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A B S T R A C T

At site flood frequency analysis (FFA) in arid/semi-arid watersheds poses unique challenges to researchers and
practitioners due to the generally limited data records. This study presents a comprehensive evaluation of FFA in
arid/semi-arid watersheds in relation to the unique characteristics of these regions, such as the limited number
of floods occurring each year and the large variability of the flood peak discharges. Study cases in Israel and the
US are examined and compared with non-arid watersheds, characterized by Mediterranean climate, and with
synthetic flood records.
Results show that the tail of extreme value distributions describing arid/semi-arid watersheds is found to be

heavier than the one describing Mediterranean watersheds. The number of yearly floods and the variability of
flood peak discharge are shown to have a crucial impact on the accuracy of the quantile estimates with smaller
number of events per year and larger coefficient of variation of flood peak discharge being related to larger
errors in the estimated quantiles. Partial duration series approach provides a slightly reduced bias in the esti-
mates, but should not be blindly preferred over annual maxima series as it presents comparable estimation
uncertainty. In general, the generalized extreme value and the generalized Pareto distribution are found to be
non-optimal choices for the examined arid/semi-arid watersheds.

1. Introduction

Hydrological design and flood risk management require estimates of
quantiles of the peak discharges characterized by low yearly ex-
ceedance probability at a given location. Flood frequency analysis
(FFA) aims at identifying analytical distributions reproducing the cu-
mulative distribution of observed extreme flood peaks (e.g., the series
of annual maximum peak) and whose tail is expected to represent the
probability of exceeding extreme, and potentially still unobserved,
discharges. The typical approach relies on observations and assumes
stationarity of both catchment hydrological response and climatic for-
cing. However, despite the large amount of research devoted to the
topic, there is still no consensus on a standard methodology able to
provide information for an arbitrary gauged catchment and, even less,
for ungauged catchments or nonstationary conditions (Coles, 2001;
François et al., 2019; Katz, 2002).
A large number of studies focus on two distribution classes to de-

scribe extreme flood peak discharges, namely the generalized extreme
value (GEV) distribution, for annual maxima, and the generalized
Pareto (GP) distribution for the peaks exceeding a large threshold.
These choices originate from the extreme value theorem (Fisher and

Tippett, 1928; Gnedenko, 1943), which demonstrates that the extreme
values of independent and identically-distributed random variables can
only converge to these distributions. As stated by Haan (2002): “There
is no direct theoretical connection between any analytical form of the
frequency distribution and the underlying mechanisms governing flood
flows except through the limit theorems”, and these general results
provide a-priori knowledge of the distribution describing the extremes
thus limiting the problem to the estimation of the distribution para-
meters. However, reality is far from the asymptotic behavior and, even
in presence of perfectly measured independent and identically dis-
tributed peaks, an infinite number of floods per year (or a large-enough
threshold) are required for the theorem to hold, and practitioners
sometimes rely on different distributions which seem to better represent
the available observations.
However, the GEV and GP distributions are widely used for FFA

worldwide as they represent a commonly accepted background (Ashkar
and Ba, 2017; Ben-Zvi, 2016; Castillo and Hadi, 1997; Hosking et al.,
1985; Hosking and Wallis, 1987; Katz, 2002; Martins and Stedinger,
2000; Meirovich et al., 1998; Morrison and Smith, 2002; Papalexiou
and Koutsoyiannis, 2013; Rahman et al., 2013; Solari et al., 2017;
Villarini and Smith, 2010). This becomes crucial for future studies
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aiming at describing extreme flood peaks at large (global) scales, such
as the ones already performed for precipitation (e.g., Papalexiou and
Koutsoyiannis, 2013).
Depending on the available data series, applications may follow two

approaches. The first is based on the maximum flood peak discharges
observed during equally-long temporal blocks, which are expected to
follow a GEV distribution. It is usually known by annual maxima series
(AMS) as, due to meteorological periodicity reasons, the temporal
blocks are chosen to be of a year length. The second approach, based on
independent flood peaks exceeding a high pre-defined threshold, is
known as partial duration series (PDS) or peaks-over-threshold. In this
case, the exceedances are expected to follow a GP distribution. The
choice among these stands with the practitioner and depends on the
available data, the sought level of complexity in the data treatment, and
a trade-off between estimation bias and uncertainty (Davison et al.,
1990). Specifically, AMS makes use of limited data and allows to easily
ensure independence of the flood peaks while PDS allows to include
more than one flood per year, attempting to decrease the parameter
estimation variance, at the price of methodological complexities, i.e.,
independence of flood peaks needs to be ensured and a proper threshold
needs to be chosen. Among others, two methods are more frequently
used for the distribution parameter estimation from the data series: the
maximum likelihood (ML), and the probability weighted moments
(PWM) (Greenwood et al., 1979; Sillitto, 1951). The PWM method is
formally equivalent to the method of the L-moments since PWM and L-
moments are linearly related (Ferreira and De Haan, 2015; Hosking
et al., 1985; Hosking and Wallis, 1987; Martins and Stedinger, 2000).
The ML method is generally deemed more accurate for the general case,
while the PWM is renowned for a reduced estimation variance in pre-
sence of short records and reduced sensitivity to outliers (i.e., values
particularly larger than the typical values in the record).
Arid/semi-arid regions cover about a third of the land area, glob-

ally, with indications that both the extent of the area and the residing
population living there are increasing (Huang et al., 2016; Nicholson,
2011). Despite this, studies focusing on FFA in these regions are quite
rare (Zaman et al., 2012).
In non-arid regions many studies comparing the AMS and PDS ap-

proaches are available, sometimes finding the PDS (e.g., Bezak et al.
(2014) on the Sava River in Slovenia; Rahman et al. (2013) on some
regions of Australia) or the AMS approach to be preferable (Rahman
et al., (2013) on other regions of Australia). Interestingly, recent studies
based on data from the US could not find particular improvements of
the PDS over the AMS in presence of short data records (Schumer et al.,
2014; Hu et al., 2019). Similarly, contrasting results are available on
the parameter estimation method (Rahman et al., 2013), even if general
agreement on the better performance of PWM for limited data records
was reached (Martins and Stedinger, 2000; Hu et al., 2019).
Regional growth curves (i.e., dimensionless frequency curves re-

presenting the regional analogous to at-site frequency curves) of arid
regions were found to be heavier-tailed than humid regions
(Farquharson et al., 1992; Zaman et al., 2012), also as a consequence of
the limited number of floods observed in each year. In a global-scale
regional FFA study Smith et al. (2014) show that arid regional regres-
sion models perform poorer than humid regional models, presumably
because arid regions are spatially more heterogeneous.
In particular, arid regions represent a particularly interesting case as

they pose a number of climate-specific challenges. Arid catchments are
characterized by a small number of flows per year, with frequent no-
flow years, by a large variability of flood peak discharges and by limited
lengths of observational records (Cohn et al., 2013; Knighton and
Nanson, 2001; Schumer et al., 2014). As such, arid regions are further
away from the asymptotic behavior described above; this, together with
the generally limited length of observational records, might create
practical problems for the parameter estimation and, in the case of PDS,
for the choice of the threshold. It is thus crucial to understand the ef-
fects of these characteristics on FFA in arid/semi-arid watersheds.

To the best of our knowledge there is no comprehensive study fully
exploring the impact of arid flood record characteristics on FFA. This
study focuses on two study regions (Israel and US) with two climatic
zones each (arid/semi-arid and Mediterranean) and uses observed flood
records and synthetic records from a specifically developed stochastic
flood generator to improve our understanding of these issues. Three
research questions are addressed: (1) What are the tail characteristics of
flood distributions in arid/semi-arid catchments in comparison to more
humid regions? (2) How do sparse flood occurrence, short record length
and other arid/semi-arid flood characteristics affect FFA and its un-
certainty? (3) Which approach and parameter estimation methods are
more adequate for FFA in arid/semi-arid catchments?
The paper is structured as follows. In Section 2 the study regions and

data collection and processing are presented. In Section 3, FFA and
flood generator methods are provided. In Section 4 the results of the
study are presented. Discussion and conclusions, Sections 5 and 6, re-
spectively, end the paper.

2. Study regions and data

The study focuses on watersheds characterized by arid/semi-arid
climate regimes in Israel and US (Fig. 1). Mediterranean watersheds in
the same two areas are used as a comparison, because they are geo-
graphically close, and thus characterized by similar precipitation pat-
terns and seasonality, but larger yearly precipitation amounts. The
climatic regions are defined following the Koppen-Geiger classification
(Peel et al., 2007): arid/semi-arid watersheds are defined as Arid Hot
Desert (BWh) or Arid Hot Steppe (BSh) climates, while Mediterranean
watersheds by Temperate Hot and Dry Summer (Csa) climate.
Arid/semi-arid watersheds in Israel are located in the southern part

of the country (Fig. 1). Mean annual precipitation ranges between 20
and 500 mm yr−1. Flood occurrence and magnitude (Fig. 2A) follow the
precipitation climatology, with most of the floods in the winter months
(December to February), when Mediterranean lows deliver most of the
annual precipitation to the area, and fewer floods, but with larger unit
peak discharges, in the transition months, when strong convection is
frequently brought by active Red Sea troughs and, more rarely, tropical
plumes (Armon et al., 2018; Kahana et al., 2002). The Israeli water-
sheds are characterized by large areas of bare rock and shallow soils,
such as lithosols, with mostly absence of vegetation and with the pre-
sence of debris cover and desert pavement. Some of the watersheds
(mainly in the north-eastern part of the study region) have wetter up-
stream areas where one can find more urbanization and cultivated areas
over more developed soils such as luvisols. Some sections of the channel
beds are covered in alluviums (Greenbaum et al., 2006; Shentsis et al.,
1999; Zoccatelli et al., 2019). Selected Mediterranean watersheds in
Israel are situated in the northern part of the country, with mean annual
precipitation ranging between 400 and 700 mm yr−1.
Flood data obtained from the Israeli Hydrological Service have gone

through the regular data quality assurance of such institutions. Stage-
discharge rating curves are examined and updated when necessary
stations are visited regularly. However, one should be aware that
streamflow data in arid regions may suffer from inherent challenges
such as changes in channel cross-sections during flood events due to
incision or sediment deposition, few direct measurements at high flood
stages due to limited accessibility in such situations, sub-optimal flow
conditions due to the typical steep gradients and possible non-uniform
flow over the cross sections. Events with corrupted or unreliable data
were removed from the data set. The gaps in this study were not great
and did not affect the analysis as the data for frequency analysis does
not depend on sequential uninterrupted data. The obtained data were
already separated into independent flood events. Data records include
flood peak discharges from all flow events recorded in the hydrometric
stations. After quality control, 18 stations were chosen for the arid/
semi-arid region (Fig. 1 and Table A.1) and 16 for the Mediterranean
region (Fig. 1 and Table A.3) based on the criterion of having at least
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15 years of quality-controlled data.
The arid/semi-arid US study area includes watersheds clustered in

two areas in the southwestern part of the country. US watersheds ex-
hibit a broad range of hydrogeological properties. Like the Israeli wa-
tersheds, extensive regions of bare rock and shallow soils characterize a
number of the watersheds. For a summary of watershed properties and

their relations to flood processes in arid/semi-arid watersheds in the
US, see Smith et al. (2018) and references therein. In Arizona the wa-
tersheds belong to the lower Colorado region, with mean annual pre-
cipitation between 200 and 700 mm yr−1. In Texas three watersheds
belong to the Texas Gulf region and one watershed to the Rio Grande
River Basin. The mean annual precipitation ranges between 400 and

Fig. 1. The arid/semi-arid and Mediterranean study regions in Israel and the US. The Koppen-Geiger climate classification (Peel et al., 2007) and locations of
hydrometric stations analyzed in this study are presented. See Tables A.1 and A.2 for stations details.

Fig. 2. Seasonality of flood occurrences (grey bars) and flood peak unit discharge (red points) in the arid/semi-arid study regions for Israel and the US. Note the
different y-axes scales.
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600 mm yr−1. Floods mostly (> 50%) occur during summer (Fig. 2B),
in phase with the largest unit peak discharges. However, large floods
are also reported during winter. In the transition seasons there are
fewer floods with very low unit peak discharge. The Mediterranean
watersheds of the US regions are situated in the northern part of Cali-
fornia and southern Oregon, with the mean annual precipitation ran-
ging from 500 to over 900 mm yr−1. We use US Geological Survey
(USGS) stream gaging records to examine flood peak distributions (see
Ryberg et al., 2017); a recent summary of USGS discharge measure-
ments is provided in Turnipseed and Sauer (2010). Measurements of
many extreme floods are made by indirect discharge methods, invol-
ving field measurements of peak water surface profiles and channel
cross sections, combined with hydraulic computations (Costa and
Jarrett, 2008). Indirect measurements are made for floods at stream
gaging sites when the gage is destroyed or fails to operate properly.
Peak discharge from indirect measurements have significant errors,
especially for the most extreme flood peaks in arid/semi-arid regions
(see Costa and Jarrett, 2008; Smith et al., 2019, 2018). Flood records
were retrieved from the USGS, including (i) continuous data records
containing instantaneous discharge values, and (ii) annual peak dis-
charge records, that typically have longer records. In addition to the 15-
year quality-controlled minimum record, watersheds draining more
than 5000 km2 or with substantial urban areas were excluded from the
analysis to better match the characteristics of the Israeli watersheds.
After this selection, 21 arid/semi-arid watersheds (Fig. 1 and Table A.2)
and 36 Mediterranean watersheds were used for the analysis (Fig. 1 and
Table A.4). Both types of records were retained for arid/semi-arid
watersheds, while only the annual peak discharge records were used for
Mediterranean watersheds analysis. Continuous data required separa-
tion of independent floods: events are considered independent when
separated by at least 24 h with discharge lower than twice the median
flow of the station. After sensitivity analysis, this threshold was chosen
as the largest threshold providing consistent estimates of the distribu-
tion parameters across the watersheds.

3. Methods

3.1. Flood frequency analysis

When dealing with FFA, one should consider that identical dis-
tribution is assumed (i.e., stationarity); as the available records are
typically short and over-dispersed, potential non-stationary models
cannot be extracted from the available data. We will thus stand with
Serinaldi and Kilsby (2015) and assume stationarity, in light of the
relatively short and high variance available records.

3.2. AMS approach

AMS are prepared by taking the maximum peak discharge observed
in each hydrological year (Oct 1st – Sep 30th). The GEV has the fol-
lowing cumulative distribution function (Coles, 2001):
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where x is the data, µ is the location parameter, is the scale parameter
and is the shape parameter. A shape parameter larger than 0 indicates
a power-type tail (the decay rate is slower than exponential) and a
shape parameter smaller than 0 indicates upper bounded distributions.

3.3. PDS approach

PDS data consist of all the independent flood peaks exceeding a
given threshold. The threshold selection is far from being

straightforward (see Dupuis, 1999, and Scarrott and Macdonald, 2012
for an in-depth review) and, despite few automatic methods have been
recently proposed for precipitation data (e.g., Fukutome et al., 2015;
Solari et al., 2017), to the best of our knowledge there is no method that
has shown superiority over others across regions and climates. Ad-
ditionally, depending on the tail type, the threshold selection was
shown to be a potential source of systematic bias in the results
(Papalexiou et al., 2018).
Novel approaches (Ben-Zvi, 2016; Solari et al., 2017) have been

tested and found to lack robustness across regions and watersheds. In
particular, large instability was reported for arid/semi-arid watersheds.
In order to adopt a robust methodology able to work in diverse climatic
conditions, we decided to adopt a simple and commonly used approach
that sets the threshold able to identify a pre-defined number of floods
per year. Ben-Zvi (2016) reports that literature recommends to use
between 1 and 5 floods per year. Dealing with arid watersheds, the only
way to fulfill the ‘high enough’ requirement of EVT is to use a small
factor, and therefore, following Cunnane (1979) and many others, we
adopt the recommended number of 1.65 flood per year. Sensitivity
analyses on our watersheds showed no significant deviation of the re-
sults for factors between 1.5 and 2.
The GP distribution is expected as the limiting distribution of the of a

series of independent and identically distributed random variables ex-
ceeding a high-enough threshold (Coles, 2001; Davison et al., 1990). The
GP has the following cumulative distribution function (Coles, 2001):
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where x is the data, µ is the location parameter, is the scale parameter
and is the shape parameter. As for the case of the GEV, a shape para-
meter larger (smaller) than 0 indicates a heavy (light) tail of the dis-
tribution. The GP location parameter is also known as the threshold and
x µ is also referred to as exceedances above the threshold.

3.4. Parameter estimation methods

In this study, the ML and PWM methods are applied to derive the
three parameters (µ, and ) of the GEV distribution fitting the AMS,
and two ( and ) of the three parameters of the GP distribution fitting
the PDS, as the GP location parameter µ, i.e. the threshold, is set prior
to parameter estimation. For both methods, we used the gevFit and
gpdFit functions from the fExtremes R package (Wuertz, 2006) to esti-
mate the parameters and calculate the distribution quantiles.

3.5. Uncertainty range estimation

Uncertainty is quantified using a non-parametric bootstrapping
method (Hall et al., 2004; Overeem et al., 2008). As recommended by
Hall et al. (2004), we used 1000 samples with replacement among the
hydrological years in the record. In the case of PDS, the threshold
discharge and the peaks exceeding the threshold are newly determined
at each resample. The distribution parameters are then estimated and
the quantiles calculated. Uncertainty is quantified as the 95% range
(i.e., the range between the 2.5% and the 97.5% bounds).
For assessment of the extent of the uncertainty, a normalized un-

certainty range is defined as the ratio of the uncertainty range (i.e. the
difference between the 97.5% and the 2.5% bounds) by the estimated
return level.

3.6. Estimation of the tail heaviness

We quantify the heaviness of the distribution tails using the tail
ratio defined here as the ratio between the 100-year and the 10-year
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flood peaks. Heavier tails will be characterized by larger ratios, and vice
versa. The method is similar to the method presented in Smith et al.
(2018), but the ratio between maximal observed and 10-year flood peak
was used.

3.7. Uncertainty in shape parameter estimated from short records

Record length is a major contributor to FFA uncertainty (Martins
and Stedinger, 2000; Serinaldi and Kilsby, 2014) and, due to the lower
density of monitoring stations, is a typical issue affecting arid/semi-arid
regions (Nicholson, 2011). Here, we examine the effect of record length
on the uncertainty in the shape parameter estimation. To do so, stations
with records exceeding 50 years were selected (3 stations from Israel
and 11 from US). Ensembles were created by bootstrapping (1000 re-
petitions) records increasing from 15 years to the full record length of
the station and the uncertainty in the GEV/PWM shape parameter was
computed for as the 95% interval.

3.8. Synthetic arid/semi-arid flood generator

A synthetic flood generator is developed to produce realistic flood
records characterized by: (i) the desired distribution of the number of
floods observed annually, and (ii) the desired parent distribution de-
scribing the flood peak discharges. In arid/semi-arid regions, the dis-
tribution of the annual number of floods is often over-dispersed (80% of
the examined watersheds, Fig. 3). Thus, a negative binomial distribu-
tion, more adequate in over-dispersed conditions than a Poisson dis-
tribution (Lang et al., 1999), was chosen. Concerning the parent dis-
tribution describing the flood peak discharges, four distributions were
examined: Weibull, Pareto, log-normal and gamma. In this case, both
goodness of fit tests and graphical diagnosis were used. It was found
that the log-normal distribution best fits the data of most of the arid/
semi-arid stations. Where this might be the case in this study, other
distributions may be better for modelling peak discharge distribution
for other regions or climates. Log-normal distribution of flood peak was
also found to be a good model for ordinary events by (Zhang et al.,
2019). Parameters of the negative binomial and log-normal distribu-
tions were estimated at each station using the ML method in the fit-
distrplus and Mass R packages (Delignette-Muller and Dutang, 2015;
Venables and Ripley, 2002). The obtained parameters are presented in
Fig. 4, and their median values were used in the flood generator to
create arid/semi-arid flood records with the desired characteristics.

4. Results

4.1. FFA in arid/semi-arid regions

Fig. 5 shows the 10- and 100-year flood unit peak discharge esti-
mated using ML and PWM over arid/semi-arid watersheds in Israel as a
function of the catchment area. The regional envelope curve for eastern
Mediterranean region presented by Tarolli et al. (2012) is super-
imposed: by construction, envelope curves provide an estimate of the
regional upper bound to the unit peak discharges to be expected as a
function of the watershed area (Enzel et al., 1993). If the data record
used to build the curves is complete, only particularly rare floods are
expected to exceed the envelope curves. The figure shows that, in many
cases, 100-year floods estimated using ML substantially exceed the re-
gional envelope curve. This indicates that ML provides unreliable es-
timates for our dataset. Thus, we will focus hereafter on the PWM es-
timation method.

Fig. 3. Variance vs mean of annual number of flood occurrences in the US and
Israel stations. The line depicts the 1:1 relation. Points above the line indicate
over-dispersion.

Fig. 4. Parameters of the negative binomial distributions describing the number
of yearly floods (A) and of the lognormal distribution describing the floods
intensity (B) of all the arid/semi-arid stations. Green diamonds show the
medians of the scatter.

Fig. 5. Unit peak discharges for 10- and 100-year return period estimated using
different distributions and parameter estimation method vs drainage area for all
arid/semi-arid analyzed stations in Israel. The envelope curve for the eastern
Mediterranean (Tarolli et al., 2012) is depicted by the black line.
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Across the regions, the normalized uncertainty of lower quantiles
(e.g., 10 years) is smaller for GP than for GEV (Fig. 6). The normalized
uncertainty for Israel is larger than that of the US for the GEV dis-
tribution and for larger quantiles. This may be attributed to the shorter
records available for stations in Israel (medians are 34.5 and 50 years
for Israel and US, respectively). The normalized uncertainty tends to
increase with return period for GP, while no consistent pattern is ob-
served for GEV (Fig. 6) with the 10-year normalized uncertainty being
larger than the 50-year. It is worth noting that the general behavior of
the uncertainties for the two approaches is consistent among the two
study regions, instilling confidence in the robustness of the results.
Fig. 7 also shows how the PDS approach generally provides smaller
uncertainty, in particular for shorter return periods (10- and 50-year),
while less advantages are observed for longer return periods (100- and
250-year), particularly in the US. Given the recent debate on the topic
(e.g., Hu et al., 2019; Marra et al., 2018; Schlögl and Laaha, 2016), we
test the common assumption that the PDS approach is preferable over
the AMS due to the larger amount of data points used in the former for
the parameters estimation (Ben-Zvi, 2016; Castillo and Hadi, 1997;
Morrison and Smith, 2002), focusing on arid/semi-arid watersheds. To
do so, we examined whether PDS estimated values are within the

uncertainty range of AMS estimates and vice versa (Fig. 7). All values
were normalized by dividing by the estimated PDS (GP) peak discharge
(Fig. 7A) and AMS (GEV) estimated peak discharge (Fig. 7B). Almost in
all cases the estimated values of the GP or GEV are within the un-
certainty range of the competing distribution with the only exception of
the US, in which the longer return periods (e.g. 50- and 100-year) of the
GP estimation is sometimes comparable to the upper GEV uncertainty
bound.
A similar analysis is performed based on the synthetic flood record.

A long synthetic flood record is created (105 years) to represent the
population, 1000 series of 60 years (similar to real site record lengths)
are sampled and their flood peak discharge, and uncertainty is esti-
mated using GEV/PWM and GP/PWM (Fig. 8). In this case, the re-
ference discharge for a given quantile can be empirically derived from
the population. Results here show that GP slightly outperforms GEV. It
is however worth noting how both approaches underestimate the re-
ference peak discharge: this aspect will be addressed in detail in the
following.

4.2. Comparison of arid/semi-arid vs. Mediterranean watersheds

In this section the arid/semi-arid climate watersheds are compared
with the Mediterranean climate watersheds. Owing to the type of
available data, only the AMS approach is used for such comparison; the
results above, however, showed comparable behavior among the two
approaches. PWM is chosen for the parameter estimation due to the
superior performance highlighted above.
Fig. 9 presents the distributions of the tail ratios in the different

regions and climates. The distributions of the tail ratio for the GEV/
PWM were compared using the Welch test (Welch, 1951) followed by
the ad hoc Games-Howell test (Games and Howell, 1976) for pairwise
comparison. Both tests are specifically suitable for heteroscedastic
samples with unequal sizes. Heteroscedasticity was determined using
the Levene and Bartlett tests (Levene, 1960; Snedecor and Cochran,
1989). All differences were found to be significant, with one interesting
exception: no significant difference is observed between Israeli Medi-
terranean watersheds and arid US watersheds. This should not come as
a surprise given that the climatic classification considers many factors
(including temperature and seasonality) while other factors, such as the
mean annual precipitation amounts, are comparable in the two areas.
The distribution of unit peak discharge for different return periods

and climatic regions is presented in Fig. 10A. The unit peak discharge
for Mediterranean regions is larger for shorter return periods (i.e.
10–50 years) but peak discharge of arid/semi-arid floods of 100 and
250-year return periods are found to exceed the corresponding Medi-
terranean floods in the US. In addition, the ratio of the 250-year to the
10-year flood was examined. This ratio can be used to compare the
upper tail across watersheds in a similar manner to the upper tail ratio
that is used in Smith et al. (2018). The mean ratio for the arid/semi-arid
watersheds (6.84 for Israel, 7.06 for the US) is larger than the one in
Mediterranean watersheds (5.04 for Israel, 2.68 for the US).
A comparison of the normalized uncertainty ranges across the

analyzed climates and regions indicates that the median normalized
uncertainty range is larger for the arid/semi-arid watersheds (Fig. 10B).
In particular, the uncertainty range of the US-Mediterranean water-
sheds is significantly smaller than the other climate-regions. This is
probably due to the longer record length (median of 74 years as com-
pared to 34.5, 50, and 42 of arid/semi-arid Israel, arid/semi-arid US
and Mediterranean Israel regions, respectively), even if the possibility
that GEV and GP are better suited to these watersheds than arid ones,
cannot be excluded.

Fig. 6. Boxplots of the 95% uncertainty range (i.e., the difference between the
97.5 and the 2.5% quantiles) of the peak discharge for different return periods
divided by the estimated peak discharge for the different distributions and es-
timation methods for all the arid/semi-arid stations. The black line in each
boxplot marks the median, the boxes lower and upper borders mark the 25 and
75% quartiles, respectively, the whiskers mark the minimum and maximum
values unless these values exceed 1.5 · IQR (inter quartile range – the distance
between lower and upper quartiles) and the dark points mark the outliers.
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4.3. Sensitivity to the characteristics of arid/semi-arid flood records

Fig. 11 shows the uncertainty in the GEV/PWM tail ratio estimated
from record between 15 years and the full length for stations that have

at least 50-year record. As expected, uncertainty range is negatively
correlated with record length and its rate of change decreases with
record length.
Second, we explore the effects of record length on the estimation of

quantiles and parameters using the synthetic flood generator. Records
of 15- to 500-year long were created and the 100-year flood magnitude
was estimated for both GEV and GP. For this analysis, the reference
100-year flood is known from the full 105-year synthetic record and the
bias, defined as the ratio between the estimated and reference peak
discharge, is computed (Fig. 12A). Both distributions tend to under-
estimate the 100-year flood (i.e. a value of 1 is equal to no bias) for all
record lengths. Longer records provide less biased estimates, but a clear

Fig. 7. A) Boxplots (all stations) of GEV estimate
(cyan) and GP estimated uncertainty bounds (2.5
and 97.5% quantiles, brown), normalized over the
GP estimate, for different return periods for the two
regions. B) Same as A but showing GP estimate
compared to GEV uncertainty bounds, normalized
over the GEV estimate. The PWM parameter esti-
mation method was used in all cases.

Fig. 8. Similar to Fig. 9 but based on the synthetic flood generator data. Dashed
red lines represent the reference peak discharge divided by the median esti-
mated discharge of the GP in A and by the median estimated discharge of the
GEV in B.

Fig. 9. Comparison of the tail ratio unit peak discharge between climates (Arid/
Semi-Arid and Humid) and regions in Israel (top) and US (right) for GEV-PWM
and GP-PWM.
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convergence to the reference value is not reported even for 500-year
records. This non-convergence of the estimates to the record is counter-
intuitive and could be related to the fact that, in the arid watersheds of
Israel, it is quite common to have one, two or even no floods in a given
year (Table A.1) while for the arid/semi-arid watersheds in the US the
number of floods in a year may exceed ten, but still remaining limited
(Table A.2 and Fig. 12D, bottom).
In order to quantify the extent of the estimation error, we created

different synthetic series with different mean number of flood events
per year by altering the mean parameter of the negative binomial dis-
tribution describing the number of yearly floods. The log-normal dis-
tribution describing the individual floods intensities was kept un-
changed. Fig. 12D presents the bias as a function of the mean number of
events per year. The distributions of the mean number of annual floods
for all stations in the study are given at the bottom of Fig. 12D (grouped
by climate). As expected, the bias for all the distributions and estima-
tion methods decreases when the mean number of events per year in-
creases, and converges to 1 for 20–30 floods per year. Both distributions
tend to underestimate the reference value by up to ~20% for less than
~5 events per year.
The occurrence of years with no flow is a common feature in the

arid/semi-arid watersheds in Israel (in the US stations all years had at

least one flood event). The fraction of years with no flows ranges up to
37%, with a mean of 15.3% in the Israeli arid watersheds. Using the
synthetic flood generator, we quantified the effect of no flow years on
FFA of the GEV distribution (Fig. 12B). In general, underestimation of
the 50- and 100-year return periods is observed as a consequence of
years with no-flows. The underestimation worsens as the percent of
years with no flow increases but it is most notable in the extreme case of
50% years with no flow.
Another typical feature of flood discharge in arid/semi-arid regions

is its large variability (Chouaib et al., 2018; Nicholson, 2011). This
translates to a larger coefficient of variation (CV) of flood peak dis-
charges than in humid regions (Salinas et al., 2014) (Fig. 12C, bottom).
In order to examine what is affected by this, the accuracy of 100-year
flood estimation, we produced synthetic records representing different
CVs by alterations of the synthetic generator lognormal distribution and
leaving the binomial distribution describing the number of yearly
floods unchanged. The distributions of the CV for all stations in the
study are given at the bottom of Fig. 12C (grouped by climate). As
expected, the relative error increases as CV increases. Both distributions
underestimate the 100-year flood for large CVs (e.g. for CV = 5 the
GEV/PWM is 0.91 of the reference flood and the GP/PWM is 0.93 of the
reference flood) but for a CV smaller than 3 the estimation is quite
accurate. GP seems the more accurate for most CV values.

5. Discussion

Rainfall frequency studies have shown evidences of a heavier tail in
arid/semi-arid regions (Ben-Zvi, 2009; Marra et al., 2017; Marra and
Morin, 2015; Morin et al., 2020) and few FFA studies have shown some
degree of inheritance in the flood tail characteristics (Farquharson
et al., 1992; Smith et al., 2014; Zaman et al., 2012). We found the tail of
flood distributions in arid/semi-arid watersheds to be significantly
heavier than in Mediterranean watersheds of the same region (Fig. 9).
This confirms what is reported for rainfall, and may be attributed to the
climatic and physical characteristics of arid/semi-arid watersheds such

Fig. 10. A) Unit peak discharge as a function of return period for different
climates (Arid and Semi-arid, Ar./Semi-Ar., and Mediterranean, Med.) and re-
gions (Israel, IL, and United States, US). Estimation is done by the GEV/PWM.
B) Uncertainty ranges of the unit peak discharges normalized by the estimated
discharge for the GEV/PWM for different return periods for the different cli-
mates and regions.

Fig. 11. Uncertainty of the shape parameter vs record length. The distance of
the 2.5% and 97.5% uncertainty range curves from the median shape parameter
is presented for all the stations in both the regions that have a record longer
than 50 years.
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as high energy, high intensity convective rainfall events (Camarasa-
Belmonte and Soriano, 2014; Zaman et al., 2012), low infiltration ca-
pacities (Morin and Benyamini, 1977), and to the small scale of the
examined watersheds, more likely to respond to the more skewed dis-
tributions of short duration rainfall (Marra and Morin, 2015) and of the
synoptic events more characterizing the arid portions of the region
(Marra et al., 2019). At the same time, statistical reasons related to the
smaller number of floods per year are likely to contribute to this, and
cannot be excluded a priori. Our results confirm the vital importance of
quantification and communication of the uncertainty in the estimated
quantiles: in arid/semi-arid watersheds, the uncertainty range may be
as large as the estimated quantiles, surprisingly also for relatively short
return periods (Fig. 6).
It is a common belief that, in presence of short records, the PDS

approach should outperform the AMS thanks to the larger amount of
data used for the parameter estimation (Bezak et al., 2014; Nagy et al.,
2017). This however comes at the price of methodological complexities
(threshold estimation; separation of independent floods), which might
lead to biases in FFA. In arid areas, owing to the high variability of
flood peak discharge, a simple threshold estimation method must be
adopted. We found similar performance between GEV and GP in terms
of uncertainty estimation (Fig. 7; Fig. 8), confirming previous results by
Hu et al. (2019), Marra et al. (2018) and Schlögl and Laaha (2016).
Results from this study show how parameter estimation by means of

ML in arid/semi-arid watersheds often leads to unrealistic values
(Fig. 5). This confirms previous findings in which PWM was shown to

outperform ML in the estimation of parameters from short data records
(e.g., Martins and Stedinger, 2000; Hosking and Wallis, 1987; Dupuis,
1999) and stresses the particular importance of parameter estimation
method for arid/semi-arid regions.
GEV and GP seem to provide poorer estimates in arid areas, due to

the small number of floods per year. In addition, since the lognormal
distribution is in the domain of attraction of the Gumbel distribution
(i.e., the GEV with shape parameter equal to zero), but this convergence
is very slow, the fact that flood peaks in these areas were found to
follow such distribution, an extremely large number of floods per year
are required to reach the asymptotic GEV.
More specifically, (i) the limited mean number of floods per year

(Fig. 12B and D), and (ii) the large variability of flood peak discharge
(Fig. 12C), are found to significantly affect peak discharge estimates.
The PDS approach is found to perform slightly better since the use of a
threshold is likely to remove low flows and no-flows from data series
used for the parameter estimation. Regionalization approaches could be
attempted to decrease the observed uncertainties, even if the lack of
data makes it more difficult to define homogeneous regions in arid
areas, with respect to other regions. Alternative estimation methods,
such as the mixed method by Morrison and Smith (2002) as well as
recently developed methodologies for extreme value analysis might be
able to overcome the limitations of traditional methods in arid regions.
The Metastatistical Extreme Value framework (Marani and Ignaccolo,
2015), which allows to relax the asymptotic assumption on the number
of floods per year and vastly increase the data sample thus reducing the

Fig. 12. A) Bias of the 100-year flood with re-
spect to the reference 100-year flood for dif-
ferent approaches vs record length. The 100-year
reference flood is obtained empirically from the
synthetic record. B) Bias of the 50-year and 100-
year floods for the GEV/PWM distribution for
different percentages of no flow years of total
years on record. C) Bias of 100-year flood vs the
coefficient of variation values of the log-normal
distribution describing the flood peaks. The
density plot at the bottom shows the distribution
of the coefficient of variation in all the stations in
the study (grouped by climate). The dashed lines
are the medians of the distributions. D) Bias of
the 100-year flood vs the mean number of flood
events per year. The density plot at the bottom
shows the distribution of the mean number of
events in all the stations in the study (grouped by
climate).
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issues related to short record lengths (Marra et al., 2018; Zorzetto et al.,
2016), was recently tested to model extreme flood peak discharge in a
large sample of catchments in the contiguous Unites States and found to
outperform traditional methods in more than 75% of the cases
(Miniussi et al., 2020). More specifically, its simplified version (Marra
et al., 2019) promises improved estimates of the flood peak discharge
distribution in presence of limited number of floods in each year.

6. Conclusions

This study presents a comprehensive evaluation of the use of the
generalized extreme value (GEV) and generalized Pareto (GP) dis-
tributions flood frequency analysis in arid/semi-arid watersheds.
Special attention is given to the impact of the peculiar characteristics of
these watersheds, namely (i) the limited number of floods per year, and
(ii) the large variability of flood peak discharges. Study cases in Israel
and the US are examined together with control watersheds character-
ized by Mediterranean climate and synthetic flood records reproducing
the characteristics of arid/semi-arid records. The main findings of the
study are as follows:

- For the examined data records, the tail ratio of extreme floods in
arid/semi-arid watersheds is larger than the one describing
Mediterranean watersheds, indicating a heavier tail and confirming
previous observations on short-duration rainfall
- The mean number of floods per year and the coefficient of variation
of flood peak discharge have a crucial impact on the accuracy of the
estimates: (a) smaller number of events per year and (b) larger
coefficient of variation of the flood peak discharge distributions are
related to large errors in the estimated quantiles, irrespective of the
adopted approach (annual maxima vs. partial duration series).
- The use of partial duration series approach provides slightly im-
proved estimates because the use of a threshold reduces the amount
of low flows and no-flows in the data series. However, no significant
advantage is observed in term of estimation uncertainty: estimates
obtained using one of the two approaches are consistently within the
other’s uncertainty range. From a practical point of view, due to the
increase complexity, partial duration series should be preferred only
after a careful examination of the characteristics of individual case
of interest.
- Arid watersheds are further from the asymptotic behavior than

catchments in more humid hydro-climatic conditions, and the GEV
and GP distributions provided poorer estimates of extreme quantiles
in arid than in Mediterranean. This problem was enhanced when
maximum likelihood methods were used for the parameter estima-
tion

In arid/semi-arid regions, the challenges faced by practitioners
when assessing design floods through flood frequency analysis are ex-
acerbated. In general, findings from this study, indicate that in arid/
semi-arid watersheds maximal likelihood estimation method should not
be used even in presence of long data records, the partial duration series
approach should not be blindly preferred over the annual maxima series
approach, and the uncertainty in the estimated quantiles should not be
overlooked.
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Appendix

Table A.1
Israeli arid/semi-arid hydrometric stations.

Station no. Name Record length (yr) Watershed area (km2) Mean annual rain (mm yr−1) Mean # of floods yr−1 CV of flood magnitude

23,106 Besor – Nizana Road 51 179 50–100 2.1 1.5
23,134 Beqa – Be'er-Sheva 29 97 100–200 5.2 3.3
23,135 Beqa – Be'er Sheva 37 97 100–200 5.4 2.1
23,137 Be'er-Sheva – Hazerim 36 1234 200–300 5.5 2.6
23,150 Besor – Re’im 38 2643 100–200 2.5 1.9
23,160 Gerar – Re’im 40 645 200–300 4.1 2.3
48,125 Darga 25 75 200–300 2.8 1.6
48,130 Teqoa 26 135 300–350 2.3 2.1
48,185 Rahaf 23 75 50–100 2.4 1.9
48,192 Hemar – Downstream the Cliff 22 357 50–100 2.9 1.9
55,106 Zin Upper – Avedat 25 124 50–100 2.2 2.8
55,110 Zin – Waterfall 57 232 50–100 1.8 2.5
55,140 Zin – Masos 35 674 50–100 1.9 2.4
55,165 Mamshit 37 59 50–100 3.3 2.0
56,140 Ramon 32 111 50–100 2.1 1.2
56,150 Neqarot – Upper 28 708 50–100 2.0 2.6
57,130 Paran – Western Border 21 2350 0–50 2.1 2.2
57,165 Paran – The Bottleneck 52 3324 0–50 1.9 2.3
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Table A.2
US arid/semi-arid hydrometric stations.

Station No. Name Continuous record
length (yr)

Annual peak record
length (yr)

Watershed area
(km2)

Mean annual rain
(mm yr−1)

Mean # of
floods yr−1

CV of flood
magnitude

8,128,000 S Concho Rv At Christoval TX. 19 88 1070 400–500 5.5 4.3
8,131,400 Pecan Ck Nr San Angelo TX. 14 43 210 200–300 2.0 2.5
8,194,200 San Casimiro Ck Nr Freer TX. 27 57 1215 400–500 7.0 3.4
8,447,020 Independence Ck Nr Sheffield TX. 17 28 1976 400–500 4.9 3.7
9,471,380 Upper Babocomari River Near

Huachuca City AZ.
19 16 408 500–600 4.5 2.4

9,480,500 Santa Cruz River Near Nogales AZ. 33 86 1380 500–600 4.8 2.2
9,481,740 Santa Cruz River At Tubac AZ. 24 19 3134 500–600 13.8 2.3
9,482,000 Santa Cruz River At Continental

AZ.
26 72 4356 400–500 6.5 3.4

9,484,000 Sabino Creek Near Tucson AZ. 31 84 92 400–500 5.2 3.3
9,484,550 Cienega Creek Near Sonoita AZ. 18 14 513 400–500 10.0 3.1
9,484,600 Pantano Wash Near Vail AZ. 30 58 1184 700–750 8.7 2.2
9,485,000 Rincon Creek Near Tucson AZ. 31 63 116 400–500 3.9 2.2
9,486,800 Altar Wash Near Three Points AZ. 27 38 1199 500–600 7.1 1.4
9,487,000 Brawley Wash Near Three Points

AZ.
24 43 2010 400–500 6.9 2.2

9,497,980 Cherry Creek Near Globe AZ. 32 50 518 400–500 7.6 3.0
9,499,000 Tonto Creek Above Gun Creek

Near Roosevelt AZ.
32 75 1748 600–650 8.2 3.7

9,508,300 Wet Bottom Creek Near Childs AZ. 31 48 94 600–650 4.1 2.5
9,510,200 Sycamore Creek Near Fort

Mcdowell AZ.
32 56 425 500–600 5.1 2.9

9,512,280 Cave Creek Blw Cottonwood Cr
Near Cave Creek AZ.

31 35 214 500–600 4.2 2.7

9,513,780 New River Near Rock Springs AZ. 29 54 177 400–500 2.9 3.5
9,517,490 Centennial Wash At Southern

Pacific Railroad Brdg
28 30 4705 400–500 3.3 2.1

Table A.3
Israeli Mediterranean hydrometric stations.

Station no. Name Record length (yr) Watershed area (km2) Mean annual rain (mm yr−1) Mean # of floods yr−1 CV of flood magnitude

8126 Nahalal 26 41 500–600 6.5 1.9
8130 Ha'shofet – Hazore'a 32 12 600–700 13.0 3.0
8140 Bet Lehem 48 22 600–700 10.1 2.1
8146 Qishon – The Quarry 52 695 600–700 9.5 2.4
8155 Zippori – Tel Alil 18 246 500–600 12.0 1.6
12,130 Daliyya – Bat Shelomo 51 42 600–700 5.7 2.2
12,140 Daliyya – Tel Aviv-Haifa Road 42 69 500–600 10.0 2.7
13,105 Tanninim – 'Ammiqam 43 51 600–700 6.2 2.0
13,125 Ada – Giv'at Ada 47 18 600–700 7.8 3.0
13,135 Barqan – Kefar Glickson 46 29 500–600 8.2 2.0
15,120 Alexander – Elyashiv 47 488 500–600 9.3 1.9
31,155 Meshushim – Dardara 44 160 400–500 14.6 2.7
31,160 Yehudiya – Bet Zayda Road 22 81 400–500 8.9 1.9
31,163 Daliyot – Bet Zayda Road 22 109 400–500 8.3 2.7
31,165 Samak − 200 M Elevation 25 101 400–500 9.6 2.4
38,175 Harod – Bet She'an,Near 90 Road 21 181 400–500 9.5 1.6

Table A.4
US Mediterranean hydrometric stations.

Station no. Name Record length
(yr)

Watershed area (km2) Mean annual rain (mm
yr−1)

Mean # of floods
yr−1

CV of flood magnitude

11,335,000 Cosumnes R A Michigan Bar Ca 109 1388 500–600 3.6 2.6
11,336,580 Morrison C Nr Sacramento Ca 46 138 500–600 17.7 1.5
11,336,585 Laguna C Nr Elk Grove Ca 20 83 500–600 13.5 3.2
11,342,000 Sacramento R A Delta Ca 71 1101 1900–2000 5.3 1.6
11,355,500 Hat C Nr Hat Creek Ca 69 420 800–900 2.0 0.2
11,372,000 Clear C Nr Igo Ca 75 591 1300–1400 7.9 1.2
11,374,000 Cow C Nr Millville Ca 67 1101 800–900 5.8 1.3
11,376,000 Cottonwood C Nr Cottonwood Ca 75 2401 700–800 3.9 1.7
11,376,550 Battle C Bl Coleman Fish Hatchery Nr

Cottonwood Ca
53 925 700–800 7.8 1.1

11,379,500 Elder C Nr Paskenta Ca 67 239 600–700 4.5 2.0
11,381,500 Mill C Nr Los Molinos Ca 87 339 900–1100 8.2 1.3
11,383,500 Deer C Nr Vina Ca 99 539 800–900 5.7 1.6

(continued on next page)

A. Metzger, et al. Journal of Hydrology 590 (2020) 125254

11



References

Armon, M., Dente, E., Smith, J.A., Enzel, Y., Morin, E., 2018. Synoptic-scale control over
modern rainfall and flood patterns in the Levant drylands with implications for past
climates. J. Hydrometeorol.

Ashkar, F., Ba, I., 2017. Selection between the generalized Pareto and kappa distributions
in peaks-over-threshold hydrological frequency modelling. Hydrol. Sci. J. 62,
1167–1180. https://doi.org/10.1080/02626667.2017.1302089.

Ben-Zvi, A., 2016. Selecting series size where the generalized Pareto distribution best fits.
J. Hydrol. 541, 778–786. https://doi.org/10.1016/j.jhydrol.2016.07.038.

Ben-Zvi, A., 2009. Rainfall intensity-duration-frequency relationships derived from large
partial duration series. J. Hydrol. 367, 104–114. https://doi.org/10.1016/j.jhydrol.
2009.01.007.

Bezak, N., Brilly, M., Šraj, M., 2014. Comparaison entre les méthodes de dépassement de
seuil et du maximum annuel pour les analyses de fréquence des crues. Hydrol. Sci. J.
59, 959–977. https://doi.org/10.1080/02626667.2013.831174.

Camarasa-Belmonte, A.M., Soriano, J., 2014. Empirical study of extreme rainfall intensity
in a semi-arid environment at different time scales. J. Arid Environ. 100 (101),
63–71. https://doi.org/10.1016/j.jaridenv.2013.10.008.

Castillo, E., Hadi, A.S., 1997. Fitting the Generalized Pareto Distribution to Data. J. Am.
Stat. Assoc. 92, 1609–1620. https://doi.org/10.1080/01621459.1997.10473683.

Chouaib, W., Caldwell, P.V., Alila, Y., 2018. Regional variation of flow duration curves in
the eastern United States: process-based analyses of the interaction between climate
and landscape properties. J. Hydrol. 559, 327–346. https://doi.org/10.1016/j.
jhydrol.2018.01.037.

Cohn, T.A., England, J.F., Berenbrock, C.E., Mason, R.R., Stedinger, J.R., Lamontagne,
J.R., 2013. A generalized Grubbs-Beck test statistic for detecting multiple potentially
influential low outliers in flood series. Water Resour. Res. 49, 5047–5058. https://
doi.org/10.1002/wrcr.20392.

Coles, S., 2001. An introduction to statistical modeling of extreme values. Springer Series
Statist. https://doi.org/10.1007/978-1-4471-3675-0.

Costa, J.E., Jarrett, R.D., 2008. An evaluation of selected extraordinary floods in the
United States reported by the US Geological Survey and implications for future ad-
vancement of flood science.

Cunnane, C., 1979. A note on the Poisson assumption in partial duration series models.
Water Resour. Res. 15, 489–494. https://doi.org/10.1029/WR015i002p00489.

Davison, A.C., Smith, R.L., Journal, S., Statistical, R., Series, S., 1990. Models for ex-
ceedances over high thresholds published by: wiley for the royal statistical society.
Wiley R. Stat. Soc. 52, 393–442.

Delignette-Muller, M.L., Dutang, C., 2015. fitdistrplus: an R Package for Fitting
Distributions. J. Stat. Softw. 64.

Dupuis, D.J., 1999. Exceedances over high thresholds: a guide to threshold selection.
Extremes 1, 251–261. https://doi.org/10.1023/A:1009914915709.

Enzel, Y., Ely, L.L., House, P.K., Baker, V.R., Webb, R.H., 1993. Paleoflood evidence for a
natural upper bound to flood magnitudes in the Colorado River Basin. Water Resour.
Res. 29, 2287–2297. https://doi.org/10.1029/93WR00411.

Farquharson, F.A.K., Meigh, J.R., Sutcliffe, J.V., 1992. Regional flood frequency analysis

in arid and semi-arid areas. J. Hydrol. 138, 487–501. https://doi.org/10.1016/0022-
1694(92)90132-F.

Ferreira, B.Y.A., De Haan, L., 2015. On the block maxima method in extreme value
theory: PWM estimators. Ann. Stat. 43, 276–298. https://doi.org/10.1214/14-
AOS1280.

Fisher, R.A., Tippett, L.H.C., 1928. Limiting forms of the frequency distribution of the
large sample. Math. Proc. Cambridge Philos. Soc. 24, 180–190.

François, B., Schlef, K.E., Wi, S., Brown, C.M., 2019. Design considerations for riverine
floods in a changing climate – a review. J. Hydrol. https://doi.org/10.1016/j.jhydrol.
2019.04.068.

Fukutome, S., Liniger, M.A., Süveges, M., 2015. Automatic threshold and run parameter
selection: a climatology for extreme hourly precipitation in Switzerland. Theor. Appl.
Climatol. 120, 403–416. https://doi.org/10.1007/s00704-014-1180-5.

Games, P. a, Howell, J.F., 1976. Pairwise Multiple Comparison Procedures with Unequal
N’s and/or Variances: A Monte Carlo Study. J. Educ. Stat. 1, 113–125.

Gnedenko, B., 1943. Sur La Distribution Limite Du Terme Maximum D’Une Serie
Aleatoire. Ann. Math. 44, 423–453. https://doi.org/10.2307/1968974.

Greenbaum, N., Ben-Zvi, A., Haviv, I., Enzel, Y., 2006. The hydrology and paleohydrology
of the Dead Sea tributaries. Geol. Soc. Am. Spec. Pap. 401, 63–93. https://doi.org/10.
1130/2006.2401(05).

Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, J.R., 1979. Probability weighted
moments: definition and relation to parameters of several distributions expressable in
inverse form. Water Resour. Res. 15, 6. https://doi.org/10.1029/WR015i005p01049.

Haan, C.T., 2002. Statistical methods in hydrology. Iowa State Press.
Hall, M.J., van den Boogaard, H.F.P., Fernando, R.C., Mynett, a. E., 2004. The con-

struction of confidence intervals for frequency analysis using resampling techniques.
Hydrol. Earth Syst. Sci. 8, 235–246. https://doi.org/10.5194/hess-8-235-2004.

Hosking, J.R.M., Wallis, J.R., 1987. Parameter and quantile estimation for the generalized
pareto distribution. Technometrics 29, 339. https://doi.org/10.2307/1269343.

Hosking, J.R.M., Wallis, J.R., Woo, E.F., 1985. Estimation of the generalized extreme
value distribution by the method of probability weighted moments. Technometrics
27, 251–261. https://doi.org/10.1080/00401706.1985.10488049.

Hu, L., Nikolopoulos, E.I., Marra, F., Anagnostou, E.N., 2019. Sensitivity of flood fre-
quency analysis to data record, statistical model, and parameter estimation methods:
an evaluation over the contiguous US. J. Flood Risk Manage. 1 (13). https://doi.org/
10.1111/jfr3.12580.

Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion
under climate change. Nat. Clim. Change. 6, 166–171. https://doi.org/10.1038/
nclimate2837.

Kahana, R., Ziv, B., Enzel, Y., Dayan, U., 2002. Synoptic climatology of major floods in the
Negev Desert. Israel. Int. J. Climatol. 22, 867–882. https://doi.org/10.1002/joc.766.

Katz, R., 2002. Statistics of extremes in climatology and hydrology. Adv. Water Resour.
25, 1287–1304.

Knighton, A.D., Nanson, G.C., 2001. An event-based approach to the hydrology of arid
zone rivers in the channel country of Australia. J. Hydrol. 254, 102–123. https://doi.
org/10.1016/S0022-1694(01)00498-X.

Lang, M., Ouarda, T.B.M.J., B, 1999. Bobe e, Towards operational guidelines for over-
threshold modeling, J. Hydrol 225, 103–117.

Table A.4 (continued)

Station no. Name Record length
(yr)

Watershed area (km2) Mean annual rain (mm
yr−1)

Mean # of floods
yr−1

CV of flood magnitude

11,390,000 Butte C Nr Chico Ca 85 381 1300–1400 5.7 1.5
11,418,500 Deer C Nr Smartsville Ca 81 219 1000–1100 7.7 2.4
11,421,000 Yuba R Nr Marysville Ca 72 3468 600–700 3.6 1.5
11,424,000 Bear R Nr Wheatland Ca 87 756 500–600 5.1 2.8
11,427,000 Nf American R A North Fork Dam Ca 74 886 1000–1100 4.7 1.9
11,446,500 American R A Fair Oaks Ca 111 4890 500–600 3.5 1.3
11,447,360 Arcade C Nr Del Paso Heights Ca 35 81 500–600 17.4 1.7
11,449,500 Kelsey C Nr Kelseyville Ca 69 95 1000–1100 4.5 1.7
11,451,000 Cache C Nr Lower Lake Ca 71 1368 900–1000 4.1 1.7
11,451,100 Nf Cache C A Hough Spring Nr Clearlake

Oaks Ca
44 156 1000–1100 3.9 1.8

11,451,300 Nf Cache C Nr Clearlake Oaks Ca 26 313 700–800 4.5 2.3
11,451,715 Bear C Ab Holsten Chimney Cyn Nr Rumsey

Ca
18 246 600–700 3.3 1.8

11,452,500 Cache C A Yolo Ca 113 2950 500–600 7.0 3.1
11,454,000 Putah C Nr Winters Ca 85 1487 700–800 5.2 1.6
11,461,000 Russian R Nr Ukiah Ca 65 259 1000–1100 3.8 1.6
11,461,500 Ef Russian R Nr Calpella Ca 74 239 1000–1100 6.8 1.2
11,462,500 Russian R Nr Hopland Ca 77 938 1000–1100 4.8 1.2
11,519,500 Scott R Nr Fort Jones Ca 74 1691 700–800 4.1 1.7
11,522,500 Salmon R A Somes Bar Ca 92 1945 1100–1200 5.8 1.1
14,357,500 Bear Creek At Medford, Or 98 749 500–600 11.2 1.9
14,362,000 Applegate River Near Copper, Or 77 583 700–800 4.8 1.1
14,362,250 Star Gulch Near Ruch, Or 32 41 700–800 4.7 2.7
14,366,000 Applegate River Near Applegate, Or 78 1251 700–800 4.5 1.4

A. Metzger, et al. Journal of Hydrology 590 (2020) 125254

12

http://refhub.elsevier.com/S0022-1694(20)30714-9/h0005
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0005
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0005
https://doi.org/10.1080/02626667.2017.1302089
https://doi.org/10.1016/j.jhydrol.2016.07.038
https://doi.org/10.1016/j.jhydrol.2009.01.007
https://doi.org/10.1016/j.jhydrol.2009.01.007
https://doi.org/10.1080/02626667.2013.831174
https://doi.org/10.1016/j.jaridenv.2013.10.008
https://doi.org/10.1080/01621459.1997.10473683
https://doi.org/10.1016/j.jhydrol.2018.01.037
https://doi.org/10.1016/j.jhydrol.2018.01.037
https://doi.org/10.1002/wrcr.20392
https://doi.org/10.1002/wrcr.20392
https://doi.org/10.1007/978-1-4471-3675-0
https://doi.org/10.1029/WR015i002p00489
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0065
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0065
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0065
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0070
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0070
https://doi.org/10.1023/A:1009914915709
https://doi.org/10.1029/93WR00411
https://doi.org/10.1016/0022-1694(92)90132-F
https://doi.org/10.1016/0022-1694(92)90132-F
https://doi.org/10.1214/14-AOS1280
https://doi.org/10.1214/14-AOS1280
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0095
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0095
https://doi.org/10.1016/j.jhydrol.2019.04.068
https://doi.org/10.1016/j.jhydrol.2019.04.068
https://doi.org/10.1007/s00704-014-1180-5
https://doi.org/10.2307/1968974
https://doi.org/10.1130/2006.2401(05)
https://doi.org/10.1130/2006.2401(05)
https://doi.org/10.1029/WR015i005p01049
https://doi.org/10.2307/1269343
https://doi.org/10.1080/00401706.1985.10488049
https://doi.org/10.1111/jfr3.12580
https://doi.org/10.1111/jfr3.12580
https://doi.org/10.1038/nclimate2837
https://doi.org/10.1038/nclimate2837
https://doi.org/10.1002/joc.766
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0165
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0165
https://doi.org/10.1016/S0022-1694(01)00498-X
https://doi.org/10.1016/S0022-1694(01)00498-X


Levene, H., 1960. Contributions to probability and statistics. Essays Honor Harold Hotell.
278–292.

Marani, M., Ignaccolo, M., 2015. A metastatistical approach to rainfall extremes. Adv.
Water Resour. 79, 121–126. https://doi.org/10.1016/j.advwatres.2015.03.001.

Marra, F., Morin, E., 2015. Use of radar QPE for the derivation of Intensity-Duration-
Frequency curves in a range of climatic regimes. J. Hydrol. 531, 427–440. https://
doi.org/10.1016/j.jhydrol.2015.08.064.

Marra, F., Morin, E., Peleg, N., Mei, Y., Anagnostou, E.N., 2017. Intensity-duration-fre-
quency curves from remote sensing rainfall estimates: comparing satellite and
weather radar over the eastern Mediterranean. Hydrol. Earth Syst. Sci. 21,
2389–2404. https://doi.org/10.5194/hess-21-2389-2017.

Marra, F., Nikolopoulos, E.I., Anagnostou, E.N., Morin, E., 2018. Metastatistical Extreme
Value analysis of hourly rainfall from short records: estimation of high quantiles and
impact of measurement errors. Adv. Water Resour. 117, 27–39. https://doi.org/10.
1016/j.advwatres.2018.05.001.

Marra, F., Zoccatelli, D., Armon, M., Morin, E., 2019. A simplified MEV formulation to
model extremes emerging from multiple nonstationary underlying processes. Adv.
Water Resour. 127, 280–290. https://doi.org/10.1016/j.advwatres.2019.04.002.

Martins, E.S., Stedinger, J.R., 2000. Generalized maximum-likelihood generalized ex-
treme-value quantile estimators for hydrologic data. Water Resour. Res. 36, 737–744.
https://doi.org/10.1029/1999WR900330.

Meirovich, L., Ben-Zvi, A., Shentsis, I., Yanovich, E., 1998. Frequency and magnitude of
runoff events in the arid Negev of Israel. J. Hydrol. 207, 204–219. https://doi.org/10.
1016/S0022-1694(98)00135-8.

Miniussi, A., Marani, M., Villarini, G., 2020. Metastatistical Extreme Value Distribution
applied to floods across the continental United States. Adv. Water Resour. 136,
103498. https://doi.org/10.1016/j.advwatres.2019.103498.

Morin, E., Marra, F., Armon, M., 2020. Dryland precipitation climatology from satellite
observations, in: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Kummerov,
K., Turk (Eds), F. (Eds.), Satellite Precipitation Measurement. Springer. https://doi.
org/10.1007/978-3-030-24568-9.

Morin, J., Benyamini, Y., 1977. Rainfall Infiltration into Bare Soils. Water Resour. Res. 13,
813–817.

Morrison, J.E., Smith, J.A., 2002. Stochastic modeling of flood peaks using the general-
ized extreme value distribution. Water Resour. Res. 38, 41-1-41–12. https://doi.org/
10.1029/2001WR000502.

Nagy, B.K., Mohssen, M., Hughey, K.F.D., 2017. Flood frequency analysis for a braided
river catchment in New Zealand: comparing annual maximum and partial duration
series with varying record lengths. J. Hydrol. 547, 365–374. https://doi.org/10.
1016/j.jhydrol.2017.02.001.

Nicholson, S.E., 2011. Dryland climatology. Dryland Climatology. https://doi.org/10.
1017/CBO9780511973840.

Overeem, A., Buishand, A., Holleman, I., 2008. Rainfall depth-duration-frequency curves
and their uncertainties. J. Hydrol. 348, 124–134. https://doi.org/10.1016/j.jhydrol.
2007.09.044.

Papalexiou, S.M., AghaKouchak, A., Foufoula-Georgiou, E., 2018. A diagnostic framework
for understanding climatology of tails of hourly precipitation extremes in the United
States. Water Resour. Res. 54, 6725–6738. https://doi.org/10.1029/
2018WR022732.

Papalexiou, S.M., Koutsoyiannis, D., 2013. Battle of extreme value distributions : a global
survey on extreme daily rainfall. Water Resour. Res. 49, 187–201. https://doi.org/10.
1029/2012WR012557.

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-
Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https://doi.org/
10.5194/hess-11-1633-2007.

Rahman, A.S., Rahman, A., Zaman, M.A., Haddad, K., Ahsan, A., Imteaz, M., 2013. A
study on selection of probability distributions for at-site flood frequency analysis in
Australia. Nat. Hazards 69, 1803–1813. https://doi.org/10.1007/s11069-013-
0775-y.

Ryberg, K.R., Goree, B.B., Williams-Sether, T., Mason, R.R., J., 2017. The U . S .
Geological Survey Peak-Flow File Data Verification Scientific Investigations Report
2017 – 5119. https://doi.org/10.31333/sir20175119.

Salinas, J.L., Castellarin, A., Kohnová, S., Kjeldsen, T.R., 2014. Regional parent flood
frequency distributions in Europe – Part 2: climate and scale controls. Hydrol. Earth
Syst. Sci. 18, 4391–4401. https://doi.org/10.5194/hess-18-4391-2014.

Scarrott, C., Macdonald, A., 2012. a Review of extreme value threshold estimation and
uncertainty quantification. REVSTAT – Stat. J. 10, 33–60.

Schlögl, M., Laaha, G., 2016. Extreme weather exposure identification for road networks –
a comparative assessment of statistical methods. Nat. Hazards Earth Syst. Sci. Discuss.
1 (26). https://doi.org/10.5194/nhess-2016-373.

Schumer, R., Knust, A., Boyle, D.P., 2014. Characteristics of ephemeral hydrographs in
the Southwestern United States. J. Hydrol. Eng. 19, 10–17. https://doi.org/10.1061/
(ASCE)HE.1943-5584.0000643.

Serinaldi, F., Kilsby, C.G., 2015. Stationarity is undead: uncertainty dominates the dis-
tribution of extremes. Adv. Water Resour. 77, 17–36. https://doi.org/10.1016/j.
advwatres.2014.12.013.

Serinaldi, F., Kilsby, C.G., 2014. Rainfall extremes: toward reconciliation after the battle
of distributions. Water Resour. Res. 50, 336–352. https://doi.org/10.1002/
2013WR014211.

Shentsis, I., Meirovich, L., Ben-Zvi, A., Rosenthal, E., 1999. Assessment of transmission
losses and groundwater recharge from runoff events in a wadi under shortage of data
on lateral inflow, Negev, Israel. Hydrol. Process. 13, 1649–1663.

Sillitto, G.P., 1951. Interrelations between certain linear systematic statistics of samples
from any continuous population. Biometrika 38, 377–382. https://doi.org/10.2307/
2332583.

Smith, A., Sampson, C., Bates, P., 2014. Regional flood frequency analysis at the global
scale. Water Resour. Res. 51, 539–553. https://doi.org/10.1002/2014WR015814.

Smith, J.A., Baeck, M.L., Yang, L., Signell, J., Morin, E., Goodrich, D.C., 2019. The par-
oxysmal precipitation of the desert: flash floods in the Southwestern United States.
Water Resour. Res.

Smith, J.A., Cox, A.A., Baeck, M.L., Yang, L., Bates, P., 2018. Strange floods: the upper tail
of flood peaks in the United States. Water Resour. Res. 54, 6510–6542. https://doi.
org/10.1029/2018WR022539.

Snedecor, G.W., Cochran, W.G., 1989. Statistical methods, 8thEdn. Ames Iowa State Univ.
Press Iowa 503.

Solari, S., Egüen, M., Polo, M.J., Losada, M.A., 2017. Peaks Over Threshold (POT): a
methodology for automatic threshold estimation using goodness of fit p-value. Water
Resour. Res. 53, 2833–2849. https://doi.org/10.1002/2016WR019426.

Tarolli, P., Borga, M., Morin, E., Delrieu, G., 2012. Analysis of flash flood regimes in the
North-Western and South-Eastern Mediterranean regions. Nat. Hazards Earth Syst.
Sci. 12, 1255–1265. https://doi.org/10.5194/nhess-12-1255-2012.

Turnipseed, D.P., Sauer, V.B., 2010. Discharge measurements at gaging stations: US
Geological Survey Techniques and Methods, book 3, chap.

Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S, Statistics and
Computing. Springer New York, New York, NY. https://doi.org/10.1007/978-0-387-
21706-2.

Villarini, G., Smith, J.A., 2010. Flood peak distributions for the eastern United States.
Water Resour. Res. 46, 1–17. https://doi.org/10.1029/2009WR008395.

Welch, B.L., 1951. On the comparison of several mean values: an alternative approach.
Biometrika 38, 330. https://doi.org/10.2307/2332579.

Wuertz, D., 2006. Rmetrics - Extreme Financial Market Data Author 44.
Zaman, M.A., Rahman, A., Haddad, K., 2012. Regional flood frequency analysis in arid

regions: a case study for Australia. J. Hydrol. 475, 74–83. https://doi.org/10.1016/j.
jhydrol.2012.08.054.

Zhang, X., Duan, K., Dong, Q., 2019. Comparison of nonstationary models in analyzing
bivariate flood frequency at the Three Gorges Dam. J. Hydrol. 579, 124208. https://
doi.org/10.1016/j.jhydrol.2019.124208.

Zoccatelli, D., Marra, F., Armon, M., Rinat, Y., Smith, J.A., Morin, E., 2019. Contrasting
rainfall-runoff characteristics of floods in desert and Mediterranean basins. Hydrol.
Earth Syst. Sci. 23, 2665–2678. https://doi.org/10.5194/hess-23-2665-2019.

Zorzetto, E., Botter, G., Marani, M., 2016. Supplementary information to : On the
emergence of rainfall extremes from ordinary events. Geophys. Res. Lett. 43,
8076–8082. https://doi.org/10.1002/2016GL069445.

A. Metzger, et al. Journal of Hydrology 590 (2020) 125254

13

http://refhub.elsevier.com/S0022-1694(20)30714-9/h0180
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0180
https://doi.org/10.1016/j.advwatres.2015.03.001
https://doi.org/10.1016/j.jhydrol.2015.08.064
https://doi.org/10.1016/j.jhydrol.2015.08.064
https://doi.org/10.5194/hess-21-2389-2017
https://doi.org/10.1016/j.advwatres.2018.05.001
https://doi.org/10.1016/j.advwatres.2018.05.001
https://doi.org/10.1016/j.advwatres.2019.04.002
https://doi.org/10.1029/1999WR900330
https://doi.org/10.1016/S0022-1694(98)00135-8
https://doi.org/10.1016/S0022-1694(98)00135-8
https://doi.org/10.1016/j.advwatres.2019.103498
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0230
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0230
https://doi.org/10.1016/j.jhydrol.2017.02.001
https://doi.org/10.1016/j.jhydrol.2017.02.001
https://doi.org/10.1017/CBO9780511973840
https://doi.org/10.1017/CBO9780511973840
https://doi.org/10.1016/j.jhydrol.2007.09.044
https://doi.org/10.1016/j.jhydrol.2007.09.044
https://doi.org/10.1029/2018WR022732
https://doi.org/10.1029/2018WR022732
https://doi.org/10.1029/2012WR012557
https://doi.org/10.1029/2012WR012557
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1007/s11069-013-0775-y
https://doi.org/10.1007/s11069-013-0775-y
https://doi.org/10.5194/hess-18-4391-2014
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0285
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0285
https://doi.org/10.5194/nhess-2016-373
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000643
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000643
https://doi.org/10.1016/j.advwatres.2014.12.013
https://doi.org/10.1016/j.advwatres.2014.12.013
https://doi.org/10.1002/2013WR014211
https://doi.org/10.1002/2013WR014211
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0310
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0310
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0310
https://doi.org/10.2307/2332583
https://doi.org/10.2307/2332583
https://doi.org/10.1002/2014WR015814
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0325
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0325
http://refhub.elsevier.com/S0022-1694(20)30714-9/h0325
https://doi.org/10.1029/2018WR022539
https://doi.org/10.1029/2018WR022539
https://doi.org/10.1002/2016WR019426
https://doi.org/10.5194/nhess-12-1255-2012
https://doi.org/10.1029/2009WR008395
https://doi.org/10.2307/2332579
https://doi.org/10.1016/j.jhydrol.2012.08.054
https://doi.org/10.1016/j.jhydrol.2012.08.054
https://doi.org/10.1016/j.jhydrol.2019.124208
https://doi.org/10.1016/j.jhydrol.2019.124208
https://doi.org/10.5194/hess-23-2665-2019
https://doi.org/10.1002/2016GL069445

	Flood frequency estimation and uncertainty in arid/semi-arid regions
	Introduction
	Study regions and data
	Methods
	Flood frequency analysis
	AMS approach
	PDS approach
	Parameter estimation methods
	Uncertainty range estimation
	Estimation of the tail heaviness
	Uncertainty in shape parameter estimated from short records
	Synthetic arid/semi-arid flood generator

	Results
	FFA in arid/semi-arid regions
	Comparison of arid/semi-arid vs. Mediterranean watersheds
	Sensitivity to the characteristics of arid/semi-arid flood records

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix
	References




