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Abstract

Physical, technological, and social networks are often at risk of intentional attack. Despite
the wide-spanning importance of network vulnerability, very little is known about how crimi-
nal networks respond to attacks or whether intentional attacks affect criminal activity in the
long-run. To assess criminal network responsiveness, we designed an empirically-grounded
agent-based simulation using population-level network data on 16,847 illicit drug exchanges
between 7,295 users of an active darknet drug market and statistical methods for simulation
analysis. We consider three attack strategies: targeted attacks that delete structurally inte-
gral vertices, weak link attacks that delete large numbers of weakly connected vertices, and
signal attacks that saturate the network with noisy signals. Results reveal that, while tar-
geted attacks are effective when conducted at a large-scale, weak link and signal attacks
deter more potential drug transactions and buyers when only a small portion of the network
is attacked. We also find that intentional attacks affect network behavior. When networks
are attacked, actors grow more cautious about forging ties, connecting less frequently and
only to trustworthy alters. Operating in tandem, these two processes undermine long-term
network robustness and increase network vulnerability to future attacks.

Introduction

As human societies grow increasingly complex and interdependent, they become more reliant
on technological, infrastructural, and social networks. This greater reliance on networks has
resulted in growing concern about network vulnerability: a network’s ability to weather inten-
tional attacks [1-15]. Network vulnerability has been the subject of much interdisciplinary
inquiry and findings from this body of research have contributed to diverse areas of science.
To physics, by providing analytic insight to the statistical mechanics of complex networks [1,
7,11, 15]. To medicine, by evaluating points of intervention to impede disease diffusion [16].
To biology, by assessing the resilience of animal herds to the loss of members [17]. And, to
social science, by offering insight to group dynamics in unstable environments [18, 19].
Despite the far-reaching importance of this topic, social scientists know little about social
network responsiveness: how social networks react to and recover from intentional attacks.
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Most research has examined static networks compiled from cross-sectional data [1, 2,7, 9, 11,
14].

Yet, given that social networks contain human actors who are capable of rational behavior,
it is likely that social networks adapt to attacks and possible that actors strive to insulate the
network from additional damage. Moreover, prior studies have largely assessed attack strate-
gies that isolate and remove structurally integral vertices—vertices that are highly connected
or broker otherwise disjointed network components. Since attackers rarely have complete
information on network structure or easy-access to influential actors [7, 15, 19], these findings
tell us little about the vulnerability or responsiveness of social networks to commonly used dif-
fuse attack strategies which target the network at large, rather than a few focal actors.

These limitations are especially pressing in research on criminological networks (e.g.,
gangs, drug markets), where structurally integral actors are usually inaccessible, most network
behavior is hidden, actors have strong incentives to limit periods of inactivity, and findings
bear on public well-being [18-21]. Data on criminal networks also tend to come from court or
police records of captured crime rings [9, 10, 14, 19-22], meaning that findings from current
research are biased towards inactive and “unsuccessful” networks. Moreover, while crimes like
homicide and motor vehicle theft are generally well recorded, most other index offense crimes
including robbery, larceny, rape, assault, and drug crimes are under reported, and thus, data
on crime occurrence—either from self-report or official records—are often inaccurate. Conse-
quently, it is difficult to trace future levels of criminal activity to successful network attacks in
the past.

Further, data on criminal networks are limited in availability, and, as a result, past studies
have been forced to rely on metrics of criminal interaction that indirectly measure the
mechanics of criminal behavior [23, 24]. For instance, Natarajan [25] studied the structure of a
heroin distribution network using wiretapped telecommunications. McGloin [22] aggregated
over multiple types of affiliation data recorded during semi-structured interviews with police
officers to construct a network of gang affiliation, including co-offending and having spent
time together in prison. Criminal network data is also usually incomplete, necessitating
researchers to assume that the observed network segment is an adequate representation of the
unmeasured criminal network. Yet, to pinpoint how criminal networks respond to attacks and
to assess the consequences of intentional attacks for crime occurrence, it is essential to observe
an entire criminal network over a substantial length of time with accurate information on each
participant’s involvement in crime.

To overcome these limitations, we make use of population-level data on a large darknet
drug market observed over 14 months. Darknet drug markets are online marketplaces that can
be accessed using anonymizing web services to purchase illicit drugs (S1 Appendix, Data).
These data have numerous advantages. First, unlike data obtained from surveys or official rec-
ords, these data are collected through observations of a currently-active criminal network;
thus, they contain accurate reports of each market actor’s involvement in illicit drug trade. Sec-
ond, since all drug transactions are recorded, we observe the entire population of drug
exchanges from the birth of the market to the end of data collection. Third, data are collected
digitally, so the growth of the market can be observed as it unfolds in real-time. Fourth, online
drug exchange is growing more prevalent, as it connects drug distributors and consumers
across the globe [26-29]. Thus, it is not only methodologically fruitful to examine online drug
trade, but informative of an increasingly common form of crime.

Data for our study come from one of the largest currently operating darknet drug markets,
Silk Road 3.1. They contain information on 16,847 illicit drug transactions between 7,126 buy-
ers and 169 vendors, representing the entire population of drug transactions on the Silk Road
3.1 during its first 14 months of activity (S1 Table in S1 Appendix). From these data, we
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reconstructed a bipartite network, where a tie connects a buyer and a vendor if the buyer has
purchased drugs from that vendor. Next, we designed an empirically grounded agent-based
model [30-32]. We discuss the assumptions of the agent-based model in some detail in the S1
Appendix. We first used stochastic actor-oriented models to evaluate why buyers purchase
from specific vendors in the Silk Road 3.1 drug exchange network (Model 1, S2 Table in S1
Appendix). We then used the coefficients obtained from stochastic actor-oriented modeling to
inform agent decision- making in the simulation. The result is an agent-based simulation with
empirically validated rules for agent behavior (Materials and Methods). The simulated out-
come networks represent the agent-based model’s best estimates of the Silk Road 3.1 drug mar-
ket at its last moment of observation. By manipulating characteristics of the raw data and
repeating the simulation, we can evaluate the effect of various attack strategies on network
development.

We consider three attack strategies: targeted attacks, weak link attacks, and signal attacks.
Targeted attacks are those that remove structurally integral vertices. Consistent with prior
research [2, 9-11, 14], we operationalized targeted attacks by deleting highly connected ven-
dors from the market (Table 1). Our second attack strategy is a weak link attack, where we
delete large numbers of weakly connected actors at once. This attack strategy is one that is
often used to police open-air drug markets, where numerous low-level drug dealers and users
are arrested in quick succession [33]. Our third attack strategy is the signal attack. Signal
attacks impede network development by saturating a network with noisy signals. The rise of
social media has made signal attacks more common. As an example, social media giants like
Facebook and Twitter have recently struggled to insulate their online platforms against the
spread of political propaganda [34], and online markets like eBay routinely grapple with opin-
ion spamming through fake sales reviews [35]. We implement signal attacks by reducing the
number of positive sales ratings a vendor has received. We conducted each attack strategy at
four levels of intervention, reflecting increasingly aggressive attacks (Table 1). Our control
group contains networks which were simulated without any treatment (S1 Fig in S1 Appen-
dix). With one control condition and three attack strategies at four levels of intervention, our
study includes 12 (3 x 4) treatment conditions and one control group. To ensure that our
results are not idiosyncratic to a specific simulated change process, we repeated our agent-
based simulation 100 times for each level of the experiment. Across levels of treatment, this
yielded a total of 1,300 networks containing 10,213,770 buyers, 255,504 vendors, and 7,060,303
drug exchanges for analysis.

Results

Are criminal networks vulnerable to intentional attacks? We first use methods developed in
cross-sectional research to provide a baseline for comparing results from agent-based simula-
tion. A common way to assess network vulnerability is to examine preferential attachment—
the tendency for buyers to purchase from drug distributors with large degree centrality—since
networks with high levels of preferential attachment tend to be vulnerable to targeted attacks

Table 1. Experiment design. Degree centrality is the raw sum of ties incident to an actor.

Attack Strategy

Targeted attack
Weak link attack
Signal attack

https://doi.org/10.1371/journal.pone.0238019.t001

Level of Intervention

Low Medium-low Medium-high High
Delete vendors in top nth percentile of degree centrality. 20th 40th 60th 80th
Delete buyers in bottom nth percentile of degree centrality. 20th 40th 60th 80th
Reduce vendors’ cumulative sales ratings by n % 20% 40% 60% 80%
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[1,7, 8]. Fig 1 illustrates that there are a handful of highly connected vendors, where 56% of
drug transactions involve only 10% of vendors in the aggregate network. We formally assess
preferential attachment by calculating the degree-scaling coefficient (S1 Appendix, Measure-
ment), a commonly used indicator of preferential attachment [1, 36, 37]. The degree-scaling
coefficient is 1.52 (Kolmogorov-Smirnov statistic = .12, P =. 99, null hypothesis is that the
degree-scaling coefficient is not zero, S1 Table in S1 Appendix), reflecting high levels of prefer-
ential attachment and, thus, vulnerability to intentional attacks. A second strategy for gauging
network vulnerability is to compute the degree-degree correlation (S1 Appendix, Measure-
ment), where positive values indicate that the network is robust to intentional attacks and neg-
ative values indicate vulnerability [11, 13, 14]. The degree-degree correlation is -.07 (S1

Table in S1 Appendix), suggesting vulnerability. This is supported by vertex deletion simula-
tions showing that the network can be completely dismantled by deleting 35% of the vendors
on the market, and 20.3% of buyers are rendered isolates by deleting only 10 vendors (S2 Fig
in S1 Appendix). Collectively, results from cross-sectional analyses suggest that the network is
vulnerable to intentional attacks and replicate several prior findings on criminal network vul-
nerability [6, 9, 14, 20]. But, are these conclusions supported when we account for network
responsiveness?

The problem of network responsiveness can be characterized by two questions: Do inten-
tional attacks affect network activity in the long run? And, do networks adapt to attacks over
time? To address these questions, we turn to results from agent-based simulation.

Our first concern is to assess how much criminal activity is deterred by an attack. Fig 2A
considers change in the number of illicit drug transactions. There is no significant difference
between low-levels of targeted attacks and the control conditions (t = -1.01, P = .31). However,
at the medium-low level of intervention, there is a precipitous decline in the number of drug
transactions. After this decrease, the marginal declines in the number of drug transactions are
minimal. Weak link attacks and signal attacks tend to reduce the level of drug trafficking
more- so than targeted attacks at low levels of intervention. Here, weak link attacks yield a
13.2% decrease in the number of illicit drug exchanges on average, and signal attacks yield a
13.1% decrease, deterring roughly 750 drug exchanges that would have otherwise occurred.
This difference reverses at higher levels of intervention, where targeted attacks decrease the
number of illicit drug exchanges more-so than either weak link or signal attacks, indicating
that targeted attacks are most effective when they are deployed at a large scale. We used ordi-
nary least squares linear regression to assess the mean effect of each attack strategy on the

B. May 2017 - September 2017 C. October 2017 - February 2018

Fig 1. Silk Road 3.1 drug exchange network over time. Blue nodes are buyers, red nodes are vendors, and lines are illicit drug transactions. Node size is
proportional to buyer/vendor degree centrality. In Panel A, #yuyers = 505, fyendors = 50, Muransactions = 1,110. In Panel B, tyyyers = 2,977, dors = 121, Nyransactions =
6,736. In Panel C, Mo = 4,323, Nyendors = 101, Niransactions = 9,001.

https://doi.org/10.1371/journal.pone.0238019.g001
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Fig 2. Criminal activity by level of intervention and attack strategy (n = 1,200 networks). Y axis is proportion of control group (treatment divided by control group).
X axis is the level of intervention, where a 1 is low intervention, 2 is medium-low, 3 is medium-high, and 4 is high. Boxplots are plotted using the Tukey method. Grey
boxplots are targeted attacks (n = 400), yellow boxplots are weak link attacks (n = 400), blue boxplots are signal attacks (n = 400). The correlation between the level of
intervention and the number of ties is -.84 (P < .001) for the targeted attack strategy, .99 (P < .001) for the weak link strategy, and -.79 (P < .001) for the signal attack.
The correlation between the level of intervention and the number of isolates is -.84 (P < .001) for the targeted attack strategy, -.99 (P < .001) for the weak link attack
strategy, and .79 (P < .001) for the signal strategy.

https://doi.org/10.1371/journal.pone.0238019.9002

number of drug transactions in a simulated network. Holding the level of intervention con-
stant, weak link attacks prevent, on average, 2,404 drug transactions that would have otherwise
occurred (8 = -2,404, CI = [-2,578, -2,230], P < .001, Model 2, S3 Table in S1 Appendix), and
targeted attacks prevent 611 drug transactions (8 = -611, CI = [-640, -571], P < .001, Model 2,
S3 Table in S1 Appendix). Signal attacks prevent 151 drug transactions that occurred in the
control group, but the difference is not significant when controlling for the level of interven-
tion (8 = -151, CI = [-325, 23], P = .09, Model 2, S3 Table in S1 Appendix).

Fig 2B considers a second indicator of criminal activity: the number of isolates.
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Isolates are actors (typically buyers) who are not connected to any other actor. Increases in
the number of isolates reflect actors who would have otherwise purchased illicit drugs but
were deterred from doing so. At low levels of intervention, targeted attacks do not substantially
affect the number of isolates. In contrast, signal attacks yield a 20.4% increase in the number of
isolates—an average of 372 buyers who would have purchased illicit drugs if the network had
not been attacked. At higher levels of intervention, signal attacks continue to increase the
number of isolates, albeit less-so than targeted attacks. Weak link attacks decrease the number
of isolates linearly across levels of intervention. This is because weak link attacks delete those
actors who are most likely to be rendered isolates over time, reflecting incapacitation rather
than deterrence (S5 Table in S1 Appendix). Across attack strategies, most of the change in
criminal activity can be attributed to the behaviors of weakly connected actors. While vendors’
degree centralities are relatively unchanged at higher levels of intervention, increasingly
aggressive attacks generate a growing number of isolated and weakly connected buyers (Fig 3).
We modeled the probability of becoming an isolate using conditional logistic regression, treat-
ing each unique actor as strata and clustering standard errors on networks. Controlling for
attack strategy and level of intervention, weakly connected buyers have 70% (e>*) higher odds
of becoming an isolate than other buyers (8 = .529, CI = [.529, .529], P < .001, Model 3, S4
Table in S1 Appendix), and 57.4 times (¢***') higher odds of becoming an isolate than vendors
(B=3.941, CI = [3.941, 3.941], P < .001 Model 3, S5 Table in S1 Appendix). This indicates that
structurally integral buyers and vendors are relatively unaffected by attacks, while weakly con-
nected buyers are the most likely to be deterred.

Buyers Sellers

soepe [eubis

Density
yoeye pajeblie |

Joejie yul| Yesp

T T T T T T T T T

00 05 10 15 20 0 1 2 3 4 5
Degree centrality (logged)

Fig 3. Density plots of buyers’ (n = 10,213,770) and vendors’ (n = 255,204) degree centrality (logged) by attack
strategy. X axis is the natural log of degree centrality, Y axis is the frequency. Darker shades correspond to higher
levels of intervention; lighter shades correspond to lower levels of intervention.

https://doi.org/10.1371/journal.pone.0238019.g003
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Collectively, these results illustrate that weak link and signal attacks reduce more criminal
activity at low levels of intervention than targeted attacks, and that weak link attacks are the
most effective for reducing criminal activity net of the level of intervention. These findings
contrast with cross-sectional research on network vulnerability, which generally finds that
most static and non-responsive networks can be dismantled with a relatively small number of
targeted nodal deletions [1, 4-6, 8, 15], especially those characterized by high preferential
attachment and negative degree-degree correlation [1, 7, 11-14]. Also in contrast to prior
research, results indicate that much of the change in criminal activity can be attributed to
weakly connected actors’ unwillingness to purchase drugs, rather than the immediate disrup-
tive effect of deleting structurally integral actors.

Our second concern is to identify how network behaviors change in the aftermath of an
attack. On one hand, attacks may debilitate a network, leaving lasting damage and rendering it
vulnerable to additional attacks; on the other hand, attacks may incentivize a network to insu-
late itself against further damage. We evaluate these possibilities by calculating the degree scal-
ing coefficient and degree-degree correlation for each simulated network. Change in degree
scaling is modest for each attack strategy (Fig 4A). Targeted and signal attacks tend to increase
degree scaling, while weak link attacks tend to decrease it. This indicates that signal and tar-
geted attacks increase network vulnerability, albeit modestly, by increasing the visibility of
leading actors. Turning to degree-degree correlation (assortativity), targeted attacks do not
yield noteworthy changes in assortativity at low levels of intervention, though higher levels of
intervention do decrease assortativity. For weak link attacks, there is an inverse correlation
between the level of intervention and assortativity (r = -.68, P < .001, Fig 4B), indicating that
weak link attacks increase network vulnerability. Signal attacks tend to increase assortativity.
However, these gains in assortativity stem, in part, from the large number of isolates which are
generated by signal attacks (Fig 5, see S1 Appendix, Assortativity and Isolates for discussion).
These results illustrate that intentional attacks increase network vulnerability in responsive
networks, either by increasing preferential attachment or by decreasing degree-degree
correlation.

Next, we assess the micro-mechanisms that generate these high levels of preferential attach-
ment and low levels of degree-degree correlation. Results from our primary stochastic actor-
oriented models suggest that much of the preferential attachment observed in the empirical
network is driven by vendors’ reputations (cumulative sales ratings) (8 =.0005, CI =
[.0005.0005], P < .001, Model 1, S2 Table in S1 Appendix). To assess preferential attachment
in the wake of an attack, we modeled vendors’ degree centrality in the simulated networks
using linear mixed models, with simulated vendors nested in simulated networks, and simu-
lated networks nested in empirically observed vendors. Consistent with stochastic actor-ori-
ented models, vendor- reputations drive preferential attachment in the simulated networks (3
=.162, CI = [.162, .162], P < .001, Model 3, S6 Table in S1 Appendix). This result replicates
several prior findings on the importance of reputations for cooperation in economic games
and criminal networks [6, 19, 37, 38]. Turning to the micro-level sources of degree-degree cor-
relation, we model the difference in degree centralities between buyers and vendors who have
exchanged drugs using linear mixed models, with differences in degree centralities nested in
networks. As above, micro-level assortativity is largely driven by preferential attachment
towards reputable vendors (5 =.019, CI = [.019, .019], P < .001, Model 3, S7 Table in S1
Appendix), as well as the number of isolates in the network (8 = -.001, CI = [-.001, -.001], P <
.001, Model 3, S7 Table in S1 Appendix). This indicates that, when networks are attacked, buy-
ers grow more cautious about their purchasing habits, leading them to simultaneously make
fewer drug purchases and, when they do purchase, only purchase drugs from vendors with
good reputations. In doing so, they increase overall network vulnerability.
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https://doi.org/10.1371/journal.pone.0238019.9004

Discussion

The findings in this study provide important insight to the problem of network responsiveness.
First, we find that cross-sectional methods can provide misleading assessments of network vul-
nerability when the network is dynamic. This suggests that prior evidence showing that social
networks exhibit high levels of robustness [11] may need to be revisited with network respon-
siveness in mind. Second, we find that diffuse attack strategies can outperform targeted attacks
in terms of curbing long-term network activity. This finding illustrates that attackers may be
successful in debilitating network activity even when they have limited information on
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network structure or limited access to key players. This is consistent with prior studies show-
ing that many networks are vulnerable to attacks conducted at random or with incomplete
information on network structure [4, 5, 7]. Third, we find that most of the change in network
activity and network structure after an attack can be attributed to the behaviors of weakly con-
nected actors, rather than structurally integral ones. This is again in contrast to cross- sectional
research on network vulnerability, which generally assumes that highly connected actors are a
critical vulnerability in common network topologies [6-9].

Finally, results indicate that network attacks can create a game theoretic dilemma in
responsive networks, where actors’ attempts to protect themselves by exchanging drugs with
only the most reputable vendors ultimately increases network vulnerability. Consequently, col-
lective action may be necessary to improve network robustness following intentional attacks,
as egoistic action undermines network security. Future research on network responsiveness
should consider how collective norms or rules for cooperation may promote network recovery
and long-term robustness in disrupted environments.

Results also carry policy implications. Few prior studies have been able to tie levels of crimi-
nal activity to network-based interventions. Findings indicate that small-scale targeted attacks
do little to curb drug trafficking in the long-run. This raises questions about crime policy rec-
ommendations based on cross-sectional research, which generally propounds allocating
resources to identifying and arresting a handful of structurally integral criminals [3, 6, 9, 14,
18-22]. While findings for small-scale targeted attacks may be discouraging, results for diffuse
attacks are enheartening. For one, we find that weak link attacks are, on average, the most
effective for reducing levels of criminal activity. Moreover, one implication of the finding that
weak link attacks decrease degree-degree correlation is that they may be effective for priming a
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network for future attacks. Likewise, results for signal attacks suggest that they may be a viable
attack strategy when resources are unavailable to physically arrest market actors.

Our use of online drug trade data necessarily encounters limitations. In general, examining
digital traces increases the reliability, accuracy, and scale of the data [39]. Moreover, our use of
darknet drug trade data gives unique insight to a large, currently active, and dynamic criminal
network. Nevertheless, it is an open empirical question whether results for crime conducted
through a digital medium translate to the bulk of crime conducted offline. Likewise, a strength
of agent-based simulation is the ability to conduct experiments at a scale which is typically
unfeasible. A weakness, however, is that the data generated from simulation models are syn-
thetic (albeit based on empirical data gathered from an active darknet drug market). If possi-
ble, data generated from experiments where attacks are carried out and change in the network
is assessed would be ideal for validating our conclusions.

Despite the far-reaching scientific importance of network vulnerability, there has been
markedly less research on the problem of network responsiveness [20, 21]. This omission is
particularly pressing in research on social networks, where actors can be expected to exhibit
rational adaptations to network disruptions. Results provide strong evidence that actors in
criminal networks exhibit rational responses to attacks and that these adaptations can under-
mine overall network robustness. Moreover, findings reveal that cross-sectional methods can
lead to misleading conclusions about network vulnerability when the network being studied is
dynamic in nature. Collectively, results highlight the need to consider network responsiveness
when examining the vulnerabilities of social and other dynamic networks.

Materials and methods

Darknet drug markets are anonymous online marketplaces where users from across the globe
can purchase illicit drugs, such as heroin and methamphetamine, from anonymous vendors
and have the drugs delivered to their door steps through a postal service. They function akin to
Clearnet markets (e.g., eBay), incorporating drug listings, vendor reputation scores, and histo-
ries of product reviews left by previous buyers. We constructed our network by gathering data
from each vendor’s web page between the first date of market operation, January 2017, and
February 2018. Additional details are provided in the S1 Appendix (Data). The Ohio State
HSIRB exempt the study from ethical oversight as all data are digital trace data and can be
accessed publicly. All data were analyzed using website specific pseudonyms (usernames) that
are not connected in any known way to persons’ true offline identities. No efforts were taken
to anonymize data during analysis because darknet encryption software makes it extremely
difficult to link usernames to individual persons.

Our agent-based simulation experiment was conducted in four steps. We discuss the
design, assumptions, and mathematical definition of the agent-based simulation in detail in
the S1 Appendix (Estimation). In Step 1, we fit a stochastic actor-oriented model to the
observed network to identify the determinants of market growth [40]. The model entails simu-
lating network change from the raw data and then fitting a multinomial logistic regression to
the simulated data. Actors in the network are offered a probabilistically determined number of
opportunities to change ties based on a rate function (S1 Appendix Estimation). When offered
the opportunity to change a tie, an actor chooses the tie that offers the largest increase to the
objective function:

f(B,x) = Zﬁksk(x)

Where f; are the parameterized covariate effects provided by the researcher and (x) are
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functions of the data computed on the observed network at each step in the simulation. An
actor may choose not to form a tie if there is no tie which increases the value of the objective
function. Tie changes are then recorded and the network state is updated. Since the simulation
can be regarded as a continuous-time Markov chain, the actual passage of time between obser-
vations of the network is arbitrary [40]. As is common, we estimated the model through
method of moments using a stochastic approximation algorithm. Additional details are pro-
vided in the S1 Appendix, along with a discussion of control variables, model specification,
and full model results (S2 Table in S1 Appendix). After estimating the model and ensuring
good fit, we recorded the parameter vector () to be used in agent-based simulation.

In Step 2, we implemented the manipulations to the observed data as outlined in Table 1.

In Step 3, we initiated the agent-based simulation by using stochastic actor-oriented models
to simulate a range of potential network outcomes based on the manipulated data. Since sto-
chastic actor-oriented models have a simulation basis, this merely entailed estimating an
agent-based model with the same rules for actor behavior as outlined above and storing the
simulated networks [see 41, 42]. The parameters of the agent-based simulation are fixed to be
equivalent to the coefficients estimated in Step 1 (Model 1, S2 Table in S1 Appendix). This
ensures external validity by basing the parameters of the agent-based model on statistical anal-
ysis of empirical data [39, 40]. Since we estimate the agent-based model by using a stochastic
actor-oriented model to simulate from manipulated data, the various attack strategies can be
regarded as influencing agent behavior by changing their respective evaluations of the objec-
tive function (S1 Appendix, Simulation). We repeated the agent-based simulation 100 times
for each condition to ensure that the results from the simulations are not idiosyncratic to a sin-
gle stochastic process. In Step 4, we record structural characteristics of the networks and its
actors for analysis. We recorded the number of ties, number of isolates, and actors” degree cen-
trality, and we computed the degree- degree correlation and degree scaling coefficient for the
output networks. Equations for each structural measure are available in the S1 Appendix
(Measurement). We analyzed the data using linear mixed models (random intercepts) for the
degree centrality and difference in degree centrality outcomes, ordinary least squares regres-
sion for the drug trafficking volume outcome, and conditional logistic regression for the prob-
ability of becoming an isolate.

Supporting information

S1 Appendix.
(DOCX)
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