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Abstract

We consider an enhanced measure of security for a quantum key distribution protocol, in which we require that
the adversary not only obtains no information about the key but also remains unaware that a key generation protocol
has been executed. When the adversary applies the same quantum channel independently to each transmitted quantum
state, akin to a collective attack in the quantum key distribution literature, we propose a protocol that achieves covert
and secret key expansion under mild restrictions. A crucial component of the protocol is a covert estimation stage,

which is then combined with universal channel coding for reliability and resolvability in the covert regime.

I. INTRODUCTION

The search for alternative cryptographic methods has become relevant because of the existence of algorithms
that could be run on a quantum computer and threaten the security of some traditional cryptographic methods,
such as some asymmetric cryptographic schemes. In particular, the generation of unconditionally secure key bits
over quantum channels, known as Quantum Key Distribution (QKD) [1], has attracted much attention because
of its ability to exploit the unique characteristics of quantum channels and enable the detection of an adversary
tampering with the transmitted data. Starting from the seminal work of Bennett and Brassard [2], this field has
witnessed tremendous advances in the last decade from both theoretical and practical perspectives. In particular,
security proofs have evolved to consider several types of attacks such as individual, collective, coherent attacks, and
the possibility of an adversary controlling the legitimate users’ apparatus [3], and the statistical effects of measuring
and processing a finite amount of data [4]. In addition, experimental QKD systems have matured to stably operate
over long distances and over long periods of time [5].

Another desirable feature for a key generation protocol is undetectability or covertness, by which the legitimate
parties aim at hiding the fact that the key generation is happening from an unwanted party. From a statistical point
of view, the adversary should be unable to distinguish between the statistics of its observation with and without key
generation. The study of covert communication has been initiated by [6] for classical channels, in which a square-
root-law has been established for Additive White Gaussian Noise (AWGN) channels, i.e., at most O(y/n) of bits
can be reliably and covertly transmitted over n uses of an AWGN channel. Covert communication in a classical

setting has been extensively investigated, including the study of the exact asymptotics in covert communication
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[7], [8], covert communication in multi-terminal networks [9], practical code design [10], and state-dependent
channel [11]. Furthermore, a few studies have extended these results to the quantum setting [12], [13], [14], [15],
[16]; in particular, [12], [13] have established inner- and outer-bounds for the covert capacity of classical-quantum
(cq) channels, and [17] proved a no-go result for covert communication over bosonic channels when there is no
imperfection on the adversary’s observations. An actual demonstration of covert communication has also been
demonstrated in the presence of thermal noise on the transmission channel or dark count in the photo-detector of
the adversary.

The main purpose of the present paper is to investigate the possibility of guaranteeing the covertness of a QKD
protocol. The authors of [15] have suggested the pessimistic result that “covert QKD consumes more key that it
can generate” In their protocol, legitimate parties coordinate transmissions in y/n locations out of n, for which
O(y/nlogn) bits are required. This amount, unfortunately, dominates the amount of generated key bits, which only
scales as O(+/n). In a previous work [18], we have established a framework for covert and secret key expansion over
quantum channels, in which the use of public communication is precisely defined, and we have established lower-
bounds on the amount of key bits that can be generated when the channels are known. Our achievability results were
based on the transmission of independent and identically distributed (i.i.d.) signals over the channel with highly
biased distribution instead of coordinating the locations for transmission ahead of time. The main shortcoming of
our previous work is the requirement that the channel should be known, which might not be realistic in practice.
To address this issue, we consider here a model in which the adversary controls the quantum channel under some
conditions. Specifically, we consider an instance of quantum covert and secret key generation in which the quantum
channel is fixed but under the control of the adversary and unknown to the legitimate users. Under some conditions
that limit the power of the adversary, which we precisely characterize, we prove the existence of covert and secret key
generation protocols consisting of a channel estimation phase followed by a key-generation phase. The estimation
phase is based on a covert quantum tomography protocol, which estimates the required parameters of the channel,
and the key generation phase is based on universal results for covert quantum communication. While covertness
cannot be unconditionally guaranteed, our protocol offers the legitimate parties with the ability to successfully abort
before engaging in key generation. We do not instantiate explicit codes but recent progress in designing codes for
covert communications [10] suggests that the protocols described here can be implemented with low complexity.

The remainder of the paper is organized as follows. In Section II, we briefly introduce the notation used throughout
the paper. In Section III, we formally describe the problem under investigation and state our main result. We devote

Section IV to the proof of our main theorem.

II. NOTATION

For a finite-dimensional Hilbert space , dim # denotes the dimension of H, and £(?) denotes the space of
all linear operators from # to . We denote the adjoint of an operator X € £(H) by X', and call X Hermitian
if X = XT. X € L£(H) is positive (semi-)definite, if it is Hermitian and all of its eigenvalues are positive (non-
negative). D(H) denotes the set of all density operators on 7, i.e., all non-negative operators with unit trace. For

X,)Y € L(H), we write X = Y (X = Y), if X — Y is positive (semi-)definite. For X € H, let oy, (X) and
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Omax(X) denote the minimum and the maximum singular value of X, respectively, and if X is Hermitian, let
Amin(X) and Apax(X) denote the minimum and maximum eigenvalue of X. Furthermore, we define norms of
X € L(H) as | X, & tr( XTX> and || X ||z £ \/tr (XTX). For a Hermitian operator X € £(#) with eigen-
decomposition X = > z|x)(x|, we define the projection {X = 0} £ > w0 |7)(z]. A quantum channel £4-, 5 is
a completely positive and trace preserving linear map from £(H4) to £(H?). An isomorphic extension of €4, ,
Ua_spp., satisfies E4,p(p4) = trE(UA_,BEpAUL_)BE) for all pA € D(HA). We denote the complementary
channel of £4_ .5 by SﬁﬁB(pA) L Cap(p?) & trB(UAHBEpAULHBE), which is well-defined and unique
up to a unitary transformation [19, Exercise 5.2.5]. Let £4,5 : D(Ha) — D(Hp) be a quantum channel
and [1),---,|d) be an orthonormal basis for HZ. We let Ed(n,le 2 |n)(m| so that E,--- , Eg forms an
orthonormal basis for £(#). By [20], there exists coefficients X,k such that

E(p) =Y EipE{X;k- (1)

jik

We call the matrix x = [x;,x)j k=1, 42 the chi-representation of the channel £4_, 5 with respect to the orthonormal
basis |1),---,|d). A cq-channel is a map from an abstract set X to D(#), denoted by = — p,,.

For p# € D(H*) we define the von Neumann entropy H(p?) £ H(A), £ —tr (p”log p?). For pB € D(HA®
H?B), we define the conditional von Neumann entropy H(A[B), 2 H(pAB)—H(p®) where p? 2 try(pAP), and the
quantum mutual information I(A; B) , £ H(p*)+ H(p”) — H(p"?). Similarly, we define the conditional quantum
mutual information I(A; B|C) & H(pAC) + H(pB¢) — H(pABC) — H(p®) for any pABC € D(HA @ HE @ HO).

If Px is a distribution on X and = — p, is a cq-channel, we denote the Holevo information by

I(PXapm)éH<ZPX(x)pr> _ZPX(x)H(pz) (2)
xT T
For p,0 € D(H), the quantum relative entropy is

tr(p (log p —log o)) if supp(p) C supp(o),
D(pllo) £ 3)
0 otherwise.

We also define n(p, o)) similar to [13, Eq. (12)] as

N tr (f,° p(o+s)"tp(o+s)"tds) —1 if supp(p) C supp(o),

n(pllo) )
00 otherwise.
We denote by [n, m] the interval {i € Z : n < ¢ < m}. We also define
[a,b] ={x € R:a < x < b}, (5)
Ja,b) = {x € R:a < x < b}, (6)
[a,b[={xr € R:a <z < b}, (7
Ja,b[={x € R:a < x < b}. (8)

Let wt(x) £ >0 a; for x = (21, ,3,) € X™.

March 1, 2021 DRAFT



w
PUBLIC AUTHENTICATED CHANNEL

'RAR Ua—BE R RP:

' = '
p

------------------- 7<% -

Figure 1. Model of covert and secret key expansion

III. MODEL FOR COVERT AND SECRET KEY GENERATION UNDER COLLECTIVE ATTACKS AND MAIN RESULTS

In this section, we formalize key generation protocols, describe our assumption on the eavesdropper, define the
metrics used to assess a protocol and state our main result. We finally illustrate our result for a quantum phase-flip
channel.

a) Protocol description: As depicted in Fig. 1, two legitimate parties, Alice and Bob, attempt to expand shared
secret key using multiple uses of a quantum channel and two-way communication over a public but authenticated
classical channel without being detected by an adversary, Eve. Prior to the transmission, Alice and Bob possess
local randomness R* and R®, respectively, and a shared secret randomness R. In 7' time steps, Alice prepares a
quantum state using her available information, which is sent to Bob through a quantum channel £4_, 5. Bob can
perform a possibly joint measurement on his received states. Alice and Bob also communicate with each other over
the public classical channel after each time step. We denote all communications over the public channel by W.
Alice and Bob use their available information at the end of the 7" time step to compute two long binary strings
sX and sY, respectively, as well as the number of bits £X and ¢, respectively, to use as a secret key. The length
of sX and s is public and fixed at the beginning of the protocol. Alice finally sets her key £~ to be the first £¥
bits of sX while Bob sets his key k¥ to be the first ¥ bits of s .

b) Attacker model: We assume that Eve initially chooses the quantum channel £4_,5 under some mild
constraints precisely defined in the statement of Theorem 1 but that the channel remains unchanged during the
transmission. The channel is a priori unknown to Alice and Bob. When Alice transmits p*, Eve observes £ gl o),
which accounts for the maximum amount of information that she can possibly gain, i.e., the state corresponding
to a reference system for an isomorphic extension of the channel from Alice to Bob. When no communication
happens, Eve expects the “innocent” symbol p()4 to be sent by Alice. She is also fully aware of the details of the
protocol used by Alice and Bob for covert and secret key generation.

Similar to [18], we call a protocol an (e, 8, u1)-protocol if it satisfies the following reliability, secrecy, and covertness
conditions.

o creliability: P. £ P(KX # KY) < ¢, which implies that % = ¢¥ with probability at least 1 — ¢;

o J0-secrecy: S £ D(pEWSX [V pl‘i:ff) < 4, where pEWS s the joint density matrix of the eavesdropper’s

. . ., . X . . .
observations, public messages and Alice’s random string, and p> . is a mixed state for S¥ corresponding to

March 1, 2021 DRAFT



a uniform distribution;
o p-covertness: C' = D(pBW|| (pf) @ p¥i) < p, where pf £ (€5, 5(pg'))°" is the density matrix of the
eavesdropper’s observations when no communication takes place and ngif is the density operator corresponding

to uniform distribution on W.!

Remark 1. We discuss here the operational meaning of the role of public communication in our covertness
constraint. We assume that the adversary always expects a classical communication on the public channel between
Alice and Bob (such as a constant traffic in a network to maintain persistence) in the absence of the quantum
key generation protocol, but the classical messages on the public channel have pre-specified distribution and are
statistically independent of the content of the quantum channel. This assumption might be restrictive in certain
scenarios, in which this classical communication does not exist. The results of this paper would not be then
applicable and one would still need to formalize the problem and develop protocols according to restricted available

resources at Alice and Bob.

A protocol is efficient if it allows key expansion so that the number of key bits created exceeds the number of
common randomness bits consumed. Our goal is to analyze under what conditions efficient (e, p, §)-protocols might

exist.

d) Main result:

Theorem 1. Let x be the chi-representation of the channel Ea_, g with respect to some orthonormal basis. Let pi!
be an arbitrary density operator on H* and define pB & Ea_,5(p2) and pE £ £ _, 5(p2) for x = 0,1. Let 2X,

B and XE be fixed in ]0,1). Let {ar}r>1 be such that

log T\ ® 1
ar € w <O§> ﬂo(\/T). 9)

For any > 0, there exists a vanishing sequence {er}r>1 and a sequence of (er,er, wr) covert and secret key

generation protocols such that for all quantum channels €4, g with
Amin(p5) = A7, (10)

we have

oZn(p¥|lpf)T

pur < (1+er) 5 (11

If in addition to Eq. (10), it holds that
Amin(x) = M, (12)
Amin(p]) = A, (13)

! While the trace distance is the commonly used distance measure in QKD, the relative entropy is more convenient to study covert
communication because of its analytical properties. Since Pinsker’s inequality allows us to bound the trace distance through the relative entropy,

the operational meaning of the bounds remains unchanged.
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Figure 2. Quantum relative entropy of main and warden channels
then, with probability at least 1 — e, the length of the generated key is at least
B|| B By E
(1= Q) [D(p7llpg) = D(pr llpg)] T (14)

We now discuss the meaning and implications of Theorem 1. Firstly, the parameter a7 defined in (9) controls
the fraction of the state pf* transmitted over 7" channel uses, and should be understood as close to but slightly less
than 1/ V/T. For this choice, the covertness parameter p7 vanishes with 7' while the number of secret key bits
covertly generated scales almost as Q(\/T) Secondly, the condition (10) states that the channel to the adversary
should be noisy enough to allow covert operation a priori. This condition should not be surprising, as we know that
covert communication is impossible in a general setting [17]. The conditions (12) and (13) are technical conditions
to avoid extreme cases, which are necessary to ascertain the reliability of our estimation protocol and can be set
to the technological limits on the quantum channel £4_,p. As apparent in the proof, these three conditions only
affect the sequence {er}r>1 but not the asymptotic covert and secret key rate guaranteed in (14). Finally, Alice
and Bob can test whether \pin(pf) > AF with high probability at the end of the estimation phase and abort the
protocol if the condition is violated. In that case, the covertness constraint cannot be guaranteed as defined before
because too many non-innocent symbols have been sent in the estimation phase; however, aborting the protocol
and transmitting innocent symbols in the remaining channel uses still minimizes ]D)(pEHpOE).

We illustrate the result of Theorem 1 for a specific quantum channel, £4_. 5, from Alice to Bob. We assume

that £4_,p is a phase flip channel with flipping probability p, namely, 4 ,5(p?) = (1 — p)p + po.po., and the
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matrix representation of Alice’s transmitted states in the computational basis is

4 095 0

pld = (15)
0 0.05
0.2 0.3

pi = : (16)
0.3 0.8

For z € {0,1}, we define p2 £ €4, 5(p2) and pf = £, 5(p2), and in Fig. 2, we illustrate the behavior of

]D)(p

Pllpf) and D(p¥||p§) as a function of p. By Theorem 1, the number of generated covert and secret key bits

is on the order of (D(pf||pf) — D(p¥ | p))crT, which scales as O(arT) except for p = 0.5.

IV. PROOF OF THEOREM 1

For clarity, we have divided the proof of Theorem 1 in three steps.

1y

2)

3)

In Section IV-A, we show the existence of a sequence of universal codes for reliable, secure, and covert
transmission of a message upon the existence of bounds on some parameters of the effective wiretap cq-
channel x — pZ¥ from Alice to Bob and Eve (Theorem 2). Our proof follows a standard random wiretap
code construction, which is summarized next. Let M be the number of messages and M’ be a large integer
to be determined later. To transmit message w € [1, M], Alice chooses a codeword uniformly at random
from the set {Xy 1, " , Xy p} and transmits the codeword over n uses of the cq-channel. Each codeword
Xuw,; 18 independently generated according to Py", where Px is a Bernoulli distribution with parameter o,
vanishing with n. To analyze the protocol, we first quantize the set of possible channels to obtain a finite set
that approximates the entire set of channels with desired parameters. The reliability analysis of the protocol
relies on the universal properties of a decoder based on Schur-Weyl duality [21]. The secrecy and covertness
analysis of the protocol relies on channel resolvability results. Specifically, we use super-exponential bounds
to analyze the output statistics generated by the coding scheme.

In Section IV-B, we show how quantum tomography can be covertly implemented to derive the bounds on the
channel parameters that were assumed to be known in the first step of the proof. Specifically, Alice transmits
non-zero states in a sparse set of positions that is shared with Bob using a shared key. Bob performs a
measurement in those positions to estimate the channel and compute the desired parameters.

Finally, in Section IV-C. we complete the proof of Theorem 1 by combining the first two steps. Specifically,
i) Alice and Bob first run the tomography protocol described in Section IV-B; ii) Bob then computes the
required parameters and sends them over the public channel one-time-padded with a pre-shared key; and,
finally, iii) Alice and Bob implement the universal protocol described in Section IV-A. The required pre-shared
key is the one needed for one-time-padding the estimated parameters of the channel and sharing the position
of the state sent for tomography. The size of this key is shown to be smaller than the size of the generated

key.

March 1, 2021 DRAFT



A. Universal covert communication

Let p2, pB, pE be defined as in the statement of Theorem 1 for z = 0, 1. The following theorem shows that
knowing bounds on Awmin(pg), Amin(pg), D(pf|pF) and D(p¥||pf) is all that is required to covertly generate a

secret key.

Theorem 2. Ler DB, DE, XB, and \F be fixed numbers and {ar}r>1 be as in (9). For any { > 0, there exists

a sequence of codes {Cr}r=1 such that for all cq-channels x — 0B and x — pF satisfying

D(p7llps) = DF, a7
D(pf’llpg) < D¥, (18)
Amin(pF) = A7, (19)
Amin(pf) 2 N7, (20)
we have

P. <2T7°, (21)
S < LT74, (22)

C < w:r + Ly T~* 4+ 2y/Ly log X%T‘l + Lyad T,
log M = (1 — 2¢0)(D? — DP)arT, (23)

where P., S, C denote the probability of error, secrecy, and covertness, respectively, as defined in Section III

Ly, Ly > 0 depend on the dim H* and AE.

The remainder of this section is dedicated to the proof of the above result. We first adapt a result from [22],
which shows that for any class of cq-channels, there exists a finite class of cq-channels that approximates the main

class with high precision.

Lemma 1. Consider a compound cq-channel x v+ pZ(0) where v € X, pB € D(H), H is a d-dimensional Hilbert
space, and 6 € © is an arbitrary index set. There exists a constant K > 0 that depends only on d such that for all

T € N, there exists another compound cq-channel x s pB (0) with = € X, pB € D(H), and 6 € © such that

1) the set O is finite, i.e.,
6] < KMo, (24)
2) for all 6 € ©, there exists a 0 € © such that for all x € XT, we have
162(8) = P2 (@) < T (25)
3) for all Probability Mass Functions (PMFs) Px over X, we have

min I(Py, p2(0)) > inf I(Px,pZ(0)) — 2T 5 log (T°d) . (26)
6e6 9€o '
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Proof. We modify the proof provided in [22] to derive a tighter upper-bound on the approximation error of the
new compound channel at the expense of increasing its size. By [22, Theorem 5.5], for all £ > 0, there exists a
partition of all cq-channels from &' to D(#) denoted by II = {my,--- ,m,} such that n < KX =X \where K
only depends on the dimension of #, d, and the diameter of II is at most &, i.e., for all ¢ € [1,n], for any two
channels = — pZ and x ~ pZ in 7;, for any z € X, we have ||pZ — pB||; < k. Setting k = T~F, this implies that

|| 6] X |d?

there exists a partition of size at most K and diameter at most 7~5. We construct the new compound cq-

channel 2 — pB(6) by selecting an arbitrary channel from each 7; whose intersection with {z — pZ(6) : 0 € O}
is non-empty. We now show that this compound channel satisfies the conditions mentioned in the statement of the
lemma. Since we select at most one channel from each m;, |(:j\ < n < KIXIT6lx ‘d2, and thus, we have (24). To
prove (25), consider any 6 € ©. By our construction, there should be a 6 € © such that z — pB(6) and = — pB(6)

belong to the same ;. Therefore, for any x € X T we have

1PB(0) — pBO)]1 = 10 (@) @ - @ pE () — pE (B) @ -- @ pZ ()| @7)
T
<Y 105 (0) = pZ ()1 (28)
t=1
(@
< T, (29)

where (a) follows since x — pZ(6) and z — p2Z(6) belong to the same 7;, and the diameter of the partition is less
than 7'~°. Finally, let Px be any PMF over X to lower-bound ming_g I(Px, pf(g)) as in (26), take any 6 € ©

and consider 6 such that z + pZ(6) and x — pZ () belong to the same ;. To complete the lemma, it is enough

to show that

I(Px. py(9)) = I(Px, pi (9)) — 2T~ log (T°d) . (30)
To this end, we have
I(Px,p2(0) = H (Z Px<x>pf<5>) =3 Px@H (p£(0)) 31
Cu <Z Px(z)p? ((9)) — Y Px(x)H (p2(6)) (32)
- 2T*; log (T°d) “’ (33)
= I(Px,p2(0)) — 2T 5 log (T°d) (34)

where (a) follows from Fannes’s inequality which states that for any two p and o in D(H), if |p—olj1 <6 <e !,

we have |H(p) — H(o)| < §log(dé—1). O

1) Universal reliability result: We next prove a universal reliability result suitable for covert communications.
Note that we cannot use the result of [22] directly since the input distribution used to analyze covert communications
changes with the block-length. Indeed, our inspection of the proof of [22] suggests that the technique cannot be
adapted for the covert case since the the penalty arising from the approximation of a class of channels dominates

the number of bits that one can transmit covertly, which scales as O (\/T) Therefore, we use a different approach
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10

based on the quantum universal decoder introduced by Hayashi in [21]. We first state the following lemma from

[22] which is a general achievability result for cq-channels.

Lemma 2 ([22, Theorem 5.4]). Let x — pZ be any cq-channel with input set X, and M be a positive integer. For all
x, let T, be an operator on HE with 0 < T, < I, and Px be a probability distribution over X. If F : [1, M] — X
is a random encoder whose codewords are iid according to Px, there exists a “universal” decoder corresponding
to a POVM {A,}M_, depending on the operators T',, and the encoder F' (not on the channel) such that the average
probability of error satisfies

]Ep<i<1tr(pp(w ))) QZPX e (pBT, +4MZPX e (pPT.) (35)

w=1

where pP £ Y Px(a)p?

We next consider a stationary memoryless cq-channel x + pZ with T channel uses and for each codeword
x € XT, we aim to construct the operator I'y independent of the channel such that we would be able to upper-
bound the right hand side of (35). We shall follow the approach in [21], which is based on the following result

from representation theory.

Theorem 3 (Schur-Weyl Duality). Let H be a d-dimensional Hilbert space over C. For any T > 1, we have the

decomposition
HT = & U ®W, (36)
teyd
where YA & {(t1,++ ,tg) €EZL ity = = tq >0, 2?21 t; =T}, Uy is an irreducible representation of SU(d),

and Vy is an irreducible representation of the T*" order symmetric group.

In [21], for all t € Yj‘f and all 7', the author introduced several quantum states that satisfy universal matrix
inequalities for all density matrices and all cq-channels. Since those quantum states are a substantial ingredient of

the construction of our universal decoder, we state here their definition and properties from [21].

Definition 1. For t € Y;l, let Iy be the projection onto the subspace Uy @ Vy. Define

A 1 I
og = —————
¢ dlm(?/{t X Vt) ¢

ouT = Z (38)

teYd

(37

>

Moreover, for x' = (0, ,0,1,--- ,1) € XT with wt(x') = m, we define ox' = o7 7—m @0ty .m. For any x € X7
with wt(x) = m, let © be a permutation of T elements such that x = 7x'. We then define o5 = U0, Ul where

Uy is the unitary representation of .

Lemma 3. For any density matrix p on H and any cq-channel x + pB, we have

opr = p°7, (39)

d(d—1)
2

T Vi ox = PR (40)
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11

Proof. See [21, Equation (6) and (7)]. O

Lemma 4. Fix ¢ and X in ]0,1[. Let 2 — pB(0) be a compound cq-channel with 6 € © and x € X = {0,1} such
that Amin(pF) > X for all 0 € ©. For a fixed T, let

log M £ |(1 = C)ar inf D(p7 (0)]lp5'(9))T), (41)

and F : [1,M] — X7 be a random encoder such that F(1),--- ,F(M) are iid according to P{' with Py =
Bernoulli(ar) and ag as in (9).
Then, there exists Ty that depends only on dimH, (, and X such that forall T > Ty,

Pr(V0 € ©,P.(0) <2T7°) > % 42)

Proof. We first consider the compound cq-channel = — pZ (5) obtained by applying Lemma 1 to the compound
cg-channel = — pB2(#). By Lemma 2, for each 0 c O, the expectation of the probability of error with respect to

random coding is upper-bounded by
QZP St (pl) +4M > P ()t ((pB)gT rx), 43)

where T'y £ {ox —7vou,r = 0} [21]. To upper-bound the first term in (43), we split the summation into three parts
based on the weight of the codeword x. In particular, for two thresholds wy < Tar < w, < 2T ap, we obtain

with a Chernoff bound

Yo P (I < Y. P(x) (44)
x:wit(x)<wy x:wi(x)<wy
= ]P)PZ'T (Wt(X) < ’wg) 45)
w 2
< H(imm) Tor, (46)
and analogously
T —l(w—”—1)2Ta
Z Py (x)tr (px[x) < e 3\Tor . 47)

X:WE(X) > W,

To upper-bound the remaining terms, for () x ~ Bernoulli(p), let us define

é(s,p) 2 —(1—s)log | tr (Z Ox(z ( >>1_s> T | )

Then, by [21, Equation (18)], we have

Z P;c{T(x)tr(pxe) < Z P§T( ) min <T+1>d+sd(d 1)|Yd|23 sp=To(s,™ =) (49)
X:we KWH(X) Swy, xiwe<wi(x) <wy, s€[0,1]
< (T+ 1)dZ|Y:,’~i|2 max _ min 'yse_Td)(S’%). (50)

we [we,wy, ] s€[0,1]

We introduce a result bounding ¢(s, p) for small s and p.
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12

Lemma 5. For all X, 5,p € [0, 1], there exists a universal constant B > 0 such that for all cq-channels x v+ pB

with Amin(pF) > h\ and for all s <5 and p < p, we have
$(s,p) = sI(p) — Bps” + 5°), (51
where 1(p) £ 1(Qx, ps) with Qx ~ Bernoulli(p). Furthermore, for small enough p, we have
I(p) = pD(pf |Ip') — Bp®. (52)
Proof. See Appendix A. [
Applying Lemma 5 to (50), we obtain for all s small enough,

(T+ 1)d2|Y7¢11|2 max ,yse—Tqﬁ(&%) < (T+ 1)d2ly%i|2 max ’yse_T(SI(%)_B(%SQ"'Sg)) (53)

wE [we,w,, ] wE [we,w,y, ]

2 — wg — ﬁ we s
<(T+DYIVE? max A T(#sD(o? 108) =B (2 + 4 57+5°) ) (54)

we[we,wy]

, _ _ 2
S50(pf (B0 @)~k +55215° ) )

2 -T
< e (55)

To upper-bound the second term in (43), we use the operator inequality A{A > 0} > 0 for any Hermitian operator

A. Hence, we have for all x
(Ux - ’VO-U,T)FX t 0. (56)
This implies that

gl ByeT i BT
<JX_WUU7T+IW(CII)Y7L!|(/)) = a0 )Fx>0~ 7)

Thus, we have

v B\oT Y B\eT @
tr((OX—M(P ) )Fx> >tr<(70U,T_jM(d_1)|qu|(p ) >Fx) = 0, (58)

where (a) follows since by Lemma 3, (*yamT - W (p? )®T> > 0. Accordingly, we conclude that
T

d(d—1)|v-d
> P (%) 7 1) <« TP (59)

Substituting the derived upper-bounds in (43), we obtain

w 2 wy 2 o
Er(P.(0)) <2(6_5(1_T‘*@) Tor (1) Tor (1)@ v 2y

1 2esm( pB(9)) 0B (8)) — w? Wy (2 3 d(d—1)|yd
xe UCEGOHORIE 28 >>> an EE R 6o
v
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By choosing

wy = Tar — (Tar)F, 1)
wy = Toar + (Toz:p)%7 (62)
=[(1-5) er i pGE @I O)T] . (©3)
_ logT
s = o(y/ar) Nw( T ), (64)
we obtain
Ep(P.(0)) <2707, (65)

where the term —w(logT") depends on A, ¢, and dim #H. By Markov’s inequality and the union bound, we have

Pr (vée 8, P.(0) < 3|8|Ex (Pe(é))) > % (66)

By Lemma 1, \@)| is upper-bounded by a polynomial in T'. This together with (65) implies that 3|é|E F (Pe(g)) =
2-«00gT) Finally, by Lemma 1, for all § € ©, there exists 6 € © such that P.(0) < Pe(g) + T 5. Thus, for large

enough 7', we have

Pr(V0 € ©,P.(0) <2T7°) > (67)

Wl N

O

2) Universal resolvability result: We next prove an asymptotic resolvability result for covert distributions.

Lemma 6. Fix \ and ¢ in )0,1]. Consider a cq-channel x — pE with x € X = {0,1} such that Amin(p¥) > .
Define p£ = pF @ - @ pZ  for all x = (x1,-- ,xr) € XT. Let Px be Bernoulli(cr) where ar is defined as

in (9), M’ be an integer satisfying
M' > [(1+¢)arD (o7 |lp5) 1, (68)

and F : [1,M'] — X7 be a random encoder such that all codewords are distributed according to Py’ indepen-

dently. Then, we have

) < 27w(logT)’ (69)

e ([lo® - 057,
A

where the constant hidden in w(logT) depends only on (, X\ and dimH, pB 2 ﬁzf\g pE(i) and pF £

> Px (2)p7.

Proof. By [23, Lemma 9.2], we have

T 27y
Ep (1% - (05)" 1) < VorToten 422 (70)

where v is the number of distinct eigenvalues of (pE )®T, and for Qx ~ Bernoulli(p), we define

6(s,p) = log (Z P (@) ((pF) (pE)S)> : (1)
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For ¥ = aTD(pf||p0E>T + %CYTT, we have

2ys+Té(s,ar) + \/?\}l// < \/2saTT(E(PF|‘P§)+%+M;7?) + 27%O‘TTI/ (72)
o (s,a1)

(é) \/QS(XTT(]D(plEHpg;)+%+¢5aTT ) + \/2—%aTT(T + 1)dim HF (73)
¢4 elsaq)

. \/ZSQTT(E(,){E|\,;§)+2+ sop)) N %2—&1TT’ (74)

where (a) follows from [23, Lemma 3.7] and ¢ is small positive number.

Lemma 7. Fix § < 0, p € [0,1], and X € [0,1]. There exists a universal constant B > 0 such that for all

cq-channels x — pZ, p € [0,p], and s € [5,0], we have

¢(s,p) > —I(p)s — B(ps® — %), (75)
where I(p) = I(Px, p).
Proof. See Appendix A. O

Applying Lemma 7 to (74), we obtain

E E 2 2 3
C e(s.ar) T gy 8\, ¢, —orlrPlpf)s—B(adtaps2—s >)
\/2SO‘TT(D(P;EHP§)+§+ SQTT < \/QSO‘T <D(p1 o )+2+ saq (76)
saTT(%+4B(a2T+(:IT5752))
=\2 T (77)
By choosing s = o( /ar) N w(l}’%;r),2 the above expression goes to zero faster than any polynomial. O

Lemma 8. Fix ( and X in 10, 1[. Let =+ pE(0) be a compound cq-channel with x € X = {0,1} and 0 € © such

that for all 0 € ©, A\pin(p¥) > . Let Px be as in Lemma 6. Let M’ be an integer satisfying
M’ > [(1+ QJar sup D (o7 (9)]lp (6)) T, (78)
€

and F : [1,M] x [1,M'] — X7 be a random encoder such that all codewords are independently distributed

according to Pf’(T. Then, there exists Ty depending only on dimH, ¢, and X such that for all T > Ty, we have

M
P (ve co, % wZ::l Hﬁg — (pE0)°" (79)

2
3

RENE

~ M’
where p = ﬁ D1 Ple(w,,») and p* () = > Px (x)pg (0).

Proof. We again consider the compound cq-channel = — pf (5) from Lemma 1. By Lemma 6, for all 0 e é, we

1 M
= — E (80)
)= )

< 27w(log T)' (81)

have

T

= (F®)" )

2
2To find such s, it is required that /a7 = w( ?i;) or equivalently ar = w ((%) 3)
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By Markov’s inequality and the union bound, we have

~~1MAE E~®T ~ INIE E~®T 2 5
- - < — B >
Pr veeaMle\pw (P@) | <otz 3 |- (@) )) =5 @
Since |O| is upper-bounded by a polynomial in 7', we have
M
3 1 ~E 53\ T _ o—w(logT)
3O|Ep <M >k - (P (9)) 1) = 27w, (83)
w=1
Finally, by Lemma 1, for all § € ©, there exists 6 € © such that
M M
1 . T 1 ~\ T _
=3[ - P < S E- (@) | +T (84)
M w=1 ! M w=1 1
Thus, for large enough 7', we have
1 & o7 2
Pr(voco,— HAE— E(9))° ‘ <or 5| > 2 85
(e o 3 - 6o, : ®
O

3) Proof of Theorem 2: We are now ready to provide the proof of the main result of this section. Our code
construction is similar to [8], which uses wiretap coding to ensure the security of a covert message. Fix (, B ,
AE. DB and DF, and let © be an arbitrary indexing of all cq-channels z + p2¥ satisfying (17)-(20) for which
the corresponding cq-channel to 6 € © is z — pP¥(6). Considering the sequence {a7}r>1 as in (9), for a fixed
large enough T, let Px be Bernoulli(ar); let F : [1, M] x [1, M'] — X7 be a random encoder whose codewords
are iid according to P{’ that encodes two messages W and W’ uniformly distributed over [1, M] and [1, M’],

respectively, to a codeword X. By Lemma 4, for
log M +log M" = |(1 = Q)ar inf D(p7’[|pg) ] (86)
> [(1=¢)arDPT], (87)

we have

2

Pp (V0 € ©,P(0) <2T7°) > 3 (88)

where P,(0) is the probability that at least one of the messages W and W' is not decoded correctly at the receiver

when the cq-channel corresponding to index € is used. Moreover, by Lemma 8, for

logM'" = [(1 4 {)ar SggD(piE(ﬁ)IIpf(ﬁ))ﬂ (89)
< [(1+ QarD®TT, (90)
we have
1 X oT 9
Pr (ve co, MleD(ﬁEll (P"0)") < 2T—5> = o)
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where pE and p¥(0) are defined in the statement of Lemma 8. Inequalities (88) and (91) imply that there exists a

realization f of F' such that for all § € O,

P.(0) <2775, (92)

1 < T
®
> |78 - ("))
w=1
Hence, by Lemma 18, we upper-bound the quantum relative entropy between the induced quantum states and
5T
(07(0)" as

< 2775, (93)

‘ 1

1 & o7 dr
= DB (pF9) ) <27 log (94)
M Z:I ( ) (Amin (07 (9)))" 273
_ d 5logT — log 2
ot (g ST
Amin (P (0)) T
To lower-bound the minimum eigenvalue of p¥(6), we use Lemma 13 in Appendix B to obtain for large 7T,
)\mln(pE(e)) = )\min(anlE(a) + (1 - aT)pOE(Q)) (96)
> Amin((1 = az)pg (0)) = llarp? (0)|h O7)
> (1= ar)uin(p (8)) — ar 98)
\E
> —. 99
5 99)
Therefore, for some constant L; > 0 depending on d and \E , we have
M
1 “E| ( E(py\°T —4
= S DI (p"0) ") < LT (100)

w=1

To analyze the secrecy of the protocol, since there is no public communication and W is the key extracted at Alice’s

end, the information leakage to the adversary is

D(™ (0B @ plt) £ D(p EWIIpE®pK,Zf) (101)
(EWII )" @ lt) (102)
M T
®
- = o (pwll ©)") (103)
< LiT74, (104)

where (a) follows since there is no public communication. For the covertness, first note that by convexity of quantum

relative entropy, we have

(o1 (p70)") < = ZD( 0)") < 1T (105)

w=1

We can subsequently bound D(pEH (pg(e))”) as
D(oEl (o5 )" ) =D (p®1 (7)) +D( (7 @) " 1 (5 ©) ")+t (o7 = (" 0) ")
x (log (p7(9)) " ~ 108 (s(0)) ")) (106)
(o=l (o7 ) ") +D((70)" 1 (5 0) ")
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’1 T (log Anin (05 (0)) Armin (6)
(a)

(o1 (E0)T) +B((F0) " 1 (@) )+ [D(s21 (o5 0) )T

+ HpE — (0"(0)""

> (107)

1
8 <log /\min (pg(e))/\min (pE(Q))> (108)
<LT ]D)((pE(9)>®T I (o€ (9))®T) + VLT T log Amm(pg(o))lxmm(pff(0)) (109

. E T E T _4 1 1
=D((6"©®) " 1 (6§ (0)"") + LT~ + /L1 log soraEe s 0
® aZn(pf (0)llp5 (9)) 1
< L7 O VT + Lo T + LT~ 4 4+ /Ly log Tt (111)
2 e 7 Anin (05 Amin (07 ()
2 E E
e il (g)H”O O) 7 4 LyodT + LT+ 2/T1 log %T—l, (112)

where (a) follows from Pinsker inequality, and (b) follows from [13, Lemma 1].

B. Covert Quantum Tomography

1) Instantiation of a covert estimation protocol: We now detail how Alice and Bob can covertly form estimates
of D(pP||pf) and D(p1" ||p""). If the channel from Alice to Bob is £4-, 5, the goal of the estimation phase would
be to first verify the conditions (12) and (13), and if they hold, to estimate DP(£) £ D(Ea—p(p1)||Ea-5(pE))
and DF(£) £ D(5_, 5(pH)IIE€5_ 5(p5'))- The protocol will be aborted otherwise. We shall use standard quantum
tomography [20] and adapt it to be covert. We start the description of the estimation phase by formally defining
an estimation protocol. Suppose Alice and Bob have access to private randomness R distributed according to Pr
over R and use T” channel uses for the estimation phase. The estimation protocol consists of an encoder function
f:R — D(H)T' for Alice, a POVM M, = {M]};cs for each r € R applied by Bob to his received state
pB when R = r and results in an output j in J the set of all possible outputs of the measurement, one function
H :J — {0,1} used by Bob to verify that (12) and (13) hold, and two estimators DB . J — R and DW . J—R
used by Bob to form estimations of D(£4-5(p1)||€a—5(pg)) and D(E5_, 5 (p)IIES_ (05 ). respectively.

We now explicitly instantiate a covert estimation protocol. Consider any number of channel uses 7" and any
quantum channel € : £(H) — L£(H) where H is a d-dimensional Hilbert space. Let Ey, - -- , Bz be defined as
Ed(n_1)+m 2 |n)(m| for an orthonormal basis |1),- - - , |d). Our goal is to estimate £(E,,) for all n € [1,d2] from
which we would have a complete characterization of the quantum channel £. To do so, the main idea is that Alice
would send some states through Pulse-Position Modulation (PPM) to Bob for which Bob performs quantum state
tomography. More concretely, Alice and Bob first agree on two integers ¢ and £ such that g¢ < T” and sample an
iid sequence Uy, --- , U, from their private randomness, where each U; is uniformly distributed over [1, ¢]. Alice

then transmits the innocent state pj' on the i*" channel uses unless

i€T2{ULUy+¢q, -, U +q(f—1)}. (113)
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To determine the state that should be sent by Alice on the positions in Z, let us define the vectors

A +
). £ 122 (114)
In,m)_ = |n>+\/%|m> (115)
and consider pure states
S = {In,m)s(n,mls :n#m}U{|n,m)—(n,m|- :n#m}U{|n)(n|:ne[1,d]}, (116)

where |S| = 2d? —d. On the positions in Z, in an arbitrary but known order, Alice transmits each state in S [£/|S]]
times. Then, for each state p € S, Bob receives |¢/|S|| independent copies of £(p), and performs a POVM defined
by {p,1 — p} for each operator 5 € S, £ £ ||¢/|S||/|S|] times. Let N(p,5) be the number of times the result
of the measurement {p, I — p} on £(p) corresponds to p and let f(p, ) £ N(p,p)/l. Bob subsequently estimates
E(p) for each p € S as

— 7 ~

— Flo. Im) (n])

= 3 ] . ln ) k) = i bnm) ()~

n#m
11—+
2

7o, m) m|)+2n wlFp, Iy al). (117)

Since {E] . j € [1,d?]} is an orthonormal basis for £(H), we can write &(p) £ > Ej)\pyj for some unique Xp,j.

Then, for n,m € [1,d], we define
- Elln. m)p(mml) + (|, m) _(n.m| ) — SFE(In)inl) — HEE(m)(ml) 0 #m,
E(In)(nl) n=m,
(118)
which is enough to characterize a quantum channel. We can similarly write £ (Ed(n 1 +m) Z E; Ad(n—1)+m,j

for some unique Ag(;,—1)4m, ;- We next attempt to form an estimation of the chi-representation of the channel £,

{x;jx}- By [20], for some fixed li?:;ekl,

= > w73 A (119)

J’ .k

We thus define X, = > 4/ /@g ¥ \js 4. Finally, for some 7 > 0, we define

HA n{Amin(@ >3 — 7 and Amin (E(pd)) = AB — T} , (120)
DB 2 D(E(pMIERE)) — (121)
D” 2 D(E%pmé%pg‘)) +7 (122)

The next theorem establishes bounds on the performance of the described covert estimation protocol.
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| Protocol correctly aborts with high probability

Protocol correctly continues with high probability

Protocol may or may not abort, but no compromise in
reliability, secrecy, or covertness

— Estimation threshold

)\min(X)

/\min (pOB)

Figure 3. Testing the conditions (12) and (13)

Theorem 4. There exist & > 0 that depends on T, d, XX, \B , and \E such that

¢ (dimHF
D" 1|(o5) © pumy) < ( 5~ 1) , (123)
P(H = 0Dmin() = 3, Auin (o)) = XF) < 277, (124)
P (H = 1 min () < M — 27 of Amin(E(p2)) < AB — 27) <o¢n, (125)

and

P <DB(E) — 27 < DP < DB(€),DP(€) < D < DP(€) + 27 |
Amin(X) = N — 27, Amin (E(p)) = NB — 27) >1-27¢  (126)

We shall prove Theorem 4 in Section IV-B2. Note that (123) characterizes the covertness of the estimation
protocol by bounding the relative entropy between the state induced by the estimation protocol and the state in
which there is no communication. (124) and (125) characterize the robustness of estimation since (124) bounds
the probability that the channel satisfies the required condition (12) and (13) but Alice and Bob abort the protocol
while (125) bounds the probability that Alice and Bob run the key generation phase but the channel does not satisty
the required conditions. Finally, (126) characterizes the accuracy of the estimation by bounding the probability that
the estimated parameters of the channel are close to their true values.

As depicted in Fig. 3, there is a technical subtlety in verifying (12) and (13) because the channel estimation error

obtained in finite number of channel uses prevents us from testing with absolute certainty that (12) and (13) hold.
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In other words, there could exist a set of channels for which, based on the estimation error, Alice and Bob may
or may not abort the protocol; regardless, the protocol ensures that if the key generation phase is executed, it is
reliable, secure, and covert.

We conclude this section by analyzing the performance of a covert key generation protocol obtained by combining
the covert estimation protocol with the universal code introduced in Section IV-A. More precisely, Alice and Bob
first perform the described estimation protocol P over T” channel uses. Using O(logT") channel uses and O(logT")
bits of private common randomness, Bob transmits the one-time-padded H, ﬁB, and DV over the public channel.
If H = 0, Alice abort the protocol. If H = 1, after obtaining DB and DF , Alice and Bob run the universal code
Cr introduced in Theorem 2 for DB = DB, DZ = D, and the lower-bounds on the minimum eigenvalue of p3
and p¥, B —2r and XE, respectively. The rationale behind the conservative choice for the minimum eigenvalue of
p& is that, because to the estimation error, Alice and Bob might accept the channels for which Ay, (pf) is slightly
less than \ B. We characterize the reliability, secrecy, and covertness of the overall protocol in the next lemma and

provide the poof in Section IV-B2.

Lemma 9. For all channels E4_,p if we only know Amin(ES_, 5(p3')) = XE, we have
P, <P(H =1), (127
S<P(H=1) (Tlog XLE + zma") : (128)
C <P(H =1)Tlog %E ¥} (129)

where L1, Ly > 0 depend on dim H” and NE, and (™2 is the maximum length of the key.
In addition, for a quantum channel £ ,_, g with /\min(é’ﬁlﬁB(pé)) > N and /\min(EA_,B(p()“)) > \B 27, and an
estimation protocol P, define ¢ = ]P’(H =1 and (DB(£) < DB or DE(E) > EE)) and § 2 D(pEW||(pF) ® piss).

For the protocol described above, we have
P, <2T7° +¢, (130)
1 .
S<LT*+e (T log E + fm"x> , (131)

o < et 9)les' (6))
2

2 1
T+ LooT + LT~ +2/L, log X—ET*1 +6TlogX—E + 6. (132)

2) Proof of Theorem 4 and Lemma 9: To show that the desired parameters of the channel are approximated
properly by their associated estimators, we first show that the estimated channel & defined in (118) is close to the

true channel &, i.e., for all j and k, with high probability, A, s is close to A; j £ tr (E;E(EJ))
Lemma 10. For all v > 0 and kmax = max; k. j i/ |/£§:,;k/|, we have

]P’(Elj,k g — Al = ’y) < 16d%e 07 (133)

and

T2

P(3j, k< [Xjk — Rjk| > @*Kimaxy) < 16d"e" 7017, (134)
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Proof. We only prove (133) as (134) then follows from the definition of X; ;.. Notice first that, by our construction,
the distribution of N (p,p) = Zf(p, p) is Binomial(tr (p€(p)) ,Z) for all p, p € S. Therefore, Hoeffding’s inequality
yields for all v > 0 that

P(17(p.7) = w(PE(P) | > 7) < 2exp—20%, (135)

For all n, m, n’, and m’, using the equality

1+i|n>(n|— 1+1
2 2

Ed(n,le = |n,m)(n,m| +in,m)_(n,m|_ — |m)(m], (136)

we expand \;j and Xj,k in terms of tr (p€(p)) and f(p,ﬁ), respectively, and apply (135). More precisely, by

definition of Ag(y—1)4m,d(n'—1)+m’> W€ have

Ad(n—1)+m,d(n'—1)+m' = (Efzw_nm/g (Ed<n—1>+m)) 37
=t (Bl 1y € lImm) s nml ) it (Bl i€ m) G, m] )
14+ = 140 (=
- tr(Ed(n,_1)+m,g(|n><n|))—Ttr(Ed(n,_1)+m,5(|m><m\>). (138)

We now fix n/,m’ € [1,d] and p € S and for simplicity, let 7 £ d(n’ — 1) +m’, |a) = |n/,m') ¢, |b) 2 |n/,m’)_.
Then, by (136),

1—14 1—4

t ([n)(n|€(p)) —

tr (Ef(p)) = tr (Ja}{al€(p)) — itr (1) (BIE(p)) - w(m)(ml€(p)).  (139)

Therefore, we obtain the upper-bound in (140).
P(135 - (Es(0) 1 > 7)

=P (1 labal) = i 19 00) = =5 Tl ') = 25 Tl by ') = e (B 0)) 2 1)

2

N Y N Y
<P(IF(p.la)(al) = tr (la)(al€(@) | = T ) + P (17 (o, D) 0]) = (B)BIE(R)) | > 1)+
4 4 (140)
P(|f(p, |0y (n']) — tr (|0 (| E 27)+]P’<A,m/ m'|) —tr (|m/Y{(m/|E >’y>
(|f(ﬂ| Hn'[) =t (jn) (n'|E(p)) | WG [f(p, Im)(m']) — e (jm")(m|E(p)) | Wi
< 4e_é272.
Similarly, to analyze the second term in the right hand side of (117), we have
P(IF(p, Iy (']) =t () ' [E(p)) | > 7) < 72", (141)
Thus, the union bound implies that
]P’(Elj A —tr (Ejg(p)) | > 7) <d(d—1)4e 0" 4 ge20" L 4qre 40", (142)
Moreover, because we have
~ =~ ~ T 1+ic
Ajk = Aayalk T I b1k — 5 Ay (/b = 5 A |k (143)
we obtain
P(3j.k: gk = Njgl =) < 16de 700", (144)
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Lemma 11. For any p € D(H) and 0 < v < /Zlm%f:(), we have

PI€(0) = Ep)lh > d®rimaxy) < 16155577, (145)

& d"® K ax Amax (P) V Amax (X)7? L 7.2
PIE(p) = EX(p) |1 > — o < 16d"e” 7, 146
<| () = E(p)ly >~y e s ‘ 146)

where p = Zj,k tr (EJPE;Z) |7) (k.

Proof. Using the triangle inequality, we obtain

€)= EP)l = ||D_ EipElxn — D EipElR)n (147)
7,k 7,k 1
<X | BBl b = Rl (148)
7.k
<D Xk — Xikl- (149)
7,k
Furthermore,
1<) = E(p) 11 = VX" PVX" = VX BV I (150)
= VXWX = VX = (VX = VXX I (151)
<IVXBVX = VI + VR = VvXOAVE I (152)
(a) % « — < —* %
< O'maX(\/% ﬁ)”\ﬁ - \/;Hl +‘7maX<p\/;< )H\/g VX ||1 (153)
< () (A (V) + Aanax(VR)) IV = VR (154)
(b) — =
< Onax(7) (20max (V) + VX = VRIL) VX = V1. (155)

where (a) follows from Lemma 16 in Appendix B, and (b) follows from Lemma 13 in Appendix B. To upper-bound
[ vX — /X1, let us define F(z) £ /X + (X — X); then, we have

VX = VXl = IF(0) = F(1)|lx (156)
< sup ||F'(2)|s- (157)
z€[0,1]

Applying Lemma 17 in Appendix B for f(u) = (/i and A(z) = x + z(X — x), we obtain

d
IE" (@)l = || 7 f (A=) (158)
1
< sup d*f (m)lllx = Xl (159)
LE[Amin(A(Z)),Amax (A(z))]
1

_ sup & \ I — 5l (160)

EPmin(A(@) Amax(A@)] | 2V

Ay - %

”X XHl (161)

T 2 m(A(2)
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Moreover, by Lemma 13, we know that

Amin (A(2)) = Amin (X + 2(X — X)) (162)
Z Amin(X) = IX = xl|1- (163)

Hence, we have
IR - VRl < ——tdx =X (164)

24/ Amin(X) — X = xIh
If for all j, k, we have |x;x — Xj&| < d?Kmax, then ||x — X||1 < d®Kmaxy. Thus, (134) yields the upper-bound

R 9 9 1 5.2
p(11e(0) — E (o)l > d” KmaxYAmax (P) 2 Mo () d” KmaxY < 164 D",
2\/)\min (X) - d5"€maxfy 2\/)\m1n(X) - d5f€max7

(165)
O

Proof of Theorem 4. Covertness analysis: Let pP° denote Eve’s state during the channel uses from ¢(i — 1) + 1 to

qt. Since, Uy, --- , U, are independent, then

(") (o)) = im(p?n (oF)™). (166)

We now focus on the block from channel use g(i — 1) + 1 to ¢i. Define 7 as the state sent by Alice on the position

q(i — 1)+ U; and p(j) £ (p{f)aj_l) Rp® (p§)®(q_j). One can check that pf” = ¢ >79_, p(j). Thus, we have

D(oFl (o)) € (pF)z((pﬁ)m)_l) -1 (167)

(;ijp(j) ((p(’f)“)f1 -1 (168)
1 ! NVt oq) "1

= 235w (e (68)°7) ). 169)

where (a) follows from [24]. Note that for j < 5, we have (173).

w (00 ((68)) ) = ()7 0 () ) ((68) T 0o () ) (6)) )

(170)
= ((p5)®(“) ® (70§ (o) ") @ (o) @ (op (o) ) @ (pg“)@(”))
171)
=tr(p)tr (ng (,053)71) (tr (P(J)E))q72 (172)
=t (173)
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~ ~ -1 ~
Similarly, one can show that for 5 > j, we have tr (P(j)p(j) ((pOE)®q> > = 1. Furthermore, when j = j, we

have
tr (p(j)p(f) ((p5)®q> 1) =t (((p5)®(j_l) RP® (p§)®(q_j))2 ((p5)®q> 1) (174)
= (o) e (77 (o)) @ (o)) (175)
= (7 (65) 7)) o) (176
—u((7 (o) 7)) (177)

Therefore, we obtain

iz qu:tr (P(J’)PG) ((p§)®q)_1> 1= % (q(q — 1) +qtr ((52 (pg)*l))) —1 (178)

¢S q
(o) -
(o)

Error analysis: To prove (124) and (125), it is enough to show that

~

P (Ponin(0) — Amin (D] < 7 and Pain(E(0) — Amin (E(p1)] < 7) > 1 - 27 (181)
To this end, note that
. (@) ~
P (| Amin (X) = Amin (D) < 7) = P(Ix = Xll, <7) (182)

®) ~
> P Z X5k — Xk
ik

<7, (183)

where (a) follows from [25, Lemma 11.1], and (b) follows from the triangle inequality. By (149), we also have

P (IAmin (E(0)) = Mmin AN < 7) <P Pse = Ryl <7 | (184)
4.k

Using (134), we thus obtain

~

~ - 11 2 r?
P (IAmm(x) — Anin ()] < 7 and Anin(€(p3')) = Amin (E(p§))] < T) >1-16d'e ™ Fa . (185)

We now establish bounds on the accuracy of the estimates DB and D when Amin(X) = X — 27, Amin (€ (p()“)) >

AB — 27. We choose € > 0 small enough such that

log(d — 1 1 d?
B G S — _ +H, (f) <7 (186)
2 min(AB — 27, AF)  min(AB — 27, \F) — ¢ 2

By Lemma 14, we can choose v > 0 independent of A;,.x() such that

dﬁﬁmaxry g €, (187)

A" 3 Amax () v/ Amax 007* _

< 1
2 ()\min(X) — 27 — d5"€max’7) ‘ ( 88)
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By Lemma 11 and Lemma 19, we have

~ ~

P (DB(E) —27 < DB < DB(€),DF(E) < DF < DF(&) + 27) < 32dte~ 707, (189)

£

Since ( > F;d;l — 1, we can choose ¢ > 0 small enough such that the above upper-bound is less than 27¢¢. [J

Proof of Lemma 9. We only prove the second part of the lemma and the proof of the second part can be obtained
by the exact same approach. Let P,(D?, D), S(DE, D), C(D?, D) indicate the probability of error, secrecy,
and covertness of the protocol discussed in the proof of Theorem 2, respectively, when we use the parameters D

and D¥. By the law of total probability, the probability of error of the overall protocol is

Epope (Pe(f)B, EE)) - E(PE(EB, BE)|A)]P>(A) +E (Pe(ﬁB, f)E)|AC)IP’(AC) (190)
(@) S

< 2T 5 + ]E(PE(DB,DEHAC)IP(AC) (191)

<2775 4 ¢, (192)

where A 2 {DB < DB(€),DF > DE(£)} U {H = 0}, (a) follows from Theorem 2. For the secrecy, first note
that the estimation phase does not leak any information about the key. Furthermore, by convexity of the quantum

relative entropy, we have

S <Epsps (S(DF,DF)) (193)
( S(DE, DF) |A) (A )+]E(S(l33,ﬁE)\AC)IP(AC) (194)
a) I
< LT+ ]E(S(DB,DE)\AC)]P’(AC) (195)
(b) —4 1 max
< LT+ (TlogXE 0 > ¢, (196)

where (a) follows from Theorem 2, and (b) follows from the upper-bound S < T 'log ;% + ¢™2*_ Finally, for

covertness, since the estimation and transmission phases are independent, we have
C<6+Epspe (C(ﬁB,ﬁE)). (197)

Similar to secrecy, we also have

SN P 1
]Ef,BﬁE(C(DB,DE)) ofn(pi (2)||p0())T+L2a3TT+L1T4+2\/L110gXET1+eTlogXE. (198)

O

C. Proof of Theorem 1

We describe a protocol running over 7' > 0 channel uses. Let 7" = L\/? | and T = T—T'—O(log T"). Alice and
Bob use the first 77+ O(log T") channel uses for the estimation protocol described in Section IV-B1 for parameters
q and ¢ to obtain H as well as estimates DP(€) and DF (). If H = 0 the protocol is aborted and if H = 1, the

rest of T' channel uses will be used for transmission using the universal protocol as described before for DB R DE s
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B — 27 and AW For a channel satisfying Amin(X) = AX — 27, Amin (E(p81)) = AB — 27, by applying the second

part of Lemma 9 and Theorem 4, for some £ > 0, we have

P, <2775 +27¢, (199)
1
S < LT +27¢ (T log =2 + emaX> , (200)
2 E E . E
aTW(Pl (H)HPO (9)) 3 —4 2 -1 —¢r 1 g d1m7—[ _
C < 5 T + LyoiT + Ly T~* + 2y/Ly log —XET + 27T log 55 + q( <5 1).

(201)

One can check that if £ € w(logT) No (aTT_%), which is non-empty by definition of ar, we can always find
the sequence e satisfying the conditions in Theorem 1. If the channel satisfies Amin(X) > XX, Amin (€ (p(j‘)) > XB,

by (124), with probability 27¢¢, the number of transmitted bits is lower-bounded by
(1—2¢)(DB(E) - DE(E) — 27)arT. (202)

If the channel does not satisfy Amin () = XX, Amin (E(p3))) = \B , by (125) and the first part of Lemma 9, we have

P.o<27%, (203)
1

S <278 (T log — + em“> , (204)
)\E

1 im HP
O <2 l0g L 4 LA gy (205)
AE g \E
but no key is generated.
CONCLUSION

We prove the existence of covert secret key expansion protocols that achieve the square root law for a wide
range of quantum channels. Our security measure is more stringent than that of traditional QKD as we require
that the adversary be unable to detect the execution of the protocol in addition to obtaining negligible information
about the key. Our result is obtained by combining an undetectable covert tomography protocol and universal covert

communication codes over cq-channels.

APPENDIX A

ERROR EXPONENT CALCULATIONS

Proof of Lemma 5. Consider any cq-channel x +— pf with )\min(pg ) = Amin > 0. We first show that the

corresponding function ¢ is smooth enough to use Taylor theorem. Let us define

Als.p) 2 (1=p) (o8) 40 (08) " 9) (206)
mM@éQ%Mfﬂﬁ) (207)
Pz, s) 2 —(1 — s)log(x). (208)
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By definition, we have ¢(s,p) = (¢ o g o A)(s,p). Additionally, all these three functions are from a subset of
a Banach space to a Banach space, which means that we can consider their Fréchet derivative. In the following

lemma, we show that they are infinitely many times differentiable.

Lemma 12. The functions A, g, and v are infinitely many times differentiable on

[0, 1[x[0, 1], (209)
{M € L(H) : M is Hermitian, M > 0} x [0,1], (210)
[0, 1[x[0, oo, (211)

respectively.’

Proof. We investigate each function separately.

« Differentiability of A: It is enough to check the differentiability of A;(s,p) = (1 —p) (p(’):g)l_S +p (pf’)l_s.

We shall provide explicit expressions for all partial derivatives of A; to any order. For any Hermitian operator

p € L(H) with p = 0 and p # 0, let p = >°_ Ac|e)(e| be an eigen-decomposition for p. We define log p =

> ennz0108(Ae)le)(e], which is different from the usual definition since we disregard the zero eigenvalues.
With this definition, one can check that for any ¢ > 1, we have

di

dst

(') =p' " (—logp)". (212)

Hence, using the linearity of the Fréchet derivative, if we take ¢ partial derivatives with respect to s and j

partial derivatives with respect to p at any order, the result is

(1=p) (p8)" " (—logp) +p (pP) " (—logpP)"  j=0,
— (P8)"" (—10gpB)" + (pF)" " (~ log pP)’ j=1 (213)
0 Jj =2
This also means that all partial derivative are differentiable and therefore continuous. Accordingly, A; is
infinitely many times Fréchet differentiable.
« Differentiability of g: Again we only check the differentiability of g; (M, s) £ tr (M 1%) In this case, it is

more challenging to obtain a closed-form expression for partial derivatives. However, we will prove that any

partial derivative is a multilinear form mapping (Ki,---, K,,) € L(H)™ to R and is a summation of terms
of the form
q(s)
(1p(3)),tr <K1 oo Ky M@= (log M)"') , 214)
— 8 7

where ¢ and p are polynomial in s, and ¢, j, and k£ are non-negative integers. Using induction on the total

number of partial derivative taken and linearity of the derivative, it is enough to show that if we take the

3For the boundary points we consider the one-sided derivative.
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derivative of (214) with respect to s or M, we would have an expression that is a summation of term of the
same form. Applying the rules of differentiation, one can check that

9 ( p(s) e k p(s) (Ja(s) + (1 = 5)¢'(s))

— tr | Ky - Ky M =27 (log M = -

as<u—sy ! (log M) (1 — syttt

ip(s) + (1 = s)p'(s)
(1— s)itt

% k+1 % &
xtr{ Ku-o- KM 0= (log MY™ | + tr (K- K MO-97 (log M)* ), (215)

and
3< p(sl tr <K1--~KmM<1q(?>j(logM)k>> _ ke P al)

(1—=s)" (1-s)
q(s) ey K e k-1
oM (log M)* + kM T==7 " (log M) . (216)

xtr(KKl--~Km(

Therefore, g1 has partial derivatives of any order. Using the same argument that we used for A;, we conclude
that g; is infinitely many times Fréchet differentiable.

« Differentiability of «: ¢ is product of two smooth functions (z,s) — —(1 — s) and (z,s) — logx, and
therefore, it is smooth on its domain.

O

We next check that A(s,p) lies in the set {M € L(H) : M is Hermitian, M > 0} where g is differentiable. By
our assumption that Apin > 0, pf is positive semi-definite, and so is (pf )173 for s € [0, 1[. Furthermore, since
pP = 0, we have A(s,p) = 0 for all (s,p) € [0,1[x[0,1]. Thus, by the chain rule, ¢ is a smooth function on
[0,1[x[0,1[. Apply Taylor’s theorem, we have

0¢(0, 19%¢(0 103
¢(0.p) - 19°6(0.p) »  10°¢(n.p) 4

= 217
¢(57p) ¢(Oap) + s s+ 9 92¢ 6 O3s ’ ( )
for some 7 € [0, s] that can depend on s. Similarly, we have
2 2 3
9(0,p) _ °¢(0,0) , 9°9(0,7) | (218)

02s 0?5 02s50p
for some 7 € [0, p]. Additionally, one can check that A(s,p) and all its derivatives depend continuously on pZ and

p¥. Since any continuous function achieves its maximum on a compact domain, we have

330
sup % 0, (219)
T€[0,5],pB €D(H),pP €D(H): Amin (pB) =X SO0p
3
sup 8%&"’”‘ < 0. (220)
n€[0,3],p€[0,],08 ED(H),pP €D(H): Amin (pB) X s

Moreover, from the definition, one can check that ¢(0,p) = 0, % = 0, and by [21], % = I(p). This

implies that there exists B > 0, such that for all cq-channels z 5 pB with Amin(pZ) > X, we have
¢(s,p) = I(p)s — B (ps* + 5°) . (221)

Furthermore, using the same approach, we can prove I(p) > pD(pf||p¥) — Bp®. O
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Proof of Lemma 7. If we define

A(s,p) 2 ((0=p) (o) " (o)) (1= 9D +po¥)” (@22)
g(M) £ tr (M) (223)
Y(x) £ log(x), (224)

similar to the proof of Lemma 5, one can check that all these functions are infinitely many times Fréchet differen-

tiable. Since, ¢ = 1) o g o A, the rest of proof is exactly similar to that of Lemma 5. O

APPENDIX B

TECHNICAL LEMMAS

Lemma 13. Suppose A and B are Hermitian in L(H). Then, we have

Amin(A) > Amin(B) - ”A - B||2 > Amin(B) - ”A - B”l (225)
)\max(A> g )\max(B) + ||A - BH2 < )\max(B) + ||A - BHI (226)

PVOOf: If )\min(A) £ A< S A\ £ Amax(A) and )\min(B) £ s
A and B, respectively, then by [26, Corollary 6.3.8], we have |A — B|?

4 = Amax(B) are the eigenvalues of

d .
|A— B3> > (X —7)* which

\VAR/AN

results in the desired bounds. O

Lemma 14. For any quantum channel £ : L(HA) — L(HA) with chi-representation matrix X, we have Amax(X) <
Vd, where d £ dim(H4).

Proof. Since x is Hermitian, it admits an eigen-decomposition representation, i.e., for some unitary matrix U and
2
real values o1,---,042, we have x;; = 2221 d;U; 1 US . By [20, Eq. (8.168)], £ has a Kraus representation
2 2 ~
E(p) = Zle EipE! for E; = \/o; ijl U; i E;. We hence have

d2
1B, = voi| Y UiiE; 227)
j=1
2
d2 d2
=va [w [ | Y U B | > Uy By (228)
=1 =1
d2 d?
= Vo | Up Uy (BB ) (229)
\ j=1j'=1
42
— o | YU (230)
j=1
< e (231)
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2
where (a) follows since U is unitary. Because & is a quantum channel, we have Zle EJ E; = I. Taking the trace

from this equality, we obtain that
d? d?
d=t ()=t (Y EIE | =Y |E]5. (232)
i=1 i=1
Using (231) and (232), we conclude that
Amax(x) = max A; < || B, < V. (233)

i€[1,d?]

O

Lemma 15. Consider any quantum channel € : L(H) — L(H) with dimH = d and characterized by E(p) =
Zij E‘ipE;Xij. Define another Hilbert space HE¢ spanned by an orthonormal basis {|j) : j € [1,d?]}. Then, up

to a unitary transformation, the complementary channel £ : L(H) — L(H®) would be

E(p) = VX VX, (234)
where
X2 1) Kl (235)
7.k
723 1) (ke (EjpE,i) . (236)
ik

Proof. By [20], without loss of generality we can assume that x is Hermitian. Therefore, let x = > d;u;)(u;|
be an eigen-decomposition of . For E; £ 57, \/d; (k|u;)E, we have

SEIEE S VNN I @)
7 k k'

J

=37 EwpBld;(kluy) (u|¥) (238)
E K

=S EwpBL K| Y dylug) ] | 1K) (239)
k Kk’ j

=Y " EwpE] (k|xIK) (240)
k Kk’

- Z Z EwpE], Xk (241)
k Kk’

=&(p). (242)

This implies that ) j EjpEJT is a Kraus representation for £, and therefore, by [19], a representation for the

complementary channel is

Ep) = (EspE]) 1) k. (243)

Jik

Hence, it is enough to show that for some unitary operator U onto H¢, we have

VX' VX = UE(p)UT. (244)
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Let U & > lag) (5| where [u;) £ 3°.{u;]i)|i). One can check that it is a unitary operator, and we have

UE(p (ZW ) (Ztr (EkaT,) |k) k) (Z 15) (@ |) (245)

Kk’

= > (BB ) ) GlRYK 1) iy | (246)
Ji'kk’

- (Eka,L) | (T | (247)
kk'

=Y ( (Z \/@<j|uk>Ej> p (Z i (g |j’>EJ-,>) k) (i | (248)
Kk’ j i/

= 3 Vot (Glud |V EspE ) i) G| (249)
JJj'kk’
—Ztr( EgpE},) S/ dior/dor () (ape 1) i) G| (250)
kk’

—Ztr( i0E), )(; \/@<jluk>|«7k>> (; @<uwlj’><akf|> (251)
= Ztr( EjpE}) (Z Jd?@kum) (2 mg’m»@m) (252)
(Z Vi) Ukl> (Z (EsnE] )j><j’|) (Z @mmwm) (253)

)

= XX (254)

Lemma 16. Let A, B € L(H) and B be Hermitian. Then,
[ABIl1 < omax(4)[|Bll1, (255)

where omax(A) is the maximum singular value of the A.

Proof. Consider an eigen-decomposition of B, i.e., B =), b|b)(b|. Then,

o)

<D [blIAB) (bl 257)
b

Z |b|tr ( ) (b ATA|b) (b |) (258)
= |bly/(b|ATAD) (259)
b

|AB|, = (256)
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=3 pllAR - (260)
b

< Tmax(4) (Z |b|> (261)
b

= Omax(A)|Bl|1- (262)
O
Lemma 17. Let Z C R be an interval and f : T — R and A(z) : R — L(H) be differentiable functions

such A(x) is Hermitian and its spectrum is included in T for all x. For any operator norm || - || satisfying

max(||PA||, ||AP||) < ||A|| where A is an arbitrary operator and P is a projection, we have

Proof. We use a formula in [19] for the derivative of an operator-valued function. Let f : R — R and A(z) : R —

L(H) be a differentiable functions. Then,

<& sup L' ([IA" ()] (263)
Qe [Amin (A/(-T))vAmax (A/ (T))]

d i
L (AG)

z'=x

e
F(AG)

= Z fm(u7 M) Paey(V) A (2)Pay (1), (264)

T=r oy
where the summation is taken over all eigenvalues of A(x), Pa(,) () is the projector onto the subspace of all

eigenvectors corresponding to v, and

Oty

M =9 " (265)
f'w) v=n
We can now upper-bound the norm of -L f(A(x)) by
d ) ,
g fAEn| = 2; PO, n) Pag) () A' (2) Paga) (1) (266)
< Z | )| | Page) (V) A (2) Pagsy(n) | (267)
v
(a)
< DM@l A @) (268)
2

where (a) follows from our assumption that max(||PA||, ||AP]|) < ||A||. By the mean value theorem, we also have
that (v, 1) = f'(u) for some u between v and 7. Thus,
SO 1A @) < d sup [F ()| A ()] (269)
v HEAmin (A (2)), Amax (A’ (2))]

O

Lemma 18. Suppose p and o are two density matrices on Hilbert space H with dim H = d such that suppp C suppo

and ||p — o||1 < e < e L. Then,

d
D(pllo) < log ;——- (270)

min (U)E ’
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Proof. Since supp(p) C supp(c), we have

D(p[lo) = tr (p(log p — log 7))

— —H(p)+ H(o) — t((p— 0) log )
(a) d
< elog— —tr((p—o)logo)
€
<elo d +€lo
~ € - € N/ \
& & Amin (0)

where (a) follows from Fannes inequality.

33

(271)

(272)
273)
(274)

O

Lemma 19. Suppose p,p' 0,0’ € D(H) with dimH = d, supp(p) C supp(c), and supp(p’) C supp(c’). Let

lp—0'lli <e

o—c'|l1 <& and Ain(0) be the minimum eigenvalue of o with Amin(c) > €). Then,

D(ollo) ~D(eIo") < ¢ (“EGTH o+ dtog s )

2 )\min (J)) )\min (0

Proof. By definition, we have

ID(pllo) = D(p'llo")] = | = H(p) + H(p') — tr (plog o) + tr (p' log o’) |

< | =H(p) +H(p') [+ |tr ((p — p') log o) | + |tr (p'(log 0" — log 7)) |.

By Fannes inequality, we have

1 1
|~ () + 5 | < 3o o logtd — 1)+ (310~ 11 ).

Furthermore, Cauchy-Schwartz inequality for Hilbert-Schmidt inner-products implies that

ltr((p = p')1og o) | < llp = |2l log |2

< llp = ¢'lhlllog o]l

1
<|lp = p'll1dl .
llp—p'll1dlog Nomin (@)

Using Cauchy-Schwartz again, we obtain

|tr (p'(log o’ —log o)) | < [|p'[l2]|log o’ —log o ||z

< |[logo’ —logalla.

To upper-bound || log o’ — log |2, let us define F(z) £ log(c + (o’ — o)) for t € [0, 1]. Then,

[logo” —logally = [IF(1) — F(0)[2

(a)
< sup || ()]
z€[0.1]
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(276)

277)

(278)

(279)
(280)

(281)

(282)

(283)

(284)

(285)
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where (a) follows from mean value theorem of multi-variable functions. Applying Lemma 17 for f = log and

A(z) = 0+ z(0’ — o), we obtain

[F'(z)]2 < d® sup [f'(0)]]|A"(z)]2 (286)
nEla,b)
1
< d? g 287
/\Irlin(0+x(0/_0))||a UHQ ( )
1
<d? lo" = a1 (288)

Amin (0 + 2(0! — 7))

Finally, for z € [0, 1], we have

[1]
[2]

[3]
[4]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]
[16]

Amin(0 + 2(0" — 7)) < Ain(0) — ||z(0” — 7)]|2 (289)
g )\nlin(g) - Ho—/*O—HL (290)
O
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