Session 7B: Security in/for Approximate Computing

GLSVLSI *20, September 7-9, 2020, Virtual Event, China

Blurring Boundaries: A New Way to Secure Approximate
Computing Systems

Pruthvy Yellu, Landon Buell, Dongpeng Xu, and Qiaoyan Yu*
University of New Hampshire
Durham, NH, USA
*giaoyan.yu@unh.edu

ABSTRACT

Approximate computing (AC) techniques have been widely used
to improve the performance of computing systems by trading off
accuracy. However, recent literature projects that the utilization of
approximation could bring in new security threats to computing
systems. This work presents two practical attacks on the AC sys-
tems for multilayer perceptron (MLP) and Sobel algorithm based
image edge detection. The case studies in this work indicate that
the approximation mechanism in AC systems can be exploited to
conduct stealthy attacks, which suddenly cause significant degra-
dation in accuracy and lead to unpredictable primary outputs. To
address the emerging threats on AC systems, this work proposes
to blur the boundary between approximate and precise computing
submodules in AC systems. This new defense method obscures
that boundary with three obfuscation schemes such that adversary
could not easily identify the right target to precisely perform hard-
ware tampering attacks. Simulation results show that the proposed
method can effectively reduce the attack success rate.

CCS CONCEPTS

« Security and privacy — Security in hardware; - Computer
systems organization — Neural networks; - Hardware —
Digital signal processing.

KEYWORDS

Approximate computing; artificial neural network; machine learn-
ing; edge detection; hardware Trojan; obfuscation.

ACM Reference Format:

Pruthvy Yellu, Landon Buell, Dongpeng Xu, and Qiaoyan Yu*. 2020. Blurring
Boundaries: A New Way to Secure Approximate Computing Systems. In
Proceedings of the Great Lakes Symposium on VLSI 2020 (GLSVLSI °20), Sep-
tember 7-9, 2020, Virtual Event, China. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3386263.3407593

1 INTRODUCTION

Approximate Computing (AC) has emerged as a promising tech-
nology to further improve the performance and energy efficiency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI 20, September 7-9, 2020, Virtual Event, China

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7944-1/20/09...$15.00
https://doi.org/10.1145/3386263.3407593

327

of computing systems at the cost of reduced accuracy [4]. Particu-
larly, AC techniques have great potential to benefit error-tolerant
applications such as image recognition, signal processing in mul-
timedia and machine learning [11, 13, 20]. Existing literature has
demonstrated that various approximate computing techniques are
available for system design, software, storage architecture and arith-
metic circuits [17]. At system level, approximation can be achieved
by using different computation accelerators [7] or modifying In-
struction Set Architecture (ISA) [3] to activate special approxima-
tion operators. Software techniques such as loop perforation [1] and
memoization [9] reduce execution time to save power consumption.
Voltage over-scaling [16] and memory refresh rate reduction [5]
techniques trade accuracy for better performance and energy effi-
ciency. At hardware level, precision scaling [12] and logic minimiza-
tion [21] are effective for power reduction. More approximation
techniques are summarized in the survey papers [8, 15].

In spite of the advantages on performance improvement and
power saving, AC techniques also bring in new security vulner-
abilities to AC systems. The work [6] implies that the utilization
of approximate adders will make it easier for reverse engineers to
identify the critical path. The work [10] briefly analyzes whether
approximate techniques could facilitate reverse engineering, inte-
grated circuit piracy, side-channel analysis, and hardware Trojan
attacks. Security vulnerabilities on approximate storage (DRAM,
SRAM and Phase Change Memory) are discussed in the visionary
work [17]. Attack models for approximate arithmetic circuits are
proposed in our recent work [18]. Although existing literature en-
visions the potential attacks in AC systems, more concrete attack
implementations in practical applications are needed to inspire
researchers to investigate countermeasures against those projected
attacks in AC systems.

Since the attacks mentioned above may cause severe conse-
quences, it is imperative to explore effective defense mechanisms to
harden AC systems. The work [18] proposes a method that shuffles
the inputs for the approximate computing modules to thwart input
interconnect attacks. In addition, that work also uses an alternate
approximate function to identify hardware tampering attacks on
the approximation hardware. To facilitate the detection of hardware
attacks on AC systems, the work [19] proposes and compares dif-
ferent accuracy metrics for the evaluation of approximated outputs.
Following those footprints, this work analyzes the root cause of
potentials attacks on AC systems and proposes the general princi-
ples of the defense mechanisms customized for AC systems. More
specifically, our main contributions are as follows.

e Two case studies are performed to demonstrate that mali-
cious manipulations on AC operations could lead AC systems
to have significant performance degradation.

https://doi.org/10.1145/3386263.3407593
https://doi.org/10.1145/3386263.3407593

Session 7B: Security in/for Approximate Computing

Edge Detected
Output of LENA

Sobel algorithm
Synthesized in
Vivado

|

NEXYS A7 FPGA

(b)

©

Figure 1: Attack on approximated edge detection. (a) Experi-
mental setup, and image edges extracted by the approximate
implementation of Sobel edge detection algorithm (b) with-
out and (c) with hardware Trojan attacks.

e We envision that a new type of stealthy attack could be
implemented in AC systems.

e To obscure approximate computing systems, this work pro-
poses to blur the approximate-precise boundary (APB) by
obfuscating when to approximate (WNA), what to approxi-
mate (WTA), and how to approximate (HWA).

The rest of this work is organized as follows. Section 2 demon-
strates two practical attacks on AC systems. Section 3 introduces a
new potential attack, error compensated attack, that could harm
AC systems. Section 4 proposes a novel obfuscation method for AC
systems. Experimental results are provided in Section 5. This work
is concluded in Section 6.

2 PRACTICAL ATTACKS IN APPROXIMATE
COMPUTING SYSTEMS

Recent literature [10, 17, 18] predicts that approximation at different
levels could incur stealthy attacks, which could hide the attack effect
in the relaxed noise margin tolerated by the approximate system.
In this section, we use two case studies to demonstrate practical
attacks in AC systems and their impacts.

2.1 Case Study 1: Attacks on Image Edge
Detection

Sobel edge detection [14] is a prominent algorithm for image edge
extraction. As numerous addition operations are utilized in the
Sobel algorithm, we replace a portion of precise additions with
approximate additions to improve the speed of processing. In the
approximate addition, the last three least important bits (LSB) are
computed approximately using the revised Boolean expression
introduced in [2]. Our experimental setup is shown in Fig. 1(a).
We implemented the Sobel algorithm in VerilogHDL and mapped
its hardware description to a Xilinx NEXYS A7 FPGA. Then, the
detected edges of the image Lena with a resolution of 640480 was
displayed on a monitor.

As approximate computing relaxes the precision, the verification
on AC systems generally relies on the metric of average accuracy.

328

GLSVLSI *20, September 7-9, 2020, Virtual Event, China

Table 1: FPGA utilization and power consumption of Sobel
implementation

FPGA Utilization | Precise Sobel | Approx. Sobel w/o HT | Approx. Sobel w/ HT
Bounded IOB 34.29% 34.29% 34.29%
LUT as Logic 0.16% 0.15% 0.21%
Slice 0.21% 0.19% 0.16%
Power (W) 11.933 9.089 14.987

Thus, approximate modules may be prone to hardware Trojan (HT)
attacks [18]. In this case study, we implemented an always-on HT
that swaps the MSB and LSB input bits of the module for Sobel
edge detection. The comparison between Figs. 1 (b) and (c) shows
that the hardware Trojan inserted in the approximate processing
module could lead to notable impact on the extracted edges. Note
that, we introduced the always-on HT to exaggerate the attack
consequence. In reality, most HTs will be rare-event triggered and
the HT effect will also be localized at a particular region of the
image.

We further assessed the hardware implementation cost of the
Sobel edge detection modules: precise version, approximate ver-
sion without HT, and approximation version with HT. As shown
in Table 1, the input/output blocks (IOB) for three versions are
exactly the same and the approximate addition reduces the FPGA
utilization (including LUT and slice). Even though the hardware
Trojan consumes some FPGA resources, the number of slices used
by the approximate Sobel with HT is still less than those occupied
by the precise Sobel. This is problematic. If we only compare the
FPGA utilization rate between precise and approximate versions,
we may overlook the existence of stealthy HTs in the approximate
module. The power utilization of the approximate Sobel algorithm
is 24% less than the power consumed by the precise version. The
hardware Trojan inserted in the Sobel core causes the power con-
sumption to increase by 65% over the approximate Sobel without
HT. However, the HT induced power increment could be negligible
if the entire image processing system contains other complicated
function modules.

2.2 Case Study 2: Multilayer Perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial
neural network (ANN), which has been widely used in the classi-
fication for speech recognition, image recognition, and machine
translation software. To accelerate classification, approximate com-
puting is often leveraged in the MLP for complex problems. In this
case study, we implemented a practical attack on the AC operations
adopted in MLP and demonstrated the impact of that attack on the
critical metrics typically assessed in classification. A subsection of
the MNIST data set containing 28”28 pixel images of handwritten
digits was used to perform our assessment. Each pixel was given
by an integer 0 through 255 to indicate the gray-scale value. From
the full data set, the first 10,000 images were chosen to train each
model, and the next 6,000 were utilized to test the model.

As shown in Fig. 2, the handwritten digit is roughly centered in
the MNIST image. It is reasonable to assume that approximating
a border of pixels around the outside of the image would only
produce small changes in the performance of the classifier model.
We tested a baseline set of samples against the samples that have
varying depth pixel borders approximated. This effectively created

Session 7B: Security in/for Approximate Computing

, Original: 9 3 Pixel Border: 9

5 s 5 8
12 12
16 16
2, 2
2 2

0 d b0 64 b 121620 28 04 b mbwn 6 b 121620 28

(@ (b) © @
Figure 2: MNIST handwritten digit samples showing how ap-
proximating a border of pixels around each images affects
the figure.

5 Pixel Border: 9 7 Pixel Border: 9

q

Loss Function Value

005 4o

005 100 120

*Neuron Density Neuron Density “Neuron Density
(@) (b) (©
Figure 3: Impact of border approximation on classification
metrics (a) loss function value, (b) precision score and (c) re-

call score.

100 120 100 120

a padding of 3, 5, or 7 pixels on each image. For some samples, even
when approximating a large border of pixels, the characteristics
of the digit can be preserved as shown in Fig. 2(d). We adjusted
the hidden layers to contain 20, 40, 60, 80, 100, and 200 neurons
per layer (referred to as neuron density). Ten training epochs were
used in all cases, with batch sizes of 100 samples in each step for
a Stochastic Gradient Descent Optimizer. As shown in Fig. 3, the
border approximation presents no major deviation in performance
from the baseline model. This means that while a subset of pixels
are approximated, the dominant features preserved in the figure
still allows the optimization process to converge on a similar set
of parameters as the baseline samples. Despite of the small change
in performance from the baseline, the overall performance of the
model remains consistent for varied number of neuron density and
approximated border pixels.

Approximation in MLP could be exploited to develop an attack
surface. In general, an MLP neural network model is composed of
multiple layers of neurons, each containing an activation function.
Given a layer [of activations %D the activations in the next se-
quential layer, ¥V are computed with weighting matrix W),
bias vector b(!), and activation function f such that:

2(1+1) :f(W”) .z +g(l)) (1)

The recurrence of Eq. (1) is used to pass information forward
through the network. In a network with L layers, raw information
is given with %) and the network’s prediction is provided by the
final layer, ¥~ In this case study, we selectively manipulated the
arithmetic operation in neurons. More specifically, we introduced
a bit-muting attack function to the matrix-vector product in Eq. (1).
When a Trojan trigger condition HTtrigger is met, Eq. (1) was
replaced with its attack variant expressed in Eq. (2), where the
attack function A[-] forces the MSB of the exponent field for the
matrix-vector product to zero.

@

The same MLP modeling and MINST images were utilized in
the following experiments. For each network model, there were

U+ _ f(A[W<l) .;?(l),HTtrigger] + l_;(l))

329

GLSVLSI *20, September 7-9, 2020, Virtual Event, China

00% a0 0 @0
Neuron Density

e e R S R O
@ (b) ()

Figure 4: Impact of bit-muting attacks in approximate neu-

rons on MLP classification outcome. (a) Loss function, (b)

precision score, and (c) recall score for one hidden layer.

20

100 120

always 784 input neurons and 10 output neurons (one for each
class). To assess the impact of our attacks on the MPL classification,
we adopted the following metrics: (1) accumulated loss function for
the final iteration, (2) average precision score, and (3) average recall
score. The average of each metric is plotted in Fig. 4. The baseline
was the MLP without activation attacks, and four different attack
trigger rates were executed for the purpose of comparison. Note
that the lack of a data point means that the value of that metric
diverged to infinity or some other undefined values.

As shown in Fig. 4, the bit-muting attack on the approximate
neurons leads to dramatic reductions in the average precision and
recall scores across all tested classifier models when compared to
the un-attacked baseline. Since this type of attack targets the feed-
forward mechanism of the network, information passed through
the network will not produce consistent or reliable outputs, thus
preventing the classifier from making appropriate decisions. The
exclusion of MSB in the double precision floating-point entries in
the network destroys the numerical integrity and thus essentially
renders this subset of classifier models ineffective entirely, which
is indicated by the inability to minimize the loss function. Our
case study indicates that the classifier could fail significantly if the
approximation function in MLP neurons is compromised (even with
a low trigger probability, e.g. 0.5%).

3 PROJECTED NEW ATTACK IN AC SYSTEMS:
ERROR COMPENSATED ATTACK (ECA)

We project that there will emerge a new attack in AC systems: error
compensation attack (ECA). Without losing generality, we assume
that 70% precise operations in an AC system guarantee that the
overall accuracy meets the system requirement and the rest 30%
approximated operations reduce the total power consumption or
improve the average performance. As shown in Fig. 5(a), the er-
ror compensated attack first creates an attack zone (including 25%
operations) in the original precise computing region to fulfill the
malicious intention, and then replaces the same amount of approx-
imated operations with precise ones to compensate the reduced
accuracy. Thus, when one performs functional testing, the average
accuracy of the tampered AC system remains as same as its original
way. However, when the tampered AC system is deployed in prac-
tical applications, the system operation will suffer from ECA. For
example, a neural network is adopted to recognize the handwritten
number shown in Fig. 5(b). In the original design, the pixels in
the red region (carrying critical features) are analyzed by precise
computation and other pixels (carrying non-critical feature) are
processed by approximate functions. The proposed ECA could alter
the extraction of critical features, although the average accuracy

Session 7B: Security in/for Approximate Computing

Original all possible
logic cases

All possible logic
cases after attack

Attack
——— - 1_°’E .
Compensatlon
_———— - 2 o_ne_ -

After attack

Precise Precise’

Approximate Approximate’

Original

3=

Figure 5: Proposed Error Compensated Attack (ECA). (a)
Concept, (b) illustration of an example, and (c) hardware
Trojan design for ECA implementation.

Precise Arithmetic
Module

Y
Compensate

Trojan
trigger

Comp

obtained by the neural network still matches the system specifica-
tion. Figure 5(c) shows one possible implementation for ECA, in
which the hardware Trojan (HT) changes the accuracy of the target
area by switching the precision to approximate submodule (or vice
versa).

ECA is stealthy in nature because of error compensation and the
low triggering probability of hardware Trojans. Functional testing
is typically used to assess the impact of Trojans on the primary
output of the victim modules. In our analysis, we used an 8-bit
approximate adder, in which seven are 1-bit precise full adders
and one is an 1-bit approximate full adder, to estimate the error
rate of that hybrid adder with a hardware Trojan inserted. Random
test vectors were applied in the testbench simulated in a Cadence
NC-Verilog simulator. As shown in Table 2, the triggered hardware
Trojans indeed incur more error cases on the primary outputs.
However, for a given 50 random test cases, ECA reduces the error
rate from 32% to 12%, which is even lower than that of the Trojan
free case. This means, if a user relies on the average error rate to
detect hardware Trojans in approximate computing systems, he
or she may overlook the attack since the error rate of ECA does
not exceed the declaimed average error rate 24%. This conclusion
also applies to 150 random test cases. This experiment proves that
ECA is stealthy from a user’s point of view. Next, we applied ECA
to the Sobel edge detection. As shown in Fig. 6, ECA successfully
compensates the reduced number of edges due to HTs. The effect
of error compensation varies with input images. The image Baboon
shows the best fit for ECA. We envision that ECA will challenge
the security of AC systems, as attackers can hide the Trojan effect
in the average error rate.

4 PROPOSED METHOD: BLURRING
BOUNDARIES TO OBSCURE AC SYSTEMS

The practical attacks demonstrated in Section 2 and the advanced
attacks projected in existing literature [17, 18] and our Section 3 all
indicate that explicit exposure of the boundary between the AC and
non-AC modules (hereafter, we refer it to Approx-Precise Boundary

330

GLSVLSI *20, September 7-9, 2020, Virtual Event, China

Table 2: Error rate comparison of Trojan free, Trojan in-
serted and ECA hybrid adders.

Random Test Cases
Classification 50 150
HTFree | HT | ECA | HTFree | HT | ECA
Num. triggered HT 0 10 10 0 38 38
Num. error cases 12 16 6 41 57 22
Error rate 24% 32% | 12% 27.3% 38% | 14.66%
Lena Peppers Baboon
0% 0% o PP 0%
—e—No HT —e—NoHT N\ [—e—No HT
" — = 5%HT o 2% - = 5%HT 0 2% ~ = 5%HT
é snl —— 10%HT 8 10%HT 3 10%HT
E E 4% E 4%
z z z
& 5 6% B 6%
W _10% - i w
3 B 8% - B 8%
o o o
5 5 s
%-15%» 5—10/a \‘ E—m/o
o o o o,
& Y g12%
8 g g
8 -20% 8- §-14% 8
e <. & 1p9
-25% R - 159 B
] 5 10 0 5 10 0 5 10

Number of approximated bits Number of approximated bits Number of approximated bits
Figure 6: Impact of error compensation HT on the number

of edge detection based on the Sobel algorithm.

(APB)) leaves adversary new attack surfaces to intrude the comput-
ing system. Thus, we propose to obfuscate AC systems by blurring
APB such that the attacks from AC systems’ rogue users can be
thwarted. As depicted in Fig. 7(a), the non-obfuscated AC modules
AC1, AC2, and AC3 distinct themselves from the non-AC modules
with an explicit boundary. In contrast, after our obfuscation method
is applied, the AC modules are not only mingled into the non-AC
modules but they are also presented in different shapes from the
AC system users’ point of view. In Fig. 7(b), the areas highlighted in
dashed lines stand for the obfuscated APB, which impede attackers
from precisely locating the AC components before they implement
their targeted attacks. Note that the shape changing means, when
adversary try to identify APB on our obfuscated code, they will
mistakenly include some non-boundary part and also miss some
real boundaries. In general, our boundary blurring method obfus-
cates an AC system with one of the following three schemes: (1)
obfuscating when to approximate (WNA), (2) obfuscating what to
approximate (WTA), and (3) obfuscating how to approximate (HWA).
Figures 8, 9 and 10 depict the key idea of each scheme, respectively.
The object of our obfuscation includes preliminary inputs, inter-
nal signals, processing logic, and the combination of three above.
The WNA scheme aims for primary inputs, the WTA scheme pro-
tects internal signals from being successfully tampered, and the
HWA scheme strengthens the entire AC system by hardening the
processing logic and the connection between submodules.

4.1 WNA Scheme: Obfuscating When to
Approximate

To save power consumption, a submodule My, for some precise

operations in a computing systems is replaced with its approximate

version My, . As there is data exchanging between My, ;” and other

precise submodules, adversary could breach the system through

Session 7B: Security in/for Approximate Computing

Obfuscated
Boundary

A S
s
| act !
! i

Non-AC

Clear
Boundary

(@) (b)
Figure 7: The comparison of an approximate computing
system (a) before and (b) after our proposed blurring
approximate-precise boundaries method. Note that AC and
non-AC components are in white and gray, respectively.

Precise Submodules
(M~My)

Precise
In—> submodules

(Mg™M) Approximate
submodule (M,,,’)

Selector

Precise
submodule M, T

T
B.px (When to approximate)

Figure 8: Blurring APB with WNA scheme.

that approximate submodule. The proposed WNA scheme shown
in Fig. 8 brings the precise implementation of My, back to the
computing system and then uses a control signal fapx to enable
the toggling between My, ; and My,;’. As long as Bapy is secretly
controlled by the legitimate system designer, the WNA scheme
can reduce the attack success rate. Depending on the percentage
of approximate submodules in the entire computing system, the
new attack success rate will be close to the product of system
approximation rate and Bapx.

4.2 WTA Scheme: Obfuscating What to
Approximate

Due to the accessibility of primary inputs, it is easier for adversary
to bypass the obfuscation utilized on the primary inputs than those
applied to internal signals. The proposed WTA scheme selectively
obfuscates internal signals. Assume the entire computing system
takes N phases to produce the final output. Our WTA scheme first
shuffles the internal signals after phase j and then employs a mask-
ing vector Vi ggking to mute a portion of the internal signals before
de-shuffling. The abstract view of WTA is shown in Fig. 9. Due
to the muting operation, several internal signals remain constant
and thus the corresponding precise submodules triggered by those
muted signals do not consume switching power. Since the masking
operation controlled by Vy;,4sking is applied between shuffling and
de-shuffling, the masking vector can be considered as an obfuscated
input as long as the shuffling algorithm is not public to AC system
users. In general, a longer masking vector Vi, gking achieves more
reduction on the attack success rate. To ensure the effectiveness
of the WTA scheme, the shuffling algorithm should introduce as
much unpredictable non-linearity as possible. Logic locking tech-
niques can be used to enhance the attack resilience of the proposed
shuffling and masking operations.

331

GLSVLSI *20, September 7-9, 2020, Virtual Event, China

Precise
Submodules
Phases
i}

Precise
Submodules
Phases
1N

— Out

De-shuffle

Vinasking (What to approximate)

Figure 9: Blurring APB with WTA scheme.

Obfuscation
states

Approximation
logic

T
|
/

\ Obfuscated Idgic

or transitions

Figure 10: Blurring APB with HWA scheme.

4.3 HWA Scheme: Obfuscating How to
Approximate

In the HWA scheme shown in Fig. 10, we obfuscate the state tran-
sition (e.g., from S1 to S2 and from S2 to S3) with a key vector,
preventing unauthorized users from accessing the state that han-
dles approximate operations. Incorrect key vectors will lead the
system to enter obfuscation states, which cause system malfunc-
tions. In addition, the truth table for approximation logic (e.g., for
S2) is re-designed by integrating a key vector. This type of obfus-
cation extends the logic network by adding a unique ‘nonce’ to
the original approximation and thus introducing some designer-
controlled ‘dummy logic’. Compared to WNA and WTA schemes,
HWA is the most powerful obfuscation in our boundary blurring
based obfuscation method. We assume that the approximate system
utilizes Nsorig original states, among which 7 - Nsoyig are assigned
to be the states for approximation. Assume 7 is the percentage of
approximation states. If the size of the applied key vector is K and
the number of obfuscation states is Ngop s, the attack success rate
after HWA blurring boundary can be estimated with Eq. (3).

©)

U'NSOVig NSobf
1—‘howobf = (

- A % : Ylogic,-)
Jj=1 =0

In which, the term yjqc, is the coefficient of logic masking asso-
ciated with the approximate state. This parameter will vary with
the specific logic function obfuscated by the key vector. More logic
masking effect achieved by the encryption key will produce a lower
attack success rate. The increasing key size and the number of ob-
fuscation states collaboratively contribute to reducing the success
rate of attacks.

Session 7B: Security in/for Approximate Computing

0.25

0.20

—*— Top-Right
—+— Top-Left
Middle
—4— Bottom-Right
—— Bottom-Left

o
o

Attack Success Rate
o
>

o
o
&

30% 40% 50% 60% 70% 80%
Percentage of Critical Area

0
20%

(©
Figure 11: The output of approximate edge detection hard-
ware module implemented in FPGA (a) before and (b) after
obfuscation to resist the regionally targeted attack on the
approximation submodule. (c) Reduced attack success rate
achieved by our method.

5 EXPERIMENTAL RESULTS

The proposed WTA scheme was applied to the approximate Sobel
edge detection application. We assume that hardware tampering in
the Sobel application happened after the image pixels were down-
loaded to the dedicated memory on the FPGA board shown in
Fig. 1(a). If the attacker knows the starting memory address of the
image to be processed, it would be likely to predict the memory zone
for critical image pixels. The proposed shuffling in WTA obfuscated
the data sequence stored in the memory by altering the linear rela-
tion between the memory index and the order of image pixels. We
first thoroughly analyzed the information processing flow in the So-
bel edge detection and then applied a suitable non-linear shuffling
algorithm (so that the shuffling does not affect the correctness of
the subsequent edge detection operations). A static masking vector
was applied to determine the portion for approximate computing.

We compared the outputs of edge detection before and after our
WTA scheme. As shown in Fig. 11(a), the attack makes the Lena
face vague if no shuffling is applied. In contrast, as the WTA scheme
obfuscates the memory index by shuffling and masking, our method
successfully thwarts the attack and pushes the vague pixels to the
non-important image zone shown in Fig. 11(b). To comprehensively
evaluate the attack success rate after WTA was applied to the Sobel
edge detection, we varied the percentage of the critical pixel zone
in the entire image and the attack locations. As shown in Fig. 11(c),
our method reduces the attack success rate to 0% if the critical
image zone does not exceed 25% of the entire image. When the
critical image feature is in the middle of the image, our method
can completely thwart the attack even if 50% of the image carries
important features. As the percentage of critical pixels increases,
the performance of WTA starts to degrade and other obfuscation
techniques should be used to further improve the attack resilience.

332

GLSVLSI *20, September 7-9, 2020, Virtual Event, China

6 CONCLUSION

Approximate Computing (AC) techniques trade accuracy for per-
formance improvement and energy efficiency, being increasingly
attractive in various computation-intensive applications. Unfortu-
nately, the unique approximate behavior and computational uncer-
tainty in AC systems expose plenty of new attack opportunities.
Two case studies provided in this work demonstrate the impact of
hardware Trojan attacks on the performance of AC systems for arti-
ficial neural network and image edge detection. We further project
an error compensated attack, which is unique and unexplored at-
tacks on AC systems. In this work, we highlight that the main cause
of attacks on AC systems is the explicit boundary between approx-
imate and precise modules. Furthermore, we propose to blur the
explicit boundary with three obfuscation schemes, which obscure
when, what and how to approximate in the emerging AC systems.
Our FPGA emulation confirms the effectiveness of the proposed
obfuscation method. In the Sobel edge detection application, our
WTA scheme can successfully thwart the attack and reduce the
attack success rate to 0% if the critical image zone does not exceed
25% of the entire image.

REFERENCES

[1] W. Baek and C. Trishul. 2010. Green: A Framework for Supporting Energy-
Conscious Programming using Controlled Approximation. In Proc. PLDI’10. 198~
209.

V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. 2013. Low-Power Digital
Signal Processing Using Approximate Adders. TCAD’1332, 1 (Jan 2013), 124-137.
L. Ceze D. Burger H. Esmaeilzadeh, A. Sampson. 2012. Architecture Support for
Disciplined Approximate Programming. In Proc. ASPLOS’12. 301-312.

J. Han. 2016. Introduction to approximate computing. In Proc. VTS’16. 1-1.

M. Jung, D. M. Mathew, C. Weis, and N. Wehn. 2016. Invited: Approximate com-
puting with partially unreliable dynamic random access memory — Approximate
DRAM. In Proc. DAC’16. 1-4.

S. Keshavarz and D. Holcomb. 2017. Privacy leakages in approximate adders. In
Proc. ISCAS’17. 1-4.

D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. 2016. Quality Control for
Approximate Accelerators by Error Prediction. Proc. D&T’16 1 (Feb 2016), 43-50.
S. Mittal. 2016. A Survey of Techniques for Approximate Computing. Proc.
CSUR’16 48 (2016), 62:1-62:33.

A. Rahimi, L. Benini, and R. K. Gupta. 2013. Spatial Memoization: Concurrent
Instruction Reuse to Correct Timing Errors in SIMD Architectures. Proc. TCAS
I'13 12 (Dec 2013), 847-851.

F. Regazzoni, C. Alippi, and I. Polian. 2018. Security: The Dark Side of Approxi-
mate Computing?. In Proc. ICCAD’18. 1-6.

A. G. M. Strollo and D. Esposito. 2018. Approximate computing in the nanoscale
era. In Proc. ICICDT’18. 21-24.

Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu. 2015. ApproxMA: Approximate
Memory Access for Dynamic Precision Scaling. In Proc. GLSVLSI’15. 337-342.
S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. 2014. AXNN: Energy-
efficient neuromorphic systems using approximate computing. In Proc. ISLPED’14.
27-32.

O. R. Vincent and O. Folorunso. 2009. A Descriptive Algorithm for Sobel Image
Edge Detection. In Proc. InSITE09.

Q. Xu, T. Mytkowicz, and N. S. Kim. 2016. Approximate Computing: A Survey.
D&T’16 33, 1 (Feb 2016), 8-22.

L. Yang and B. Murmann. 2017. SRAM voltage scaling for energy-efficient
convolutional neural networks. In Proc. ISQED’17. 7-12.

P. Yellu, N. Boskov, M. Kinsy, and Q. Yu. 2019. Security Threats on Approximate
Computing Systems. In Proc. GLSVLSI'19. 387-392.

P. Yellu, M. R. Monjur, T. Kammerer, D. Xu, and Q. Yu. 2020. Security Threats and
Countermeasures for Approximate Arithmetic Computing. In Proc. ASP-DAC’20.
259-264.

P. Yellu and Q. Yu. 2020. Can We Securely Use Approximate Computing?. In
ISCAS’20, Forthcoming. Seville, Spain.

Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. 2015. ApproxANN: An ap-
proximate computing framework for artificial neural network. In Proc. DATE’15.
701-706.

N. Zhu, W. L. Goh, and K. S. Yeo. 2009. An enhanced low-power high-speed
Adder For Error-Tolerant application. In Proc ISIC’09. 69-72.

[21]

	Abstract
	1 Introduction
	2 Practical Attacks in Approximate Computing Systems
	2.1 Case Study 1: Attacks on Image Edge Detection
	2.2 Case Study 2: Multilayer Perceptron

	3 Projected New Attack in AC Systems: Error Compensated Attack (ECA)
	4 Proposed Method: Blurring Boundaries to Obscure AC Systems
	4.1 WNA Scheme: Obfuscating When to Approximate
	4.2 WTA Scheme: Obfuscating What to Approximate
	4.3 HWA Scheme: Obfuscating How to Approximate

	5 Experimental Results
	6 Conclusion
	References

