




that of [9, 32] which utilize a type of consensus graph
cut to learn a brain partition for multiple subjects.
[20] proposes a solution that calculates a single cut to
partition the brain into two primary regions while our
work (and that of [9, 32]) consider the more general
setting of identifying an arbitrary number of regions.

Similarly, the problem of edge discovery has re-
ceived much attention [5,6,22]. The work of [6] and [22]
attempt to discover discriminative edges that can pre-
dict the presence of disease or neurological disorders.

A large body of work also study the problem
of brain network discovery by solving both sub-tasks
together [2, 34]. A notable example can be found in
[2] where the problem is formulated as a matrix tri-
factorization with spatial regularization.

Our work is positioned among the initial group of
methods which solve the functional brain region discov-
ery task. However, we differ from existing work [9,20,32]
on two main points. First, we introduce a method which
produces group-cohesive but individualized partitions.
Second, we propose to use a parametric model which
can generalize well to unseen samples.

With the rise of deep learning and the success of
models such as convolutional neural networks (CNN),
there has been a renewed interest in studying deep
architectures for graphs. Multiple work have been
introduced with this goal in mind [4, 12, 18].

GCNs [18] simplify calculations by replacing
principled-yet-expensive spectral graph convolutions [4]
with first-order approximations. These first-order fil-
ters have been shown to work well on a variety of tasks
including graph similarity [19], node classification [18],
and graph classification [12]. The work that is most
similar to ours is [19]. However, they tackle graph simi-
larity while we tackle the node-level task of brain region
discovery so the two are not directly comparable.

To the best of our knowledge, this is the first time
GCNs have been applied to this task. Our approach is
significantly different from previous work as the task of
functional brain discovery is unsupervised – for which
we develop a novel unsupervised loss and use a Siamese
architecture to model group-cohesion. In contrast, past
approaches have by and large considered tasks that fall
under semi-supervised or supervised learning [14,18,33].

3 Methodology

3.1 Problem Overview We start by giving the for-
mal definition of the problem of group-cohesive func-
tional brain region discovery. We are given a set of M
spatiotemporal fMRI scans D = {S(1), · · · ,S(M)}. Each
scan, S(i) ∈ R

D×T , is comprised of D voxels each with
a corresponding time-series of length T . For each scan,
S(i), we derive a corresponding non-negative affinity ma-

trix X(i) ∈ R
D×D – we use the absolute voxel-voxel

time-series correlation matrices, in this work.
Given then, the set D′ = {X(1), · · · ,X(M)} of affin-

ity matrices and K which is the number of functional
brain regions we wish to discover, we learn a function
fθ : RD×D → [0, 1]D×K which partitions the D voxels
into K non-overlapping regions. The function fθ, pa-
rameterized by θ, maps an input matrix X(i) to a brain
partition G(i). The non-overlapping constraints can be
ensured by imposing orthogonality between the column

vectors of G(i). That is, for 1 ≤ k, j ≤ K, g
(i)⊺

k g
(i)
j = 0,

∀k 6= j.
Under the group-cohesive setting, we wish to learn

partitions that are similar across subjects to reduce the
effects of noise on a single subject’s fMRI scan. While
fθ(X

(i)) = G(i) maps each input X(i) to a unique
partition, we want the partitions G(i) and G(j) to be
similar, for i 6= j, i.e. ‖G(i) −G(j)‖2F should be small.

In this setting, the function fθ is learned in an
unsupervised fashion which means the labels indicating
the ground-truth regions for each voxel is not provided.

3.2 Proposed Approach We begin with an intro-
duction of the basic formulation of a GCN. For a more
thorough exposition please refer to [18]. The GCN is a
neural network model that is designed for graph struc-
tured data, it takes the form f(X,A) where X here is
the input feature matrix and A is an adjacency matrix
describing how the input nodes are related to each other
– we discuss this in more detail later. The propagation
rule for a general multi-layer GCN is as follows:

H(l+1) = σ(D̃−
1

2 ÃD̃−
1

2H(l)W(l)).(3.1)

Here the superscripts l indicate the layer. Under this
formulation, Ã = A + IN is the adjacency matrix of
the undirected graph defined by A with added self loop
where N is the number of nodes in A and IN is the
identity matrix of size N . Note that adding a self-loop
is important because otherwise a node will not have
access to its own features. The matrix D̃, on the other
hand, is defined as the diagonal degree matrix of Ã

so, in other words, D̃i,i =
∑

j Ãi,j . Hence, the term

D̃−
1

2 ÃD̃−
1

2 computes a symmetric normalization for
the graph defined by Ã. Finally, H(l) is the input to
layer l of the GCN while W(l) is the trainable weight-
matrix for the same level. σ(·) here is a nonlinearity like
ReLU, Sigmoid, Tanh, or Softmax [15].

It is clear from this formulation that multiple GCN
layers can be chained together, much like conventional
CNNs layers. In this case, we simply set H(1) = X. The
model is now end-to-end trainable and can be trained
using stochastic gradient descent [7].
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Table 2: Avg. NMI scores (± SD) of compared methods
under various noise settings.

Method α = 1.0 α = 1.5 α = 2.0 α = 2.5

K-Means 0.687 ± 0.004 0.589 ± 0.005 0.509 ± 0.003 0.424 ± 0.003

Spectral 0.710 ± 0.002 0.626 ± 0.003 0.541 ± 0.003 0.451 ± 0.002

ONMtF-SCR 0.433 ± 0.001 0.409 ± 0.001 0.349 ± 0.001 0.241 ± 0.001

GC-I 0.775 ± 0.002 0.773 ± 0.002 0.771 ± 0.002 0.769 ± 0.002

GC-II 0.770 ± 0.003 0.759 ± 0.004 0.668 ± 0.007 0.661 ± 0.004

BREN-Basic 0.787 ± 0.011 0.780 ± 0.013 0.781 ± 0.009 0.763 ± 0.014

BREN-Siamese 0.812 ± 0.002 0.797 ± 0.003 0.788 ± 0.002 0.774 ± 0.003

apply thresholding at 0.2. For ONMtF-SCR, we use
cross-validation to select the values for β and σ from
{5, 20, 40} and {3, 7, 10}, respectively. We used the au-
thor’s implementation with a Python wrapper and lim-
ited max iteration to 100 as the time it took to run on
10 datasets with M = 20 samples was > 24 hours on a
machine with 16GB of RAM and a 2.2 Ghz Intel Core
i7 processor – this is already slower than other methods.

For both versions of our proposed method, we used
a relatively simple architecture with L = 3 layers – with
the number of hidden nodes set to [75, 30, 6]. We used
a learning rate of 0.01 with the Adam optimizer and set
max epoch to 2, 000 – this value was increased to 3, 000
when the noise α = 2.5 for better convergence.

4.1.2 Quantitative analysis Table 2 shows the av-
erage NMI scores for all methods under a range of noise
levels from medium (α = 1.0) to high (α = 2.5). We also
tested all the methods under low noise settings (α = 0.2)
and outperformed the most competitive baselines (GC-

I and GC-II) quantitatively as well, more analysis on
this is shown in a latter portion of this paper.

Under the first case (α = 1.0), we start to see the
methods that only take a single sample deteriorate in
performance. Results continue to deteriorate rapidly
when the noise is increased more and more. It is partic-
ularly interesting to see that ONMtF-SCR performs
pretty poorly, this may be because we limited max iter-
ations to 100 due to speed issues. This does highlight an
advantage of our method as it is parametric so results
can be retrieved quickly when the model is trained.

In the case of the two group-wise methods, we see
that GC-I remains fairly stable whereas GC-II starts
to suffer under higher noise (2.0 & 2.5). This is quite
intuitive as the averaging step in GC-I is a way to
increase or improve the signal-to-noise ratio.

Our proposed method, BREN-Siamese, outper-
forms all compared methods under all tested noise lev-
els. With BREN-Siamese also outperforming BREN-

Basic, hinting that it is useful to enforce similarity ex-
plicitly. It is also useful to note that BREN-Siamese

Table 3: The column marked “seen” shows the perfor-
mance of the model on data it was trained on while
“unseen” shows the performance on data the model has
never seen (i.e., new unobserved fMRI scans).

Method

Setting

α = 0.2 α = 1.0 α = 2.5

seen unseen seen unseen seen unseen

BREN-Basic 0.86 0.82 0.78 0.76 0.75 0.75

BREN-Siamese 0.87 0.81 0.82 0.79 0.78 0.77

was found to be considerably more stable than BREN-

Basic which exhibited the highest variance in perfor-
mance.

Additionally, we tested a version of our proposed
method with the additional loss term (see Eq. 3.4) to
encourage nearby voxels to remain in the same region
but performance remained the same as BREN-Siamese

which indicates that the Siamese architecture is enough
without explicitly enforcing spatial continuity as in [2].

4.1.3 Visualization We now discuss some interest-
ing things we can observe from the produced partitions.
Fig. 5 shows the results of all the compared methods un-
der low, medium, and high noise, i.e., α ∈ {0.2, 1.0, 2.5}.
An interesting thing to note is that the methods that
only look at one sample already struggle with noise even
under minimal settings. On the other hand, we see that
GC-II struggles with noise when the setting is set to
α = 2.5 while GC-I remains fairly robust.

The disadvantage of GC-I is that it produces
an “average” cluster so it is unable to capture small
variations across subjects. Take the case where α = 1.0,
for instance, we see that both our methods are capable
of capturing the difference between the two subjects
(the lower tip of region 6 colored orange and violet,
respectively). This highlights another advantage of our
method against methods like GC-I and GC-II.

4.2 Generalizing To Unseen Samples In previ-
ous work [2, 9, 20, 32], the proposed method was non-
parametric and hence one usually had to apply the pro-
posed method on the scans of new subjects. Since our
proposed method is parametric, the trained methods
can be used to partition the scans of new subjects. To
verify if this is feasible, we run two tests here. In the
first test, we attempt to partition the scan of new sub-
jects whose noise levels match that of the data that was
used to train the model. This is to see if there is serious
degradation in performance and whether the model is
overfitting. In the second test, we feed data with other
noise levels to see how well a model trained using a cer-
tain level of noise can generalize.

Table 3 shows the performance of the saved models
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titions that still retain individual differences across mul-
tiple subjects. The method is also shown to be able to
generalize well to unseen samples. Tests conducted on a
real-world fMRI dataset show that the model can effec-
tively discover the well-known DMN from resting-state
scans for two distinct cohorts.
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