
New Replay Attacks on ZigBee Devices for
Internet-of-Things (IoT) Applications

Mohammad Shafeul Wara
Dept. of Electrical and Computer Engineering

University of New Hampshire
Durham, NH 03824, USA
mw1260@wildcats.unh.edu

Qiaoyan Yu
Dept. of Electrical and Computer Engineering

University of New Hampshire
Durham, NH 03824, USA

qiaoyan.yu@unh.edu

Abstract—The ZigBee wireless technologies have been widely
applied in Internet of Things (IoT) applications. Among all
identified security threats, replay attack is one of the major
challenges. Although the firmware and authentication algorithms
for ZigBee devices are being updated over the time, the security
measures for ZigBee enabled IoT devices cannot efficiently thwart
all replay attacks. As new sniffing devices are available on the
market, new replay attacks will further challenge the integrity of
the communication between ZigBee devices. This work proposes
a new replay attack to reveal the security vulnerabilities of the
existing commercial ZigBee devices, Phillips Hue bulbs and Xbee
S1 and S2C modules. Two case studies performed in this work
confirm that the proposed replay attack can successfully transmit
the captured packets to the victim device in spite of the built-in
countermeasures.

Index Terms—ZigBee security, replay attack, Xbee, Philips
Hue, IoT, IEEE 802.15.4, KillerBee, wireless security.

I. INTRODUCTION

ZigBee/IEEE 802.15.4 is one of the widely used protocols
in Internet-of-Things (IoT) applications. Although ZigBee pro-
vides some end-to-end security via the AES-CCM algorithm
and 128-bit symmetric encryption [1], [5], [8], the ZigBee
protocol is still vulnerable to many threats, such as ZigBee
network key sniffing, ZigBee End Device (ZED) sabotage, and
Denial-of-Service (DoS), and replay attacks [1], [6], [8].

The key sniffing attack in a ZigBee network result in key
leakage during the process of network commissioning. When a
new node without a preinstalled network key tries to connect to
a network, an unencrypted network key will be shared with the
device in the network. An attacker could sniff the unencrypted
transaction and recover the network key with the help of
some special tools (e.g., API-Mote, KillerBee and Wireshark).
The ZED sabotage attack aims for expeditiously draining
the battery embedded in IoT ZED devices. An attacker may
impersonate a legitimate device to continuously send signals to
the victim device, stopping the device from transitioning into
sleep mode [8]. Consequently, the ceaseless communication
causes the battery to drain completely within a short period of
time. The DoS attack prohibits its target device from accepting
new incoming packets. An attacker can succeed in the DoS
attack either by setting the device frame counter to a higher
than normal value (so that the incoming packets with lower

This work is partially supported by the NSF grant #1652474.

frame counter will be discarded during authentication) or by
maliciously transmitting frames over the ZigBee network to
disrupt the communication.

Due to the network discovery and identification threats [7],
replay attacks still challenge the ZigBee security. The high
security standard and 128 bit AES encryption are not sufficient
to stop the sniffing devices from eavesdropping the ZigBee
network traffic. In spite of many firmware updates on ZigBee
devices, ZigBee data authentication could be nullified by
newly emerged attacks. There are no robust and sustainable
solutions available yet to thoroughly protect the ZigBee com-
munication. To facilitate effective countermeasure designs, this
work contributes to discover new replay attacks that could be
performed on ZigBee devices.

The rest of this work is organized as follows. In Section
II, the related work is summarized and our main contributions
are highlighted. The preliminaries for the replay attack and
experimental devices/tools are introduced in Section III. We
propose a new reply attack flow in Section IV. A case study
is provided in Section V to introduce the detailed attack
implementation and our key observation. We conclude this
work in Section VI.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Related Work

Olawumi et al. [7] introduced three attacks on ZigBee
network. The first attack can detect the availability of ZigBee
devices and identify their identities in the network. The second
attack is capable of sniffing the data transmitted by a particular
device. The third attack leverages Atmel RZ Raven USB stick
and KillerBee software tool to capture ZigBee packets. To
thwart the first attack, Olawumi et al. suggested integrating
an intrusion detection and prevention technique to regularly
monitor the beacon frame process in a ZigBee network.
To protect the system from the second attack, the authors
proposed to replace the standard security level with the high
security level in safety-critical ZigBee-enabled systems. They
further advocated to apply time stamps in ZigBee encryption
process so that the replayed frames will be discarded upon
reception. The work [8] proposed an attack to sabotage ZigBee
end devices by prematurely draining the battery of a ZigBee
device. A possible countermeasure presented in the work [8]

978-1-7281-6466-3/20/$31.00 © 2020 IEEE

Authorized licensed use limited to: University of New Hampshire. Downloaded on March 01,2021 at 19:16:35 UTC from IEEE Xplore. Restrictions apply.

is using a 32-bit frame counter embedded in each frames to
thwart replay attacks. However, no validation was performed
in the work [8].

In the work [2], Fan et al. performed a replay attack on a
ZigBee device (undisclosed brand). The ON/OFF command
packets were captured and then replayed with Atmel RZUSB
stick. Their replay attack was not successful because the
counter associated with each replayed frame was less than
the counter value of the receiver device. Consequently, the
replayed packets were rejected by the receiver. The work [2]
hypothesized that if an attacker could overwrite the packet
counter a larger number, the replay attack can succeed theo-
retically.

Gupta demonstrated a replay attack on Philips Hue bulb
in the handbook [3]. While a legitimate user controlled the
bulb’s ON/OFF and color, the packets were captured through
a sniffing device. Next, the dump file was replayed by using
a RZUSB stick and Attify ZigBee framework, which is a
KillerBee based graphical user interface (GUI) toolkit. With
that approach, the Philips bulb successfully reacted to the
replayed packets. The author concluded that the replayed
packets were accepted because the cyclic redundancy check
(CRC) based verification mechanism was not implemented
in the Philips Hue system. If the bulb uses frame counters
and message integrity code (MIC) to authenticate incoming
packets to enhance the resilience against the replay attack, a
straightforward replay attack will fail.

Towards the interception of packets attack, the work in [7]
suggests using high security standard to allow ZigBee devices
to share the encryption key. That proposal requires ZigBee
device manufactures to pre-install a master key. Unfortunately,
as reported in [11], the master key was leaked via twitter. The
leaked master key will jeopardise the safety of all the ZigBee
devices. Moreover, an encrypted network alone cannot thwart
replay attack. Although a concept of time stamping mechanism
is proposed in [7], the authors do not validate that method.

B. Our Contributions

The main contributions of this work are as follows:

• We evaluate the ZigBee/IEEE 802.15.4 protection mech-
anisms against replay attacks and discover a weakness
that allows an attacker to turn ON/OFF Hue smart bulbs.

• We propose a new relay attack on Philips Hue smart
bulb that provides an adversary with a partial control.
Our noise removal technique is capable of identifying
and extracting noise from the captured packets of Xbee
communication.

• We examine the countermeasure proposed in [2] and
prove that editing the frame counter to a higher value is
not a practical method against message integrity check.
Our work also confirms that the method of increasing
the packet counter for incoming packet authentication [8],
[10] cannot thwart our replay attack.

III. PRELIMINARIES

The company Digi International [4] has developed ZigBee-
enabled Xbee modules, Xbee S1 and S2C, to execute the
operations defined in the IEEE 802.15.4 and ZigBee protocols.
Xbees are small radio devices and they act as transceivers.
Additional devices/microcontrollers/computers are required to
configure and monitor Xbees when we deploy them in an
application. Digi International provides users with software
to choose and configure the firmware for Xbees.

A. Security Levels in Xbee

Through the graphical user interface XCTU, users can
enable or disable ZigBee security features such as 128-bit
AES encryption and select their own security key. Xbee has
three ZigBee security level: residential, standard and high
security. Residential security was initially supported in ZigBee
2006 standard and required a network key to be shared
between the connected devices. By using a link key (APS
layer), standard security provides more options for the security
improvement over the previous one. High security offers a
wide range of security features including message integrity,
confidentiality, and authentication [4]. Typically, Xbee devices
are implemented at standard security level.

An Xbee module may include message integrity code
(MIC), but Xbee/Xbee Pro S2C model does not support MIC-
based message integrity check [4]. Instead, Xbee modules
maintain the data integrity by adding one byte checksum at
the end of each frame. All bytes of previously received frame
except the start delimiter (first byte of the frame) and the length
(the next two bytes) are utilized to calculate the checksum.
Any frame with a wrong checksum sent to an Xbee will not
be processed further and that frame will be discarded by the
receiver [4].

B. Attack Tools

The framework KillerBee [9] is designed to simplify the
process of sniffing packets from the air interface or dump
packets in the format of libpcap (packet capture library),
which is readable in Wireshark. We can also use KillerBee to
inject arbitrary packets [7]. The current KillerBee framework
supports multiple hardware devices for threats investigation,
including the River Loop Api-Mote, Atmel RZ RAVEN USB
Stick, MoteIV Tmote Sky, TelosB mote, Sewino Sniffer, and
other hardware running Silicon Labs Node Test firmware [7].

IV. PROPOSED REPLAY ATTACK FLOW

Replay attacks are easy to implement but could cause a
severe consequence, especially in security-critical applications
such as hospitals, power plants, and smart homes [7]. A Zig-
Bee device employs 128-bit AES encryption to protect its data
integrity; however it cannot completely thwart replay attacks.
This is because replay attacks do not require the knowledge of
the crypto key. Once the target packet is captured, that packet
could be re-transmitted over the air. Due to the low technical
challenge, attackers prefer using replay attacks to sabotage
ZigBee enabled systems. Thus, it is imperative to expand the

Authorized licensed use limited to: University of New Hampshire. Downloaded on March 01,2021 at 19:16:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Our experimental setup.

(a) (b)

Fig. 2: Devices used in proposed attack. (a)Sniffing device
(API-Mote), and (b) two Xbee devices connected to a user
system.

knowledge of how new replay attacks can be formed to harm
ZigBee applications. In this work, we present a new replay
attack that can be implemented with low-cost hardware and
open-source software tools.

A. Hardware and Software Setup for Proposed Attack

To perform a sniffing attack [1], [7] on a ZigBee network,
two Xbee S1 and S2C devices are connected to each other.
One Xbee serves as a coordinator and another one operates as
a router. Our attack system is depicted in Fig. 1. In the attacker
system, an API-Mote V4 Beta is connected to a Ubuntu Linux
OS based computer system. The API-Mote shown in Fig. 2
is the hardware to support the exploration of ZigBee security
vulnerabilities.

The software XCTU installed in a Windows laptop is
used to configure the Xbee devices, generate and transmit
packets to the router Xbee, and visualize the transmitted and
received messages in real time. Figure 3 shows the XCTU
interface for message monitoring. In the upper-left corner of
the interface, we can find the Xbee devices, their roles in the
communication, and their MAC addresses. In the middle of
the interface, we can track the frames transferred between
the router and coordinator. More details for each frame is
available in the middle-bottom screen. We can also configure
the transmission frequency for each selected frame.

Fig. 3: Screenshot of XCTU.

Fig. 4: Overview of proposed replay attack flow.

B. Overview of Proposed Attack Flow

Our attack process is split into two stages Initial Replay
Stage (IRS) and Modified Replay Stage (MRS). IRS is a
general replay approach and it consists of three major steps:
(IRS-1) channel discovery, (IRS-2) first packet capture and
(IRS-3) first packet replay. In the phase of MRS, our attack
will be performed according to the following steps: (MRS-1)
second packet capture, (MRS-2) noise identification, (MRS-
3) noise removal and (MRS-4) final replay. The overview of
proposed attack flow is depicted in Fig. 4.

The main facilities for our replay attack include two API-
Mote devices (i.e., API-Mote-1 and API-Mote-2) and five
KillerBee tools (i.e., zbid, zbstumbler, zbdump, zbconert and
zbreplay). The API-Mote devices enable the communication
between KillerBee and ZigBee devices. Inside each API-Mote,
a Future Technology Devices International (FTDI) chip is used
to establish the connection to a host system. The core function
for each KillerBee tool is listed in Table I.

C. Details for Each Step in Proposed Attack

In this subsection, we introduce the main operations that
will be performed in each step. The three steps in the first
stage IRS are straightforward. The novelty of our proposed
attack is in the second stage MRS. During MRS, we conduct
noise detection and removal operations so that the replayed
message will be as same as the original one.

IRS-1: To identify the communication channel of a victim
device and its personal area networks (PAN) identification, the

Authorized licensed use limited to: University of New Hampshire. Downloaded on March 01,2021 at 19:16:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Core Functions of KillerBee Tools

Tool Name Description of function
zbstumbler Discover communication channel

zbdump Capture packets
zbreplay Replay packets
zbconvert Packet format conversion

Fig. 5: Converted Daintree SNA packet. Note, the highlighted
area represents for the 6-byte replay attack noise that needs to
be removed before replay.

first step of our proposed attack begins with sending beacon
requests to all available ZigBee channels (i.e., channel 11 to
channel 26). The zbstumbler tool in the KillerBee software is
leveraged to acquire the ZigBee device’s PAN identification,
which will be utilized in the later steps.

IRS-2: When the target device is communicating with other
ZigBee devices, the communication traffic is captured by the
zbdump tool and API-Mote-1. We save the traffic as the first
packet capture and call it Dump-1 (denoted as ψ) amid our
attack.

IRS-3: In this step, we simply re-transmit the captured
packet ψ to the target device. However, the replayed message
would differ from the message received in the course of a
legitimate transmission. This is because some noise will be
added to the first capture by the API-Mote-1.

MRS-1: We use API-Mote-1 to replay the packet ψ dumped
from IRS-2 and then re-capture it through API-Mote-2. To
differentiate the newly captured packet from ψ, we name
the replayed and re-captured (Dump-2) packet as Ψ. The
replay noise ε is defined as the difference between ψ and
Ψ. Equation (1) expresses the relation between the first and
second captured packets.

Ψ = ψ + ε (1)

MRS-2: In this step, we compare two packet dumps ψ
and Ψ to locate the replay noise ε. We further zoom in ε
to analyze the noise associated with the first packet capture
ψ. This reply noise should be removed in order to defeat
the message integrity check that may be implemented in the
advanced ZigBee device. After noise removal, ψ becomes ψ*.

MRS-3: To remove the replay noise ε, we take one extra
step to convert the captured packet from the libpcap format
to the Daintree SNA format. The former format is not easy
to edit; in contrast, the latter one can be modified in a text
editor. After text editing, we can retrieve the message close to
the original one. Figure 5 shows the identified noise.

MRS-4: In the last step, we replay the modified packet
ψ* again. Because of our noise removal technique, the victim
device will be deceive by the replayed packet as a legitimate

message. Thus, our proposed replay attack will succeed even
though the victim ZigBee device may have the message
authentication mechanism as a countermeasure against replay
attacks.

V. A CASE STUDY

A. Experimental Setup

We evaluated the threats of replay attack on Xbee devices
(S1 and S2C) and Philips Hue light bulbs that employ IEEE
802.15.4/ZigBee protocol for communication. The commu-
nication was encrypted with AES-CCM 128-bit encryption
algorithm. The API-Mote together with the KillerBee tool set
and the Wireshark packet analyser were used to sniff data. A
frame containing a message ”ZigBee Encrypted CtoR” was
generated by the XCTU frame generator and sent through the
coordinator Xbee to the router Xbee at every two seconds.

B. Implementation of Proposed Replay Attack

1) Limitation on Current Countermeasure Used in Philips
Hue: The Philips Hue verifies MIC as a part of defense mech-
anism to thwart certain replay attacks. If the packet’s MIC does
not match with bulb’s MIC or the packet counter is tempered,
the packet (likely replayed packet) will be rejected. However,
there is a loop hole that debilitates this countermeasure. When
the bulb turns ON after a physical shut-down (either by a
manual switch or removing the bulb from the socket), the
bulb can be turned ON or OFF by a replayed packet. In fact,
any ON/OFF packet can be replayed as many times as the
attacker wants if the bulb can be disconnected physically and
then reconnected back to the network. The replay attack above
will succeed regardless of whether the bulb is being controlled
by a legitimate command or not.

2) Our Attack Implementation on Xbee: The general attack
flow chart proposed in Section IV-B needs some modifications
to adapt to different ZigBee devices. First, we conducted
the proposed replay attack on Xbee devices to validate the
feasibility of our attack and noise removal technique. The
process of proposed replay attack is shown in Fig. 6.

Dumped packets: Each dumped packet is composed of
data payload, MIC, Frame Check Sequence (FCS), destination
mode and address, and PAN ID. Depending on the capture
moment, the size of a dumped packet varies. Table II compares
the packets dumped from three rounds. The first dump was
captured while the original message was being sent from one
Xbee to another. The second and third dumps were captured
during the first and second dumps were replayed, respectively.
As shown in Table II, MIC and FCS become part of the frame
payload. The frame size increases with the dump timing. For
instance, the packet captured by the third dump contains 35
bytes; in contrast, the packet at the first dump only has 23
bytes. Note, only data and MIC are mentioned in the table
and other common information is excluded.

Comparison of packet size: In our experiment, the re-
played packets were successfully received by the Xbee S1
and S2C. However, there were 6-byte data (four bytes for
MIC and two bytes for FCS) appended to the packet captured

Authorized licensed use limited to: University of New Hampshire. Downloaded on March 01,2021 at 19:16:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Flow chart for proposed replay attack on Xbee.

TABLE II: Comparison of packets from different dumps.

Dump
ID 1st Dump 2nd Dump 3rd Dump

Data
(hex)

07 09 b1 38 ef 74
09 e0 8d 4f 00 5a
07 3b 5c 82 a0 e6
ec e7 04 43 87

07 09 b1 38 ef 74
09 e0 8d 4f 00 5a
07 3b 5c 82 a0 e6
ec e7 04 43 87 d8
bc 90 b9 05 02

07 09 b1 38 ef 74
09 e0 8d 4f 00 5a
07 3b 5c 82 a0 e6
ec e7 04 43 87 d8
bc 90 b9 05 02 00
4e 95 70 05 02

MIC d8 bc 90 b9 05 02
00 4e

00 4e 95 70 05 02
00 4e

00 4e 95 70 05 02
00 4e

Length
(bytes) 23 29 35

previously. Despite of the increased packet size, the Xbee
receiver still accepted the replayed packet. For instance, an
Xbee enabled light bulb needs a command “Turn On” to
activate the bulb. If the packet that the light bulb receives is a
replay one, the command will be “Turn OnXyz”, in which the
additional “Xyz” is the replay noise. In most cases, the replay
noise is represented by some non-readable characters. Figures
7(a) and (b) show the the message “ZigBee Encrypted CtoR”
without and with the replay noise.

The comparison of the packet size dumped at different
rounds is presented in Fig. 8(a). The size of MIC remains
the same. Although the packet size increases due to the replay
noise induced in the process of packet dumping, our noise
removal technique can eliminate the noise. We first converted
the captured packet into a format of Daintree SNA (Sensor
Network Analyzer), which allowed us to edit in a text editor.
Next, the six bytes of MIC in the first dump were identified
as the noise. We erased the MIC from the dumped packet
and then re-transmitted it to the victim Xbee router. Thus, the
router received the replay packet as if it was a clean original
message. As shown in Fig. 8(b), our noise removal technique
successfully made the size of the received replayed packet
return to the original length. Another interesting fact is that

(a) (b)

Fig. 7: Replayed packets that are received by the Xbee devices.
(a) Without and (b) with noise at the target device.

(a) (b)

(c)
Fig. 8: Impact of Xbee replay attacks and proposed noise
removal technique on the packet size. (a) The number of bytes
in captured payload and MIC at different dumping rounds, (b)
the size of received message in XCTU with different versions
of replay, and (c) the packet size measured by Wireshark and
XCTU.

the frame size captured by Wireshark is larger than what was
observed in XCTU. This is because XCTU does not count the
extended source and destination addresses, frame counter and
sequence number. As illustrated in Fig. 8(c), the modified and
original packets consist the same number of bytes (26). On the
contrary, the replay packet has a few more bytes. Similarly,
Wireshark can detect more bytes in the replayed packet than
what was practically received.

3) Our Attack Implementation on Philips Hue: We repeat
our replay attack flow on a Philips Hue bulb with the flow
shown in Fig. 9. First, the bulb is connected to a ZigBee
network created by a bridge. That bridge acts as a gateway
between the Hue mobile application (user) and the bulb. A
user can send a command to turn ON and OFF the bulb. Once
the bridge receives the command from the user, it transmits
the packets to the destination bulb. We (attacker) maliciously
capture the ON/OFF packets transmitted by the bridge with
the intention to take control of the bulb illegitimately. Next,
we identify and extract those ON/OF packets and replay them
to the target device. Although the bulb does not react to the
ambience and intensity control, it responds to the ON/OFF
packets once per each power-up period.

Authorized licensed use limited to: University of New Hampshire. Downloaded on March 01,2021 at 19:16:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Flow chart for proposed replay attack on Philips Hue.

(a)

(b)

Fig. 10: Snapshot of replayed packets on Philips Hue bulb
(a) Unseparated replay has more number of packets, while (b)
separated replay can have as low as one packet.

Different than those in the scenario of Xbee, the captured
packets in Philips Hue do not have noise. Hence, we do not
need to remove any noise content from the packet. However,
the captured packets contain other network traffic. In order to
make the attack more efficient, the ON/OFF packets should be
separated. As shown in Fig. 10(a), if we replay an unseparated
packet, 413 packets will be transmitted. The total number
of packets for replay depends on the nature and type of the
captured packets. In contrast, once we filter out the ON/OFF
packets from the entire traffic, the number of packets for replay
attack transmission is reduced to 1 as shown in Fig. 10(b). As
a result, our attack can efficiently take over the control of the
target Philips Hue bulb.

Next, we examine the effectiveness of the attack methods
proposed in literature [2], [10] on Philips Hue light bulbs.
We assume that the replay attack aims for the known packet
turning off the light bulb. The work [10] envisions that increas-
ing the frame counter for that packet will make the replay
attack succeed. To validate their method, we implemented
the countermeasure and used Wireshark to capture the frame
turning OFF the light bulb. The top half of Fig. 11 shows
the capture frame and the bottom half of the same figure
summarizes the different fields. As can be seen, the frame
counter contains a value of 3663724. We first increased the
frame counter by one, and then replayed the turn-OFF frame.
However, the reply attack suggested by the work [10] did not
make any effect on the bulb. We further increased the frame
counter to other higher values (including its maximum value
0xFFFFFFFF), but all replay attacks failed. More aggressive
packet editing was performed so that the frame counter,
sequence numbers and MIC were modified either separately
or collectively. However, those efforts were not able to make
a successful attack.

Fig. 11: Characteristics of captured frame for turning OFF the
Philips Hue bulb.

VI. CONCLUSION

Due to its low-cost implementation, replay attack is a critical
challenge on maintaining the integrity and security of ZigBee
communication network. Although message authentication and
encryption based countermeasures have been introduced in
literature, those methods cannot thwart all replay attacks. In
this work, we propose a new replay attack flow, which only
needs cheap commercial off-the-shelf devices API-Mote and
open-source software KillerBee to conduct the attack. A noise
removal technique is proposed to retrieve the original message
transferred between ZigBeed devices. Our case studies show
that our attack can be successfully implemented in Xbee and
Philips Hue devices and the victim ZigBee device is not able
to differentiate a replayed packet from a legitimate message.

REFERENCES

[1] Hezam Akram Abdul-Ghani and Dimitri Konstantas. A comprehensive
study of security and privacy guidelines, threats, and countermeasures:
An iot perspective. Journal of Sensor and Actuator Networks, 8(2):22,
2019.

[2] Xueqi Fan, Fransisca Susan, William Long, and Li Shangyan. Security
analysis of zigbee. MIT.edu, 2017.

[3] Aditya Gupta. The IoT Hacker’s Handbook: A Practical Guide to
Hacking the Internet of Things. Apress, 2019.

[4] Digi International Inc. XBee/XBee-PRO S2C 802.15.4 RF Module User
Guide.

[5] Hongwei Li, Zhongning Jia, and Xiaofeng Xue. Application and analysis
of zigbee security services specification. In 2010 Second International
Conference on Networks Security, Wireless Communications and Trusted
Computing, volume 2, pages 494–497. IEEE, 2010.

[6] Ivan Medvediev, Oleg Illiashenko, Dmytro Uzun, and Anastasiia Strielk-
ina. Iot solutions for health monitoring: analysis and case study. In 2018
IEEE 9th International Conference on Dependable Systems, Services
and Technologies (DESSERT), pages 163–168. IEEE, 2018.

[7] O. Olawumi, K. Haataja, M. Asikainen, N. Vidgren, and P. Toivanen.
Three practical attacks against zigbee security: Attack scenario defini-
tions, practical experiments, countermeasures, and lessons learned. In
2014 14th International Conference on Hybrid Intelligent Systems, pages
199–206, 2014.

[8] N. Vidgren, K. Haataja, J. L. Patiño-Andres, J. J. Ramı́rez-Sanchis, and
P. Toivanen. Security threats in zigbee-enabled systems: Vulnerability
evaluation, practical experiments, countermeasures, and lessons learned.
In 2013 46th Hawaii International Conference on System Sciences,
pages 5132–5138, 2013.

[9] Joshua Wright. Killerbee: practical zigbee exploitation framework. In
11th ToorCon conference, San Diego, volume 67, 2009.

[10] Joshua Wright and Johnny Cache. Hacking exposed wireless: Wireless
security secrets & solutions. McGraw-Hill Education Group, 2015.

[11] Tobias Zillner and Sebastian Strobl. Zigbee exploited: The good, the
bad and the ugly. Black Hat–2015 [Electronic resource].–Access mode:
https://www. blackhat. com/docs/us-15/materials/us-15-Zillner-ZigBee-
Exploited-The-Good-The-Bad-And-The-Ugly. pdf, 2015.

Authorized licensed use limited to: University of New Hampshire. Downloaded on March 01,2021 at 19:16:35 UTC from IEEE Xplore. Restrictions apply.

