 2 is straightforward. We
need to condition P on reaching Z, before dying. Accordingly, let Q, be P restricted to Z;,
ie. Qa(z,z) = mo(z,2)(1 — pp(2')). The corresponding fundamental operator on Z; is N, =
(I — Q)™ L. For an individual in Z; with state (z,1) the probability of moving to Z; in one step is

ap(z) = /Zno(z’,z)pb(z’)dz’; (S30)

note that Z, and Z have the same set of z values. The probability of reaching Z, before death,

starting from state Z € Z, is given by

apN>(z) 2=1(z,1) e Z
B(2) = (auly & o) = { VT2 2= (1 €Z . (s31)
1 2=(z,k) €Z, k=2,3

The state transition probabilities conditional on breeding are again given by eqn. (522) and the
average probability of a newborn reaching Z, before death is again given by eqn. (S21).

As with Definition 1, conditioning on breeding affects the distribution of initial state if individu-
als vary in initial state, and the formula for the conditional distribution, eqn. (523), is exactly the

same.
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Breeder definition 3

In definition 3, a breeder is defined as an individual who has produced at least one offspring.
For this definition, the model must specify the state-dependent distribution of current offspring
number, or minimally, enough information to calculate the state-dependent probability of pro-
ducing at least one offspring in the current year, p;(z), and state-dependent mean and variance

of total current offspring conditional on having at least one, which we denote B4(z) and ¢7(z).

This definition can be handled much like definition 2. We expand the state space so that individ-

ual state is defined by state z from the original model, and offspring production history:

Z, ={(z,1),z € Z} No offspring yet, including the current year
Z; ={(z,2),z € Z} Produces their first offspring in the current year . (S32)

Z; ={(z,3),z € Z} Has produced at least one offspring in some past year

As in definition 2, a breeder is an individual who enters Z, and then moves to Z3 if they survive

to the next year. The initial state distribution on this expanded state space is

o = (co(z)(1 = pa(z)); co(z)pa(z); 0). (833)

The transition kernel /matrix is

from Z4 from Z, from Z3
(1—pa(z")P(Z,z2) 0 0 to Z;
P= pa(z)P(Z,z) 0 0 toZ, - (S34)
0 P(z',z) P(Z,z) ) toZ;

That is, from Z; you move to either Z; or Z, according to your reproductive outcome the follow-
ing year, and from Z, you die or move to Z3. From the definition of P it may appear that we
don’t really need both Z, and Z3. However, the fecundity functions on Z, and Z3 are different,
because individuals in Z, are by definition certain to have at least one offspring in the current

year.

The rest is almost a repeat from definition 2. The mean and variance of immediate RO on the

expanded state space are given by

(535)

Let Q3 be P restricted to Z1, i.e. Q3(z',z) = P(z/,z)(1 — p4(2’)). The corresponding fundamental
operator on Z; is N3 = (I — Q3)~!. For an individual in Z; with state (z,1) the probability of
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moving to Z; in one step is

mm(z) = [ P, 2)pa()) a2 (S36)

The probability of reaching Z, before death, starting from state 2 € Z, is given by
B(2) = (apmN3; e; e), (S37)

and formulas (S21), (522), and (523) continue to hold for this definition.

S5 A simple breed/no-breed example

To demonstrate the three methods of partitioning LRO variance conditional on becoming a
breeder, we turn to a simple size-structured model for sneetches, which is analyzed in the tu-
torial code SneetchCalculations3.R. Following Geisel’s classic demographic study, we classify
sneetches as Small, Medium, Large, and eXtra-large and note that only the L and X size classes
are reproductive (Geisel, 1953). In the absence of a Star-On or Star-Off Machine, the presence or
absence of a star on a sneetch’s belly is a fixed trait, and we take this to be the trait variation
of interest. Those with “stars on thars” have higher survival, likely as a result of higher social
status leading to greater access to resources. Otherwise, star-belly and plain-belly sneetches are
demographically identical.

State transitions. Size-class transitions, conditional on survival, can be parameterized in terms
of the class-specific probability of stasis (remaining the same size). For S and X there is only one

alternative to stasis; for M and L there are two, and they occur with equal probability.

Let s(i) denote the size-specific survival probability for plain-belly sneetches, and (i) the size-
specific probability of stasis. To streamline the notation let 7(i) = 1 — ¢(i) denote the probability
of making a size-class transition. The transition matrix for plain-belly sneetches is then

s(H)o(1) s(2)t(2)/2 0 0

s()t(1) s(2)e(2)  s(3)T(3)/2 0

s(2)t(2)/2  s(3)c(3) s(4)t(4)
0 s(3)T(3)/2 s(4)o(4)

U, = (S38)

0
0

The transition matrix for star-belly sneetches, U, is the same except that mortality in all size-
classes is lower by a factor p < 1, hence

s*(i) =1—p(1—s(i)). (S39)
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Annual breeding outcomes. L and X sneetches have probabilities p;(3), py(4) of attempting to
breed in the current year, whether starred or starless. Conditional on attempting to breed, off-
spring production is Poisson with means 6(3), 6(4) respectively for both star-belly and plain-belly
sneetches.

Our analyses use some moments of the breeding distribution. For size classes 1 and 2, all mo-
ments are zero because they never attempt breeding. For size classes 3 and 4, the mean and
variance of immediate RO, combining those who do and do not attempt breeding that year, are

BU) = po(O(),  a5(i) = pe(7)O() + Pu() (1 = pu(7)O()*. (540)

Conditional on attempting to breed, the mean and variance of immediate RO are

P+() =0G), L) =6() (541)

Conditional on producing at least one offspring, the offspring distribution is a zero-truncated
Poisson. The moments are

2 oy 00)

Bali) = 7= Lag aB0) = Bal) (1+0G) = Ba()): (542)

Breeder definition 1: breeders have, or had, positive mean immediate RO. For the sneetches,

S = {1,2} and M = {3,4}. Following eq. S16, the expanded-state transition matrix is therefore

s(We(1) s@)r(2)/2] 4
s()t(1) s(2)c(2)
P = 0 0 (S43)
0 0
0 s(2)T(2)/2 U
0 0

for plain-belly sneetches, and the same with survival rates s*(i) for star-belly sneetches. Sneetches
are born Small, thus in Z;. They enter Z,, becoming a breeder, by growing from Medium (z = 2)
to Large (z = 3) unless they die first. Once in Z, they remain there until death, regardless of
subsequent size transitions.

The initial condition is
¢ = (1,0;0), (544)

and the probability of breeding is

pv = (0,0;0,0,p(3), p(4))- (545)
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The mean immediate reproductive output is

o

p=1(0,0;0,0,p5(3)6(3), p»(4)0(4)), (S46)

and the variance in immediate reproductive output is

0 = (0,0;0,0,py(3)0(3) + py(3) (1 — pu(3))0(3)%, p(4)0(4) + py(4) (1 — pp(4))0(4)%).  (847)

Breeder definition 2: breeders are those who attempt breeding at least once. Breeding attempts
do not affect survival or growth for sneetches, so 779 = 71, = P. Recalling that the probability of
breeding py, is zero for sizes 1 and 2, we follow eqn. (528) to find

s(1)o(1) s(2)t(2)/2 0 0
s(1)T(1) s(2)a(2) s(3)t(3)/2 0 0 0
0 s(2)t(2)(1=pp(3))/2  s(3)e(3)(1 —pp(3))  s(4)T(4)(1—ps(3))
0 0 s(3)T(3)(1—py(4))/2 s(4)o(4)(1—pp(4))
P = 0 0 0 0 (548)
0 0 0 0 0 0
0 S@T@p(3)/2  sE)rE)pG) S(@)T(@)p (3
0 0 s(3)t(3)py(4)/2 s(4)o(4)py(4)
0 U U

for plain-belly sneetches, and the same with survival rates s*(7) for star-belly sneetches.

The initial condition is
é = (1,0,0,0;0;0), (549)

and the probability of breeding is
py = (0;,1,0,0,p(3), py(4))- (S50)

The mean immediate reproductive output is

o

p=10,0,0,0(3),0(4),0,0,p,(3)0(3), p»(4)0(4)), (S51)

and the variance in immediate reproductive output is

05 = (0,0,0,6(3),6(4),0,0, p(3)6(3) + pp(3) (1 — pu(3))0(3)%, pu(4)6(4) + pp(4) (1 — py(4))6(4)%).
(S52)

Breeder definition 3: breeders are those who produce at least one offspring.



Supplemental Material (not copyedited or formatted) for: Robin E. Snyder, Stephen P. Ellner, Giles Hooker. 2021. "Time and Chance: Using Age
Partitioning to Understand How Luck Drives Variation in Reproductive Success." The American Naturalist 197(4). DO https://doi.org/10.1086/712874.

Age partitioning luck and pluck 16

For stages 3 and 4, the probability of producing at least one offspring in the current year is

pa(j) =1 —exp(=06(j))- (S53)
Following eq. S34, we find
s(1)e(1) s(2)1(2)/2 0 0
s(1)T(1) s(2)o(2) s(3)t(3)/2 0 00
0 s(2)t(2)(1=pa(3))/2  sB)eB)(1—pa(3))  s(4)T(4)(1 - pa(3))
0 0 s(3)T(3) (1 — pa(4))/2 s(4)o(4)(1 - pa(4))
P = 0 0 0 0 (S54)
0 0 0 0 0 0
0 S@QTt@pa3)/2 sG)r@)pal3) S(4)T(@)pa(3)
0 0 s(3)t(3)pa(4)/2 s(4)o(4)pa(4
0 U U

for plain-belly sneetches, and the same with survival rates s*(i) for star-belly sneetches.

The initial condition is
¢ =(1,0,0,0,0,0), (S55)

and the probability of breeding is

pp = (0,1,0,0,p5(3), p(4))- (S56)

The mean immediate reproductive output is

- 6(3) 6(4)
= (000 gy T e oy 0. 7

and the variance in immediate reproductive output is

o ) ) o) e
b@”%wM4®K”%”1wmwm0%wM4mK““”1%@4w0ﬂ”mﬂw'
(S58)

Fig. 54 shows within-breeder state trajectory and fecundity luck for the three breeder definitions.
The figure is generated by SneetchCalculations3.R, which some readers may wish to use as a

tutorial.

S6 Additional case studies

We present here two additional empirical case studies. Results from these studies were men-

tioned in the main text, without information about the study system, model, or analysis.
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Peregrine falcon, Falco peregrinus

Altwegg et al. (2014) developed a stage-structured matrix model for the urban Peregrine Falcon
population in Cape Town, South Africa based on studies running from 1997-2010. The stages in
the model are Juvenile, Non-breeders of ages 1,2, and 3, and Breeder. We obtained the stage-
transition matrix from the COMADRE database (Salguero-Gomez et al., 2016), and converted it
from post-breeding to pre-breeding census (using the expressions for matrix entries in their eqn.
(1)) so that only stage 5 has nonzero fecundity. The resulting matrix (slightly rounded) is

0 0 0 0 0.52
0225 0 0 0 0
A= 0 0344 O 0 0 . (S59)

0 0 0193 O 0
0 0372 0.659 0.852 0.852

We assumed a Poisson offspring distribution for breeders, and partitioned between breeders and

non-breeders using Definition 1, as breeding is exactly equivalent to reaching stage 5.

Roe deer

Roe deer (Capreolus capreolus) born early in the season have access to more nutritious food. This
results in higher early survival and higher body mass as adults, which in turn leads to higher
reproductive success (Plard et al., 2015). Plard et al. (2015) presents an IPM for roe deer, with
individuals classified by stage (yearling or adult), body mass, and birth date. Fitness of the
earliest born females, measured as reproductive value at 8 months old, is found to be 1.29 times
higher than that of the latest-born females. Reproductive value is an expected value, however,
something one would observe by averaging over a large population. How important is birth date

at the level of an individual?

Fig. S3 shows the contributions of luck and birth date to Var(R) as a function of age. Birth date
has a small contribution for age 0 individuals (yearlings), presumably through its influence on
early survival, and a negligible contribution for adults. While the effects of birth date will be

evident for a sufficiently large population, its effects are drowned out by luck for individuals.

The effects of luck peak at age 1, and while the contribution of fecundity luck is important, the
effects of state trajectory luck are roughly double in size. All mothers are assumed to bear twins

in this model, so fecundity luck comes from whether or not breeding was successful.
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S7 Additional details on case study models

Tsuga canadensis

The projection matrix we analyzed is

0.9030 0 0.29900 0.77415 1.95735 6.0251

0.0038 0.96070 0 0 0 0
0122 96545 0 0 0
A=F+P= 0 0012250965 . (S60)
0 0 0.01735 0.97595 0 0
0 0 0 0.01205 0.96335 0
0 0 0 0 0.01835 0.9903

This is the matrix analyzed by van Daalen and Caswell (2017); the matrix as shown in eqn. (64)
of their paper is rounded, but using the exact matrix above we replicate the mean and variance of
LRO given in their Table 3, while the rounded matrix gives slightly different results. The “stages”
in the model are size-classes based on dbh (cm): < 5,5 —10,10.1 — 17.5,17.6 — 27.5,27.6 — 42.5,
and > 42.5. Top-row entries other than A;; are indirectly estimated fecundities, based on
seedling counts and the assumption that individual fecundity is proportional to dbh? (Lamar and
McGraw, 2005). There is no data on between-individual variation in annual fecundity. Following
van Daalen and Caswell (2017) we assumed a Poisson distribution with mean (and therefore vari-
ance) given by the top-row entries. We expect that the actual distribution is more dispersed, e.g.,
zero-inflated as a result of some individuals not flowering in a given year. This would produce
a higher variance/mean ratio. However, the fecundity contributions to luck resulting from the
Poisson assumption are so small, relative to the state-trajectory contribution, that even a 100-fold
increase in the variance/mean ratio would not change our conclusions, so we see no point in
trying to improve on the Poisson model.

Idaho sagebrush steppe

The analysis in Snyder and Ellner (2018) gave only the beginnings of an age-partitioning of luck,
calculating the contributions from pre-natal luck, the first year of life, and everything else put
together. In addition, it omitted one component of early-life variation among individuals which
our methods then could not deal with: large-scale spatial variation in size-specific vital rates
across spatially separated quadrat groups. The transition kernels used here are based on the
same statistical models, regression models with quadrat group as a factor covariate. However,
Snyder and Ellner (2018) set all quadrat group effects to 0, to represent a “typical” location. Here
we use models that include large-scale spatial variation by using quadrat group as the trait x.
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There are 6 quadrat groups, which we treat as 6 equally likely values of x. Script files mentioned
below are part of the online Supplementary Material for Snyder and Ellner (2018) available at
doi.org/10.5061/dryad.pd959.

So what does quadrat group affect?

e Seedling survival is affected by quadrat group in Pseudoroegneria (P = 0.026) but not
Artemisia (P = 0.6, Fit_Survival_Seedlings.R). The estimated group effects in logistic
GLMM for Pseudoroegneria seedling survival are

0.07354396 -0.23961535 0.22278200 0.29098337 -0.05889084 -0.28880314

e Survival of older plants is affected in both species (Fit_Survival_Older.R). For Artemisia
the estimated Group effects in a logistic GLMM for older plant survival are significant at
P <0.01,

-0.323598954 0.163705362 -0.109165424 -0.718369219 0.989199680 -0.001771444

For Pseudoroegneria the estimated group effects are marginally significant at P = 0.091, but
AIC preferred the model with group effects to the corresponding model without group
effects (AAIC = 5.6), so here we assumed that group affects survival of older Pseudoroegneria.
The estimated group effects are

-0.005277883 0.074223526 -0.132938796 -0.164246152 0.000389793 0.227849513

e Seedling growth is not affected by Group (P > 045 for both species,
Fit_Growth Seedlings.R).

e Growth of older plants is also not affected by Group. The model fitting in this case was
Bayesian (Fit_Growth_JAGS.R). Samples from the posterior distributions of group effect pa-
rameters all had wide distributions straddling 0, except for one quadrat group in Pseudoroeg-
neria where about 93% of samples for the group effect are negative.
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Figure S2: Partitioning of LRO variance into age-specific and stage-specific contributions for the
stage-structured Peregrine Falcon matrix model. A) Partitioning by age of the state-trajectory
and fecundity contributions to Var(LRO). B) Sub-partitioning luck into variance among breeders,
and variance due to breeding vs. not ever breeding. C) Image plot of the age-dependent stage
distribution of survivors, with lighter colors indicating higher values. D) Partitioning by stage
of the state-trajectory contribution to Var(LRO). The fecundity contribution all occurs in stage 5.
Figure produced by script FalconPartitioning.R.
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Figure S3: The partitions of LRO variance into age-specific contributions for roe deer, Capreolus
capreolus. A) The age-specific contributions of luck (solid black line) and quality (birth date, solid
red line). Luck is further broken down into state trajectory luck (dashed line) and fecundity luck
(dotted line). B) Fraction of LRO variance coming from birth date variation, as a function of age.
Figure produced by script roePartitioningNewLuckPluck4.R.
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Figure S4: The partitions of state trajectory and fecundity luck into age-specific within- and
between-breeder contributions for the sneetch (Sneetch geiseli). A) The age-specific contributions
of within-breeder state trajectory luck for breeders defined as those who have or have had pos-
itive mean LRO (def. 1), those who attempt breeding at least once (def. 2), and those who have
produced at least one offspring (def. 3). B) Age-specific contributions of within-breeder fecun-
dity luck for the same definitions. C) Within-breeder and breed-or-not contributions to total luck,
using definition 3. D) Within-breeder and breed-or-not contributions to pluck, using definition
3. Figure produced by script SneetchCalculations3.R



