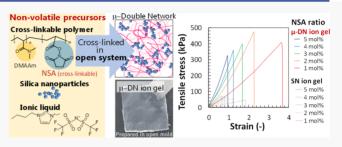
Macromolecules

pubs.acs.org/Macromolecules Article

Preparation of Inorganic/Organic Double-Network Ion Gels Using a Cross-Linkable Polymer in an Open System

3 Eiji Kamio,* Masayuki Kinoshita, Tomoki Yasui, Timothy P. Lodge, and Hideto Matsuyama*

Cite This: https://dx.doi.org/10.1021/acs.macromol.0c01488


ACCESS

III Metrics & More

Article Recommendations

SI Supporting Information

4 **ABSTRACT:** Tough micro-double-network (μ -DN) ion gels, 5 composed of interpenetrating inorganic and organic networks 6 swollen with 80 wt % of an ionic liquid, were fabricated in an open 7 system using nonvolatile materials: silica nanoparticles for the 8 inorganic network, a cross-linkable polymer for the organic 9 network, and an ionic liquid. The cross-linkable copolymer, 10 poly(N,N-dimethylacrylamide-co-N-succinimidyl acrylate) synthe-11 sized by reversible addition—fragmentation chain transfer polymer-12 ization, was cross-linked in situ with a diamine to form the organic 13 network. On the application of load, the inorganic network was

14 partly destroyed resulting in substantial energy dissipation, but the organic network acted as hidden length to suppress the 15 macroscopic destruction of the μ -DN ion gel. The modulus, fracture strength, and strain-to-break of the μ -DN ion gels were tuned 16 by varying the cross-linking degree of the organic network, which could be controlled by changing either the succinimidyl acrylate 17 content of the cross-linkable polymer or the cross-linkable polymer concentration in the precursor solution.

18 INTRODUCTION

19 Ion gels, containing a large amount of an ionic liquid (IL) and 20 having the characteristic properties of ILs such as nonvolatility, 21 nonflammability, high thermal and chemical stabilities, and 22 sustained fluidity in a wide temperature range, have attracted 23 great interest for applications in a wide range of fields. 1-4 In 24 particular, because ion gels can contain task-specific ILs having 25 tuned properties such as high ionic conductivity and high and 26 selective CO₂ absorption, they are expected to find use in 27 electrochemistry and CO₂ separation membranes. ¹⁻³ For these 28 applications, the ion gel should be shaped into a thin film. In 29 addition, to exploit the unique properties of the IL 30 incorporated in the ion gel, the proportion of IL in the gel 31 should be as high as possible. However, conventional ion gels 32 without a well-designed network tend to be very weak and 33 brittle, and it is difficult to prepare thin ion gel films that can be 34 used for practical applications. Moreover, generally, there is a 35 trade-off relationship between the mechanical strength and IL 36 content of the ion gel; that is, the mechanical strength 37 decreases as the IL content increases. Therefore, for the 38 development of high-performance ion-gel films, this trade-off 39 must be overcome, and thin ion-gel films having a high IL 40 content must be developed.

In recent years, several methods to tackle the trade-off problem have been suggested, including the development of ion gels having high mechanical strength. For example, Fujii et al. developed ion gels with up to 96.8 wt % IL and a small as amount of a tetra-arm poly(ethylene glycol) network (termed tetra-PEG ion gels). The tetra-PEG ion gel with 96.8 wt % IL had a Young's modulus of 2.8 kPa, a fracture strain of 3.7,

and a fracture stress of 15 kPa. Because of the high IL content, 48 the ion gel membrane showed high ionic conductivity and CO₂ 49 permeability. Other high mechanical-strength ion gels 50 composed of a large amount of IL and specially designed 51 triblock copolymers have been developed, 3,7,8 and some of 52 these have been used as ion-gel electrolytes and CO2 53 separation membranes. 9-12 In addition, an ion gel membrane 54 composed of an IL and sulfonated polyimide showed a 55 modulus of more than 10 MPa and good CO₂ separation 56 performance. 13 Furthermore, micellar ion gels composed of IL 57 and diblock copolymers having an IL-phobic block and a 58 hydrogen-bonding block have been developed, and these 59 materials show excellent mechanical and electrochemical 60 properties.¹⁴ We have also fabricated tough ion gels^{15–20} 61 based on the double-network principle 21,222 and used the 62 double-network ion gels (termed DN ion gels) as a material for 63 CO₂ separation membranes. 15-17

The earliest DN ion gels were prepared via multi-step 6s processes, but it was challenging to form thin membranes 66 because of the complicated multistep preparation process. 67 Since the first development of DN ion gels, some other DN ion 68 gels have been reported. 18-20,23-27 Although many still require 69

Received: June 29, 2020 Revised: August 28, 2020

70 multistep network formation, 23-25 some tough DN ion gels 71 including inorganic/organic DN ion gels have been prepared 72 via "one-pot" single-step network formation. 18-20,26,27 Our 73 inorganic/organic DN ion gels have an interpenetrating 74 inorganic/organic network formed via the sol-gel reaction of 75 tetraethoxysilane (TEOS) and free radical polymerization of 76 N,N-dimethylacrylamide (DMAAm). Owing to the inorganic/ 77 organic double-network, the DN ion gels have excellent 78 mechanical strength (e.g., compressive fracture stress >25 79 MPa) and therefore enable increasing the IL content up to 90 80 wt %. However, the formation of very thin films from the 81 inorganic/organic DN ion gel is still challenging. To prepare 82 thin polymer films, roll-to-roll, casting, spin-coating, and dip-83 coating methods are used. In general, these processes are 84 performed in an open system. Thus, to utilize these thin-film 85 formation processes, the DN ion gel must also be prepared in 86 an open system. However, the inorganic and organic double-87 networks are formed in the IL using volatile raw chemicals, 88 such as TEOS (precursor of the inorganic network), DMAAm 89 (monomer of the organic network), and formic acid (solvolytic 90 agent for sol-gel reaction). These volatile chemicals are 91 rapidly evaporated from the precursor solution of the DN ion 92 gel if the precursor solution is spread into a thin liquid film. 93 Fortunately, ILs are nonvolatile; thus, using nonvolatile raw 94 materials for the formation of the inorganic and organic 95 networks could solve this problem. Therefore, the develop-96 ment of methods to prepare DN ion gels using nonvolatile raw 97 materials for the network formation is the key challenge facing 98 thin DN ion gel film fabrication.

We recently proposed the formation of a partially developed 100 inorganic network using silica nanoparticles as the nonvolatile 101 building block of the inorganic network. 19 In an IL, silica 102 nanoparticles can aggregate to form network-like struc-103 tures. 28,29 We found that the aggregated silica nanoparticles 104 acted as an inorganic network to dissipate the load on the ion 105 gel. We named this ion gel having a partially developed silica 106 nanoparticle network as a "micro-DN ion gel" (μ -DN ion gel). 107 The μ -DN ion gel had a mechanical strength that was 108 comparable with those of DN ion gels prepared using TEOS 109 and DMAAm. Thus, the evaporation loss of the raw material of 110 the inorganic network was overcome. However, a nonvolatile 111 raw material for the organic network formation is still required. There are two routes to organic network formation using 113 nonvolatile raw materials. One is the use of cross-linkable 114 polymers, ²⁶ and the other is the use of an IL monomer. ²⁷ In 115 this study, we opted to use a cross-linkable polymer as the 116 building block of the organic network because cross-linkable 117 polymers allow rapid network formation. In general, polymer-118 ization reactions to form high molecular-weight polymers are 119 slow. In contrast, cross-linking polymerization involves only 120 the cross-linking reaction, for which the reaction rate can be 121 controlled by selecting a fast cross-linking reaction. Consider-122 ing the large-scale production of ion gel-based thin films by 123 roll-to-roll, dip-coating, and casting processes, fast production 124 of the ion gel is desirable. Thus, we focused on an amide cross-125 linking via the reaction between N-hydroxysuccinimide (NHS) 126 ester and a primary amine. This amide cross-linking reaction is 127 often used in peptide synthesis because the reaction is usually 128 quantitative and proceeds without any side reactions at room temperature.³⁰ In addition, this reaction has been used to form 130 tetra-PEG networks for ion gels.^{5,31,32} Thus, this reaction is 131 known to proceed in an IL. In particular, in aprotic ILs, this 132 reaction occurs quickly because the active ester can easily react with amines in a low proton concentration medium.^{6,33} 133 Therefore, we synthesized the cross-linkable polymer com- 134 posed of PDMAAm and poly(N-succinimidyl acrylate) having 135 NHS ester as the cross-linking group and used it as the 136 nonvolatile building block of the organic network. Owing to 137 the nonvolatility of the silica nanoparticles and the cross- 138 linkable polymer, the inorganic/organic μ -DN ion gel could be 139 prepared in an open system. We also examined the mechanical 140 strength of the μ -DN ion gels prepared using the cross-linkable 141 polymer, and we propose criteria to control the mechanical 142 strength of the μ -DN ion gels prepared in an open system.

144

■ EXPERIMENTAL SECTION

Reagents. As the cross-linkable polymer, we synthesized poly- 145 (N,N-dimethylacrylamide-co-N-succinimidyl acrylate) (poly- 146 (DMAAm-co-NSA)). To focus on the effect of the cross-linking 147 degree on the mechanical strength of the prepared μ -DN ion gels, as 148 well as those without silica nanoparticles (denoted SN ion gel), cross- 149 linkable polymers having almost the same molecular weight but 150 different N-succinimidyl acrylate (NSA) ratios were synthesized by 151 reversible addition-fragmentation chain transfer (RAFT) polymer- 152 ization. As the monomers yielding the main and cross-linkable parts of 153 the cross-linkable polymer, DMAAm and NSA, respectively, were 154 used. These were purchased from Tokyo Chemical Industry Co., Ltd., 155 Japan. DMAAm was used after removing the polymerization inhibitor 156 by passing it through an activated alumina column. As the radical 157 initiator and solvent for RAFT polymerization, 2,2'-azobis(2,4-158 dimethylvaleronitrile) (ADVN) and super dehydrated 1,4-dioxane 159 were used, respectively. They were purchased from FUJIFILM Wako 160 Pure Chemical Co., Japan and used as received. As the chain transfer 161 agent (CTA), 2-(dodecylthiocarbonothioylthio)-2-methylpropionic 162 acid purchased from Sigma-Aldrich Co., (St. Louis, MO) was used. 163 Tetrahydrofuran (THF) and n-hexane were used as the good and 164 poor solvents to purify the synthesized poly(DMAAm-co-NSA) by 165 precipitation, respectively. Dimethyl sulfoxide-d₆ (DMSO-d₆; pur- 166 chased from FUJIFILM Wako Pure Chemical Co., Japan) was used as 167 the solvent for ¹H NMR measurements. To determine the NSA ratio 168 introduced in the poly(DMAAm-co-NSA), tert-butylamine, NHS, and 169 N-tertiary butylacrylamide purchased from Tokyo Chemical Industry 170 Co., Ltd. were used as received. Maleic acid was purchased from 171 FUJIFILM Wako Pure Chemical Co. and used to determine the 172 purity of poly(DMAAm-co-NSA). High-performance liquid chroma- 173 tography-grade THF was purchased from FUJIFILM Wako Pure 174 Chemical Co. and triethylamine (TEA) was purchased from Tokyo 175 Chemical Industry Co., Ltd. and were used as solvents for the samples 176 as well as the mobile phase and amine additive for size-exclusion 177 chromatography (SEC) analysis, respectively.

As the IL of the μ -DN and SN ion gels, 1-butyl-3-179 methylimidazolium bis(trifluoromethylsulfonyl)imide ($[C_4mim]$ - 180 [Tf₂N], purchased from Sigma-Aldrich Co.), was used without 181 further purification. The organic networks of the ion gels were formed 182 by cross-linking the synthesized poly(DMAAm-co-NSA) using 183 diethylene glycol bis(3-aminopropyl)ether (DGBE), which was 184 purchased from Tokyo Chemical Industry Co., Ltd. As the building 185 block of the inorganic network of the μ -DN ion gel, silica 186 nanoparticles (fumed silica having a primary particle diameter of 12 187 nm; Aerosil 200 provided by Nippon Aerosil Co. Ltd., Japan) were 188 used as received. Ethanol was purchased from FUJIFILM Wako Pure 189 Chemical Co. and used as the dispersion stabilizer for the silica 190 nanoparticles in [C₄mim][Tf₂N] as well as the diluent of the 191 precursor solution of the μ -DN and SN ion gels.

Synthesis of Poly(DMAAm-co-NSA). The cross-linkable poly- 193 mer, poly(DMAAm-co-NSA), was synthesized by the following 194 procedure (Scheme S1). RAFT polymerization was conducted in a 195 three-necked flask. Before the experiment, the flask was sealed with 196 silicone rubber stoppers and purged with N2 gas. In the N2-purged 197 three-necked flask, a solution of ADVN (0.004 mmol) dissolved in 198 20.0 g of 1,4-dioxane and a mixture of DMAAm (0.1 mol), NSA 199

200 (1.01, 2.04, 3.09, 4.17, or 5.26 mmol), and CTA (0.040 mmol) was 201 added using a syringe. We controlled the NSA ratio in the copolymer 202 from 1 to 5 mol % by changing the amount of NSA used. After 203 purging the solution by N₂ bubbling for 30 min, the flask was placed 204 in an oil bath maintained at 333 K to start the polymerization 205 reaction. During the reaction, the solution was vigorously agitated by 206 a magnetic stirrer. The reaction was conducted for 24 h. After 24 h, 207 the solution was cooled at room temperature (about 298 K), collected 208 in a 200 cm³ eggplant-shaped flask using THF, and the 1,4-dioxane 209 and THF were removed by evaporation at 333 K for 2 h. The 210 obtained white precipitate was dissolved in 40 g of THF and 211 reprecipitated in hexane. The reprecipitation process was conducted 212 twice, and the obtained white precipitate was dried for 24 h at 373 K 213 under vacuum. The purity of the samples was determined by ¹H 214 NMR measurement using maleic acid as the internal standard. The ¹H 215 NMR spectra were measured using an ECZ-400S NMR spectrometer 216 (JEOL). The determined purities of the copolymers are shown in 217 Table 1.

Table 1. Characterization of Poly(DMAAm-co-NSA)^a

	molar ratio of NSA (mol %)			molecular weight (kg/mol)		
	target	determined	purity (wt %)	$M_{\rm n}$	$M_{ m w}$	$M_{\rm w}/M_{\rm n}$
sample 1	1	0.95	95.0	123	196	1.6
sample 2	2	2.06	93.5	130	205	1.6
sample 3	3	3.15	93.5	139	218	1.6
sample 4	4	4.08	94.3	140	220	1.6
sample 5	5	4.99	95.5	151	227	1.5

^aCharacterization of the synthesized poly(DMAAm-co-NSA).

Molecular Weight Measurement. The molecular weight (number-average $(M_{\rm n})$ and weight-average $(M_{\rm w})$) and dispersity $(M_{\rm w}/M_{\rm n})$ of the synthesized poly(DMAAm-co-NSA) were determined using the SEC system with a light scattering detector 222 (GPCmax, TDA305, triple detection model with refractive index detector, right-angle light scattering, and low-angle light scattering 224 detectors and viscometer, Malvern Panalytical Ltd.) equipped with a 225 column for the organic solvent system (Shodex LF-804, i.d. 8.0 mm, 226 300 mm, Showa Denko K.K., Japan). The measurements were 227 performed at 313 K. In the SEC measurements, 0.02 g of the 228 synthesized poly(DMAAm-co-NSA) sample was dissolved in 5 cm³ of 229 THF. THF containing 5 wt % TEA was used as the SEC mobile phase 230 at a flow rate of 1.0 cm³/min.

For the calculation of molecular weight, the refractive index 231 increment (dn/dc) of each sample and apparatus constant were 232 determined. The refractive index of the copolymer solution was 233 measured at 313 K using an Abbé refractometer (Abbemat550, Anton 234 Paar). The apparatus constant was determined using a polystyrene 235 standard with $M_{\rm w}=105.4$ kg/mol and $M_{\rm w}/M_{\rm n}=1.02$. The 236 determined $M_{\rm n}$, $M_{\rm w}$, and $M_{\rm w}/M_{\rm n}$ values of the copolymers are listed 237 in Table 1.

Determination of the Molar Ratio of NSA Introduced in the 239 Poly(DMAAm-co-NSA). Because of the similar chemical shifts of the 240 hydrogen atoms in the side chains of DMAAm (2.88 ppm) and NSA 241 (2.84 ppm), it was difficult to determine the molar ratio of the 242 DMAAm and NSA units in the synthesized poly(DMAAm-co-NSA) 243 from the ¹H NMR results directly. Therefore, in this study, we 244 determined the NSA ratio in poly(DMAAm-co-NSA) from the peak 245 area of the hydrogen atoms in the dimethylamine group of DMAAm 246 in the copolymer and that in the NHS released from the copolymer 247 via the reaction between the NSA group in the copolymer and the 248 primary amine. We confirmed in advance that the chemical shifts of 249 the hydrogen atoms of the released NHS, unreacted tertiary 250 butylamine, DMAAm in the copolymer, and the tertiary butylacry- 251 lamide formed in the copolymer via the reaction between the NSA 252 unit and tertiary butylamine do not overlap significantly. An example 253 of the ¹H NMR spectrum of the poly(DMAAm-co-NSA) solution 254 after the reaction with tertiary butylamine is shown in Figure S1 in the 255 Supporting Information.

To measure the 1 H NMR spectra, the following experiments were 257 conducted. A small amount of the synthesized poly(DMAAm-co- 258 NSA) (0.02 g) and an excess amount of tertiary butylamine (0.08 g) 259 were dissolved in 0.7 g of DMSO- d_6 , and the reaction between the 260 NSA unit and tertiary butylamine was carried out for 12 h at room 261 temperature (around 298 K). The solution was placed in a 262 thermostatic oven maintained at 333 K for 2 h to remove the 263 unreacted tertiary butylamine. Then, the 1 H NMR spectrum of the 264 solution was measured, and the NSA molar ratio in the synthesized 265 copolymer was determined from the ratio of the integrated peak area 266 of the protons in the DMAAm unit and those in the released NHS. 267 The determined NSA ratios in the copolymers are listed in Table 1. 268

Preparation of the \mu-DN and SN lon Gels. In this study, μ -DN 269 and SN ion gels containing ca. 80 wt % of $[C_4\text{mim}][Tf_2N]$ were 270 prepared. The weights of the chemicals used to prepare the ion gels 271 are listed in Table 2. The weight ratio of ethanol/IL is expressed as r 272 t2 and was varied between 2, 2.5, 3, 3.5, and 4 (g/g). The molar ratio of 273 NSA in the copolymer to DGBE (mol-NSA/mol-DGBE) was 274 adjusted as 2.0 for all conditions. As shown in Table 2, we prepared 275 the μ -DN and SN ion gels using poly(DMAAm-co-NSA) with 276 different NSA ratios and precursor solutions with different r, and we 277

Table 2. Synthetic Parameters of the μ -DN and SN Ion Gels^a

	sample 1	sample 2	sample 3	sample 4	sample
		(a) μ-DN Ion Gels			
IL, $[C_4 mim][Tf_2N]$ (g)	6.4	6.4	6.4	6.4	6.4
inorganic network, Aerosil200 (g)	0.4	0.4	0.4	0.4	0.4
organic network (g)	1.20	1.20	1.20	1.20	1.20
poly(DMAAm-co-NSA) (g)	1.188	1.174	1.16	1.149	1.139
mass fraction of NSA (wt %)	1.6	3.5	5.3	6.8	8.2
cross-linker; DGBE (g)	0.013	0.027	0.040	0.051	0.061
ethanol	6.4 <i>r</i>	6.4r	6.4 <i>r</i>	6.4r	6.4r
		(b) SN Ion Gels			
IL, $[C_4 mim][Tf_2N]$ (g)	6.4	6.4	6.4	6.4	6.4
organic network (g)	1.60	1.60	1.60	1.60	1.60
poly(DMAAm-co-NSA) (g)	1.583	1.565	1.547	1.533	1.519
mass fraction of NSA (wt %)	1.6	3.5	5.3	6.8	8.2
cross-linker; DGBE (g)	0.017	0.035	0.053	0.068	0.081
ethanol	6.4r	6.4r	6.4 <i>r</i>	6.4r	6.4r

 $^{^{}a}r$: ethanol/IL weight ratio (g/g). In the case of open preparation, r was fixed at 2 g/g.

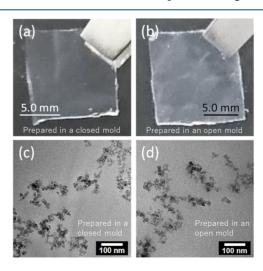
278 investigated the effects of the NSA ratio and r on the mechanical 279 strength of the ion gels.

The ion gels were prepared using the following procedure. The precursor solution was prepared by mixing the following three solutions: (A) a solution of poly(DMAAm-co-NSA) dissolved in ethanol, (B) a solution of cross-linker (DGBE) dissolved in ethanol, and (C) an IL/ethanol suspension of silica nanoparticles. To prepare the SN ion gel, an IL/ethanol mixture without silica nanoparticles was used as solution C. Before use, suspension C was vigorously agitated by vortex mixing for 1 min to disperse any silica nanoparticle aggregates in the IL/ethanol mixture. Subsequently, the silica nanoparticles were well dispersed by ultrasonication for 20 min. Then, solution B was added to suspension C, mixed by vortex mixing for 1 min, and then degassed for 1 min by ultrasonication. Finally, the obtained mixture was added dropwise to solution A with agitation for 1 min.

The obtained precursor solution (about 12 g) was poured in a glass 294 295 plate mold with a fluorinated ethylene propylene (FEP) copolymer 296 film and a polytetrafluoroethylene spacer of 5 mm thickness. The 297 depth of the precursor solution in the plate was about 2.5 mm. We prepared the ion gels using both closed and open molds. When we prepared the ion gels in closed molds, the mold was covered with an 300 acrylic plate with a FEP film after the precursor solution had been poured into the mold; the mold was then sealed with clips. When the 302 ion gels were prepared in open molds, no cover was used. In both 303 cases, the molds were placed in a thermostat oven maintained at 333 304 K for 24 h to complete the cross-linking reaction between NSA 305 groups of the poly(DMAAm-co-NSA) and diamine (DGBE). The 306 schematic diagram of the cross-linking reaction is shown in Scheme S2. In this work, we conducted the cross-linking reaction at 333 K because the mechanical strength of the μ -DN ion gel was higher than 309 that prepared at 298 K (Figure S2). In the case of closed system 310 preparation, the acrylic plate was removed after the cross-linking 311 process. The mold was then placed on a hot plate maintained at 333 312 K for 24 h to remove the ethanol in the gel. The compositions of the 313 IL in the obtained ion gels were determined as 82.4 ± 1.4 wt % from 314 the weights of the IL and the inorganic/organic skeleton, which were 315 obtained via IL extraction using sufficient ethanol, followed by drying 316 at elevated temperature.

Measurement of the Extent of NHS Ester Group Reaction 317 318 with DGBE. The degree of the NHS ester group in the copolymer 319 reacted with the cross-linker was determined from the amount of 320 NHS generated from the cross-linking reaction. The prepared ion gel was immersed in DMSO-d₆ to extract the NHS generated via the 322 cross-linking reaction and the IL, and ¹H NMR measurements were 323 carried out to determine the NHS/IL molar ratio. Because the 324 amount of NHS formed via the cross-linking reaction is equimolar to 325 the reacted NHS ester group, the determined NHS/IL ratio 326 approximates the molar ratio between the reacted NHS ester groups 327 and IL in the gel sample, that is, $n_{\text{NHS ester,reacted}}/n_{\text{IL}} = R_1$. On the other 328 hand, the total amount of NHS ester group in the poly(DMAAm-co-329 NSA), $n_{\text{NHS ester},0}$, can be calculated from the used weight of 330 poly(DMAAm-co-NSA), the weight fraction of NSA in the poly-331 (DMAAm-co-NSA), and the molecular weight of NSA. The molar 332 amount of IL used to prepare the ion gels, $n_{\rm IL,0}$, was calculated from 333 the used amount and the molecular weight of the IL. Thus, the molar 334 ratio between NSA in the poly(DMAAm-co-NSA) and IL, $n_{\rm NSA,0}/n_{\rm IL,0}$ $335 = R_2$, can be calculated. Here, we considered that the IL used to 336 prepare the ion gel was completely incorporated in the ion gel, $n_{\rm IL}$ = 337 $n_{\text{IL},0}$. Therefore, the ratio of R_1/R_2 equals $n_{\text{NHS ester,reacted}}/n_{\text{NSA},0}$, which 338 is the fraction of the reacted NHS ester group in the copolymer via

Mechanical Properties. The mechanical properties of the ion 341 gels were evaluated using an automatic recording universal testing 342 instrument (EZ-LX, Shimadzu Co., Japan) at room temperature 343 (about 298 K). Dumbbell-shaped specimens having lengths and 344 widths of 17.0 and 2.0 mm, respectively, were used for the stretching 345 tests. The thicknesses of the samples were measured using a 346 micrometer (IP65, Mitsutoyo Co., Japan). Because the gel samples 347 were soft, they were sandwiched between glass plates; then, the total


thickness of the sample and the glass plates was measured, and the 348 sample thickness was determined as the difference between the total 349 thickness and the thickness of the glass plates. The thickness 350 measurements were carried out at least 10 times at different spots on 351 each sample, and the average was used as the gel thickness. Because 352 the ion gels contain no volatile components, the mechanical 353 properties could be measured in air without compositional changes 354 during the measurements. A uniaxial stretching test was conducted at 355 a constant strain rate of 100 mm/min. The fracture stress, fracture 356 strain, and Young's modulus were measured in triplicate for each 357 sample. In the cyclic stretching tests, the stretching and return 358 operations were performed until the sample broke, while incremen-359 tally increasing the stretching strain in steps of 0.5.

Transmission Electron Microscopy Observation. The in- 361 organic network in the μ -DN ion gels was observed by field-emission 362 transmission electron microscopy (FE-TEM, JEM-2100F, JEOL Ltd., 363 Japan) as described previously. 34 A cubic sample of the ion gel (1 mm 364 × 1 mm × 1 mm) was immersed in a sufficient volume of ethanol for 365 12 h to exchange the IL in the sample for ethanol. The sample was 366 then immersed in a solution of epoxy resin (Plain Resin Kit, Nisshin 367 EM Co., Ltd., Tokyo, Japan)/ethanol mixture (weight ratio of 1:1 g/ 368 g) for 6 h and then immersed in the solution of epoxy resin for 12 h to 369 exchange the ethanol in the sample with the epoxy resin solution 370 completely. The epoxy resin solution impregnated sample was 371 embedded in a silicon mold; subsequently, the epoxy resin solution 372 was poured into the mold and cured at 343 K for 5 d. The resin block 373 embedding the gel sample was subsequently thin-sectioned using an 374 ultramicrotome (UC7, Leica Microsystems GmbH, Wetzlar, 375 Germany), and sections of thickness 100 nm were collected on a 376 copper mesh TEM grid with a microgrid mesh and observed by FE- 377 TEM. The acceleration voltage of the electron gun used for 378 observation was 200 kV.

RESULTS AND DISCUSSION

 μ -DN lon Gel Prepared Using Poly(DMAAm-co-NSA) 381 with Different NSA Ratios. The μ -DN ion gels prepared 382 using poly(DMAAm-co-NSA) with 5 mol % of NSA in closed 383 and open molds are shown in Figure 1a,b, respectively. In both 384 ft closed and open molds, self-standing ion gels were formed 385 using the cross-linkable polymer as the building block of the 386 organic network. In addition, ion gels were also successfully 387 prepared with and without silica nanoparticles using the cross-

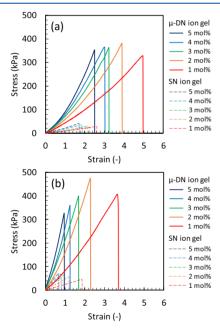
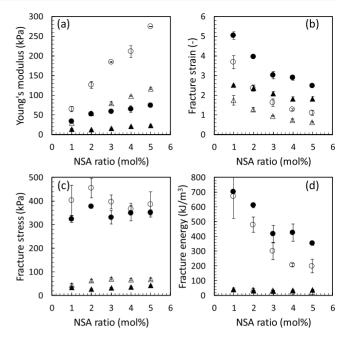

380

Figure 1. μ -DN ion gels prepared using poly(DMAAm-co-NSA) with 5 mol % of NSA in closed (a) and open molds (b) and the inorganic network structures formed in these μ -DN ion gels prepared in closed (c) and open molds (d). The μ -DN ion gels were prepared using the precursor solutions with r=2 g/g.


389 linkable polymers with different NSA ratios. The successful 390 preparation of the SN ion gels without silica nanoparticles 391 demonstrated that a three-dimensional polymer network was 392 formed by the intermolecular cross-linking between the cross-393 linkable polymers and diamine cross-linkers. In addition, we 394 confirmed the inorganic network formation in the μ -DN ion 395 gels by FE-TEM observation. As shown in Figure 1c,d, partially 396 developed silica nanoparticle networks were formed in the μ -397 DN ion gels prepared in both open and closed molds. It was 398 found that the structures of the inorganic networks formed in 399 the μ -DN ion gels prepared in open molds were almost the 400 same as those prepared in closed molds. This means that the 401 inorganic network structure was fixed in the precursor solution 402 of the μ -DN ion gel and that the structure was not significantly 403 changed by the evaporation of ethanol during organic network 404 formation in the open mold. Based on these results, organic 405 and inorganic network formation in the μ -DN ion gels using 406 the cross-linkable polymer and silica nanoparticles as the 407 nonvolatile building blocks was successful. If the polymer 408 network and the silica nanoparticle network are successfully 409 interpenetrated, the prepared μ-DN ion gels should have much 410 higher mechanical strength than the SN ion gels and should 411 show characteristic hysteresis in the cyclic tensile stress-strain 412 curves. Thus, we next evaluated the mechanical properties of 413 the prepared μ -DN and SN ion gels.

The results of uniaxial tensile stress loading tests are shown in Figure 2. From the stress-strain curves, the mechanical

Figure 2. Uniaxial stress—strain curves of the μ -DN and SN ion gels prepared using the cross-linkable polymer with different NSA ratios. The ion gels were prepared in closed (a) and open molds (b) using the precursor solutions with r=2 g/g.

416 properties of the μ -DN and SN ion gels, including fracture 417 stress, fracture strain, Young's modulus, and fracture energy, 418 were determined, and these are summarized in Figure 3. 419 Comparing the mechanical strengths, the μ -DN ion gels clearly 420 have higher mechanical strengths than the SN ion gels. In 421 addition, the fracture stress of the μ -DN ion gels prepared in 422 both closed and open molds was about 350–400 kPa, which is 423 comparable to those of μ -DN ion gels prepared using DMAAm

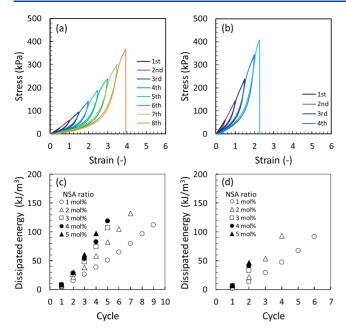


Figure 3. Mechanical properties of the μ -DN and SN ion gels prepared using the cross-linkable polymer with different NSA ratios. Black circles and triangles indicate the results for the μ -DN and SN ion gels prepared in closed molds, respectively. White circles and triangles represent the results for the μ -DN and SN ion gels prepared in open molds without an acrylic cover, respectively. The μ -DN and SN ion gels were prepared using the precursor solutions with r=2 g/g.

as the raw material of the organic network formation (about 424 400 kPa), 19 and is higher than those of DN ion gels (about 250 425 kPa). 20 To confirm the toughening mechanism, cyclic tensile 426 stress–strain curves were measured for the μ -DN ion gels. 427 Typical results are shown in Figure 4, and others can be found 428 f4 in Figures S3 and S4.

As expected, a clear hysteresis in the cyclic tensile stress- 430 strain curves was observed for all μ -DN ion gels, as shown in 431 Figures 4, S3, and S4. The hysteresis in the cyclic tensile 432 stress-strain curves indicates the softening behavior of the gel 433 after stress loading. This softening behavior is characteristic of 434 μ -DN ion gels. In addition, the large hysteresis is strong 435 evidence that energy dissipation is the basis of the toughening 436 mechanism of the μ -DN ion gels. This large hysteresis was also 437 observed in cyclic stress-strain curves of the DN and μ -DN 438 ion gels prepared using DMAAm for organic network 439 formation. 18 Therefore, the large hysteresis observed in 440 Figures 4, S3, and S4 indicates that the toughening mechanism 441 of the μ -DN ion gels prepared using the cross-linkable polymer 442 was the energy dissipation mechanism arising from the internal 443 fracture of the inorganic network. In other words, in the μ - 444 DN ion gels, the silica nanoparticle network clusters acted as 445 sacrificial bonds, whereas the cross-linkable polymer-based 446 organic networks acted as a hidden length; when combined, 447 these features toughen the prepared μ -DN ion gels.

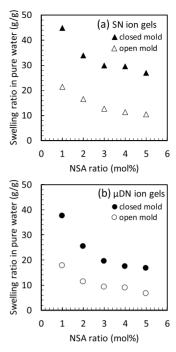

Because of the double-network structure, the Young's 449 modulus and fracture strain of the μ -DN ion gels were higher 450 than those of the SN ion gels, as shown in Figure 3a. The 451 Young's modulus of the μ -DN ion gels reflects the additive 452 contributions of the organic and inorganic networks. There- 453 fore, compared to that of the SN ion gel, the Young's modulus 454 of the μ -DN ion gel increased because of the contribution of 455

Figure 4. Energy dissipation of the μ -DN ion gels. Cyclic tensile loading—unloading curves of the μ -DN ion gels prepared using cross-linkable polymers with 2 mol % of NSA ratio (a,b). Dissipated energy of the μ -DN ion gels prepared using cross-linkable polymers with various NSA ratios at certain cycles in the cyclic tensile loading test (c,d). The μ -DN ion gels were prepared under the diluent condition of r=2 g/g in a closed mold (a,c) and an open mold (b,d).

456 the inorganic network. This means that the low strain elasticity 457 originating from the inorganic network was much greater than 458 that originating from the organic network. Regarding the 459 fracture strains, because the partially destroyed inorganic 460 network clusters formed in the μ -DN ion gels by the applied 461 force still interpenetrated the polymer network, they act as 462 multifunctional cross-linking points for the polymer network. Therefore, the fracture strains of the μ -DN ion gels were larger 464 than those of the SN ion gels. This characteristic enhancement 465 of the Young's modulus and the fracture strain of the μ -DN ion 466 gel also suggests that the polymer network formed by 467 poly(DMAAm-co-NSA) acted as a hidden length and ruptured 468 the inorganic network during the application of force to the μ -469 DN ion gels.

We then investigated the effects of the cross-linking degree 471 on the mechanical properties of the μ -DN ion gels prepared 472 using poly(DMAAm-co-NSA) with different NSA ratios. As 473 clearly shown in Figure 3a,b,d, the Young's modulus, fracture 474 strain, and fracture energy of the μ -DN ion gels were strongly 475 dependent on the NSA ratio in the cross-linkable polymer. To 476 confirm the cross-linking degree of the prepared μ -DN and SN 477 ion gels, the extent of reaction of the NHS ester group in the 478 polymer networks and the swelling ratio of the network of the 479 μ-DN and SN ion gels in pure water were determined. Figure 480 S5a,b shows the relationship between the degree of the reacted 481 NHS ester group, $n_{\rm NHS~ester,reacted}/n_{\rm NSA,0}$, and the NSA ratio of 482 the cross-linkable polymer used to prepare the ion gels. As 483 shown in this figure, the fraction of the NHS ester group that 484 reacted was approximately 0.8 and was not dependent on the 485 NSA ratio in the cross-linkable polymer or the preparation 486 conditions, such as the use of an open or closed system. On the 487 other hand, the swelling ratio of the gel network in pure water 488 was dependent on the NSA ratio and the preparation 489 conditions (Figure 5). The swelling ratios of the ion gels

Figure 5. Swelling ratio of the networks in the μ -DN and SN ion gels in pure water. The μ -DN and SN ion gels were prepared using crosslinkable polymers with different NSA ratios. Black circles and triangles represent the results for the μ -DN and SN ion gels, respectively, prepared in closed molds. White circles and triangles represent the results for the μ -DN and SN ion gels, respectively, prepared in open molds. All ion gels were prepared using the precursor solutions with r=2 g/g.

prepared in open molds were lower than those prepared in 490 closed molds and decreased with an increase in the NSA ratio 491 of the cross-linkable polymer. That is, some parts of the cross-492 linkable polymer were cross-linked with another cross-linkable 493 polymer to form intermolecular cross-linking, but intra- 494 molecular cross-links were also formed.³⁶ The decrease of 495 the swelling ratio with increase in the NSA content indicated 496 that the intermolecular cross-linking degree of the ion gel 497 prepared using the polymer having a large NSA ratio was 498 higher. At the same time, the degree of intermolecular cross- 499 linking of the ion gels prepared in the open molds was higher 500 than those of the ion gels prepared in closed molds presumably 501 because of the evaporation of ethanol during the cross-linking 502 reaction. When the ion gels were prepared in open molds, a 503 considerable amount of ethanol was lost from the precursor 504 solution because the ion gels were prepared at 333 K. The 505 evaporation of ethanol led to an increase in the concentration 506 of the cross-linkable polymer in the precursor solution. As a 507 result, the distance between the cross-linkable polymers was 508 reduced, and intermolecular cross-linking was facilitated. 509 Crucially, the intermolecular cross-linking degree of the 510 organic network is dependent on the NSA ratio of the cross-511 linkable polymer and the preparation conditions. Therefore, 512 the mechanical properties of the ion gels are dependent on the 513 intermolecular cross-linking degree of the organic network.

In general, the mechanical properties of a gel are dependent 515 on the degree of intermolecular cross-linking (hereafter, the 516 intermolecular cross-linking degree is simply written as the cross-517 linking degree). As shown in Figure 3a, the Young's moduli of 518 the μ -DN and SN ion gels increased with the increase in the 519 NSA ratio of the cross-linkable polymer. For the SN ion gel, 520

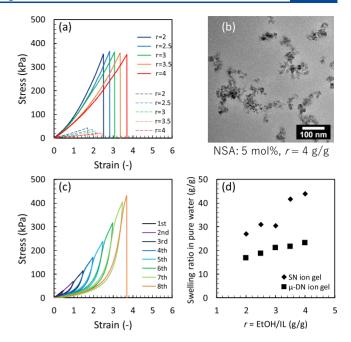
521 the increase is understandable because of the higher cross-522 linking density of the organic network formed using the cross-523 linkable polymer with a higher NSA ratio. In addition, as 524 expected from the results of the swelling tests, the Young's 525 moduli of the SN ion gels prepared in open molds were higher 526 than those prepared in closed molds. Regarding the Young's 527 modulus of the μ -DN ion gel, the trend was the same as that 528 for the SN ion gels. Notably, the degree of increase in the 529 Young's modulus with the increase in the NSA ratio was 530 greater than that of the SN ion gel. This difference in the 531 degree of the increase in the Young's moduli of the μ -DN and 532 SN ion gels can be explained as resulting from the contribution 533 of the inorganic network in the μ -DN ion gels.

The Young's modulus of a μ -DN ion gel is the sum of the 535 moduli of the organic and inorganic networks. In general, 536 flexible polymer chains can freely slide in the interstices of the 537 silica nanoparticle aggregate (inorganic network). However, 538 cross-linking points are more likely to be obstructed by the 539 inorganic network. Therefore, until the cross-links are caught 540 by the inorganic network, the load is sustained by the polymer 541 network. On the other hand, when the cross-linking point is 542 caught on the inorganic network, both the organic and 543 inorganic networks sustain the load. In the case of a more 544 loosely cross-linked polymer, the cross-linking point is only 545 restricted by the inorganic network at a higher elongation. For 546 a highly cross-linked polymer, the cross-linking point is caught 547 on the inorganic network even at low strains. That is, when the 548 cross-linking degree of the organic network is high, the 549 contribution of the inorganic network to sustaining the applied 550 stress is increased. As a result, the increase in the cross-linking 551 degree of the organic network enhances not only the Young's 552 modulus originating from the organic network but also that 553 from the inorganic network. As the result, the degrees of 554 increase in the Young's moduli of the μ -DN ion gels with an 555 increase in the NSA ratio were higher than in the SN ion gels. The cross-linking degree also affects the fracture strain of the

The cross-linking degree also affects the fracture strain of the SN and μ -DN ion gels. As shown in Figure 3b, the fracture strain of the SN and μ -DN ion gels monotonically decreased with the increase in the NSA ratio in the cross-linkable polymer. In addition, the fracture strains of the SN and μ -DN ion gels prepared in closed molds were higher than those of the SO and μ -DN ion gels prepared in open molds. These results indicated that the μ -DN ion gels having loosely cross-linked polymer networks could elongate to a greater extent.

The fracture energy of the μ -DN ion gel was also affected by 566 the cross-linking degree of the polymer. As shown in Figure 3d, 567 the fracture energy of the μ -DN ion gels increased with a 568 decrease in the cross-linking degree of the polymer network. 569 Similarly, the tearing energy of the μ -DN ion gel also depended 570 on the degree of cross-linking of the polymer network, and the $_{571}$ μ -DN ion gel with a polymer network with a low cross-linking 572 degree had high tearing energy (Table S1). The tensile fracture 573 energy (703 kJ/m³) and the tearing energy (124 J/m²) of the 574 μ -DN ion gel prepared using the cross-linkable polymer with 1 575 mol % NSA were about 1.5 times higher than those of the 576 classical DN ion gel prepared from TEOS and DMAAm (437 577 kJ/m³ and 82.1 J/m², respectively²⁰). The excellent toughness 578 of the μ -DN ion gel with a loosely cross-linked polymer 579 network is due to the contribution of both of the inorganic and 580 organic networks. When the μ -DN ion gel was stretched, the 581 inorganic network clusters entangled with the organic networks 582 were ruptured. In the μ -DN system, the inorganic network 583 clusters act as sacrificial bonds, and the loaded energy is

dissipated when the inorganic network clusters are ruptured. 584 The amount of dissipation increased with the increase in the 585 number of ruptured inorganic network clusters. Because the 586 highly cross-linked polymer network has many cross-linking 587 points, which are caught on and rupture the inorganic network, 588 the number of the inorganic network clusters ruptured could 589 depend on the cross-linking degree of the polymer network. 590 The energies dissipated in each cycle of elongation were shown 591 in Figure 4c,d. As shown in these figures, at the same stretching 592 cycle, the dissipated energy increased with the increase in the 593 NSA ratio of the cross-linkable polymer. This is because of the 594 higher cross-linking degree of the polymer network with the 595 higher NSA ratio. As the supporting evidence, it is 596 demonstrated in Figures 4c,d and 5 that the enhancement of 597 the dissipated energy shows the same trend as the decrease of 598 the swelling ratio with the increase of the NSA ratio. When the 599 NSA ratio was small, the dissipated energy and the swelling 600 ratio were strongly varied with the increase in the NSA ratio. 601 On the other hand, when the NSA ratio was large, the 602 variations became small. From these results, it can be said that 603 the μ -DN ion gel with the highly cross-linked polymer network 604 dissipated larger energy when the strain of the μ -DN ion gel 605 was the same. However, as mentioned before, the fracture 606 strain of the μ -DN ion gel increases with the decrease in the 607 cross-linking degree of the polymer network. The number of 608 ruptured inorganic network clusters increases with the increase 609 in tensile strain. Therefore, in the μ -DN ion gel with a loosely 610 cross-linked polymer network, many inorganic network clusters 611 are broken in the highly stretched state. As shown in Figure 3d, 612 the enhancement of the fracture energy of the μ -DN ion gels 613 with the decrease in the NSA ratio in the cross-linkable 614 polymer indicates that the fracture energy is dominated by the 615 increased fracture strain due to the loosely cross-linked 616 polymer network.


On the other hand, the fracture energy of the SN ion gels 618 was not dependent on the cross-linking degree of the cross-619 linkable polymer (Figure 3d). This is because SN ion gels do 620 not contain silica nanoparticle clusters. Thus, the loaded 621 energy was not dissipated when the SN ion gels were stretched. 622 Therefore, the fracture energy of the SN ion gel was not 623 dependent on the cross-linking degree of the cross-linkable 624 polymer.

In contrast to the fracture energy, the fracture stresses of the 626 SN and μ -DN ion gels were dependent and independent, 627 respectively, on the cross-linking degree of the cross-linkable 628 polymer (Figures 2 and 3). The trends in the fracture stress of 629 the SN ion gels with respect to cross-linking degree are shown 630 clearly in Figure 2. The fracture stress of the SN ion gels 631 increased with an increase in the NSA ratio in the cross- 632 linkable polymer. In addition, by comparing the fracture 633 stresses of the SN ion gels prepared in open and closed molds 634 using the cross-linkable polymer with the same NSA ratio, we 635 confirmed that the fracture stress values of the SN ion gels 636 prepared in open molds were higher than those prepared in 637 closed molds. When the cross-linking degree of the polymer 638 network increased, the average strand length decreased. As a 639 result, the inhomogeneity of the strand length, and the number 640 of polymer chains supporting the loaded stress, increased. 641 Thus, the fracture stress of the SN ion gels increased with an 642 increase in the NSA ratio of the cross-linkable polymer, and 643 the fracture stress of the SN ion gels prepared in open molds 644 became higher than those prepared in closed molds. On the 645 other hand, the fracture stress of the μ -DN ion gel showed no 646

647 clear dependence on the cross-linking degree of the cross-648 linkable polymer. In the μ -DN system, the fracture stress is the 649 sum of the stress loaded on the organic and inorganic networks 650 at the breaking point. It can be assumed that the stress 651 sustained by the organic network would be the same as that of 652 the SN ion gels. As shown in Figures 2 and 3c, the stress 653 sustained by the inorganic/organic double-network in the μ -654 DN ion gels was much larger than that sustained by the organic 655 network in the SN ion gels. Thus, the stress sustained by the 656 inorganic network is much larger. Considering the extended 657 network that sustains the applied load, all inorganic network 658 composed of silica nanoparticle aggregates could be regarded 659 to be in the extended state, whereas the organic network with a 660 distribution of molecular weights between cross-linking points 661 was in a partially extended state. In other words, the whole 662 inorganic network and some of the polymer chains in the μ -663 DN ion gels sustained the load. Although the stress is the sum 664 of the load sustained by the inorganic network and a part of the 665 organic network, it would be mainly originated by the 666 inorganic network because the small amount of extended 667 polymer chain cannot sustain a large load. Therefore, the 668 inorganic network can sustain a higher load than the organic 669 network. At the breaking point at which macroscopic 670 destruction of the μ -DN ion gels occurred, the applied load 671 on the μ -DN ion gel was mainly sustained by the inorganic 672 network, and the contribution of the organic network in sustaining the applied load was negligible. When the inorganic 674 networks in the μ -DN ion gels were formed using the same 675 amounts of silica nanoparticles, the structures of the inorganic 676 networks in all μ -DN ion gels were very similar (Figure 1c,d). 677 This means that the load sustained by the inorganic networks $_{678}$ in all μ -DN ion gels should be comparable. Therefore, the 679 fracture stress of the μ -DN ion gel was mainly determined by 680 the inorganic network, as shown by the similar fracture stress 681 values (within experimental error) and independence on the cross-linking degree of the polymer.

 μ -DN Ion Gels Prepared Using a Precursor Solution with Different Ethanol/IL Ratios. On the basis of these results, we concluded that the different mechanical properties of the μ -DN ion gels prepared in closed and open molds arose because of the different cross-linking degree of the polymers. Accordingly, the cross-linking degree of the μ -DN ion gels prepared in open molds would be increased with an increase in cross-linkable polymer concentration in the precursor solution because of the evaporation of ethanol during the cross-linking reaction. To confirm this, we prepared μ -DN ion gels in closed molds using precursor solutions with different ethanol/IL ratios.

The properties of the prepared ion gels are summarized in Figure 6a, which shows the uniaxial tensile stress—strain curves of the μ -DN and SN ion gels. In the range of diluent ratios of the precursor solutions investigated, the μ -DN ion gels had much higher mechanical strengths than the SN ion gels. The improved mechanical properties are due to the energy dissipation made possible by the rupture of the silica nanoparticle clusters in the μ -DN ion gels (Figure 6b). The energy dissipation of the prepared μ -DN ion gels is shown in Figures 6c and S5. As demonstrated in these figures, all μ -DN ion gels prepared using the precursor solutions with r = 2-4 g/ showed clear mechanical hysteresis. In addition, the extent of NSA reaction for all μ -DN and SN ion gels were approximately 0.8 (Figure S5c), similar to those of the μ -DN and SN ion gels

Figure 6. Properties of the ion gels prepared in closed molds using precursor solutions with different ethanol/IL weight ratios, r. The cross-linkable polymer contained 5 mol % of NSA. Uniaxial tensile stress—strain curves of the μ -DN and SN ion gels (a). TEM image (b) and cyclic tensile stress loading—unloading curves (c) of the μ -DN ion gel prepared using the precursor solution with r=4 g/g. Swelling ratios of the μ -DN and SN ion gels prepared using the precursor solutions with different r (d).

polymer with different NSA ratios (Figure S5a,b). To 710 investigate the effect of the dilution of the precursor solutions 711 on the intermolecular cross-linking degree in the μ -DN and SN 712 ion gels, the swelling ratios of the networks were measured in 713 pure water, and the results are shown in Figure 6d. As 714 expected, the swelling ratio of the gel network skeleton 715 increased with an increase in r. In addition, as shown in Figure 716 S6f, the dissipated energy of the μ -DN ion gels at the same 717 strain increased with a decrease in r. Furthermore, the trend of 718 the variations of the dissipated energy and the swelling ratio 719 along with the change of r was similar. That is, when r was 720 changed, not only the dissipated energy but also the swelling 721 ratio gradually and monotonically changed. These results 722 indicated that the cross-linking degree increased with the 723 increase in the concentration of the cross-linkable polymer in 724 the precursor solution with lower r.

The mechanical properties of the ion gels also varied with 726 cross-linking degree, as expected (Figure 7). As shown in 727 f7 Figure 7a, the Young's modulus of the SN and μ -DN ion gels 728 increased with decrease in r. At the same time, the fracture 729 strain and fracture energy decreased with a decrease in r 730 (Figure 7b,d). Furthermore, the fracture stress of the SN ion 731 gels also increased with the decrease in r (Figures 6a and 7c). 732 These results are expected because of the associated increase in 733 cross-linking degree. On the other hand, the fracture stress of 734 the μ -DN ion gels showed no dependence on r. This is also 735 reasonable because the fracture stress of the μ -DN ion gels is 736 dominated by the inorganic network, and the effect of the 737 cross-linking degree of the organic network was negligible, as 738 noted before.

The cross-linking degree of the polymer and the mechanical 740 strength of the μ -DN ion gel can be increased by reducing the 741

Macromolecules Article pubs.acs.org/Macromolecules

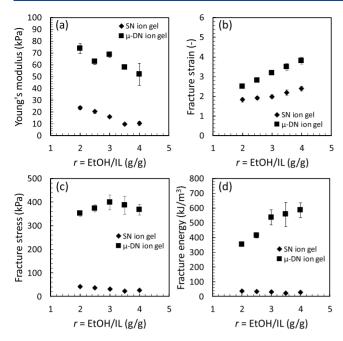


Figure 7. Mechanical properties of the μ -DN and SN ion gels prepared in closed molds using precursor solutions with different ethanol/IL ratios, r. The NSA ratio of the cross-linkable polymer was 5 mol %.

742 concentration of the cross-linkable polymer in the precursor 743 solution. In addition, the dilution of the precursor solution 744 could provide further advantages for thin-film formation. One 745 is a reduction of viscosity of the precursor solution, enabling 746 spreading in very thin liquid films, and another is the 747 significant shrinkage of the formed ion gel by the evaporation 748 of the diluent, which could further reduce the film thickness 749 (Figure S7). For example, we estimate that about 10 μ m 750 thickness of the liquid film and less than 1 μ m thickness of the 751 DN ion gel layer could be formed using the precursor solution 752 with r = 5 g/g by spin-coating at 7000 rpm. Therefore, using a 753 precursor solution diluted by ethanol as much as possible while 754 still allowing gelation would be preferable to make tough and 755 thin DN ion gels. Based on the findings reported here, the 756 development of thin μ -DN ion gel films will be studied next.

SUMMARY

758 To develop a thin μ -DN ion gel film preparation technology, 759 μ -DN ion gels were prepared using nonvolatile materials: an 760 IL, silica nanoparticles, and cross-linkable polymer. A series of 761 cross-linkable poly(DMAAm-co-NSA) polymers having almost 762 the same molecular weight but different NSA ratios was 763 synthesized by RAFT polymerization. Using the cross-linkable 764 polymer, μ -DN ion gel films were successfully prepared in 765 open molds. Tensile stress-strain measurements confirmed 766 that the inorganic network formed in the μ -DN ion gel acted as 767 a sacrificial bond network, which dissipated the loaded energy, whereas the organic network acted as a hidden length, which suppressed the macro-destruction of the μ -DN ion gel. The prepared μ -DN ion gels had excellent mechanical strengths, similar to those of previously reported inorganic/organic DN 772 ion gels and μ -DN ion gels prepared in closed molds using 773 DMAAm as the raw material of the organic network. Thus, 774 tough μ -DN ion gel films can be prepared in an open system 775 by using a cross-linkable polymer as the nonvolatile organic 776 network precursor.

In addition, detailed investigation of the mechanical 777 properties of the cross-linkable polymer-based μ -DN ion gels 778 was conducted to propose criteria to control the mechanical 779 strength of μ -DN ion gels prepared in open systems. The 780 mechanical properties, such as the Young's modulus, fracture 781 stress, and fracture strain, of the μ -DN ion gels depended on 782 the NSA ratio of the cross-linkable polymer, that is, the cross-783 linking degree of the organic network. The cross-linking degree 784 was also controlled by changing the concentration of the cross-785 linkable polymer. The cross-linkable polymer concentration 786 can be controlled by changing the amount of ethanol added to 787 the precursor solution, and this also varied because of the 788 evaporation of ethanol during cross-linking in the open 789 environment. Thus, the mechanical properties of the μ -DN 790 ion gel film prepared in an open system can be controlled by 791 controlling the NSA ratio in the cross-linkable polymer and the 792 rates of diluent evaporation and the cross-linking reaction.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 796 https://pubs.acs.org/doi/10.1021/acs.macromol.0c01488.

Synthesis scheme for poly(DMAAm-co-NSA), ¹H NMR 798 spectrum of poly(DMAAm-co-NSA) solution after 799 reaction with tertiary butylamine, cyclic tensile stress 800 loading-unloading curves of the μ -DN ion gels, and 801 extent of NHS ester group reaction with DGBE (PDF) 802

794

795

803

804

806

808

809

810

811

812

813

814

815

816

817

818

819

820

822

823

824

825

826

827

828

AUTHOR INFORMATION

Corresponding Authors

Eiji Kamio – Department of Chemical Science and Engineering, 805 Research Center for Membrane and Film Technology, Kobe University, Kobe, Hyogo 657-8501, Japan; oorcid.org/0000-807 0002-1331-0871; Email: e-kamio@people.kobe-u.ac.jp

Hideto Matsuyama - Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, Kobe, Hyogo 657-8501, Japan; orcid.org/0000-0003-2468-4905; Email: matuyama@ kobe-u.ac.jp

Authors

I

Masayuki Kinoshita - Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, Kobe, Hyogo 657-8501, Japan Tomoki Yasui - Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, Kobe, Hyogo 657-8501, Japan **Timothy P. Lodge** – Department of Chemistry and Department 821 of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States; orcid.org/0000-0001-5916-8834

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.macromol.0c01488

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The silica nanoparticles used in this work (Aerosil 200) was 830 kindly supplied by Nippon Aerosil Co., Ltd. The authors thank 831 the Research Facility Center for Science and Technology of 832 Kobe University for providing the FE-TEM for use in this 833

834 study. Parts of this work were supported by KAKENHI 835 (18K04812) of the Japan Society for the Promotion of Science 836 (JSPS). The support of the National Science Foundation 837 through award DMR-1707578 is also acknowledged (T.P.L.).

838 REFERENCES

- 839 (1) Cowan, M. G.; Gin, D. L.; Noble, R. D. Poly(ionic liquid)/Ionic 840 Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform 841 Membrane Materials for CO₂/Light Gas Separations. *Acc. Chem. Res.* 842 **2016**, 49, 724–732.
- 843 (2) Forsyth, M.; Porcarelli, L.; Wang, X.; Goujon, N.; Mecerreyes, 844 D. Innovative Electrolytes Based on Ionic Liquids and Polymers for 845 Next-Generation Solid-State Batteries. *Acc. Chem. Res.* **2019**, *52*, 686–846 694.
- 847 (3) Lodge, T. P.; Ueki, T. Mechanically Tunable, Readily 848 Processable Ion Gels by Self-Assembly of Block Copolymers in 849 Ionic Liquids. *Acc. Chem. Res.* **2016**, *49*, 2107–2114.
- 850 (4) Marr, P. C.; Marr, A. C. Ionic liquid gel materials: applications in green and sustainable chemistry. *Green Chem.* **2016**, *18*, 105–128.
- 852 (5) Fujii, K.; Asai, H.; Ueki, T.; Sakai, T.; Imaizumi, S.; Chung, U.-i.; 853 Watanabe, M.; Shibayama, M. High-performance ion gel with tetra-854 PEG network. *Soft Matter* **2012**, *8*, 1756–1759.
- 855 (6) Fujii, K.; Makino, T.; Hashimoto, K.; Sakai, T.; Kanakubo, M.; 856 Shibayama, M. Carbon dioxide separation using a high-toughness ion 857 gel with a tetra-armed polymer network. *Chem. Lett.* **2015**, *44*, 17–19. 858 (7) Lodge, T. P. Materials science: a unique platform for materials 859 design. *Science* **2008**, *321*, 50–51.
- 860 (8) Gu, Y.; Zhang, S.; Martinetti, L.; Lee, K. H.; McIntosh, L. D.; 861 Frisbie, C. D.; Lodge, T. P. High Toughness, High Conductivity Ion 862 Gels by Sequential Triblock Copolymer Self-Assembly and Chemical 863 Cross-Linking. J. Am. Chem. Soc. 2013, 135, 9652–9655.
- 864 (9) Imaizumi, S.; Kokubo, H.; Watanabe, M. Polymer Actuators 865 Using Ion-Gel Electrolytes Prepared by Self-Assembly of ABA-866 Triblock Copolymers. *Macromolecules* **2012**, *45*, 401–409.
- 867 (10) Tang, B.; White, S. P.; Frisbie, C. D.; Lodge, T. P. Synergistic 868 Increase in Ionic Conductivity and Modulus of Triblock Copolymer 869 Ion Gels. *Macromolecules* **2015**, *48*, 4942–4950.
- 870 (11) Gu, Y.; Lodge, T. P. Synthesis and Gas Separation Performance 871 of Triblock Copolymer Ion Gels with a Polymerized Ionic Liquid 872 Mid-Block. *Macromolecules* **2011**, *44*, 1732–1736.
- 873 (12) Gu, Y.; Cussler, E. L.; Lodge, T. P. ABA-triblock copolymer ion 874 gels for CO₂ separation applications. *J. Membr. Sci.* **2012**, 423–424, 875 20–26.
- 876 (13) Ito, A.; Yasuda, T.; Yoshioka, T.; Yoshida, A.; Li, X.; 877 Hashimoto, K.; Nagai, K.; Shibayama, M.; Watanabe, M. Sulfonated 878 Polyimide/Ionic Liquid Composite Membranes for CO₂ Separation: 879 Transport Properties in Relation to Their Nanostructures. *Macro-880 molecules* **2018**, *51*, 7112–7120.
- 881 (14) Tamate, R.; Hashimoto, K.; Horii, T.; Hirasawa, M.; Li, X.; 882 Shibayama, M.; Watanabe, M. Self-Healing Micellar Ion Gels Based 883 on Multiple Hydrogen Bonding. *Adv. Mater.* **2018**, *30*, 1802792.
- 884 (15) Moghadam, F.; Kamio, E.; Yoshioka, T.; Matsuyama, H. New 885 approach for the fabrication of double-network ion-gel membranes 886 with high CO_2/N_2 separation performance based on facilitated 887 transport. *J. Membr. Sci.* **2017**, *530*, 166–175.
- 888 (16) Moghadam, F.; Kamio, E.; Matsuyama, H. High CO₂ 889 separation performance of amino acid ionic liquid-based double 890 network ion gel membranes in low CO₂ concentration gas mixtures 891 under humid conditions. *J. Membr. Sci.* **2017**, *525*, 290–297.
- 892 (17) Moghadam, F.; Kamio, E.; Yoshizumi, A.; Matsuyama, H. An 893 amino acid ionic liquid-based tough ion gel membrane for CO₂ 894 capture. *Chem. Commun.* **2015**, *51*, 13658–13661.
- 895 (18) Yasui, T.; Kamio, E.; Matsuyama, H. Tough and stretchable 896 inorganic/organic double network ion gel containing gemini-type 897 ionic liquid as a multiple hydrogen bond cross-linker. *RSC Adv.* **2019**, 898 *9*, 11870–11876.

- (19) Yasui, T.; Kamio, E.; Matsuyama, H. Inorganic/Organic 899 Double-Network Ion Gels with Partially Developed Silica-Particle 900 Network. *Langmuir* **2018**, 34, 10622–10633.
- (20) Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H. 902 Inorganic/Organic Double-Network Gels Containing Ionic Liquids. 903 Adv. Mater. 2017, 29, 1704118.
- (21) Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double- 905 network hydrogels with extremely high mechanical strength. *Adv.* 906 *Mater.* **2003**, *15*, 1155–1158.
- (22) Gong, J. P. Why are double network hydrogels so tough? *Soft* 908 *Matter* **2010**, *6*, 2583–2590.
- (23) Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. 910 Preparation of High-Performance Ionogels with Excellent Trans- 911 parency, Good Mechanical Strength, and High Conductivity. *Adv.* 912 *Mater.* 2017, 29, 1704253.
- (24) Rana, H. H.; Park, J. H.; Ducrot, E.; Park, H.; Kota, M.; Han, T. 914 H.; Lee, J. Y.; Kim, J.; Kim, J.-H.; Howlett, P.; Forsyth, M.; 915 MacFarlane, D.; Park, H. S. Extreme properties of double networked 916 ionogel electrolytes for flexible and durable energy storage devices. 917 Energy Storage Mater. 2019, 19, 197–205.
- (25) Zhang, Y.; Chang, L.; Sun, P.; Cao, Z.; Chen, Y.; Liu, H. High- 919 performance double-network ionogels enabled by electrostatic 920 interaction. *RSC Adv.* **2020**, *10*, 7424–7431.
- (26) Tang, Z.; Lyu, X.; Xiao, A.; Shen, Z.; Fan, X. High-Performance 922 Double-Network Ion Gels with Fast Thermal Healing Capability via 923 Dynamic Covalent Bonds. *Chem. Mater.* **2018**, *30*, 7752–7759. 924
- (27) Watanabe, T.; Takahashi, R.; Ono, T. Preparation of tough, 925 thermally stable, and water-resistant double-network ion gels 926 consisting of silica nanoparticles/poly(ionic liquid)s through photo- 927 polymerisation of an ionic monomer and subsequent solvent removal. 928 Soft Matter 2020, 16, 1572–1581.
- (28) Ueno, K.; Hata, K.; Katakabe, T.; Kondoh, M.; Watanabe, M. 930 Nanocomposite ion gels based on silica nanoparticles and an ionic 931 liquid: ionic transport, viscoelastic properties, and microstructure. *J.* 932 *Phys. Chem. B* **2008**, *112*, 9013–9019.
- (29) Ueno, K.; Imaizumi, S.; Hata, K.; Watanabe, M. Colloidal 934 Interaction in Ionic Liquids: Effects of Ionic Structures and Surface 935 Chemistry on Rheology of Silica Colloidal Dispersions. *Langmuir* 936 **2009**, 25, 825–831.
- (30) Theato, P. Synthesis of well-defined polymeric activated esters. 938 J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6677–6687. 939
- (31) Hashimoto, K.; Fujii, K.; Nishi, K.; Sakai, T.; Shibayama, M. 940 Nearly Ideal Polymer Network Ion Gel Prepared in pH-Buffering 941 Ionic Liquid. *Macromolecules* **2016**, 49, 344–352.
- (32) Asai, H.; Fujii, K.; Ueki, T.; Sakai, T.; Chung, U.-i.; Watanabe, 943 M.; Han, Y.-S.; Kim, T.-H.; Shibayama, M. Structural Analysis of High 944 Performance Ion-Gel Comprising Tetra-PEG Network. *Macro-945 molecules* **2012**, 45, 3902–3909.
- (33) Fujii, K.; Hashimoto, K.; Sakai, T.; Umebayashi, Y.; Shibayama, 947 M. Bronsted basicity of solute butylamine in an aprotic ionic liquid 948 investigated by potentiometric titration. *Chem. Lett.* **2013**, 42, 1250–949 1251.
- (34) Yasui, T.; Kamio, E.; Matsuyama, H. Inorganic/organic 951 nanocomposite ion gels with well dispersed secondary silica 952 nanoparticles. RSC Adv. 2020, 10, 14451–14457.
- (35) Yasui, T.; Fujinami, S.; Hoshino, T.; Kamio, E.; Matsuyama, H. 954 Energy dissipation via the internal fracture of the silica particle 955 network in inorganic/organic double network ion gels. *Soft Matter* 956 **2020**, *16*, 2363–2370.
- (36) Okay, O.; Balımtaş, N. K.; Naghash, H. J. Effects of cyclization 958 and pendant vinyl group reactivity on the swelling behavior of 959 polyacrylamide gels. *Polym. Bull.* **1997**, *39*, 233–239.