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Abstract

We consider an enhanced measure of security for a quantum key distribution protocol, in which we require that

the adversary not only obtains no information about the key but also remains unaware that a key generation protocol

has been executed. When the adversary applies the same quantum channel independently to each transmitted quantum

state, akin to a collective attack in the quantum key distribution literature, we propose a protocol that achieves covert

and secret key expansion under mild restrictions. A crucial component of the protocol is a covert estimation stage,

which is then combined with universal channel coding for reliability and resolvability in the covert regime.

I. INTRODUCTION

The search for alternative cryptographic methods has become relevant because of the existence of algorithms

that could be run on a quantum computer and threaten the security of some traditional cryptographic methods,

such as some asymmetric cryptographic schemes. In particular, the generation of unconditionally secure key bits

over quantum channels, known as Quantum Key Distribution (QKD) [1], has attracted much attention because

of its ability to exploit the unique characteristics of quantum channels and enable the detection of an adversary

tampering with the transmitted data. Starting from the seminal work of Bennett and Brassard [2], this field has

witnessed tremendous advances in the last decade from both theoretical and practical perspectives. In particular,

security proofs have evolved to consider several types of attacks such as individual, collective, coherent attacks, and

the possibility of an adversary controlling the legitimate users’ apparatus [3], and the statistical effects of measuring

and processing a finite amount of data [4]. In addition, experimental QKD systems have matured to stably operate

over long distances and over long periods of time [5].

Another desirable feature for a key generation protocol is undetectability or covertness, by which the legitimate

parties aim at hiding the fact that the key generation is happening from an unwanted party. From a statistical point

of view, the adversary should be unable to distinguish between the statistics of its observation with and without key

generation. The study of covert communication has been initiated by [6] for classical channels, in which a square-

root-law has been established for Additive White Gaussian Noise (AWGN) channels, i.e., at most O(
√
n) of bits

can be reliably and covertly transmitted over n uses of an AWGN channel. Covert communication in a classical

setting has been extensively investigated, including the study of the exact asymptotics in covert communication
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[7], [8], covert communication in multi-terminal networks [9], practical code design [10], and state-dependent

channel [11]. Furthermore, a few studies have extended these results to the quantum setting [12], [13], [14], [15],

[16]; in particular, [12], [13] have established inner- and outer-bounds for the covert capacity of classical-quantum

(cq) channels, and [17] proved a no-go result for covert communication over bosonic channels when there is no

imperfection on the adversary’s observations. An actual demonstration of covert communication has also been

demonstrated in the presence of thermal noise on the transmission channel or dark count in the photo-detector of

the adversary.

The main purpose of the present paper is to investigate the possibility of guaranteeing the covertness of a QKD

protocol. The authors of [15] have suggested the pessimistic result that “covert QKD consumes more key that it

can generate.” In their protocol, legitimate parties coordinate transmissions in
√
n locations out of n, for which

O(
√
n log n) bits are required. This amount, unfortunately, dominates the amount of generated key bits, which only

scales as O(
√
n). In a previous work [18], we have established a framework for covert and secret key expansion over

quantum channels, in which the use of public communication is precisely defined, and we have established lower-

bounds on the amount of key bits that can be generated when the channels are known. Our achievability results were

based on the transmission of independent and identically distributed (i.i.d.) signals over the channel with highly

biased distribution instead of coordinating the locations for transmission ahead of time. The main shortcoming of

our previous work is the requirement that the channel should be known, which might not be realistic in practice.

To address this issue, we consider here a model in which the adversary controls the quantum channel under some

conditions. Specifically, we consider an instance of quantum covert and secret key generation in which the quantum

channel is fixed but under the control of the adversary and unknown to the legitimate users. Under some conditions

that limit the power of the adversary, which we precisely characterize, we prove the existence of covert and secret key

generation protocols consisting of a channel estimation phase followed by a key-generation phase. The estimation

phase is based on a covert quantum tomography protocol, which estimates the required parameters of the channel,

and the key generation phase is based on universal results for covert quantum communication. While covertness

cannot be unconditionally guaranteed, our protocol offers the legitimate parties with the ability to successfully abort

before engaging in key generation. We do not instantiate explicit codes but recent progress in designing codes for

covert communications [10] suggests that the protocols described here can be implemented with low complexity.

The remainder of the paper is organized as follows. In Section II, we briefly introduce the notation used throughout

the paper. In Section III, we formally describe the problem under investigation and state our main result. We devote

Section IV to the proof of our main theorem.

II. NOTATION

For a finite-dimensional Hilbert space H, dimH denotes the dimension of H, and L(H) denotes the space of

all linear operators from H to H. We denote the adjoint of an operator X ∈ L(H) by X†, and call X Hermitian

if X = X†. X ∈ L(H) is positive (semi-)definite, if it is Hermitian and all of its eigenvalues are positive (non-

negative). D(H) denotes the set of all density operators on H, i.e., all non-negative operators with unit trace. For

X,Y ∈ L(H), we write X ≻ Y (X � Y ), if X − Y is positive (semi-)definite. For X ∈ H, let σmin(X) and
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σmax(X) denote the minimum and the maximum singular value of X , respectively, and if X is Hermitian, let

λmin(X) and λmax(X) denote the minimum and maximum eigenvalue of X . Furthermore, we define norms of

X ∈ L(H) as ‖X‖1 , tr
(√

X†X
)

and ‖X‖2 ,
√

tr (X†X). For a Hermitian operator X ∈ L(H) with eigen-

decomposition X =
∑

x x|x〉〈x|, we define the projection {X � 0} ,
∑

x>0 |x〉〈x|. A quantum channel EA→B is

a completely positive and trace preserving linear map from L(HA) to L(HB). An isomorphic extension of EA→B ,

UA→BE , satisfies EA→B(ρ
A) = trE(UA→BEρ

AU†
A→BE) for all ρA ∈ D(HA). We denote the complementary

channel of EA→B by Ec
A→B(ρ

A) , EA→E(ρ
A) , trB(UA→BEρ

AU†
A→BE), which is well-defined and unique

up to a unitary transformation [19, Exercise 5.2.5]. Let EA→B : D(HA) → D(HB) be a quantum channel

and |1〉, · · · , |d〉 be an orthonormal basis for HB . We let Ẽd(n−1)+m , |n〉〈m| so that Ẽ1, · · · , Ẽd2 forms an

orthonormal basis for L(H). By [20], there exists coefficients χj,k such that

E(ρ) =
∑

j,k

ẼjρẼ
†
kχj,k. (1)

We call the matrix χ = [χj,k]j,k=1,··· ,d2 the chi-representation of the channel EA→B with respect to the orthonormal

basis |1〉, · · · , |d〉. A cq-channel is a map from an abstract set X to D(H), denoted by x 7→ ρx.

For ρA ∈ D(HA) we define the von Neumann entropy H(ρA) , H(A)ρ , −tr
(
ρA log ρA

)
. For ρAB ∈ D(HA⊗

HB), we define the conditional von Neumann entropy H(A|B)ρ , H(ρAB)−H(ρB) where ρB , trA(ρ
AB), and the

quantum mutual information I(A;B)ρ , H(ρA)+H(ρB)−H(ρAB). Similarly, we define the conditional quantum

mutual information I(A;B|C) , H(ρAC) +H(ρBC)−H(ρABC)−H(ρC) for any ρABC ∈ D(HA ⊗HB ⊗HC).

If PX is a distribution on X and x 7→ ρx is a cq-channel, we denote the Holevo information by

I(PX , ρx) , H

(
∑

x

PX(x)ρx

)
−
∑

x

PX(x)H(ρx). (2)

For ρ, σ ∈ D(H), the quantum relative entropy is

D(ρ‖σ) ,





tr (ρ (log ρ− log σ)) if supp(ρ) ⊂ supp(σ),

∞ otherwise.

(3)

We also define η(ρ, σ)) similar to [13, Eq. (12)] as

η (ρ‖σ) ,





tr
(∫∞

0
ρ(σ + s)−1ρ(σ + s)−1ds

)
− 1 if supp(ρ) ⊂ supp(σ),

∞ otherwise.

(4)

We denote by Jn,mK the interval {i ∈ Z : n 6 i 6 m}. We also define

[a, b] = {x ∈ R : a 6 x 6 b}, (5)

]a, b] = {x ∈ R : a < x 6 b}, (6)

[a, b[= {x ∈ R : a 6 x < b}, (7)

]a, b[= {x ∈ R : a < x < b}. (8)

Let wt(x) ,
∑n

i=1 xi for x = (x1, · · · , xn) ∈ Xn.
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<latexit sha1_base64="O8XUDS21dwHovEXGBArqGHi06sI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0GPBS48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLG5tb2Tnm3srd/cHhUPT5pmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2ilh8bAG1RrnustQNaJX5AaFGgOql/9YcKymCtkkhrT870Ug5xqFEzyWaWfGZ5SNqEj3rNU0ZibIF+cOiMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xi/D6DbIhUoz5IotF0WZJJiQ+d9kKDRnKKeWUKaFvZWwMdWUoU2nYkPwV19eJ+0r1/dc//66VneLOMpwBudwCT7cQB0a0IQWMBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8Abr5jVs=</latexit><latexit sha1_base64="O8XUDS21dwHovEXGBArqGHi06sI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0GPBS48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLG5tb2Tnm3srd/cHhUPT5pmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2ilh8bAG1RrnustQNaJX5AaFGgOql/9YcKymCtkkhrT870Ug5xqFEzyWaWfGZ5SNqEj3rNU0ZibIF+cOiMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xi/D6DbIhUoz5IotF0WZJJiQ+d9kKDRnKKeWUKaFvZWwMdWUoU2nYkPwV19eJ+0r1/dc//66VneLOMpwBudwCT7cQB0a0IQWMBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8Abr5jVs=</latexit><latexit sha1_base64="O8XUDS21dwHovEXGBArqGHi06sI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0GPBS48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLG5tb2Tnm3srd/cHhUPT5pmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2ilh8bAG1RrnustQNaJX5AaFGgOql/9YcKymCtkkhrT870Ug5xqFEzyWaWfGZ5SNqEj3rNU0ZibIF+cOiMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xi/D6DbIhUoz5IotF0WZJJiQ+d9kKDRnKKeWUKaFvZWwMdWUoU2nYkPwV19eJ+0r1/dc//66VneLOMpwBudwCT7cQB0a0IQWMBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8Abr5jVs=</latexit><latexit sha1_base64="O8XUDS21dwHovEXGBArqGHi06sI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE0GPBS48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ndLG5tb2Tnm3srd/cHhUPT5pmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gknd3O/88S1EYl6xGnKg5iOlIgEo2ilh8bAG1RrnustQNaJX5AaFGgOql/9YcKymCtkkhrT870Ug5xqFEzyWaWfGZ5SNqEj3rNU0ZibIF+cOiMXVhmSKNG2FJKF+nsip7Ex0zi0nTHFsVn15uJ/Xi/D6DbIhUoz5IotF0WZJJiQ+d9kKDRnKKeWUKaFvZWwMdWUoU2nYkPwV19eJ+0r1/dc//66VneLOMpwBudwCT7cQB0a0IQWMBjBM7zCmyOdF+fd+Vi2lpxi5hT+wPn8Abr5jVs=</latexit>
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<latexit sha1_base64="qqT0dre6/3JSAe1YmLOCg2WwcD4=">AAACT3icbVDJThwxEHVPSFiyAOGYi8UIKRd6iSLgiCCHHAnJANIwGVW7q2csvLTsasSoNZ+Qa/JdOfIluUXxNH0Iy5NsPb1XdlW9vFLSU5reRr1nS89fLK+srr189frN+sbm2zNvaydwIKyy7iIHj0oaHJAkhReVQ9C5wvP86njhn1+j89KabzSrcKRhYmQpBVCQvp5+Pxpv9NM4bcEfk6wjfdbhZLwZ7V0WVtQaDQkF3g+ztKJRA46kUDhfu6w9ViCuYILDQA1o9KOmnXXOd4JS8NK6cAzxVv3/RQPa+5nOQ6UGmvqH3kJ8yhvWVB6MGmmqmtCIu0ZlrThZvlicF9KhIDULBISTYVYupuBAUIjnXhfuSYObuSKs0v7XJAMfihKNU1dAkXxytsrtTXKKHsGJaRIuq3cVEN7stpHcKeOyNmKRs4+DMw9JZw9zfUzOPsRZGmdfPvYP4y7zFfaObbP3LGP77JB9ZidswASbsB/sJ/sV/Y7+RH97XWkv6sgWu4fe6j+qvbPd</latexit><latexit sha1_base64="qqT0dre6/3JSAe1YmLOCg2WwcD4="></latexit><latexit sha1_base64="qqT0dre6/3JSAe1YmLOCg2WwcD4="></latexit><latexit sha1_base64="qqT0dre6/3JSAe1YmLOCg2WwcD4="></latexit>
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<latexit sha1_base64="Ri0wA6DpPdvOhg+buqXTxv8jMas="></latexit><latexit sha1_base64="Ri0wA6DpPdvOhg+buqXTxv8jMas="></latexit><latexit sha1_base64="Ri0wA6DpPdvOhg+buqXTxv8jMas=">AAACTXicbVDLThsxFPWEtlD6SuiSjdWoUjfMA1UtS6Sy6BJQA0ghiu547iRW/BjZdxDRKF/QLXwX635Id1WFM8miQK9k6+ic+zx5paSnNP0VdTaePX+xufVy+9XrN2/fdXs7Z97WTuBAWGXdRQ4elTQ4IEkKLyqHoHOF5/ns21I/v0LnpTU/aF7hSMPEyFIKoECdnI67/TRO2+BPQbYGfbaO43Ev+nJZWFFrNCQUeD/M0opGDTiSQuFi+7L2WIGYwQSHARrQ6EdNu+mCfwxMwUvrwjPEW/bfiga093Odh0wNNPWPtSX5P21YU3kwaqSpakIjVoPKWnGyfHk2L6RDQWoeAAgnw65cTMGBoGDOgynckwY3d0U4pe3XJAMfkhKNU1dAkRw5W+X2OjlFj+DENAmf1XsKCK/3WktWzLisjVi67OOgLILT2WNfn4Kz/ThL4+zkc/8wXnu+xXbZB/aJZewrO2Tf2TEbMMGQ/WQ37Da6i35Hf6K/q9ROtK55zx5EZ/MeTla0KA==</latexit><latexit sha1_base64="Ri0wA6DpPdvOhg+buqXTxv8jMas="></latexit>
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<latexit sha1_base64="OHsfffMPGog1vgpvOPJ7aqhDbc8="></latexit><latexit sha1_base64="OHsfffMPGog1vgpvOPJ7aqhDbc8="></latexit><latexit sha1_base64="OHsfffMPGog1vgpvOPJ7aqhDbc8="></latexit><latexit sha1_base64="OHsfffMPGog1vgpvOPJ7aqhDbc8="></latexit>

UA→BE
<latexit sha1_base64="yCzaYw8ld8l5EW96oVo/15KePK0="></latexit><latexit sha1_base64="yCzaYw8ld8l5EW96oVo/15KePK0="></latexit><latexit sha1_base64="yCzaYw8ld8l5EW96oVo/15KePK0="></latexit><latexit sha1_base64="yCzaYw8ld8l5EW96oVo/15KePK0="></latexit>

Alice Eve Bob

Figure 1. Model of covert and secret key expansion

III. MODEL FOR COVERT AND SECRET KEY GENERATION UNDER COLLECTIVE ATTACKS AND MAIN RESULTS

In this section, we formalize key generation protocols, describe our assumption on the eavesdropper, define the

metrics used to assess a protocol and state our main result. We finally illustrate our result for a quantum phase-flip

channel.

a) Protocol description: As depicted in Fig. 1, two legitimate parties, Alice and Bob, attempt to expand shared

secret key using multiple uses of a quantum channel and two-way communication over a public but authenticated

classical channel without being detected by an adversary, Eve. Prior to the transmission, Alice and Bob possess

local randomness RA and RB , respectively, and a shared secret randomness R. In T time steps, Alice prepares a

quantum state using her available information, which is sent to Bob through a quantum channel EA→B . Bob can

perform a possibly joint measurement on his received states. Alice and Bob also communicate with each other over

the public classical channel after each time step. We denote all communications over the public channel by W .

Alice and Bob use their available information at the end of the T th time step to compute two long binary strings

sX and sY , respectively, as well as the number of bits ℓX and ℓY , respectively, to use as a secret key. The length

of sX and sY is public and fixed at the beginning of the protocol. Alice finally sets her key kX to be the first ℓX

bits of sX while Bob sets his key kY to be the first ℓY bits of sY .

b) Attacker model: We assume that Eve initially chooses the quantum channel EA→B under some mild

constraints precisely defined in the statement of Theorem 1 but that the channel remains unchanged during the

transmission. The channel is a priori unknown to Alice and Bob. When Alice transmits ρA, Eve observes Ec
A→B(ρ

A),

which accounts for the maximum amount of information that she can possibly gain, i.e., the state corresponding

to a reference system for an isomorphic extension of the channel from Alice to Bob. When no communication

happens, Eve expects the “innocent” symbol ρA0 to be sent by Alice. She is also fully aware of the details of the

protocol used by Alice and Bob for covert and secret key generation.

Similar to [18], we call a protocol an (ǫ, δ, µ)-protocol if it satisfies the following reliability, secrecy, and covertness

conditions.

• ǫ-reliability: Pe , P
(
KX 6= KY

)
6 ǫ, which implies that ℓX = ℓY with probability at least 1− ǫ;

• δ-secrecy: S , D

(
ρEWSX‖ρEW ⊗ ρS

X

unif

)
6 δ, where ρEWSX

is the joint density matrix of the eavesdropper’s

observations, public messages and Alice’s random string, and ρS
X

unif is a mixed state for SX corresponding to
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a uniform distribution;

• µ-covertness: C , D
(
ρEW ‖

(
ρE0
)
⊗ ρWunif

)
6 µ, where ρE0 , (Ec

A→B(ρ
A
0 ))

⊗T is the density matrix of the

eavesdropper’s observations when no communication takes place and ρWunif is the density operator corresponding

to uniform distribution on W .1

Remark 1. We discuss here the operational meaning of the role of public communication in our covertness

constraint. We assume that the adversary always expects a classical communication on the public channel between

Alice and Bob (such as a constant traffic in a network to maintain persistence) in the absence of the quantum

key generation protocol, but the classical messages on the public channel have pre-specified distribution and are

statistically independent of the content of the quantum channel. This assumption might be restrictive in certain

scenarios, in which this classical communication does not exist. The results of this paper would not be then

applicable and one would still need to formalize the problem and develop protocols according to restricted available

resources at Alice and Bob.

A protocol is efficient if it allows key expansion so that the number of key bits created exceeds the number of

common randomness bits consumed. Our goal is to analyze under what conditions efficient (ǫ, µ, δ)-protocols might

exist.

d) Main result:

Theorem 1. Let χ be the chi-representation of the channel EA→B with respect to some orthonormal basis. Let ρA1

be an arbitrary density operator on HA and define ρBx , EA→B(ρ
A
x ) and ρEx , Ec

A→B(ρ
A
x ) for x = 0, 1. Let λ̃χ,

λ̃B and λ̃E be fixed in ]0, 1]. Let {αT }T>1 be such that

αT ∈ ω

((
log T

T

) 2
3

)
∩ o
(

1√
T

)
. (9)

For any ζ > 0, there exists a vanishing sequence {ǫT }T>1 and a sequence of (ǫT , ǫT , µT ) covert and secret key

generation protocols such that for all quantum channels EA→B with

λmin(ρ
E
0 ) > λ̃E , (10)

we have

µT 6 (1 + ǫT )
α2
T η(ρ

E
1 ‖ρE0 )T
2

. (11)

If in addition to Eq. (10), it holds that

λmin(χ) > λ̃χ, (12)

λmin(ρ
B
0 ) > λ̃B , (13)

1 While the trace distance is the commonly used distance measure in QKD, the relative entropy is more convenient to study covert

communication because of its analytical properties. Since Pinsker’s inequality allows us to bound the trace distance through the relative entropy,

the operational meaning of the bounds remains unchanged.
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matrix representation of Alice’s transmitted states in the computational basis is

ρA0 =


0.95 0

0 0.05


 (15)

ρA1 =


0.2 0.3

0.3 0.8


 . (16)

For x ∈ {0, 1}, we define ρBx , EA→B(ρ
A
x ) and ρEx , Ec

A→B(ρ
A
x ), and in Fig. 2, we illustrate the behavior of

D
(
ρB1 ‖ρB0

)
and D

(
ρE1 ‖ρE0

)
as a function of p. By Theorem 1, the number of generated covert and secret key bits

is on the order of (D
(
ρB1 ‖ρB0

)
− D

(
ρE1 ‖ρE0

)
)αTT , which scales as O(αTT ) except for p = 0.5.

IV. PROOF OF THEOREM 1

For clarity, we have divided the proof of Theorem 1 in three steps.

1) In Section IV-A, we show the existence of a sequence of universal codes for reliable, secure, and covert

transmission of a message upon the existence of bounds on some parameters of the effective wiretap cq-

channel x 7→ ρBE
x from Alice to Bob and Eve (Theorem 2). Our proof follows a standard random wiretap

code construction, which is summarized next. Let M be the number of messages and M ′ be a large integer

to be determined later. To transmit message w ∈ J1,MK, Alice chooses a codeword uniformly at random

from the set {xw,1, · · · ,xw,M ′} and transmits the codeword over n uses of the cq-channel. Each codeword

xw,i is independently generated according to P ⊗n
X , where PX is a Bernoulli distribution with parameter αn

vanishing with n. To analyze the protocol, we first quantize the set of possible channels to obtain a finite set

that approximates the entire set of channels with desired parameters. The reliability analysis of the protocol

relies on the universal properties of a decoder based on Schur-Weyl duality [21]. The secrecy and covertness

analysis of the protocol relies on channel resolvability results. Specifically, we use super-exponential bounds

to analyze the output statistics generated by the coding scheme.

2) In Section IV-B, we show how quantum tomography can be covertly implemented to derive the bounds on the

channel parameters that were assumed to be known in the first step of the proof. Specifically, Alice transmits

non-zero states in a sparse set of positions that is shared with Bob using a shared key. Bob performs a

measurement in those positions to estimate the channel and compute the desired parameters.

3) Finally, in Section IV-C. we complete the proof of Theorem 1 by combining the first two steps. Specifically,

i) Alice and Bob first run the tomography protocol described in Section IV-B; ii) Bob then computes the

required parameters and sends them over the public channel one-time-padded with a pre-shared key; and,

finally, iii) Alice and Bob implement the universal protocol described in Section IV-A. The required pre-shared

key is the one needed for one-time-padding the estimated parameters of the channel and sharing the position

of the state sent for tomography. The size of this key is shown to be smaller than the size of the generated

key.
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A. Universal covert communication

Let ρAx , ρBx , ρEx be defined as in the statement of Theorem 1 for x = 0, 1. The following theorem shows that

knowing bounds on λmin(ρ
B
0 ), λmin(ρ

E
0 ), D

(
ρB1 ‖ρB0

)
and D

(
ρE1 ‖ρE0

)
is all that is required to covertly generate a

secret key.

Theorem 2. Let DB , DE , λ̃B , and λ̃E be fixed numbers and {αT }T>1 be as in (9). For any ζ > 0, there exists

a sequence of codes {CT }T>1 such that for all cq-channels x 7→ ρBx and x 7→ ρEx satisfying

D
(
ρB1 ‖ρB0

)
> DB , (17)

D
(
ρE1 ‖ρE0

)
6 DE , (18)

λmin(ρ
B
0 ) > λ̃B , (19)

λmin(ρ
E
0 ) > λ̃E , (20)

we have

Pe 6 2T−5, (21)

S 6 L1T
−4, (22)

C 6
α2
T η(ρ

E
1 ‖ρE0 )
2

T + L1T
−4 + 2

√
L1 log

2

λ̃E
T−1 + L2α

3
TT,

logM = (1− 2ζ)(DB −DE)αTT, (23)

where Pe, S, C denote the probability of error, secrecy, and covertness, respectively, as defined in Section III

L1, L2 > 0 depend on the dimHE and λ̃E .

The remainder of this section is dedicated to the proof of the above result. We first adapt a result from [22],

which shows that for any class of cq-channels, there exists a finite class of cq-channels that approximates the main

class with high precision.

Lemma 1. Consider a compound cq-channel x 7→ ρBx (θ) where x ∈ X , ρBx ∈ D(H), H is a d-dimensional Hilbert

space, and θ ∈ Θ is an arbitrary index set. There exists a constant K > 0 that depends only on d such that for all

T ∈ N, there exists another compound cq-channel x 7→ ρBx (θ̃) with x ∈ X , ρBx ∈ D(H), and θ̃ ∈ Θ̃ such that

1) the set Θ̃ is finite, i.e.,

|Θ̃| 6 K |X |T 6|X |d2

; (24)

2) for all θ ∈ Θ, there exists a θ̃ ∈ Θ̃ such that for all x ∈ X T , we have

‖ρB
x
(θ)− ρB

x
(θ̃)‖1 6 T−5; (25)

3) for all Probability Mass Functions (PMFs) PX over X , we have

min
θ̃∈Θ̃

I(PX , ρ
B
x (θ̃)) > inf

θ∈Θ
I(PX , ρ

B
x (θ))− 2T−6 log

(
T 6d

)
. (26)
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Proof. We modify the proof provided in [22] to derive a tighter upper-bound on the approximation error of the

new compound channel at the expense of increasing its size. By [22, Theorem 5.5], for all κ > 0, there exists a

partition of all cq-channels from X to D(H) denoted by Π = {π1, · · · , πn} such that n 6 K |X |κ−|X|d2

, where K

only depends on the dimension of H, d, and the diameter of Π is at most κ, i.e., for all i ∈ J1, nK, for any two

channels x 7→ ρBx and x 7→ ρ̃Bx in πi, for any x ∈ X , we have ‖ρBx − ρ̃Bx ‖1 6 κ. Setting κ = T−6, this implies that

there exists a partition of size at most K |X |T 6|X |d2

and diameter at most T−6. We construct the new compound cq-

channel x 7→ ρBx (θ̃) by selecting an arbitrary channel from each πi whose intersection with {x 7→ ρBx (θ) : θ ∈ Θ}
is non-empty. We now show that this compound channel satisfies the conditions mentioned in the statement of the

lemma. Since we select at most one channel from each πi, |Θ̃| 6 n 6 K |X |T 6|X |d2

, and thus, we have (24). To

prove (25), consider any θ ∈ Θ. By our construction, there should be a θ̃ ∈ Θ̃ such that x 7→ ρBx (θ̃) and x 7→ ρBx (θ)

belong to the same πi. Therefore, for any x ∈ X T , we have

‖ρB
x
(θ)− ρB

x
(θ̃)‖1 = ‖ρBx1

(θ)⊗ · · · ⊗ ρBxT
(θ)− ρBx1

(θ̃)⊗ · · · ⊗ ρBxT
(θ̃)‖1 (27)

6

T∑

t=1

‖ρBxt
(θ)− ρBxt

(θ̃)‖1 (28)

(a)

6 T−5, (29)

where (a) follows since x 7→ ρBx (θ) and x 7→ ρBx (θ̃) belong to the same πi, and the diameter of the partition is less

than T−6. Finally, let PX be any PMF over X ; to lower-bound min
θ̃∈Θ̃ I(PX , ρ

B
x (θ̃)) as in (26), take any θ̃ ∈ Θ̃

and consider θ such that x 7→ ρBx (θ) and x 7→ ρBx (θ̃) belong to the same πi. To complete the lemma, it is enough

to show that

I(PX , ρ
B
x (θ̃)) > I(PX , ρ

B
x (θ))− 2T−6 log

(
T 6d

)
. (30)

To this end, we have

I(PX , ρ
B
x (θ̃)) = H

(
∑

x

PX(x)ρBx (θ̃)

)
−
∑

x

PX(x)H
(
ρBx (θ̃)

)
(31)

(a)

> H

(
∑

x

PX(x)ρBx (θ)

)
−
∑

x

PX(x)H
(
ρBx (θ)

)
(32)

− 2T−6 log
(
T 6d

)
(33)

= I(PX , ρ
B
x (θ̃))− 2T−6 log

(
T 6d

)
, (34)

where (a) follows from Fannes’s inequality which states that for any two ρ and σ in D(H), if ‖ρ−σ‖1 6 δ 6 e−1,

we have |H(ρ)−H(σ)| 6 δ log(dδ−1).

1) Universal reliability result: We next prove a universal reliability result suitable for covert communications.

Note that we cannot use the result of [22] directly since the input distribution used to analyze covert communications

changes with the block-length. Indeed, our inspection of the proof of [22] suggests that the technique cannot be

adapted for the covert case since the the penalty arising from the approximation of a class of channels dominates

the number of bits that one can transmit covertly, which scales as O
(√

T
)

. Therefore, we use a different approach
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based on the quantum universal decoder introduced by Hayashi in [21]. We first state the following lemma from

[22] which is a general achievability result for cq-channels.

Lemma 2 ([22, Theorem 5.4]). Let x 7→ ρBx be any cq-channel with input set X , and M be a positive integer. For all

x, let Γx be an operator on HB with 0 6 Γx 6 I , and PX be a probability distribution over X . If F : J1,MK → X
is a random encoder whose codewords are iid according to PX , there exists a “universal” decoder corresponding

to a POVM {Λw}Mw=1 depending on the operators Γx and the encoder F (not on the channel) such that the average

probability of error satisfies

EF

(
M∑

w=1

(
1− tr

(
ρBF (w)Λw

)))
6 2

∑

x

PX(x)tr
(
ρBx Γx

)
+ 4M

∑

x

PX(x)tr
(
ρBΓx

)
, (35)

where ρB ,
∑

x PX(x)ρBx .

We next consider a stationary memoryless cq-channel x 7→ ρBx with T channel uses and for each codeword

x ∈ X T , we aim to construct the operator Γx independent of the channel such that we would be able to upper-

bound the right hand side of (35). We shall follow the approach in [21], which is based on the following result

from representation theory.

Theorem 3 (Schur-Weyl Duality). Let H be a d-dimensional Hilbert space over C. For any T > 1, we have the

decomposition

H⊗T = ⊕
t∈Y d

T

Ut ⊗ Vt, (36)

where Y d
T , {(t1, · · · , td) ∈ Z

d : t1 > · · · > td > 0,
∑d

i=1 ti = T}, Ut is an irreducible representation of SU(d),

and Vt is an irreducible representation of the T th order symmetric group.

In [21], for all t ∈ Y d
T and all T , the author introduced several quantum states that satisfy universal matrix

inequalities for all density matrices and all cq-channels. Since those quantum states are a substantial ingredient of

the construction of our universal decoder, we state here their definition and properties from [21].

Definition 1. For t ∈ Y d
Y , let It be the projection onto the subspace Ut ⊗ Vt. Define

σt ,
1

dim(Ut ⊗ Vt)
It (37)

σU,T ,
∑

t∈Y d
T

1

|Y d
T |
σt. (38)

Moreover, for x′ = (0, · · · , 0, 1, · · · , 1) ∈ X T with wt(x′) = m, we define σx′ , σU,T−m⊗σU,m. For any x ∈ X T

with wt(x) = m, let π be a permutation of T elements such that x = πx′. We then define σx , Uπσx′U †
π where

Uπ is the unitary representation of π.

Lemma 3. For any density matrix ρ on H and any cq-channel x 7→ ρBx , we have

T
d(d−1)

2 |Y d
T |σU,T � ρ⊗T , (39)

T |X |
d(d−1)

2 |Y d
T |σx � ρB

x
. (40)
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Proof. See [21, Equation (6) and (7)].

Lemma 4. Fix ζ and λ̃ in ]0, 1[. Let x 7→ ρBx (θ) be a compound cq-channel with θ ∈ Θ and x ∈ X = {0, 1} such

that λmin(ρ
B
0 ) > λ̃ for all θ ∈ Θ. For a fixed T , let

logM , ⌊(1− ζ)αT inf
θ∈Θ

D
(
ρB1 (θ)‖ρB0 (θ)

)
T ⌋, (41)

and F : J1,MK → X T be a random encoder such that F (1), · · · , F (M) are iid according to P ⊗T
X with PX =

Bernoulli(αT ) and αT as in (9).

Then, there exists T0 that depends only on dimH, ζ, and λ̃ such that for all T > T0,

PF

(
∀θ ∈ Θ, Pe(θ) 6 2T−5

)
>

2

3
. (42)

Proof. We first consider the compound cq-channel x 7→ ρBx (θ̃) obtained by applying Lemma 1 to the compound

cq-channel x 7→ ρBx (θ). By Lemma 2, for each θ̃ ∈ Θ̃, the expectation of the probability of error with respect to

random coding is upper-bounded by

2
∑

x

P ⊗T
X (x)tr (ρxΓx) + 4M

∑

x

P ⊗T
X (x)tr

((
ρB
)⊗T

Γx

)
, (43)

where Γx , {σx− γσU,T � 0} [21]. To upper-bound the first term in (43), we split the summation into three parts

based on the weight of the codeword x. In particular, for two thresholds wℓ < TαT < wu 6 2TαT , we obtain

with a Chernoff bound

∑

x:wt(x)<wℓ

P ⊗T
X (x)tr (ρxΓx) 6

∑

x:wt(x)<wℓ

P ⊗T
X (x) (44)

= PP ⊗T
X

(wt(X) 6 wℓ) (45)

6 e
− 1

2

(
1−

wℓ
TαT

)2
TαT , (46)

and analogously

∑

x:wt(x)>wu

P ⊗T
X (x)tr (ρxΓx) 6 e

− 1
3

(
wu

TαT
−1

)2
TαT . (47)

To upper-bound the remaining terms, for QX ∼ Bernoulli(p), let us define

φ(s, p) , −(1− s) log


tr



(
∑

x

QX(x)
(
ρBx (θ̃)

)1−s
) 1

1−s




 . (48)

Then, by [21, Equation (18)], we have

∑

x:wℓ6wt(x)6wu

P ⊗T
X (x)tr (ρxΓx) 6

∑

x:wℓ6wt(x)6wu

P ⊗T
X (x) min

s∈[0,1]
(T + 1)d+sd(d−1)|Y d

T |2sγse−Tφ(s, wt(x)
T ) (49)

6 (T + 1)d
2 |Y d

T |2 max
w∈Jwℓ,wuK

min
s∈[0,1]

γse−Tφ(s,wT ). (50)

We introduce a result bounding φ(s, p) for small s and p.
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Lemma 5. For all λ̃, s̃, p̃ ∈ [0, 1], there exists a universal constant B > 0 such that for all cq-channels x 7→ ρBx

with λmin(ρ
B
0 ) > λ̃ and for all s 6 s̃ and p 6 p̃ , we have

φ(s, p) > sI(p)−B(ps2 + s3), (51)

where I(p) , I(QX , ρx) with QX ∼ Bernoulli(p). Furthermore, for small enough p, we have

I(p) > pD
(
ρB1 ‖ρB0

)
−Bp2. (52)

Proof. See Appendix A.

Applying Lemma 5 to (50), we obtain for all s small enough,

(T + 1)d
2 |Y d

T |2 max
w∈Jwℓ,wuK

γse−Tφ(s,wT ) 6 (T + 1)d
2 |Y d

T |2 max
w∈Jwℓ,wuK

γse−T(sI(w
T )−B(w

T
s2+s3)) (53)

6 (T + 1)d
2 |Y d

T |2 max
w∈Jwℓ,wuK

γse
−T

(
w
T
sD(ρB

1 ‖ρB
0 )−B

(
w2

T2 +w
T
s2+s3

))

(54)

6 (T + 1)d
2 |Y d

T |2γse
−T

(
wℓ
T

sD(ρB
1 (θ̃)‖ρB

0 (θ̃))−B

(
w2

u
T2 +wu

T
s2+s3

))

. (55)

To upper-bound the second term in (43), we use the operator inequality A{A � 0} � 0 for any Hermitian operator

A. Hence, we have for all x

(σx − γσU,T )Γx � 0. (56)

This implies that
(
σx − γσU,T +

γ

T d(d−1)|Y d
T |
(
ρB
)⊗T − γ

T d(d−1)|Y d
T |
(
ρB
)⊗T
)
Γx � 0. (57)

Thus, we have

tr

((
σx − γ

T d(d−1)|Y d
T |
(
ρB
)⊗T
)
Γx

)
> tr

((
γσU,T − γ

T d(d−1)|Y d
T |
(
ρB
)⊗T
)
Γx

)
(a)

> 0, (58)

where (a) follows since by Lemma 3,
(
γσU,T − γ

Td(d−1)|Y d
T
|

(
ρB
)⊗T) � 0. Accordingly, we conclude that

∑

x

P ⊗T
X (x)tr

((
ρB
)⊗T

Γx

)
6
T d(d−1)|Y d

T |
γ

. (59)

Substituting the derived upper-bounds in (43), we obtain

EF

(
Pe(θ̃)

)
6 2

(
e
− 1

2

(
1−

wℓ
TαT

)2
TαT + e

− 1
3

(
wu

TαT
−1

)2
TαT + (T + 1)d

2 |Y d
T |2γs

×e
−T

(
wℓ
T

sD(ρB
1 (θ̃)‖ρB

0 (θ̃))−B

(
w2

u
T2 +wu

T
s2+s3

)))
+ 4M

T d(d−1)|Y d
T |

γ
. (60)
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By choosing

wℓ = TαT − (TαT )
2
3 , (61)

wu = TαT + (TαT )
2
3 , (62)

γ =

⌊(
1− ζ

2

)
αT inf

θ∈Θ
D
(
ρB1 (θ)‖ρB0 (θ)

)
T

⌋
, (63)

s = o(
√
αT ) ∩ ω(

log T

TαT

), (64)

we obtain

EF

(
Pe(θ̃)

)
6 2−ω(log T ), (65)

where the term −ω(log T ) depends on λ̃, ζ, and dimH. By Markov’s inequality and the union bound, we have

PF

(
∀θ̃ ∈ Θ̃, Pe(θ̃) 6 3|Θ̃|EF

(
Pe(θ̃)

))
>

2

3
. (66)

By Lemma 1, |Θ̃| is upper-bounded by a polynomial in T . This together with (65) implies that 3|Θ̃|EF

(
Pe(θ̃)

)
=

2−ω(log T ). Finally, by Lemma 1, for all θ ∈ Θ, there exists θ̃ ∈ Θ̃ such that Pe(θ) 6 Pe(θ̃) + T−5. Thus, for large

enough T , we have

PF

(
∀θ ∈ Θ, Pe(θ) 6 2T−5

)
>

2

3
. (67)

2) Universal resolvability result: We next prove an asymptotic resolvability result for covert distributions.

Lemma 6. Fix λ̃ and ζ in ]0, 1[. Consider a cq-channel x 7→ ρEx with x ∈ X = {0, 1} such that λmin(ρ
E
0 ) > λ̃.

Define ρE
x
, ρEx1

⊗ · · · ⊗ ρExT
for all x = (x1, · · · , xT ) ∈ X T . Let PX be Bernoulli(αT ) where αT is defined as

in (9), M ′ be an integer satisfying

M ′ > ⌈(1 + ζ)αTD
(
ρE1 ‖ρE0

)
T ⌉, (68)

and F : J1,M ′K → X T be a random encoder such that all codewords are distributed according to P ⊗T
X indepen-

dently. Then, we have

EF

(∥∥∥ρ̂E −
(
ρE
)⊗T∥∥∥

1

)
6 2−ω(log T ), (69)

where the constant hidden in ω(log T ) depends only on ζ, λ̃, and dimH, ρ̂E , 1
M ′

∑M ′

i=1 ρ
E

F (i) and ρE ,
∑

x PX(x)ρEx .

Proof. By [23, Lemma 9.2], we have

EF

(
‖ρ̂E −

(
ρE
)⊗T ‖1

)
6
√
2γs+Tφ(s,αT ) +

√
2γν

M ′
, (70)

where ν is the number of distinct eigenvalues of
(
ρE
)⊗T

, and for QX ∼ Bernoulli(p), we define

φ(s, p) , log

(
∑

x

PX(x)tr
((
ρEx
)1−s (

ρE
)s)
)
. (71)
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For γ = αTD
(
ρE1 ‖ρE0

)
T + ζ

2αTT , we have

√
2γs+Tφ(s,αT ) +

√
2γν

M ′
6

√
2
sαTT

(
D(ρE

1 ‖ρE
0 )+

ζ
2+

φ(s,αT )

sαT

)

+

√
2−

ζ
2αTT ν (72)

(a)

6

√
2
sαTT

(
D(ρE

1 ‖ρE
0 )+

ζ
2+

φ(s,αT )

sαT

)

+

√
2−

ζ
2αTT (T + 1)dimHE

(73)

6

√
2
sαTT

(
D(ρE

1 ‖ρE
0 )+

ζ
2+

φ(s,αT )

sαT

)

+
1

2
2−ξαTT , (74)

where (a) follows from [23, Lemma 3.7] and ξ is small positive number.

Lemma 7. Fix s̃ < 0, p̃ ∈ [0, 1], and λ̃ ∈ [0, 1]. There exists a universal constant B > 0 such that for all

cq-channels x 7→ ρEx , p ∈ [0, p̃], and s ∈ [s̃, 0], we have

φ(s, p) > −I(p)s−B(ps2 − s3), (75)

where I(p) , I(PX , ρ
E
x ).

Proof. See Appendix A.

Applying Lemma 7 to (74), we obtain

√
2
sαTT

(
D(ρE

1 ‖ρE
0 )+

ζ
2+

φ(s,αT )

sαT

)

6

√

2
sαTT

(
D(ρE

1 ‖ρE
0 )+

ζ
2+

−αT D(ρE1 ‖ρE0 )s−B(α2
T

+αT s2−s3)

sαT

)

(76)

=

√

2
sαTT

(
ζ
2+

B(α2
T

+αT s−s2)

αT

)

(77)

By choosing s = o(
√
αT ) ∩ ω( log T

TαT
),2 the above expression goes to zero faster than any polynomial.

Lemma 8. Fix ζ and λ̃ in ]0, 1[. Let x 7→ ρEx (θ) be a compound cq-channel with x ∈ X = {0, 1} and θ ∈ Θ such

that for all θ ∈ Θ, λmin(ρ
E
0 ) > λ̃. Let PX be as in Lemma 6. Let M ′ be an integer satisfying

M ′ > ⌈(1 + ζ)αT sup
θ∈Θ

D
(
ρE1 (θ)‖ρE0 (θ)

)
T ⌉, (78)

and F : J1,MK × J1,M ′K → X T be a random encoder such that all codewords are independently distributed

according to P ⊗T
X . Then, there exists T0 depending only on dimH, ζ, and λ̃ such that for all T > T0, we have

PF

(
∀θ ∈ Θ,

1

M

M∑

w=1

∥∥∥ρ̂Ew −
(
ρE(θ)

)⊗T∥∥∥
1
6 2T−5

)
>

2

3
(79)

where ρ̂Ew , 1
M ′

∑M ′

i=1 ρ
E

F (w,i) and ρE(θ) ,
∑

x PX(x)ρEx (θ).

Proof. We again consider the compound cq-channel x 7→ ρEx (θ̃) from Lemma 1. By Lemma 6, for all θ̃ ∈ Θ̃, we

have

EF

(
1

M

M∑

w=1

∥∥∥∥ρ̂
E

w −
(
ρE(θ̃)

)⊗T
∥∥∥∥
1

)
=

1

M

M∑

w=1

EF

(∥∥∥∥ρ̂
E

w −
(
ρE(θ̃)

)⊗T
∥∥∥∥
1

)
(80)

6 2−ω(log T ). (81)

2To find such s, it is required that
√

αT = ω( log T

TαT
) or equivalently αT = ω

(

(

log T

T

) 2
3

)
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By Markov’s inequality and the union bound, we have

PF

(
∀θ̃ ∈ Θ̃,

1

M

M∑

w=1

∥∥∥∥ρ̂
E

w −
(
ρE(θ̃)

)⊗T
∥∥∥∥
1

6 3|Θ̃|EF

(
1

M

M∑

w=1

∥∥∥∥ρ̂
E

w −
(
ρE(θ̃)

)⊗T
∥∥∥∥
1

))
>

2

3
. (82)

Since |Θ̃| is upper-bounded by a polynomial in T , we have

3|Θ̃|EF

(
1

M

M∑

w=1

∥∥∥∥ρ̂
E

w −
(
ρE(θ̃)

)⊗T
∥∥∥∥
1

)
= 2−ω(log T ). (83)

Finally, by Lemma 1, for all θ ∈ Θ, there exists θ̃ ∈ Θ̃ such that

1

M

M∑

w=1

∥∥∥ρ̂Ew −
(
ρE(θ)

)⊗T∥∥∥
1
6

1

M

M∑

w=1

∥∥∥∥ρ̂
E

w −
(
ρE(θ̃)

)⊗T
∥∥∥∥
1

+ T−5. (84)

Thus, for large enough T , we have

PF

(
∀θ ∈ Θ,

1

M

M∑

w=1

∥∥∥ρ̂Ew −
(
ρE(θ)

)⊗T∥∥∥
1
6 2T−5

)
>

2

3
. (85)

3) Proof of Theorem 2: We are now ready to provide the proof of the main result of this section. Our code

construction is similar to [8], which uses wiretap coding to ensure the security of a covert message. Fix ζ, λ̃B ,

λ̃E , DB , and DE , and let Θ be an arbitrary indexing of all cq-channels x 7→ ρBE
x satisfying (17)-(20) for which

the corresponding cq-channel to θ ∈ Θ is x 7→ ρBE
x (θ). Considering the sequence {αT }T>1 as in (9), for a fixed

large enough T , let PX be Bernoulli(αT ); let F : J1,MK× J1,M ′K → X T be a random encoder whose codewords

are iid according to P ⊗T
X that encodes two messages W and W ′ uniformly distributed over J1,MK and J1,M ′K,

respectively, to a codeword X. By Lemma 4, for

logM + logM ′ = ⌊(1− ζ)αT inf
θ∈Θ

D
(
ρB1 ‖ρB0

)
T ⌋ (86)

> ⌊(1− ζ)αTD
BT ⌋, (87)

we have

PF

(
∀θ ∈ Θ, Pe(θ) 6 2T−5

)
>

2

3
, (88)

where Pe(θ) is the probability that at least one of the messages W and W ′ is not decoded correctly at the receiver

when the cq-channel corresponding to index θ is used. Moreover, by Lemma 8, for

logM ′ = ⌈(1 + ζ)αT sup
θ∈Θ

D
(
ρE1 (θ)‖ρE0 (θ)

)
T ⌉ (89)

6 ⌈(1 + ζ)αTD
ET ⌉, (90)

we have

PF

(
∀θ ∈ Θ,

1

M

M∑

w=1

D

(
ρ̂Ew‖

(
ρE(θ)

)⊗T)
6 2T−5

)
>

2

3
, (91)
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where ρ̂Ew and ρE(θ) are defined in the statement of Lemma 8. Inequalities (88) and (91) imply that there exists a

realization f of F such that for all θ ∈ Θ,

Pe(θ) 6 2T−5, (92)

1

M

M∑

w=1

∥∥∥ρ̂Ew −
(
ρE(θ)

)⊗T∥∥∥
1
6 2T−5. (93)

Hence, by Lemma 18, we upper-bound the quantum relative entropy between the induced quantum states and
(
ρE(θ)

)⊗T
as

1

M

M∑

w=1

D

(
ρ̂Ew‖

(
ρE(θ)

)⊗T)
6 2T−5 log

dT

(λmin(ρE(θ)))
T
2T−5

(94)

= 2T−4

(
log

d

λmin(ρE(θ))
+

5 log T − log 2

T

)
. (95)

To lower-bound the minimum eigenvalue of ρE(θ), we use Lemma 13 in Appendix B to obtain for large T ,

λmin(ρ
E(θ)) = λmin(αT ρ

E
1 (θ) + (1− αT )ρ

E
0 (θ)) (96)

> λmin((1− αT )ρ
E
0 (θ))− ‖αT ρ

E
1 (θ)‖1 (97)

> (1− αT )λmin(ρ
E
0 (θ))− αT (98)

>
λ̃E

2
. (99)

Therefore, for some constant L1 > 0 depending on d and λ̃E , we have

1

M

M∑

w=1

D

(
ρ̂Ew‖

(
ρE(θ)

)⊗T)
6 L1T

−4. (100)

To analyze the secrecy of the protocol, since there is no public communication and W is the key extracted at Alice’s

end, the information leakage to the adversary is

D
(
ρEW ‖ρE ⊗ ρWunif

) (a)
= D

(
ρEW ‖ρE ⊗ ρWunif

)
(101)

6 D

(
ρEW ‖

(
ρE(θ)

)⊗T ⊗ ρWunif

)
(102)

=
1

M

M∑

w=1

D

(
ρ̂Ew‖

(
ρE(θ)

)⊗T)
(103)

6 L1T
−4, (104)

where (a) follows since there is no public communication. For the covertness, first note that by convexity of quantum

relative entropy, we have

D

(
ρE‖

(
ρE(θ)

)⊗T)
6

1

M

M∑

w=1

D

(
ρ̂Ew‖

(
ρE(θ)

)⊗T)
6 L1T

−4. (105)

We can subsequently bound D

(
ρE‖

(
ρE0 (θ)

)⊗T)
as

D

(
ρE‖

(
ρE0 (θ)

)⊗T)
= D

(
ρE‖

(
ρE(θ)

)⊗T)
+ D

((
ρE(θ)

)⊗T ‖
(
ρE0 (θ)

)⊗T)
+ tr

((
ρE −

(
ρE(θ)

)⊗T)

×
(
log
(
ρE(θ)

)⊗T − log
(
ρE0 (θ)

)⊗T))
(106)

6 D

(
ρE‖

(
ρE(θ)

)⊗T)
+ D

((
ρE(θ)

)⊗T ‖
(
ρE0 (θ)

)⊗T)
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+
∥∥∥ρE −

(
ρE(θ)

)⊗T∥∥∥
1
T

(
log

1

λmin(ρE0 (θ))λmin(θ)

)
(107)

(a)

6 D

(
ρE‖

(
ρE(θ)

)⊗T)
+ D

((
ρE(θ)

)⊗T ‖
(
ρE0 (θ)

)⊗T)
+

√
D

(
ρE‖ (ρE(θ))⊗T

)
T

×
(
log

1

λmin(ρE0 (θ))λmin(ρE(θ))

)
(108)

6 L1T
−4 + D

((
ρE(θ)

)⊗T ‖
(
ρE0 (θ)

)⊗T)
+
√
L1T−4T log

1

λmin(ρE0 (θ))λmin(ρE(θ))
(109)

= D

((
ρE(θ)

)⊗T ‖
(
ρE0 (θ)

)⊗T)
+ L1T

−4 +
√
L1 log

1

λmin(ρE0 (θ))(ρ
E(θ))

T−1, (110)

(b)

6
α2
T η(ρ

E
1 (θ)‖ρE0 (θ))

2
T + L2α

3
TT + L1T

−4 +
√
L1 log

1

λmin(ρE0 )λmin(ρE(θ))
T−1 (111)

6
α2
T η(ρ

E
1 (θ)‖ρE0 (θ))

2
T + L2α

3
TT + L1T

−4 + 2
√
L1 log

2

λ̃E
T−1, (112)

where (a) follows from Pinsker inequality, and (b) follows from [13, Lemma 1].

B. Covert Quantum Tomography

1) Instantiation of a covert estimation protocol: We now detail how Alice and Bob can covertly form estimates

of D
(
ρB1 ‖ρB0

)
and D

(
ρW1 ‖ρW0

)
. If the channel from Alice to Bob is EA→B , the goal of the estimation phase would

be to first verify the conditions (12) and (13), and if they hold, to estimate DB(E) , D
(
EA→B(ρ

A
1 )‖EA→B(ρ

A
0 )
)

and DE(E) , D
(
Ec
A→B(ρ

A
1 )‖Ec

A→B(ρ
A
0 )
)
. The protocol will be aborted otherwise. We shall use standard quantum

tomography [20] and adapt it to be covert. We start the description of the estimation phase by formally defining

an estimation protocol. Suppose Alice and Bob have access to private randomness R distributed according to PR

over R and use T ′ channel uses for the estimation phase. The estimation protocol consists of an encoder function

f : R → D(H)T
′

for Alice, a POVM Mr = {M j
r }j∈J for each r ∈ R applied by Bob to his received state

ρB when R = r and results in an output j in J the set of all possible outputs of the measurement, one function

H : J → {0, 1} used by Bob to verify that (12) and (13) hold, and two estimators D̂B : J → R and D̂W : J → R

used by Bob to form estimations of D
(
EA→B(ρ

A
1 )‖EA→B(ρ

A
0 )
)

and D
(
Ec
A→B(ρ

A
1 )‖Ec

A→B(ρ
A
0 )
)
, respectively.

We now explicitly instantiate a covert estimation protocol. Consider any number of channel uses T ′ and any

quantum channel E : L(H) → L(H) where H is a d-dimensional Hilbert space. Let Ẽ1, · · · , Ẽd2 be defined as

Ẽd(n−1)+m , |n〉〈m| for an orthonormal basis |1〉, · · · , |d〉. Our goal is to estimate E(Ẽn) for all n ∈ J1, d2K from

which we would have a complete characterization of the quantum channel E . To do so, the main idea is that Alice

would send some states through Pulse-Position Modulation (PPM) to Bob for which Bob performs quantum state

tomography. More concretely, Alice and Bob first agree on two integers q and ℓ such that qℓ 6 T ′ and sample an

iid sequence U1, · · · , Uℓ from their private randomness, where each Ui is uniformly distributed over J1, qK. Alice

then transmits the innocent state ρA0 on the ith channel uses unless

i ∈ I , {U1, U2 + q, · · · , Uℓ + q(ℓ− 1)}. (113)
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To determine the state that should be sent by Alice on the positions in I, let us define the vectors

|n,m〉+ ,
|n〉+ |m〉√

2
(114)

|n,m〉− ,
|n〉+ i|m〉√

2
(115)

and consider pure states

S , {|n,m〉+〈n,m|+ : n 6= m} ∪ {|n,m〉−〈n,m|− : n 6= m} ∪ {|n〉〈n| : n ∈ J1, dK}, (116)

where |S| = 2d2−d. On the positions in I, in an arbitrary but known order, Alice transmits each state in S ⌊ℓ/ |S|⌋
times. Then, for each state ρ ∈ S , Bob receives ⌊ℓ/ |S|⌋ independent copies of E(ρ), and performs a POVM defined

by {ρ̃, I − ρ̃} for each operator ρ̃ ∈ S , ℓ̃ , ⌊⌊ℓ/ |S|⌋/ |S|⌋ times. Let N̂(ρ, ρ̃) be the number of times the result

of the measurement {ρ̃, I − ρ̃} on E(ρ) corresponds to ρ̃ and let f̂(ρ, ρ̃) , N̂(ρ, ρ̃)/ℓ̃. Bob subsequently estimates

E(ρ) for each ρ ∈ S as

Ê(ρ) ,
∑

n 6=m

|n〉〈m|
(
f̂(ρ, |n,m〉+〈n,m|+)− if̂(ρ, |n,m〉−〈n,m|−)−

1− i

2
f̂(ρ, |n〉〈n|)

− 1− i

2
f̂(ρ, |m〉〈m|)

)
+
∑

n

|n〉〈n|f̂(ρ, |n〉〈n|). (117)

Since {Ẽj : j ∈ J1, d2K} is an orthonormal basis for L(H), we can write Ê(ρ) ,∑j Ẽj λ̂ρ,j for some unique λ̂ρ,j .

Then, for n,m ∈ J1, dK, we define

Ê(Ẽd(n−1)+m) ,




Ê(|n,m〉+〈n,m|+) + iÊ(|n,m〉−〈n,m|−)− 1+i

2 Ê(|n〉〈n|)− 1+i
2 Ê(|m〉〈m|) n 6= m,

Ê(|n〉〈n|) n = m,

(118)

which is enough to characterize a quantum channel. We can similarly write E(Ẽd(n−1)+m) =
∑

j Ẽjλd(n−1)+m,j

for some unique λd(n−1)+m,j . We next attempt to form an estimation of the chi-representation of the channel E ,

{χj,k}. By [20], for some fixed κj
′,k′

j,k ,

χj,k =
∑

j′,k′

κj
′,k′

j,k λj′,k′ . (119)

We thus define χ̂j,k ,
∑

j′,k′ κ
j′,k′

j,k λ̂j′,k′ . Finally, for some τ > 0, we define

H , 1

{
λmin(χ̂) > λ̃χ − τ and λmin(Ê(ρA0 )) > λ̃B − τ

}
, (120)

D̂B , D

(
Ê(ρA1 )‖Ê(ρA0 )

)
− τ, (121)

D̂E , D

(
Êc(ρA1 )‖Êc(ρA0 )

)
+ τ. (122)

The next theorem establishes bounds on the performance of the described covert estimation protocol.
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λmin(ρ
B

0
)

<latexit sha1_base64="PWnIwI5jK/tGE/fLYB2NUU/pQrU="></latexit><latexit sha1_base64="PWnIwI5jK/tGE/fLYB2NUU/pQrU="></latexit><latexit sha1_base64="PWnIwI5jK/tGE/fLYB2NUU/pQrU="></latexit><latexit sha1_base64="PWnIwI5jK/tGE/fLYB2NUU/pQrU=">AAACZnicbVBNb9QwEPWGr1Kg3YIQSFwsFqRy6CZBFXCsgAPHgti20maJJs6kseqPyJ5UXUXLr+EK/4d/wM/Am90DbRnJ1tN7bzyeVzRKekqS34Poxs1bt+9s3N28d//B1vZw5+GRt60TOBFWWXdSgEclDU5IksKTxiHoQuFxcfZhqR+fo/PSmq80b3Cm4dTISgqgQOXDp5kK5hLyLtPSLHYzV9s8+fb+VT4cJeOkL34dpGswYus6zHcGb7LSilajIaHA+2maNDTrwJEUChebWeuxAXEGpzgN0IBGP+v6FRb8ZWBKXlkXjiHes/92dKC9n+siODVQ7a9qS/J/2rSl6t2sk6ZpCY1YDapaxcnyZR68lA4FqXkAIJwMf+WiBgeCQmqXpnBPGtzclWGV/r0unvhgijXWroQy/uhsU9iL+At6BCfqOFxW7ykgvNjrI1kxedUasYzfj4OyCEmnV3O9Do5ej9NknH7eHx28WGe+wZ6x52yXpewtO2Cf2CGbMMG+sx/sJ/s1+BNtRY+jJytrNFj3PGKXKuJ/AXpour8=</latexit>

λmin(χ)
<latexit sha1_base64="BsP/IgF2RaBf5h/I9IC0UMekYTw=">AAACYnicbVBNb9NAEN2YrxK+EsoNDisCUjk0thEqHCvBgWNBpK0UR9Z4Pa5X3Q9rd1w1WPkvXOEfceeHsHFyoC0j7erpvTc7s69olPSUJL8H0a3bd+7e27k/fPDw0eMno/HTY29bJ3AmrLLutACPShqckSSFp41D0IXCk+L841o/uUDnpTXfaNngQsOZkZUUQIHKR88yFcwl5F2mpVntZaKWb/LRJJkmffGbIN2CCdvWUT4eHGSlFa1GQ0KB9/M0aWjRgSMpFK6GWeuxAXEOZzgP0IBGv+j69Vf8dWBKXlkXjiHes/92dKC9X+oiODVQ7a9ra/J/2ryl6sOik6ZpCY3YDKpaxcnydRa8lA4FqWUAIJwMu3JRgwNBIbErU7gnDW7pyvCV/r0unvlgijXWroQy/uRsU9jL+Ct6BCfqOFxW7ysgvNzvI9kwedUasY7eT4OyCkmn13O9CY7fTtNkmn55Nzl8tc18hz1nL9keS9l7dsg+syM2Y4J9Zz/YT/Zr8CcaRuNod2ONBtueXXalohd/AVfSuVM=</latexit><latexit sha1_base64="BsP/IgF2RaBf5h/I9IC0UMekYTw=">AAACYnicbVBNb9NAEN2YrxK+EsoNDisCUjk0thEqHCvBgWNBpK0UR9Z4Pa5X3Q9rd1w1WPkvXOEfceeHsHFyoC0j7erpvTc7s69olPSUJL8H0a3bd+7e27k/fPDw0eMno/HTY29bJ3AmrLLutACPShqckSSFp41D0IXCk+L841o/uUDnpTXfaNngQsOZkZUUQIHKR88yFcwl5F2mpVntZaKWb/LRJJkmffGbIN2CCdvWUT4eHGSlFa1GQ0KB9/M0aWjRgSMpFK6GWeuxAXEOZzgP0IBGv+j69Vf8dWBKXlkXjiHes/92dKC9X+oiODVQ7a9ra/J/2ryl6sOik6ZpCY3YDKpaxcnydRa8lA4FqWUAIJwMu3JRgwNBIbErU7gnDW7pyvCV/r0unvlgijXWroQy/uRsU9jL+Ct6BCfqOFxW7ysgvNzvI9kwedUasY7eT4OyCkmn13O9CY7fTtNkmn55Nzl8tc18hz1nL9keS9l7dsg+syM2Y4J9Zz/YT/Zr8CcaRuNod2ONBtueXXalohd/AVfSuVM=</latexit><latexit sha1_base64="BsP/IgF2RaBf5h/I9IC0UMekYTw=">AAACYnicbVBNb9NAEN2YrxK+EsoNDisCUjk0thEqHCvBgWNBpK0UR9Z4Pa5X3Q9rd1w1WPkvXOEfceeHsHFyoC0j7erpvTc7s69olPSUJL8H0a3bd+7e27k/fPDw0eMno/HTY29bJ3AmrLLutACPShqckSSFp41D0IXCk+L841o/uUDnpTXfaNngQsOZkZUUQIHKR88yFcwl5F2mpVntZaKWb/LRJJkmffGbIN2CCdvWUT4eHGSlFa1GQ0KB9/M0aWjRgSMpFK6GWeuxAXEOZzgP0IBGv+j69Vf8dWBKXlkXjiHes/92dKC9X+oiODVQ7a9ra/J/2ryl6sOik6ZpCY3YDKpaxcnydRa8lA4FqWUAIJwMu3JRgwNBIbErU7gnDW7pyvCV/r0unvlgijXWroQy/uRsU9jL+Ct6BCfqOFxW7ysgvNzvI9kwedUasY7eT4OyCkmn13O9CY7fTtNkmn55Nzl8tc18hz1nL9keS9l7dsg+syM2Y4J9Zz/YT/Zr8CcaRuNod2ONBtueXXalohd/AVfSuVM=</latexit><latexit sha1_base64="BsP/IgF2RaBf5h/I9IC0UMekYTw=">AAACYnicbVBNb9NAEN2YrxK+EsoNDisCUjk0thEqHCvBgWNBpK0UR9Z4Pa5X3Q9rd1w1WPkvXOEfceeHsHFyoC0j7erpvTc7s69olPSUJL8H0a3bd+7e27k/fPDw0eMno/HTY29bJ3AmrLLutACPShqckSSFp41D0IXCk+L841o/uUDnpTXfaNngQsOZkZUUQIHKR88yFcwl5F2mpVntZaKWb/LRJJkmffGbIN2CCdvWUT4eHGSlFa1GQ0KB9/M0aWjRgSMpFK6GWeuxAXEOZzgP0IBGv+j69Vf8dWBKXlkXjiHes/92dKC9X+oiODVQ7a9ra/J/2ryl6sOik6ZpCY3YDKpaxcnydRa8lA4FqWUAIJwMu3JRgwNBIbErU7gnDW7pyvCV/r0unvlgijXWroQy/uRsU9jL+Ct6BCfqOFxW7ysgvNzvI9kwedUasY7eT4OyCkmn13O9CY7fTtNkmn55Nzl8tc18hz1nL9keS9l7dsg+syM2Y4J9Zz/YT/Zr8CcaRuNod2ONBtueXXalohd/AVfSuVM=</latexit>

Protocol correctly aborts with high probability

Protocol correctly continues with high probability

eλ
B

<latexit sha1_base64="XUClDvQaS4WZxnFHj0IgnuVqxrc="></latexit><latexit sha1_base64="XUClDvQaS4WZxnFHj0IgnuVqxrc="></latexit><latexit sha1_base64="XUClDvQaS4WZxnFHj0IgnuVqxrc="></latexit><latexit sha1_base64="XUClDvQaS4WZxnFHj0IgnuVqxrc="></latexit>

Protocol may or may not abort, but no compromise in

reliability, secrecy, or covertness

Estimation threshold

eλ
χ

<latexit sha1_base64="cqvycTBlDMcMt1yUtdWDBraRyoA="></latexit><latexit sha1_base64="cqvycTBlDMcMt1yUtdWDBraRyoA="></latexit><latexit sha1_base64="cqvycTBlDMcMt1yUtdWDBraRyoA="></latexit><latexit sha1_base64="cqvycTBlDMcMt1yUtdWDBraRyoA="></latexit>

eλ
χ
− 2τ

<latexit sha1_base64="ellPRpHvTF976W48VPNUFBiEMJ8="></latexit><latexit sha1_base64="ellPRpHvTF976W48VPNUFBiEMJ8="></latexit><latexit sha1_base64="ellPRpHvTF976W48VPNUFBiEMJ8="></latexit><latexit sha1_base64="ellPRpHvTF976W48VPNUFBiEMJ8="></latexit>

eλ
B
−

2
τ

<latexit sha1_base64="NpROWAch7EHpGFEhGLUHDGsXwp4="></latexit><latexit sha1_base64="NpROWAch7EHpGFEhGLUHDGsXwp4="></latexit><latexit sha1_base64="NpROWAch7EHpGFEhGLUHDGsXwp4="></latexit><latexit sha1_base64="NpROWAch7EHpGFEhGLUHDGsXwp4="></latexit>

Figure 3. Testing the conditions (12) and (13)

Theorem 4. There exist ξ > 0 that depends on τ , d, λ̃χ, λ̃B , and λ̃E such that

D
(
ρEW ‖(ρE0 )⊗ ρWunif

)
6
ℓ

q

(
dimHE

λ̃E
− 1

)
, (123)

P

(
H = 0|λmin(χ) > λ̃χ, λmin(E(ρA0 )) > λ̃B

)
6 2−ξn, (124)

P

(
H = 1|λmin(χ) 6 λ̃χ − 2τ or λmin(E(ρA0 )) 6 λ̃B − 2τ

)
6 2−ξn, (125)

and

P

(
DB(E)− 2τ 6 D̂B 6 DB(E), DE(E) 6 D̂E 6 DE(E) + 2τ

∣∣

λmin(χ) > λ̃χ − 2τ, λmin(E(ρA0 )) > λ̃B − 2τ
)
> 1− 2−ξℓ. (126)

We shall prove Theorem 4 in Section IV-B2. Note that (123) characterizes the covertness of the estimation

protocol by bounding the relative entropy between the state induced by the estimation protocol and the state in

which there is no communication. (124) and (125) characterize the robustness of estimation since (124) bounds

the probability that the channel satisfies the required condition (12) and (13) but Alice and Bob abort the protocol

while (125) bounds the probability that Alice and Bob run the key generation phase but the channel does not satisfy

the required conditions. Finally, (126) characterizes the accuracy of the estimation by bounding the probability that

the estimated parameters of the channel are close to their true values.

As depicted in Fig. 3, there is a technical subtlety in verifying (12) and (13) because the channel estimation error

obtained in finite number of channel uses prevents us from testing with absolute certainty that (12) and (13) hold.

March 1, 2021 DRAFT



20

In other words, there could exist a set of channels for which, based on the estimation error, Alice and Bob may

or may not abort the protocol; regardless, the protocol ensures that if the key generation phase is executed, it is

reliable, secure, and covert.

We conclude this section by analyzing the performance of a covert key generation protocol obtained by combining

the covert estimation protocol with the universal code introduced in Section IV-A. More precisely, Alice and Bob

first perform the described estimation protocol P over T ′ channel uses. Using O(log T ′) channel uses and O(log T ′)

bits of private common randomness, Bob transmits the one-time-padded H , D̂B , and D̂W over the public channel.

If H = 0, Alice abort the protocol. If H = 1, after obtaining D̂B and D̂E , Alice and Bob run the universal code

CT introduced in Theorem 2 for DB = D̂B , DE = D̂E , and the lower-bounds on the minimum eigenvalue of ρB0

and ρE0 , λ̃B −2τ and λ̃E , respectively. The rationale behind the conservative choice for the minimum eigenvalue of

ρB0 is that, because to the estimation error, Alice and Bob might accept the channels for which λmin(ρ
B
0 ) is slightly

less than λ̃B . We characterize the reliability, secrecy, and covertness of the overall protocol in the next lemma and

provide the poof in Section IV-B2.

Lemma 9. For all channels EA→B if we only know λmin(Ec
A→B(ρ

A
0 )) > λ̃E , we have

Pe 6 P(H = 1), (127)

S 6 P(H = 1)

(
T log

1

λ̃E
+ ℓmax

)
, (128)

C 6 P(H = 1)T log
1

λ̃E
+ δ, (129)

where L1, L2 > 0 depend on dimHE and λ̃E , and ℓmax is the maximum length of the key.

In addition, for a quantum channel EA→B with λmin(Ec
A→B(ρ

A
0 )) > λ̃E and λmin(EA→B(ρ

A
0 )) > λ̃B−2τ , and an

estimation protocol P , define ǫ , P

(
H = 1 and (DB(E) 6 D̂B or DE(E) > D̂E)

)
and δ , D

(
ρEW ‖(ρE0 )⊗ ρWunif

)
.

For the protocol described above, we have

Pe 6 2T−5 + ǫ, (130)

S 6 L1T
−4 + ǫ

(
T log

1

λ̃E
+ ℓmax

)
, (131)

C 6
α2
T η(ρ

E
1 (θ)‖ρE0 (θ))

2
T + L2α

3
TT + L1T

−4 + 2
√
L1 log

2

λ̃E
T−1 + ǫT log

1

λ̃E
+ δ. (132)

2) Proof of Theorem 4 and Lemma 9: To show that the desired parameters of the channel are approximated

properly by their associated estimators, we first show that the estimated channel Ê defined in (118) is close to the

true channel E , i.e., for all j and k, with high probability, λ̂j,k is close to λj,k , tr
(
Ẽ†

kE(Ẽj)
)

.

Lemma 10. For all γ > 0 and κmax , maxj,k,j′,k′ |κj
′,k′

j,k |, we have

P

(
∃j, k : |λj,k − λ̂j,k| > γ

)
6 16d4e−

1
256 ℓ̃γ

2

, (133)

and

P
(
∃j, k : |χj,k − χ̂j,k| > d2κmaxγ

)
6 16d4e−

1
256 ℓ̃γ

2

. (134)
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Proof. We only prove (133) as (134) then follows from the definition of χ̂j,k. Notice first that, by our construction,

the distribution of N̂(ρ, ρ̃) = ℓ̃f̂(ρ, ρ̃) is Binomial(tr (ρ̃E(ρ)) , ℓ̃) for all ρ, ρ̃ ∈ S . Therefore, Hoeffding’s inequality

yields for all γ > 0 that

P

(
|f̂(ρ, ρ̃)− tr (ρ̃E(ρ)) | > γ

)
6 2 exp−2ℓ̃γ2. (135)

For all n, m, n′, and m′, using the equality

Ẽd(n−1)+m = |n,m〉+〈n,m|+ + i|n,m〉−〈n,m|− − 1 + i

2
|n〉〈n| − 1 + i

2
|m〉〈m|, (136)

we expand λj,k and λ̂j,k in terms of tr (ρ̃E(ρ)) and f̂(ρ, ρ̃), respectively, and apply (135). More precisely, by

definition of λd(n−1)+m,d(n′−1)+m′ , we have

λd(n−1)+m,d(n′−1)+m′ = tr
(
Ẽ†

d(n′−1)+m′E(Ẽd(n−1)+m)
)

(137)

= tr
(
Ẽ†

d(n′−1)+m′E(|n,m〉+〈n,m|+)
)
+ itr

(
Ẽ†

d(n′−1)+m′E(|n,m〉−〈n,m|−)
)

− 1 + i

2
tr
(
Ẽ†

d(n′−1)+m′E(|n〉〈n|)
)
− 1 + i

2
tr
(
Ẽ†

d(n′−1)+m′E(|m〉〈m|)
)
. (138)

We now fix n′,m′ ∈ J1, dK and ρ ∈ S and for simplicity, let j , d(n′ − 1) +m′, |a〉 , |n′,m′〉+, |b〉 , |n′,m′〉−.

Then, by (136),

tr
(
Ẽ†

jE(ρ)
)
= tr (|a〉〈a|E(ρ))− itr (|b〉〈b|E(ρ))− 1− i

2
tr (|n〉〈n|E(ρ))− 1− i

2
tr (|m〉〈m|E(ρ)) . (139)

Therefore, we obtain the upper-bound in (140).

P

(
|λ̂ρ,j − tr

(
ẼjE(ρ)

)
| > γ

)

= P

(
|f̂(ρ, |a〉〈a|)− if̂(ρ, |b〉〈b|)− 1− i

2
f̂(ρ, |n′〉〈n′|)− 1− i

2
f̂(ρ, |m′〉〈m′|)− tr

(
ẼjE(ρ)

)
| > γ

)

6 P

(
|f̂(ρ, |a〉〈a|)− tr (|a〉〈a|E(ρ)) | > γ

4

)
+ P

(
|f̂(ρ, |b〉〈b|)− tr (|b〉〈b|E(ρ)) | > γ

4

)
+

P

(
|f̂(ρ, |n′〉〈n′|)− tr (|n′〉〈n′|E(ρ)) | > γ

2
√
2

)
+ P

(
|f̂(ρ, |m′〉〈m′|)− tr (|m′〉〈m′|E(ρ)) | > γ

2
√
2

)

6 4e−
1
8 ℓ̃γ

2

.

(140)

Similarly, to analyze the second term in the right hand side of (117), we have

P

(
|f̂(ρ, |n′〉〈n′|)− tr (|n′〉〈n′|E(ρ)) | > γ

)
6 e−2ℓ̃γ2

. (141)

Thus, the union bound implies that

P

(
∃j : |λ̂ρ,j − tr

(
ẼjE(ρ)

)
| > γ

)
6 d(d− 1)4e−

1
8 ℓ̃γ

2

+ de−2ℓ̃γ2

6 4d2e−
1
8 ℓ̃γ

2

. (142)

Moreover, because we have

λ̂j,k = λ̂|a〉〈a|,k + iλ̂|b〉〈b|,k − 1 + i

2
λ̂|n′〉〈n′|,k − 1 + i

2
λ̂|m′〉〈m′|,k, (143)

we obtain

P

(
∃j, k : |λj,k − λ̂j,k| > γ

)
6 16d4e−

1
256 ℓ̃γ

2

. (144)
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Lemma 11. For any ρ ∈ D(H) and 0 < γ < λmin(χ)
d5κmax

, we have

P

(
‖E(ρ)− Ê(ρ)‖1 > d6κmaxγ

)
6 16d4e−

1
256 ℓ̃γ

2

, (145)

P

(
‖Ec(ρ)− Êc(ρ)‖1 >

d18κ2maxλmax(ρ̃)
√
λmax(χ)γ

2

2 (λmin(χ)− d5κmaxγ)

)
6 16d4e−

1
256 ℓ̃γ

2

, (146)

where ρ̃ ,
∑

j,k tr
(
ẼjρẼ

†
k

)
|j〉〈k|.

Proof. Using the triangle inequality, we obtain

‖E(ρ)− Ê(ρ)‖1 =

∥∥∥∥∥∥

∑

j,k

ẼjρẼ
†
kχj,k −

∑

j,k

ẼjρẼ
†
kχ̂j,k

∥∥∥∥∥∥
1

(147)

6
∑

j,k

∥∥∥ẼjρẼ
†
k

∥∥∥
1
|χj,k − χ̂j,k| (148)

6
∑

j,k

|χj,k − χ̂j,k|. (149)

Furthermore,

‖Ec(ρ)− Êc(ρ)‖1 = ‖√χ∗
ρ̃
√
χ
∗ −

√
χ̂
∗
ρ̃
√
χ̂
∗
‖1 (150)

= ‖√χ∗
ρ̃(
√
χ
∗ −

√
χ̂)− (

√
χ̂
∗
−√

χ
∗
)ρ̃
√
χ̂
∗
‖1 (151)

6 ‖√χ∗
ρ̃(
√
χ
∗ −

√
χ̂)‖1 + ‖(

√
χ̂
∗
−√

χ
∗
)ρ̃
√
χ̂
∗
‖1 (152)

(a)

6 σmax(
√
χ
∗
ρ̃)‖√χ∗ −

√
χ̂‖1 + σmax(ρ̃

√
χ̂
∗
)‖
√
χ̂
∗
−√

χ
∗‖1 (153)

6 σmax(ρ̃)
(
λmax(

√
χ) + λmax(

√
χ̂)
)
‖√χ−

√
χ̂‖1 (154)

(b)

6 σmax(ρ̃)
(
2σmax(

√
χ)) + ‖√χ−

√
χ̂‖1
)
‖√χ−

√
χ̂‖1, (155)

where (a) follows from Lemma 16 in Appendix B, and (b) follows from Lemma 13 in Appendix B. To upper-bound

‖√χ−
√
χ̂‖1, let us define F (x) ,

√
χ+ x(χ̂− χ); then, we have

‖√χ−
√
χ̂‖1 = ‖F (0)− F (1)‖1 (156)

6 sup
x∈[0,1]

‖F ′(x)‖1. (157)

Applying Lemma 17 in Appendix B for f(µ) =
√
µ and A(x) = χ+ x(χ̂− χ), we obtain

‖F ′(x)‖1 =

∥∥∥∥
d

dx
f(A(x))

∥∥∥∥
1

(158)

6 sup
µ∈[λmin(A(x)),λmax(A(x))]

d4|f ′(µ)|‖χ− χ̂‖1 (159)

= sup
µ∈[λmin(A(x)),λmax(A(x))]

d4
∣∣∣∣

1

2
√
µ

∣∣∣∣ ‖χ− χ̂‖1 (160)

=
d4‖χ− χ̂‖1

2
√
λmin(A(x))

. (161)
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Moreover, by Lemma 13, we know that

λmin(A(x)) = λmin(χ+ x(χ̂− χ)) (162)

> λmin(χ)− ‖χ̂− χ‖1. (163)

Hence, we have

‖√χ−
√
χ̂‖1 6

d4‖χ− χ̂‖1
2
√
λmin(χ)− ‖χ̂− χ‖1

(164)

If for all j, k, we have |χjk − χ̂jk| 6 d2κmaxγ, then ‖χ− χ̂‖1 6 d5κmaxγ. Thus, (134) yields the upper-bound

P

(
‖Ec(ρ)− Êc(ρ)‖1 >

d9κmaxγλmax(ρ̃)

2
√
λmin(χ)− d5κmaxγ

(
2
√
λmax(χ)

d9κmaxγ

2
√
λmin(χ)− d5κmaxγ

))
6 16d4e−

1
256 ℓ̃γ

2

.

(165)

Proof of Theorem 4. Covertness analysis: Let ρEi denote Eve’s state during the channel uses from q(i− 1) + 1 to

qi. Since, U1, · · · , Uℓ are independent, then

D

(
ρE‖

(
ρE0
)⊗T ′)

=
ℓ∑

i=1

D

(
ρEi ‖

(
ρE0
)⊗q)

. (166)

We now focus on the block from channel use q(i− 1)+1 to qi. Define ρ as the state sent by Alice on the position

q(i− 1) + Ui and ρ(j) ,
(
ρE0
)⊗(j−1) ⊗ ρ⊗

(
ρE0
)⊗(q−j)

. One can check that ρEi = 1
q

∑q
j=1 ρ(j). Thus, we have

D

(
ρEi ‖

(
ρE0
)⊗q) (a)

6 tr

((
ρEi
)2 ((

ρE0
)⊗q)−1

)
− 1 (167)

= tr





1

q

q∑

j=1

ρ(j)




2 ((
ρE0
)⊗q)−1


− 1 (168)

=
1

q2

q∑

j=1

q∑

j̃=1

tr

(
ρ(j)ρ(j̃)

((
ρE0
)⊗q)−1

)
, (169)

where (a) follows from [24]. Note that for j < j̃, we have (173).

tr

(
ρ(j)ρ(j̃)

((
ρE0
)⊗q)−1

)
= tr

(((
ρE0
)⊗(j−1) ⊗ ρ⊗

(
ρE0
)⊗(q−j)

)((
ρE0
)⊗(j̃−1) ⊗ ρ⊗

(
ρE0
)⊗(q−j̃)

)((
ρE0
)⊗q)−1

)

(170)

= tr

((
ρE0
)⊗(j−1) ⊗

(
ρρE0

(
ρE0
)−1
)
⊗
(
ρE0
)⊗(j̃−j−1) ⊗

(
ρE0 ρ

(
ρE0
)−1
)
⊗
(
ρE0
)⊗(q−j̃)

)

(171)

= tr (ρ) tr
(
ρE0 ρ

(
ρE0
)−1
) (

tr
(
ρE0
))q−2

(172)

= 1. (173)

March 1, 2021 DRAFT



24

Similarly, one can show that for j > j̃, we have tr

(
ρ(j)ρ(j̃)

((
ρE0
)⊗q)−1

)
= 1. Furthermore, when j = j̃, we

have

tr

(
ρ(j)ρ(j̃)

((
ρE0
)⊗q)−1

)
= tr

(((
ρE0
)⊗(j−1) ⊗ ρ⊗

(
ρE0
)⊗(q−j)

)2 ((
ρE0
)⊗q)−1

)
(174)

= tr
((
ρE0
)⊗(j−1) ⊗

(
ρ2
(
ρE0
)−1
)
⊗
(
ρE0
)⊗(q−j)

)
(175)

= tr
((
ρ2
(
ρE0
)−1
))

tr
(
ρE0
)q−1

(176)

= tr
((
ρ2
(
ρE0
)−1
))

. (177)

Therefore, we obtain

1

q2

q∑

j=1

q∑

j̃=1

tr

(
ρ(j)ρ(j̃)

((
ρE0
)⊗q)−1

)
− 1 =

1

q2

(
q(q − 1) + qtr

((
ρ2
(
ρE0
)−1
)))

− 1 (178)

=
1

q

(
tr
((
ρ2
(
ρE0
)−1
))

− 1
)

(179)

6
1

q

(
dimHE

λ̃E
− 1

)
(180)

Error analysis: To prove (124) and (125), it is enough to show that

P

(
|λmin(χ)− λmin(χ̂)| 6 τ and |λmin(Ê(ρA0 ))− λmin(E(ρA0 ))| 6 τ

)
> 1− 2−ξℓ. (181)

To this end, note that

P(|λmin(χ)− λmin(χ̂)| 6 τ)
(a)

> P
(
‖χ− χ̂‖1 6 τ

)
(182)

(b)

> P


∑

j,k

|χj,k − χ̂j,k| 6 τ


, (183)

where (a) follows from [25, Lemma 11.1], and (b) follows from the triangle inequality. By (149), we also have

P

(
|λmin(Ê(ρA0 ))− λmin(E(ρA0 ))| 6 τ

)
6 P


∑

j,k

|χj,k − χ̂j,k| 6 τ


. (184)

Using (134), we thus obtain

P

(
|λmin(χ)− λmin(χ̂)| 6 τ and |λmin(Ê(ρA0 ))− λmin(E(ρA0 ))| 6 τ

)
> 1− 16d4e

− 1
256d12κ2

max
ℓ̃τ2

. (185)

We now establish bounds on the accuracy of the estimates D̂B and D̂E when λmin(χ) > λ̃χ − 2τ, λmin(E(ρA0 )) >
λ̃B − 2τ . We choose ǫ > 0 small enough such that

ǫ

(
log(d− 1)

2
+ d log

1

min(λ̃B − 2τ, λ̃E)
+

d2

min(λ̃B − 2τ, λ̃E)− ǫ

)
+Hb

( ǫ
2

)
6 τ. (186)

By Lemma 14, we can choose γ > 0 independent of λmax(χ) such that

d6κmaxγ 6 ǫ, (187)

d18κ2maxλmax(ρ̃)
√
λmax(χ)γ

2

2 (λmin(χ)− 2τ − d5κmaxγ)
6 ǫ. (188)
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By Lemma 11 and Lemma 19, we have

P

(
DB(E)− 2τ 6 D̂B 6 DB(E), DE(E) 6 D̂E 6 DE(E) + 2τ

)
6 32d4e−

1
256 ℓ̃γ

2

. (189)

Since ℓ̃ >
ℓ

2d2
−1

2d2 − 1, we can choose ξ > 0 small enough such that the above upper-bound is less than 2−ξℓ.

Proof of Lemma 9. We only prove the second part of the lemma and the proof of the second part can be obtained

by the exact same approach. Let Pe(D
B , DE), S(DB , DE), C(DB , DE) indicate the probability of error, secrecy,

and covertness of the protocol discussed in the proof of Theorem 2, respectively, when we use the parameters DB

and DE . By the law of total probability, the probability of error of the overall protocol is

E
D̂BD̂E

(
Pe(D̂

B , D̂E)
)
= E

(
Pe(D̂

B , D̂E)|A
)
P(A) + E

(
Pe(D̂

B , D̂E)|Ac
)
P(Ac) (190)

(a)

6 2T−5 + E

(
Pe(D̂

B , D̂E)|Ac
)
P(Ac) (191)

62T−5 + ǫ, (192)

where A , {D̂B 6 DB(E), D̂E > DE(E)} ∪ {H = 0}, (a) follows from Theorem 2. For the secrecy, first note

that the estimation phase does not leak any information about the key. Furthermore, by convexity of the quantum

relative entropy, we have

S 6 E
D̂BD̂E

(
S(D̂B , D̂E)

)
(193)

= E

(
S(D̂B , D̂E)|A

)
P(A) + E

(
S(D̂B , D̂E)|Ac

)
P(Ac) (194)

(a)

6 L1T
−4 + E

(
S(D̂B , D̂E)|Ac

)
P(Ac) (195)

(b)

6 L1T
−4 +

(
T log

1

λ̃E
+ ℓmax

)
ǫ, (196)

where (a) follows from Theorem 2, and (b) follows from the upper-bound S 6 T log 1

λ̃E
+ ℓmax. Finally, for

covertness, since the estimation and transmission phases are independent, we have

C 6 δ + E
D̂BD̂E

(
C(D̂B , D̂E)

)
. (197)

Similar to secrecy, we also have

E
D̂BD̂E

(
C(D̂B , D̂E)

)
6
α2
T η(ρ

E
1 (θ)‖ρE0 (θ))

2
T + L2α

3
TT + L1T

−4 + 2
√
L1 log

2

λ̃E
T−1 + ǫT log

1

λ̃E
. (198)

C. Proof of Theorem 1

We describe a protocol running over T̃ > 0 channel uses. Let T ′ = ⌊
√
T̃ ⌋ and T = T̃−T ′−O(log T ′). Alice and

Bob use the first T ′+O(log T ′) channel uses for the estimation protocol described in Section IV-B1 for parameters

q and ℓ to obtain H as well as estimates DB(E) and DE(E). If H = 0 the protocol is aborted and if H = 1, the

rest of T channel uses will be used for transmission using the universal protocol as described before for D̂B , D̂E ,
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λ̃B − 2τ and λ̃W . For a channel satisfying λmin(χ) > λ̃χ − 2τ, λmin(E(ρA0 )) > λ̃B − 2τ , by applying the second

part of Lemma 9 and Theorem 4, for some ξ > 0, we have

Pe 6 2T−5 + 2−ξℓ, (199)

S 6 L1T
−4 + 2−ξℓ

(
T log

1

λ̃E
+ ℓmax

)
, (200)

C 6
α2
T η(ρ

E
1 (θ)‖ρE0 (θ))

2
T + L2α

3
TT + L1T

−4 + 2
√
L1 log

2

λ̃E
T−1 + 2−ξℓT log

1

λ̃E
+
ℓ

q
(
dimHE

λ̃E
− 1).

(201)

One can check that if ℓ ∈ ω(log T ) ∩ o
(
αTT

− 3
4

)
, which is non-empty by definition of αT , we can always find

the sequence ǫ
T̃

satisfying the conditions in Theorem 1. If the channel satisfies λmin(χ) > λ̃χ, λmin(E(ρA0 )) > λ̃B ,

by (124), with probability 2−ξℓ, the number of transmitted bits is lower-bounded by

(1− 2ζ)(DB(E)−DE(E)− 2τ)αTT. (202)

If the channel does not satisfy λmin(χ) > λ̃χ, λmin(E(ρA0 )) > λ̃B , by (125) and the first part of Lemma 9, we have

Pe 6 2−ξℓ, (203)

S 6 2−ξℓ

(
T log

1

λ̃E
+ ℓmax

)
, (204)

C 6 2−ξℓT log
1

λ̃E
+
ℓ

q
(
dimHE

λ̃E
− 1), (205)

but no key is generated.

CONCLUSION

We prove the existence of covert secret key expansion protocols that achieve the square root law for a wide

range of quantum channels. Our security measure is more stringent than that of traditional QKD as we require

that the adversary be unable to detect the execution of the protocol in addition to obtaining negligible information

about the key. Our result is obtained by combining an undetectable covert tomography protocol and universal covert

communication codes over cq-channels.

APPENDIX A

ERROR EXPONENT CALCULATIONS

Proof of Lemma 5. Consider any cq-channel x 7→ ρBx with λmin(ρ
B
0 ) = λmin > 0. We first show that the

corresponding function φ is smooth enough to use Taylor theorem. Let us define

A(s, p) , ((1− p)
(
ρB0
)1−s

+ p
(
ρB0
)1−s

, s) (206)

g(M, s) , (tr
(
M

1
1−s

)
, s) (207)

ψ(x, s) , −(1− s) log(x). (208)
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By definition, we have φ(s, p) = (ψ ◦ g ◦ A)(s, p). Additionally, all these three functions are from a subset of

a Banach space to a Banach space, which means that we can consider their Fréchet derivative. In the following

lemma, we show that they are infinitely many times differentiable.

Lemma 12. The functions A, g, and ψ are infinitely many times differentiable on

[0, 1[×[0, 1[, (209)

{M ∈ L(H) :M is Hermitian,M ≻ 0} × [0, 1[, (210)

[0, 1[×[0,∞[, (211)

respectively.3

Proof. We investigate each function separately.

• Differentiability of A: It is enough to check the differentiability of A1(s, p) , (1− p)
(
ρB0
)1−s

+ p
(
ρB1
)1−s

.

We shall provide explicit expressions for all partial derivatives of A1 to any order. For any Hermitian operator

ρ ∈ L(H) with ρ � 0 and ρ 6= 0, let ρ =
∑

e λe|e〉〈e| be an eigen-decomposition for ρ. We define log ρ ,
∑

e:λe 6=0 log(λe)|e〉〈e|, which is different from the usual definition since we disregard the zero eigenvalues.

With this definition, one can check that for any i > 1, we have

di

dsi
(ρ1−s) = ρ1−s (− log ρ)

i
. (212)

Hence, using the linearity of the Fréchet derivative, if we take i partial derivatives with respect to s and j

partial derivatives with respect to p at any order, the result is




(1− p)
(
ρB0
)1−s (− log ρB0

)i
+ p

(
ρB1
)1−s (− log ρB1

)i
j = 0,

−
(
ρB0
)1−s (− log ρB0

)i
+
(
ρB1
)1−s (− log ρB1

)i
j = 1,

0 j > 2.

(213)

This also means that all partial derivative are differentiable and therefore continuous. Accordingly, A1 is

infinitely many times Fréchet differentiable.

• Differentiability of g: Again we only check the differentiability of g1(M, s) , tr
(
M

1
1−s

)
. In this case, it is

more challenging to obtain a closed-form expression for partial derivatives. However, we will prove that any

partial derivative is a multilinear form mapping (K1, · · · ,Km) ∈ L(H)m to R and is a summation of terms

of the form

p(s)

(1− s)i
tr

(
K1 · · ·KmM

q(s)

(1−s)j (logM)k
)
, (214)

where q and p are polynomial in s, and i, j, and k are non-negative integers. Using induction on the total

number of partial derivative taken and linearity of the derivative, it is enough to show that if we take the

3For the boundary points we consider the one-sided derivative.
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derivative of (214) with respect to s or M , we would have an expression that is a summation of term of the

same form. Applying the rules of differentiation, one can check that

∂

∂s

(
p(s)

(1− s)i
tr

(
K1 · · ·KmM

q(s)

(1−s)j (logM)k
))

=
p(s) (jq(s) + (1− s)q′(s))

(1− s)i+j+1

× tr

(
K1 · · ·KmM

q(s)

(1−s)j (logM)k+1

)
+
ip(s) + (1− s)p′(s)

(1− s)i+1
tr

(
K1 · · ·KmM

q(s)

(1−s)j (logM)k
)
, (215)

and

∂

∂M

(
p(s)

(1− s)i
tr

(
K1 · · ·KmM

q(s)

(1−s)j (logM)k
))

= K 7→ p(s)

(1− s)i
q(s)

(1− s)j

× tr

(
KK1 · · ·Km

(
q(s)

(1− s)j
M

q(s)

(1−s)j
−1

(logM)k + kM
q(s)

(1−s)j
−1

(logM)
k−1

))
. (216)

Therefore, g1 has partial derivatives of any order. Using the same argument that we used for A1, we conclude

that g1 is infinitely many times Fréchet differentiable.

• Differentiability of ψ: ψ is product of two smooth functions (x, s) 7→ −(1 − s) and (x, s) 7→ log x, and

therefore, it is smooth on its domain.

We next check that A(s, p) lies in the set {M ∈ L(H) :M is Hermitian,M ≻ 0} where g is differentiable. By

our assumption that λmin > 0, ρB0 is positive semi-definite, and so is
(
ρB0
)1−s

for s ∈ [0, 1[. Furthermore, since

ρB1 � 0, we have A(s, p) ≻ 0 for all (s, p) ∈ [0, 1[×[0, 1[. Thus, by the chain rule, φ is a smooth function on

[0, 1[×[0, 1[. Apply Taylor’s theorem, we have

φ(s, p) = φ(0, p) +
∂φ(0, p)

∂s
s+

1

2

∂2φ(0, p)

∂2s
s2 +

1

6

∂3φ(η, p)

∂3s
s3, (217)

for some η ∈ [0, s] that can depend on s. Similarly, we have

∂2φ(0, p)

∂2s
=
∂2φ(0, 0)

∂2s
+
∂3φ(0, τ)

∂2s∂p
p, (218)

for some τ ∈ [0, p]. Additionally, one can check that A(s, p) and all its derivatives depend continuously on ρB0 and

ρB1 . Since any continuous function achieves its maximum on a compact domain, we have

sup
τ∈[0,p̃],ρB

0 ∈D(H),ρB
1 ∈D(H):λmin(ρB

0 )>λ̃

∣∣∣∣
∂3φ(0, τ)

∂2s∂p

∣∣∣∣ <∞, (219)

sup
η∈[0,s̃],p∈[0,p̃],ρB

0 ∈D(H),ρB
1 ∈D(H):λmin(ρB

0 )>λ̃

∣∣∣∣
∂3φ(η, p)

∂3s

∣∣∣∣ <∞. (220)

Moreover, from the definition, one can check that φ(0, p) = 0,
∂2φ(0,0)

∂2s
= 0, and by [21],

∂φ(0,p)
∂s

= I(p). This

implies that there exists B > 0, such that for all cq-channels x 7→ ρBx with λmin(ρ
B
0 ) > λ̃, we have

φ(s, p) > I(p)s−B
(
ps2 + s3

)
. (221)

Furthermore, using the same approach, we can prove I(p) > pD
(
ρB1 ‖ρB0

)
−Bp2.
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Proof of Lemma 7. If we define

A(s, p) ,
(
(1− p)

(
ρE0
)1−s

p
(
ρE1
)1−s

) (
(1− p)ρE0 + pρE1

)s
(222)

g(M) , tr (M) (223)

ψ(x) , log(x), (224)

similar to the proof of Lemma 5, one can check that all these functions are infinitely many times Fréchet differen-

tiable. Since, φ = ψ ◦ g ◦A, the rest of proof is exactly similar to that of Lemma 5.

APPENDIX B

TECHNICAL LEMMAS

Lemma 13. Suppose A and B are Hermitian in L(H). Then, we have

λmin(A) > λmin(B)− ‖A−B‖2 > λmin(B)− ‖A−B‖1 (225)

λmax(A) 6 λmax(B) + ‖A−B‖2 6 λmax(B) + ‖A−B‖1 (226)

Proof. If λmin(A) , λ1 6 · · · 6 λd , λmax(A) and λmin(B) , γ1 6 · · · 6 γd , λmax(B) are the eigenvalues of

A and B, respectively, then by [26, Corollary 6.3.8], we have ‖A − B‖21 > ‖A − B‖22 >
∑d

i=1(λi − γi)
2 which

results in the desired bounds.

Lemma 14. For any quantum channel E : L(HA) → L(HA) with chi-representation matrix χ, we have λmax(χ) 6
√
d, where d , dim(HA).

Proof. Since χ is Hermitian, it admits an eigen-decomposition representation, i.e., for some unitary matrix U and

real values σ1, · · · , σd2 , we have χi,j =
∑d2

k=1 diUi,kU
∗
j,k. By [20, Eq. (8.168)], E has a Kraus representation

E(ρ) =∑d2

i=1EiρE
†
i for Ei =

√
σi
∑d2

j=1 Uj,iẼj . We hence have

‖Ei‖2 =
√
σi

∥∥∥∥∥∥

d2∑

j=1

Uj,iẼj

∥∥∥∥∥∥
2

(227)

=
√
σi

√√√√√tr






d2∑

j=1

U∗
j,iẼ

†
j






d2∑

j′=1

Uj′,iẼj′




 (228)

=
√
σi

√√√√
d2∑

j=1

d2∑

j′=1

U∗
j,iUj′,itr

(
E†

jEj′

)
(229)

=
√
σi

√√√√
d2∑

j=1

U∗
j,iUj,i (230)

(a)
=

√
σi, (231)
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where (a) follows since U is unitary. Because E is a quantum channel, we have
∑d2

i=1E
†
iEi = I . Taking the trace

from this equality, we obtain that

d = tr (I) = tr




d2∑

i=1

E†
iEi


 =

d2∑

i=1

‖Ei‖22. (232)

Using (231) and (232), we conclude that

λmax(χ) = max
i∈J1,d2K

Λi 6 ‖Ei‖2 6
√
d. (233)

Lemma 15. Consider any quantum channel E : L(H) → L(H) with dimH = d and characterized by E(ρ) =
∑

i,j ẼiρẼ
†
jχij . Define another Hilbert space Hc spanned by an orthonormal basis {|j〉 : j ∈ J1, d2K}. Then, up

to a unitary transformation, the complementary channel E† : L(H) → L(Hc) would be

Ec(ρ) =
√
χ
∗
ρ̃
√
χ
∗
, (234)

where

χ ,
∑

j,k

|j〉〈k|χjk (235)

ρ̃ ,
∑

j,k

|j〉〈k|tr
(
ẼjρẼ

†
k

)
. (236)

Proof. By [20], without loss of generality we can assume that χ is Hermitian. Therefore, let χ =
∑

j dj |uj〉〈uj |
be an eigen-decomposition of χ. For Ej ,

∑
k

√
dj〈k|uj〉Ẽk, we have

∑

j

EjρE
†
j =

∑

j

(
∑

k

√
dj〈k|uj〉Ẽk

)
ρ

(
∑

k′

√
dj〈uj |k′〉Ẽ†

k′

)
(237)

=
∑

k

∑

k′

∑

j

ẼkρẼ
†
k′dj〈k|uj〉〈uj |k′〉 (238)

=
∑

k

∑

k′

ẼkρẼ
†
k′〈k|


∑

j

dj |uj〉〈uj |


 |k′〉 (239)

=
∑

k

∑

k′

ẼkρẼ
†
k′〈k|χ|k′〉 (240)

=
∑

k

∑

k′

ẼkρẼ
†
k′χkk′ (241)

= E(ρ). (242)

This implies that
∑

j EjρE
†
j is a Kraus representation for E , and therefore, by [19], a representation for the

complementary channel is

Ẽc(ρ) =
∑

j,k

tr
(
EjρE

†
k

)
|j〉〈k|. (243)

Hence, it is enough to show that for some unitary operator U onto Hc, we have

√
χ
∗
ρ̃
√
χ
∗
= U Ẽc(ρ)U †. (244)
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Let U ,
∑

j |ũj〉〈j| where |ũj〉 ,
∑

i〈uj |i〉|i〉. One can check that it is a unitary operator, and we have

U Ẽc(ρ)U† =


∑

j

|ũj〉〈j|




∑

k,k′

tr
(
EkρE

†
k′

)
|k〉〈k′|




∑

j′

|j′〉〈ũj′ |


 (245)

=
∑

jj′kk′

tr
(
EkρE

†
k′

)
|ũj〉〈j||k〉〈k′||j′〉〈ũj′ | (246)

=
∑

kk′

tr
(
EkρE

†
k′

)
|ũk〉〈ũk′ | (247)

=
∑

kk′

tr




∑

j

√
dk〈j|uk〉Ẽj


 ρ


∑

j′

√
dk′〈uk′ |j′〉Ẽ†

j′




 |ũk〉〈ũk′ | (248)

=
∑

jj′kk′

√
dk
√
dk′ tr

(
〈j|uk〉〈uk′ |j′〉ẼjρẼ

†
j′

)
|ũk〉〈ũk′ | (249)

=
∑

jj′

tr
(
ẼjρẼ

†
j′

)∑

kk′

√
dk
√
dk′〈j|uk〉〈uk′ |j′〉|ũk〉〈ũk′ | (250)

=
∑

jj′

tr
(
ẼjρẼ

†
j′

)(∑

k

√
dk〈j|uk〉|ũk〉

)(
∑

k′

√
dk′〈uk′ |j′〉〈ũk′ |

)
(251)

=
∑

jj′

tr
(
ẼjρẼ

†
j′

)(∑

k

√
dk〈ũk|j〉|ũk〉

)(
∑

k′

√
dk′〈j′|ũk′〉〈ũk′ |

)
(252)

=

(
∑

k

√
dk|ũk〉〈ũk|

)
∑

jj′

tr
(
ẼjρẼ

†
j′

)
|j〉〈j′|



(
∑

k′

√
dk′ |ũk′〉〈ũk′ |

)
(253)

=
√
χ
∗
ρ̃
√
χ
∗
. (254)

Lemma 16. Let A,B ∈ L(H) and B be Hermitian. Then,

‖AB‖1 6 σmax(A)‖B‖1, (255)

where σmax(A) is the maximum singular value of the A.

Proof. Consider an eigen-decomposition of B, i.e., B =
∑

b b|b〉〈b|. Then,

‖AB‖1 =

∥∥∥∥∥A
(
∑

b

b|b〉〈b|
)∥∥∥∥∥

1

(256)

6
∑

b

|b|‖A|b〉〈b|‖1 (257)

6
∑

b

|b|tr
(√

|b〉〈b|A†A|b〉〈b|
)

(258)

=
∑

b

|b|
√
〈b|A†A|b〉 (259)
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=
∑

b

|b|‖A|b〉‖2 (260)

6 σmax(A)

(
∑

b

|b|
)

(261)

= σmax(A)‖B‖1. (262)

Lemma 17. Let I ⊂ R be an interval and f : I → R and A(x) : R → L(H) be differentiable functions

such A(x) is Hermitian and its spectrum is included in I for all x. For any operator norm ‖ · ‖ satisfying

max(‖PA‖, ‖AP‖) 6 ‖A‖ where A is an arbitrary operator and P is a projection, we have
∥∥∥∥
d

dx′
f(A(x′))

∣∣∣∣
x′=x

∥∥∥∥ 6 d2 sup
µ∈[λmin(A′(x)),λmax(A′(x))]

|f ′(µ)|‖A′(x)‖. (263)

Proof. We use a formula in [19] for the derivative of an operator-valued function. Let f : R → R and A(x) : R →
L(H) be a differentiable functions. Then,

d

dx′
f(A(x′))

∣∣∣∣
x′=x

=
∑

ν,η

f [1](ν, η)PA(x)(ν)A
′(x)PA(x)(η), (264)

where the summation is taken over all eigenvalues of A(x), PA(x)(ν) is the projector onto the subspace of all

eigenvectors corresponding to ν, and

f [1](ν, η) =





f(ν)−f(η)
ν−η

ν 6= η

f ′(ν) ν = η

. (265)

We can now upper-bound the norm of d
dx
f(A(x)) by

∥∥∥∥
d

dx′
f(A(x′))

∣∣∣∣
x′=x

∥∥∥∥ =

∥∥∥∥∥
∑

ν,η

f [1](ν, η)PA(x)(ν)A
′(x)PA(x)(η)

∥∥∥∥∥ (266)

6
∑

ν,η

|f [1](ν, η)|
∥∥PA(x)(ν)A

′(x)PA(x)(η)
∥∥ (267)

(a)

6
∑

ν,η

|f [1](ν, η)| ‖A′(x)‖ , (268)

where (a) follows from our assumption that max(‖PA‖, ‖AP‖) 6 ‖A‖. By the mean value theorem, we also have

that f [1](ν, η) = f ′(µ) for some µ between ν and η. Thus,

∑

ν,η

|f [1](ν, η)| ‖A′(x)‖ 6 d2 sup
µ∈[λmin(A′(x)),λmax(A′(x))]

|f ′(µ)|‖A′(x)‖. (269)

Lemma 18. Suppose ρ and σ are two density matrices on Hilbert space H with dimH = d such that suppρ ⊂ suppσ

and ‖ρ− σ‖1 6 ǫ 6 e−1. Then,

D(ρ‖σ) 6 ǫ log
d

λmin(σ)ǫ
. (270)
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Proof. Since supp(ρ) ⊂ supp(σ), we have

D(ρ‖σ) = tr (ρ(log ρ− log σ)) (271)

= −H(ρ) +H(σ)− tr ((ρ− σ) log σ) (272)

(a)

6 ǫ log
d

ǫ
− tr ((ρ− σ) log σ) (273)

6 ǫ log
d

ǫ
+ ǫ log

1

λmin(σ)
, (274)

where (a) follows from Fannes inequality.

Lemma 19. Suppose ρ, ρ′, σ, σ′ ∈ D(H) with dimH = d, supp(ρ) ⊂ supp(σ), and supp(ρ′) ⊂ supp(σ′). Let

‖ρ− ρ′‖1 6 ǫ, ‖σ − σ′‖1 6 ǫ, and λmin(σ) be the minimum eigenvalue of σ with λmin(σ) > ǫ). Then,

|D(ρ‖σ)− D(ρ′‖σ′)| 6 ǫ

(
log(d− 1)

2
+ d log

1

λmin(σ))
+

d2

λmin(σ)− ǫ

)
+Hb

( ǫ
2

)
. (275)

Proof. By definition, we have

|D(ρ‖σ)− D(ρ′‖σ′)| = | −H(ρ) +H(ρ′)− tr (ρ log σ) + tr (ρ′ log σ′) | (276)

6 | −H(ρ) +H(ρ′) |+ |tr ((ρ− ρ′) log σ) |+ |tr (ρ′(log σ′ − log σ)) |. (277)

By Fannes inequality, we have

| −H(ρ) +H(ρ′) | 6 1

2
‖ρ− ρ′‖1 log(d− 1) +Hb

(
1

2
‖ρ− ρ′‖1

)
. (278)

Furthermore, Cauchy-Schwartz inequality for Hilbert-Schmidt inner-products implies that

|tr ((ρ− ρ′) log σ) | 6 ‖ρ− ρ′‖2‖ log σ‖2 (279)

6 ‖ρ− ρ′‖1‖ log σ‖2 (280)

6 ‖ρ− ρ′‖1d log
1

λmin(σ)
. (281)

Using Cauchy-Schwartz again, we obtain

|tr (ρ′(log σ′ − log σ)) | 6 ‖ρ′‖2‖ log σ′ − log σ‖2 (282)

6 ‖ log σ′ − log σ‖2. (283)

To upper-bound ‖ log σ′ − log σ‖2, let us define F (x) , log(σ + x(σ′ − σ)) for t ∈ [0, 1]. Then,

‖ log σ′ − log σ‖2 = ‖F (1)− F (0)‖2 (284)

(a)

6 sup
x∈[0,1]

‖F ′(x)‖2. (285)
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where (a) follows from mean value theorem of multi-variable functions. Applying Lemma 17 for f , log and

A(x) = σ + x(σ′ − σ), we obtain

‖F ′(x)‖2 6 d2 sup
µ∈[a,b]

|f ′(µ)|‖A′(x)‖2 (286)

6 d2
1

λmin(σ + x(σ′ − σ))
‖σ′ − σ‖2 (287)

6 d2
1

λmin(σ + x(σ′ − σ))
‖σ′ − σ‖1. (288)

Finally, for x ∈ [0, 1], we have

λmin(σ + x(σ′ − σ)) 6 λmin(σ)− ‖x(σ′ − σ)‖2 (289)

6 λmin(σ)− ‖σ′ − σ‖1. (290)
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