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Abstract

Neuroimaging data typically undergoes several prepro-
cessing steps before further analysis and mining can be
done. Affine image registration is one of the impor-
tant tasks during preprocessing. Recently, several im-
age registration methods which are based on Convo-
lutional Neural Networks have been proposed. How-
ever, due to the high computational and memory re-
quirements of CNNs, these methods cannot be used in
real-time for large neuroimaging data like fMRI. In this
paper, we propose a Dual-Attention Recurrent Network
(DRN) which uses a hard attention mechanism to allow
the model to focus on small, but task-relevant, parts
of the input image – thus reducing computational and
memory costs. Furthermore, DRN naturally supports
inhomogeneity between the raw input image (e.g., func-
tional MRI) and the image we want to align it to (e.g.,
anatomical MRI) so it can be applied to harder regis-
tration tasks such as fMRI coregistration and normal-
ization. Extensive experiments on two different datasets
demonstrate that DRN significantly reduces the compu-
tational and memory costs compared with other neural
network-based methods without sacrificing the quality
of image registration.
Keywords: Attention Model; Recurrent Neural Net-
work; Deep Learning; fMRI

1 Introduction

Neuroimaging analysis and mining, which aims to model
the functional structure of the brain [35] or extract di-
agnostic information [29] from a corpus of neuroimaging
data, has attracted a lot of interest recently. However,
raw neuroimaging data is usually quite noisy and incon-
sistent across samples [18]. Hence, the data typically
undergoes a series of preprocessing steps before it can
be further analyzed.

Affine registration is one of the most common tasks
performed during preprocessing [2, 7, 14]. The goal of
image registration is to spatially transform a raw im-
age to match a given template image. Three types of
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image registration techniques, i.e., realignment, coreg-
istration, and normalization, are commonly applied on
neuroimaging data. All three types of registrations are
performed during preprocessing for a variety of brain
mining tasks including brain atlas discovery [23], region-
of-interest extraction [34], brain network discovery [18],
and disease detection [29]. We illustrate the three tech-
niques in Figures 1a-1c.

Automatic image registration has been extensively
studied not only in the neuroscience domain [7, 9, 14],
but also in other fields like pattern recognition [6, 31]
and geoscience [22, 27]. More recently, some studies
have used Convolutional Neural Networks (CNN) for
medical image registration [19, 24]. Compared to
traditional approaches [7, 14], the CNN-based methods
can achieve faster processing speeds [24] while avoiding
the use of generic matching metrics which have some
severe drawbacks [19].

However CNNs may not be an ideal solution for
real-time registration tasks on functional Magnetic Res-
onance Imaging (fMRI), due to their high memory and
computational costs. As we illustrate in Figure 3, ap-
plying CNNs on high-dimensional fMRI data may result
in extremely large feature maps. For example, the 3D
fMRI data from a single timepoint can have a size of
96 × 96 × 96. Suppose we use only 10 convolutional
filters at the first layer, the dimension of the resulting
feature map will be 96×96×96×10 = 8, 847, 360. Fur-
thermore, CNNs also suffer from heavy computational
costs. The number of multiplications in a 2D convolu-
tional layer is O(H ×W ×N ×x× y× c), where H, W ,
N are the corresponding height, width, and number of
filters, while x, y, c are the height, width, and channels
of the inputs. Such high costs in memory and compu-
tation make CNNs inefficient for real-time registration
of neuroimaging data.

CNNs have a high associated cost because they
have to scan the entire input image to calculate global
features. However, the nature of the image registration
task lends itself well to solutions that merely consider
very limited partial information from the image. As
shown in the examples in Figure 2, we only need to look
at the nose (small region) to align a rotated human face,
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4.2 Compared methods In order to validate the
effectiveness of DRN, we compared the following:
• Fully Connected Neural Network (FC): We
compare with a fully connected neural network with two
hidden layers. For 2D registration, the first hidden layer
consists of 100 neurons while the second has 50. For 3D
registration, both layers have 50 neurons due to GPU
memory limit.
• Convolutional Neural Network (CNN): The
CNN has a convolutional layer, a pooling layer, and
two fully connected layers similar as above. The
convolutional layer has 128 filters with filter size 5 × 5
followed by 2× 2 max-pooling.
• Recurrent Attention Model (RAM): We com-
pared against an RAM [25] model whose parameters
are almost comparable with our proposed model. For
fair comparison, this model is still able to see both the
de-aligned and the template images.
• Deep Supervised Learning agent (DSL): DSL
is a state-of-the-art artificial agent for 3D rigid regis-
tration [19]. The agent is instructed to mimic a greedy
registration path, which minimizes the distance between
two images step by step. The overall structure looks like
a DQN, however the ground truth Q value can be cal-
culated explicitly. To predict the Q value, we trained
a CNN with five convolution layers with 8, 32, 32, 128,
and 128 filters. We didn’t adopt the hierarchical strat-
egy designed for extremely high resolution images in the
original paper since our dataset has lower resolution.
• Double-attention Recurrent Network (DRN):
This is our proposed model. In the glimpse network,
each of the four layers encoding image or location is
composed by 128 neurons, and each of the last two
layers encoding glimpse representation is composed by
256 neurons. The core network has 128 LSTM cells.
The action network is the same as the FC above.

4.3 Performances evaluation

4.3.1 Assessment metric We use an assessment
metric similar to [7]. Since we treated image registration
as a regression problem, the assessment metrics are
the average errors of translation, rotation and scaling.
Error in translation is defined by Manhattan distance
between the predicted translation and ground truth
translation. The errors for rotation and scaling can be
defined similarly.

4.3.2 Performances on 2D hand-writing digits
image registration We first study the effectiveness
of the proposed method on 2D registration. For all
methods, the max training iterations is 700K, initial
learning rate is 0.1 while decay rate is 0.1, and batch

Table 1: Range of affine transformation on each task.

Transformation

Task Translation Rotate Scale
(pixels) (degree) (times)

2D registration ± 20 ± 120 1 ∼ 3
3D realignment ± 20 ± 45 -
3D coregistration ± 20 ± 45 -
3D normalization ± 20 ± 45 0.8 ∼ 1.3

size is 128. For our method, the number of glimpses is
8. The sensors used in RAM and DRN are 2D sensors.
The crop size of the sensor is 8 × 8 and the glimpse is
composed by three different resolutions (8× 8, 16× 16,
and 32 × 32). Samples are generated using the process
described in Section 4.1.1 and images are embedded
into a 100× 100 black background.

Table 2 shows the average error for all methods on
the three tasks. We also show each methods relative
rank for each task. The results show that the proposed
method clearly outperforms all the baselines. Compared
to FC and CNN, DRN uses much less neurons, but
achieved obviously better results. In particular, RAM
has the lowest performance, which supports our assump-
tion that adding a second attention mechanism can sig-
nificantly reduce regression error. DSL achieves slightly
better results for rotation, but its translation error is
very high. There is no scaling result for DSL since it is
designed for rigid transformations.

4.3.3 Performances on 3D brain image registra-
tion We then study the effectiveness of the proposed
method on 3D realignment, coregistration, and normal-
ization. Due to the large size of brain images, the batch
size is reduced to 16. For RAM and DRN, we increase
the number of glimpses to 16, and the crop size of the
sensor to 20× 20× 20, because compared with MNIST,
the object-to-background ratio is much higher for brain
images. For each subject (patient) we extract a time
slice from their fMRI and generate synthetic samples
using the method in Section 4.1.1.

Table 3 shows the performances of the compared
methods on BD including their relative performance.
Again, our method significantly outperforms all the
baselines. Again, DRN always outperforms RAM, es-
pecially on the task of normalization. The low per-
formance of RAM on normalization probably indicates
that the use of a single sensor is very sensitive to scal-
ing. By contrast, our dual-sensor architecture is able
to greatly reduce the average error on all three kinds
of transformation. We also tested DSL on realignment,
showing average errors which are very high. One pos-
sible reason may be that DSL is originally designed for
CT images which have higher resolution but are less
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Table 2: Results on MNIST for 2D registration. The
results are reported as “average performance (rank)”.

Average Error

Method Translation Rotation Scaling

FC 0.11 (2) 0.46 (4) 0.40 (3)
CNN 0.12 (3) 0.40 (3) 0.35 (2)
RAM 0.35 (4) 0.49 (5) 0.65 (4)
DSL 0.58 (5) 0.19 (1) -
DRN 0.09 (1) 0.20 (2) 0.26 (1)

Table 3: Results on BD for 3D registrations. The results
are reported as “average performance (rank)”.

Average Error

Task Method Translation Rotation Scaling

Realignment

FC 0.39 (4) 0.68 (4) -
CNN 0.28 (3) 0.41 (3) -
RAM 0.24 (2) 0.35 (2) -
DSL 1.21 (5) 0.80 (5) -

DRN 0.20 (1) 0.20 (1) -

Coregistration

FC 0.38 (4) 0.61 (4) -

CNN 0.27 (3) 0.48 (3) -
RAM 0.22 (1) 0.39 (2) -

DRN 0.22 (1) 0.32 (1) -

Normalization

FC 0.31 (3) 0.55 (3) 0.91 (3)
CNN 0.25 (2) 0.40 (2) 0.89 (2)

RAM 0.44 (4) 1.38 (4) 1.37 (4)
DRN 0.19 (1) 0.20 (1) 0.77 (1)

noisy compared to fMRI. Fig. 6 visualizes examples of
the results of all the 3D registrations achieved by DRN.

4.4 Computational and memory complexity
analysis The most important motivation of this paper
is to find an alternative deep network architecture with
lower computational and memory costs as an alterna-
tive for CNN-based methods for image registration. In
Tables 4 and 5, we report the costs of all baselines and
our method on 2D and 3D tasks.

Memory cost can be divided into two parts: the
number of neurons and weights. We don’t consider
the biases since the number of weights is dominant.
Similarly, for computational cost we only consider the
number of multiplications instead of additions.

From Tables 4 and 5, we can see that CNN always
has very high computational cost as well as number of
neurons and parameters. The reason for the larger pa-
rameter size is because the CNN uses a single convolu-
tional layer, so the input feature to its fully connected
layer is large. DSL is also based on CNNs but its param-
eter size is smaller, because it has five convolutional lay-
ers and fewer filters at early layers. However, the com-
putational cost of DSL is much higher than other meth-

Table 4: Computational and memory costs on MNIST
Dataset. Results are reported as “cost (rank)”.

Cost

Method Computational Number Number
cost(flop) of neurons of weights

FC 1.28× 106 (3) 156 (1) 106 (4)
CNN 3.20× 107 (4) 1.28× 106 (5) 3.20× 107 (5)
RAM 6.07× 105 (1) 796 (2) 1.01× 105 (1)
DSL 3.56× 109 (5) 2.07× 105 (4) 6.27× 105 (3)
DRN 6.84× 105 (2) 1052 (3) 1.75× 105 (2)

Table 5: Computational and memory costs on Bipolar
Disorder Dataset. Results are reported as “cost (rank)”.

Cost

Method Computational Number Number
cost(flop) of neurons of weights

FC 2.50× 108 (3) 156 (1) 1.95× 108 (4)
CNN 6.29× 109 (4) 2.50× 108 (5) 3.20× 109 (5)
RAM 5.02× 107 (1) 796 (2) 3.16× 106 (1)
DSL 8.64× 1011 (5) 9.76× 106 (4) 6.53× 106 (3)
DRN 9.93× 107 (2) 1052 (3) 6.30× 106 (2)

ods, because DSL needs to call its CNN many times.
The fully-connected network has the smallest number
of neurons, but its parameter size is also large. RAM
has the lowest cost for both computation and memory,
however its accuracy can be very low in some cases as
we have pointed out. The proposed DRN is significantly
more efficient in computation and space than most of
the baselines. Compared with RAM, our proposed DRN
has slightly higher computational and memory costs,
because DRN has an additional attention mechanism
for two sensors while RAM only controls one sensor.
Even so, the costs for both DRN and RAM are actually
at the same order of magnitude.

4.5 Influence of parameters In this section, we
study the influence of glimpse scale. Recall that a
glimpse representation is composed by several cropped
images with different glimpse scales extracted from an
image at the same location. In the above experiments,
a glimpse has three scales, of which the smallest scale
has the highest resolution but smallest view range, while
the largest scale has the largest view range but lowest
resolution. As shown in Table 6, we observe a larger
degradation in performance when we only use the high
resolution scale. Similarly, using only the low resolution
scale is slightly worse than combining all scales together,
although there is a smaller gap in performance.

We designed another experiment on the MNIST
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