VARIANCE OF REAL ZEROS OF RANDOM
ORTHOGONAL POLYNOMIALS
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ABSTRACT. We determine the asymptotics for the variance of the num-
ber of zeros of random linear combinations of orthogonal polynomials of
degree < n in subintervals [a, b] of the support of the underlying orthog-
onality measure . We show that, as n — oo, this variance is asymptotic
to cn, for some explicit constant ¢ > 0.

1. INTRODUCTION AND MAIN RESULTS

Let p be a positive Borel measure compactly supported in the real line,
whose support contains infinitely many points. For n > 0, n € Z, we
consider the nth orthonormal polynomial

(1.1) D () = 72" + ...
for p, with ,, > 0, so that

/ Po(@)pon (2) d(2) = Sy 1 > 0.

Define the ensemble of random orthogonal polynomials of the form
n
(1.2) Gu(z) =) ajpj(z), n >0,
j=0

where {a;}52, are standard Gaussian N (0,1) i.i.d. random variables. For
any interval [a,b] C R, let N, ([a,b]) (resp. N, (R)) denote the number of
zeros of G, lying in [a, b] (resp. total number of real zeros).

Real zeros of high degree random polynomials have been studied since
the 1930s. The early work concentrated on the expected number of real
zeros B[N, (R)] for P,(z) = Y_}p_oapz®, where {a;}7?_, are i.id. random
variables. Bloch and Pélya [9] gave the upper bound E[N,(R)] = O(y/n)
for polynomials with coefficients in {—1,0,1}. Improvements and general-
izations were obtained by Littlewood and Offord [26]-[27], Erd6s and Offord
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[14] and others. Kac [22] introduced the "Kac-Rice formula" to establish
the important asymptotic result

E[N,(R)] = (2/m 4+ o(1))logn as n — oo,

for polynomials with independent real Gaussian coefficients.

More precise forms of this asymptotic were obtained by Kac [23], Edelman
and Kostlan [13], Wilkins [40] and others. For related further directions, see
[7] and [16]. Maslova [32] proved that the variance of real zeros for Kac
polynomials Y"7_, axz* satisfies

Var[N,,(R)] = % (1 — i) logn + o(logn)
for i.i.d. coefficients with mean 0, variance 1 and P(ay = 0) = 0. This result
was recently generalized by Nguyen and Vu [33].

Das [10] considered random Legendre polynomials corresponding to Lebesgue
measure du(z) = dx on [—1,1], and found that E[N, ([—1,1])] is asymptoti-
cally equal to n/+v/3. Wilkins [39] estimated the error term in this asymptotic
relation. For random Jacobi polynomials, Das and Bhatt [11] established
that B[N, ([~1,1])] is asymptotically equal to n/v/3 too. Farahmand [15],
[16], [17] considered the expected number of the level crossings of random
sums of Legendre polynomials with coefficients having different distribu-
tions. These results were generalized to wide classes of random orthogonal
polynomials by Lubinsky, Pritsker and Xie [30] and [31]. In particular, they
showed that the first term in the asymptotics for E[N,,(R)] remains the same
as for the Legendre case.

The asymptotic variance and the Gaussianity for real zeros of random
trigonometric polynomials were established by Granville and Wigman [19],
and subsequently by Azais and Leén [2] via different methods. Su and
Shao [35] found the asymptotic variance for the real zeros of random cosine
polynomials, while Azais, Dalmao and Leén [1] gave a different proof. Xie
[41] showed that the variance of real zeros for a general class of random
orthogonal polynomials is o(n?). A recent paper of Do, H. Nguyen and O.
Nguyen [12] studied dependence of the variance on the distribution of the
i.i.d. random coefficients in the trigonometric case.

In this paper our main goal is determining the asymptotic for the variance
of the number of real zeros for the ensemble of random orthogonal polynomi-
als of the form (1.2). To state our results, we require the following definition:

Definition 1.1
We say that a measure is reqular in the sense of Stahl, Totik, and Ullman, if
the leading coefficients {%’} of the orthonormal polynomials in (1.1) satisfy

imAYi = L
oo ' cap (supp [p])’

where cap (supp [u]) denotes the logarithmic capacity of supp|u].
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While not a transparent condition, it is a weak one. For example, if the
support of y consists of finitely many intervals, and /' is positive a.e. in each
of those intervals, then p is regular. However, much less is needed [34]. We
let v denote the equilibrium measure v for supp|u] in the sense of potential
theory, and let w (z) = g—;. In any open subinterval of supp|u] , w exists, and
is positive and continuous [34]. For example, when supp|u] = [—1, 1],

1
V1 — a2

Let
(1.3) S (u) = Siizu;
1 S (u) 0 S (u)
(1.4) F (u) = det S(()u) —S’l(u) :g/l/ ((16)) _59 () ;
S (u) 0 —S"(u) —=S8"(0)

(1.5) G(u)=det | S(u) 1 0 ;

1 S(w) 0
(1.6) H(u)=det| S(u) 1 —=5(u)
S (w) 0 —=8"(u)

Sylvester’s determinant identity and the fact that G (—u) = G (u) show that

(1-8W?) Fw) =G @~ H (@

Also let
(1.7)
=(u) = L Flu) ! ) arcsin H (u) —1
=W =1 1—S(U)2+<1—S(u)2>3/2H( ) (G(U)> 3
and
(1.8) c-/_ E(u)du—i—\}g.
Theorem 1.2

Let p be a measure with compact support on the real line, that is reqular in
the sense of Stahl, Totik, and Ullmann. Let w denote the Radon-Nikodym
derivative of the equilibrium measure for the support of u. Let [a',V] be a
subinterval in the support of w, such that p is absolutely continuous there,
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and its Radon-Nikodym derivative p' is positive and continuous there. As-
sume moreover, that

(1.9) sup [[pnll 1o py < 00
n>1

If [a,b] C (a',V), then

(1.10) lim ~Var [N, ([a, b])] = ¢ </abw () dy> .

n—oo n

Note that the limit does not depend on the particular measure p, but
involves the equilibrium density of the support of p. The bounds for the
orthonormal polynomials are known for example when p’ satisfies a Dini-
Lipschitz condition. Therefore an application of Theorem 1.2 gives:

Corollary 1.3
Let p be a measure supported on [—1,1] satisfying the Szegd condition

/1 log 1/ () _dr > —00
1 a ™1 —z? '
Let [a', V] be a subinterval of (—1,1), in which p is absolutely continuous,

while 1 is positive and continuous in [a’,b']. Assume moreover that its local
modulus of continuity,

Q(t):sup{‘,u’(a:)—;/(y)‘ ST,y € [a/,b’] and |z — y| St}, t >0,

satisfies the Dini-Lipshitz condition
1
Q(t
/ Ldt < 00.
0 t

If [a,b] C (d/, V), then
.1 B b1
(1.11) 1}1_{1;0 EVar [Ny, ([a,0])] = ¢ (/a Mdy) .

Remarks

(a) We believe that this result is new even for the Legendre weight p/ = 1.
(b) The hypotheses of Theorem 1.2 are also satisfied for exponential weights
investigated in [25] that do not satisfy the Szegd condition. For example,
the conclusion of Theorem 1.2 holds for any [a,b] C (—1,1), when

W (z) = exp (— expy (1 — x2)_a) , e (—1,1)

where o > 0 and exp;, = exp (exp (...exp())) denotes the kth iterated expo-
nential.

(c) For a class of weights supported on several disjoint intervals, in a classic
paper, H. Widom [38] established asymptotics of the orthonormal polyno-
mials under some smoothness conditions on the weight. These imply the
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uniform boundedness of the orthonormal polynomials in subintervals of the
interior of the support, so that Theorem 1.2 applies to Widom’s weights.
(d) As noted above, the analogous limit for trigonometric polynomials was
established by Granville and Wigman in [19]. We have indications that
our results are related to those of [19] via the same limiting Paley-Wiener
process.

(e) Azais, Dalmao and Leo6n [1, Theorem 1] found the asymptotics for the
variance of zeros of random cosine polynomials » ) _,axcosky on [0,n].
These random cosine polynomials are equivalent to the random Chebyshev
polynomials Y aiT) (x) on [—1,1] by the change of variable y = arccos x.
Our asymptotic variance result of Theorem 1.2 for the random Chebyshev
polynomials agrees with that of [1, Theorem 1] for random cosine polyno-
mials.

This paper is organised as follows: in Section 2, we state the Kac-Rice
formula for the variance, and prove Theorem 1.2 and Corollary 1.3, deferring
technical details to later sections. In Section 3, we record some technical
estimates and gather results from elsewhere. In Section 4, we estimate the
"tail term" with |z —y| > % in the integral defining the main term in the
variance. In Section 5, we handle the "central term" where = and y are
close, which gives the dominant contribution to the integral. In Section 6,
the appendix, we prove the formula for the variance.

In the sequel, C,C1, Cs, ... denote constants independent of n,x,y. The
same symbol may be different in different occurrences.

Acknowledgements

The authors would like to acknowledge the input of Igor Wigman of King’s
College London. He provided essential insight into the literature and ideas
for this paper. The authors would also like to thank a referee for finding an
error in the statement of Lemma 3.2.

2. THE PROOFS OF THEOREM 1.2 AND COROLLARY 1.3

We begin with the Kac-Rice formulas for the expectation and variance.
These involve the reproducing kernel

n—1
(2.1) Kn(z,y) =Y p;(z)p; (1)
j=0

and for nonnegative integers r, s, its derivatives

(2.2) K(” (z,9) pr (S (y).

Lemma 2.1
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Let [a,b] C R, and let G, be defined by (1.2). Then the expected number of
real zeros for Gy, is expressed by

b
(23) BV, (0.t =+ [ o1 (@) do
where
1 Kfll_s_ll)( , ) Kf&ll) (z, ) ?
(2'4) 1 (37) B WJ Kn-i—l( 7x) - (Kn-i-l (xax)> .
Proof
See [30]. H

We note that p; depends on n, but we omit this dependence to simplify
the notation. The same applies to p, below. The variance of real zeros of
Gy, is found from the following formula, which was derived in [41] by using
the method of [19].

Lemma 2.2
Let [a,b] C R, and let G,, be defined by (1.2).

(2.5)
b
Var [V, (. b)) / 2 @) = p1 &) o1 ()} dody + [y ()
where
(2.6) po(x,y) = 7r2:\l/Z (\/911922 — 2, + Qparcsin <\/%>> .
Here
(2'7) A(x7y) = Kn-i—l(:E’x)Kn-i-l (y,y) - K’I’2L+1(x’ y)

and  is the covariance matriz of the random vector (P} (z), Pl (y)) condi-
tional upon P, (x) = P,(y) = 0:

Q1 Q2
V=
[912 Q22} ’

with
Q1 (x,y) = K5 (@, 2)-

1 (K ) (K @) = 2K ) K (0 0) K (,2) 4+ Ko ,2) (K2 (,0)2)
(2.8)
Qo (z,y) = Kflill)(y,y)—

1
< (Kun ) (K5 @.9)? = 2K (@) K5 (@) K% (0.9) + Ko (2. 2) (K5 (1:9))?)
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(2.9)
le(l‘, y) = K(Ll) (:L" y)_

n+1

1
K1 (1, ) KO (2, 2) KO (2, y) — Kopya (2, ) KO (2, 1) KOV (9, 2)

A

— K1 (2, ) KO (2, 2) KD (3, ) + Ko (2, 2) KL (y,2) KOY (3, ).
(2.10)

Proof

See the Appendix. It is also shown there that the matrix € is nonnegative
definite, so that the square root defining p, is well defined. B

To prove Theorem 1.2, we split the first integral in (2.5) into a central

term that provides the main contribution, and a tail term: for some large
enough A, write

b b
/ /{m¢aw—pm@pmwhmdy

// +//‘ {p2 (@, y) — p1 (%) p1 (y)} dz dy
{(z,y):x,y€la,b],|Jz—y|>A/n} {(z,y):x,y€la,b],|z—y|<A/n}

= Tail 4+ Central.

We handle the tail term by proving the following estimate and a simple con-
sequence:

Lemma 2.3
» A
(a) There exist C1,n9, and Mg such that for n > ng and |z —y| > =2,
C1
(2.11) lp2 (z,y) — p1(z) p1 (y)] < ol

(b) There exist Co,ng, and Ay such that for n > ny and A > Ay,

n
e [ 102 (2.) — 1 (2) py () de dy < O™
{(x,y):x,ye[a,b],\x—yle/n}

Proof
See Section 4. W

Recall that = is defined by (1.7). For the central term we will prove:

Lemma 2.4
(a) Uniformly for w in compact subsets of C\{0}, and = € [a,b] and

y:.’L'—i-L,

nw(x)

2
213 () () - @ a0} =@ +o().
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(b) Let n > 0. There exists C such that for © € [a,b], y = = +
u € [-n,n] and n > 1,

|02 (z,y) = py () py (y)| < Cn?.

nw($) ’

Proof
See Section 5. W

The second integral in (2.5) is simpler:

Lemma 2.5

b b
(2.14) 1/ pl(:c)dmzl/ w(z)de+o(l).

Proof
See Section 5. W

Proof of Theorem 1.2
We fix A > n > 0 and split

//{pzx.w o1 (%) p1 (3)} dy do

(2.15) /[/ [+ [ e -n@owna .

where for a given z,

I = {yela,b]:|y—z[>A/(w(x))};
J = {yelab]:n/(nw(z)) <|y—2| <A/ (nw(x))};
K = {y€lab]:|y—z <n/(w())}.

If wg is the maximum of w (x) in [a, b], (recall that w is positive and contin-
uous in [a, b]) then

b
a /I {02 @) — py () p1 ()} dy d

// lp2 (2,y) — p1 () py (y)| dy dx
{(2,y):2,y€lab]|le—y|>A/(nwo)}

nwo
Cl A ’

IN

IN

(2.16)



VARIANCE OF REAL ZEROS 9

by Lemma 2.3(b), provided A/wg > Ag. Next,

b
L @ = p @ oy as
b

- [ g o e ) e e

) €la,b]

Note that if n < |u| < A and = € [a,b] but = + #(x) ¢ [a,b], then z is at a
distance of O (2) to a or b, and in view of Lemma 2.4(b), the integral over
such (z,u) is O (1). Using Lemma 2.4(a), we deduce that

n—oo n

(2.17) _ </abw (=) da;) (/MMA = (u) du> .

Finally, from Lemma 2.4(b), (but with a different fixed n there),

b
lim ~ / /J {2 (2.9) — py (2) py (4)} dydda

b
e | [ n@n - n @) < o,

where C' is independent of n,n. Combining the three estimates (2.16-2.18)
over I, J, K, with (2.15) and Lemma 2.5, we obtain

%Var [Ny, ([a,b])] — </abw (z) dm) (/n<|u|<AE (u) du + \}g) ‘

1
< —
< C'<A+77>,

where C' is independent of n, A, 7. Now if B > A > Ay, then Lemma 2.3(b)
and Lemma 2.4(a) show that

(/abw (z) da:) /A<u<BE(u) du

L1t
= lim — / / {p2 (2, y) = pr(z) p1 (y)} dy dx
a J{y€la,b]:Aw(z)/n<y—x<Bw(x)/n}

n—oo n
It follows that [~ = (u)du converges. Similarly, f:oﬁo = (u) du converges.
So we may let A — oo above and deduce that

Var [N, ([a, )] - ( / (@) dw) ( /u|>f(“> et %)‘

lim sup
n—oo

< Oy /A

lim sup
n—oo

< Ch.




10 DORON S. LUBINSKY !, IGOR E. PRITSKER 2

On the other hand, Lemma 2.4(a) and Lemma 2.4(b) show that if 0 < § < 7,

b
(/ w (z) da:) / E(u)du
a 6<u<n
= lim — / / {p2 (z,y) = p1 (x) p1 ()} dy dz| < Con.
n—oon {y€la,b]:dw(z)/n<y—z<nw(z)/n}
It follows that fo u) du converges. Similarly, ffn = (u) du converges. So

we may let n — 0+ above to deduce the result. B

Proof of Corollary 1.3

Under the hypotheses of this theorem, Badkov even established asymptotics
for the orthonormal polynomials [4, p. 42, Corollary 2| that trivially imply
(1.9). Also, as noted above, since u' satisfies Szeg®’s condition and so is
positive a.e. in [—1,1], it is regular [34, Corollary 4.1.3]. Then the result
follows from Theorem 1.2. W

3. AUXILIARY RESULTS

Throughout this section, we assume that y is as in Theorem 1. We begin
by recording some determinantal and other formulae: let A, Q11, Q12,299 be
as in (2.7) - (2.10). Also let

Kng1 (2,2) Koo (2,9) KE‘;@; (z, ) KEZ*% (,9)
31) »= K%+11) (z,y) KZ6+11) (v, 9) K,(Lr’ll) (y, ) K?lill) (v,9)
Kn4’»1 (z,y) Kn’l (v,v) anrl (z,y) Knil (y,v)
Lemma 3.1
(a)
Kpi1(z,z) Kt (z,y)
3.2 A (z,y) = det 1A A ;
(3.2) (z,9) Kni1 (1,7) Knir (1)
(b)
[ K K KOV |
n+1 (y,y) n+1\Y, T n+1 (v, (E)
(3.3) AQu =det | Ky (z,y) Kpsi(z,2) K0 (22) |
1,0 0,1 1,1
| K8 @) KO (2,2) KLY (@0)
(c)
[ K K KO |
n+1 (CL‘,$ n+1( >y) n+11 (x,y
(3.4) A =det | Kpit (4:2) Koo (1:3) KS}IB (,9) | ;
| KUY ) KLY ) KGY () |
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(d)
(0,1)
Kn+1 (x,l’) Kn+1 (:L’,y) Knarll (ZE,$)
(3.5) Ay =det | Ky (y,2)  Kny1 (y,v) Kq(w;l) (y, )

1,0 0,1 1,1
Kol (o) K% ) Ko ()
(e) Let ¥ be given by (3.1). Then
(3.6) (211002 — QFy) A = det ().

Proof

(a) - (d): These follow by expanding the determinants for example along
the bottom row.

(e) This can be established using Sylvester’s determinant identity [5, p. 24,
Thm. 1.4.1]: on the matrix ¥ defined by (3.1):

det (2) det (2374;374) = det (23;3) det (24;4) — det (23;4) det (24;3)

where X3 4.3 4 denotes the 2 x 2 matrix formed from ¥ by removing the 3rd
and 4th rows and columns of ¥, while >,.; denotes the 3 x 3 matrix formed
from ¥ by removing the rth row and sth column. This identity and (a-d)
yield

det (2) A = (AQ2) (AQ) — (AQ12)?.

Note that in identifying det (X4,4) with A1, we have to swap the 1st and
2nd rows and columns. Moreover, we use that E4T;3 =34 B

Next, we record some estimates on the reproducing kernels and their
derivatives:

Lemma 3.2

Let [a,b] be a subinterval of (a',b"). Then for r,s =0,1 and r = 2,s = 0;

and for all n > 1 and x,y € [a,b],
Cnr+s

3.7 ‘K,(f’s) ey <

Proof
First we note that since p has compact support [18, p. 41],

Cy = sup In-t < 00.
n>1 Tn

The Christoffel-Darboux formula asserts that
_ Yn—1Pn (l‘) Pn—1 (y) — Pn—1 (:E) Pn (y)

K, (z,y) =
so that using our bound |p, (z)| < C for z,y € [d/, V'],
2C,C%
[ ()| < T2

lz —y|
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Moreover, by Cauchy-Schwartz,
1/2 1/2

n—1 n—1
K (z,9) < | D0 (2) drily)| <
j=0 j=0
Combining the last two inequalities gives

. 203
Ky (z, SCZmln{,n}

so that (for example, using the inequality between arithmetic and harmonic
means) we have the result (3.7) for r = s = 0. Next,

KO (2, y)
_ T <p% (@) Pn-1(¥) =Poa (@) P (¥) | Pt (@) Pa (y) = Pu1 (v) Pn (:p))
n -y (z —y)* '

(3.8)

To estimate the derivatives, we use Bernstein’s inequality for derivatives,
namely for polynomials of degree < n,

n
||PHLOO[—1,1] IUNS (_L 1) .

< -
T V1 =22

This has the following consequence: for j,n > 1 and polynomials P of degree
<n,

|P' ()]

HP(]’)HLOO[@[,] < Csn? HPHLOO[QI,U] .

Here C3 depends on j,a,b,a’,b’ but not on P nor on the degree n of P. It
then follows that for j = 0,1, 2,

C4 = sup pg) /n? < oco.

n>1

‘Loo[a,b}

Also then, from (3.8), for x,y € [a,b],

2
K @] <20 { 2904 G

=yl |z —y?
Next, by Cauchy-Schwartz,

- 2 g 1/2
KM @y < [ Sr@? ] ([Yhw)] =com?
=0 =0
Thus
‘K(l’o) (x,y)’ <C5min{ n ! 2,n2}
lz—yl |z —y
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This yields (3.7) for r = 1,5 = 0. Of course r = 0,s = 1 follows by
symmetry. Finally,

Yn—1 (p% (@) Py (¥) = Py (@) 17, (¥) . Py (2) Pt (y) — Py (@) Pu ()

Kty = = Ty i (z —y)°
Prn—1(2) Py (Y) = P (W) Pn (2) | Pp—1 () pr () — Pr—1 (y) P (@)
! T . I )

Thus using our bounds on {pg)} ,J =0,1,2, gives for x,y € [a,b],

2 1
K1) ‘ <C n n
‘ n (x,y) > Ug |$—y|+‘x—y‘2+|qj—y‘3

and again Cauchy-Schwartz gives

n—1 1/2 n—1 1/2
‘Kél’l) (rc,y)( <> p(@)? dopi@)? | <o’
=0 =0

This and the previous inequality give (3.7) for r = s = 1. The case r =
2,5 =0 is similar. &
Next, we record some universality limits. Recall that S is defined by (1.3):

Lemma 3.3

Let [a', V] be a subinterval in the support of w such that p is absolutely con-
tinuous there, and ' is positive and continuous there. Let [a,b] C (a',b').
Let r, s be non-negative integers. Then

(a) Uniformly for x € [a,b] and u,v in compact subsets of C,

(3.9)
(r,5) ( _u v )
K z+ T+ r4s
i . (@)’ nw(@) 1 s o(r+s)
= (=1 —).
7}1_{130 Ky (z,) <nw (CL‘)) (=1)"5 (u—v)
(b) Let
3.10 0, 7+sodd
. e %7 r+seven
Then uniformly for z € [a,b],
i 1 7,8 r+s r+s
(3:11) . WKT(L’ ) (@,2) i/ () = 7w (2)" 7 1
and
(T’,S)
1 Kn ? r4s
(312) lim (x x) = (770.) (:L')) + Tr,s-

n—oo n’ts K, (:U, J)) '
(¢) In particular, uniformly for x € [a,b],
1
(3.13) lim — K (2,2) =0

n— oo n2 n
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and for r=0,1,
(3.14) KU (z,2) > Cn? L,
(d)

2
(3.15) S"(0) = -3
Proof

(a) We start with a result of Totik [37, Theorem 2.2]: uniformly for z € [a, b],
and u, v in compact subsets of R,
(3.16) lim lKn (J: + 2 E) W o(z) Jw(x) =5 ((u—2v)w(x)).
n—oo N n n
In particular, it then follows that uniformly for x € [a,b], and u in compact
subsets of R,
-~ Ky(z+%o+2)
n—o0 K, (z,x)
Theorem 1.1 in [28, p. 375] then asserts that uniformly for = € [a,b], and
u, v in compact subsets of C,

=1.

v

lim Bn (“’ T Ko @ T Kn@o) @)

) s

u—0).

Here the uniformity and Totik’s (3.16) allows us to replace K, (z,z)u’ ()
by nw (z): uniformly for x € [a,b], and u,v in compact subsets of C,

(3.17) lim fon <x T E T anim)
’ n—00 K, (z,x)

=S (u—v).

This is the case r = s = 0 of (3.9). Because the limit holds uniformly for u,v
in compact subsets of C, we may differentiate this asymptotic with respect
to u,v to get the general case of (3.9).
(b) For the special case where the support of p is [—1, 1], this is Corollary
1.3 in [29, p. 917]. There it was shown that [29, p. 937]
o W

(3.18) Su-v)= > TR Tk

j,k=0

so we can reformulate (3.9) for r = s =0 as

Tim i (#@))J (ﬁ(w))kmf"k) (z,2) _ i w ot ik
j,k=0

5! K Ky (o) TS

4,k=0

Comparing coefficients of like powers of u,v gives (3.12). That this holds
uniformly in x for a given r,s follows easily from the uniformity of the
original limit in x (cf. [29, p. 938]). Finally Totik’s limit (3.16) gives

lim K (2, 2) 1 () o (2) = 1,

n—oo 1M
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uniformly for x € [a, b], so we also obtain the first asymptotic (3.11).
(c) This follows directly from (b).
(d) From (3.18),

J o
(3.19) Sw=Y %wﬂm.

»

) _
So §"(0) =710 =—"5. A
4. THE TaiL TERM - LEMMA 2.3

Recall that p;, py are defined by (2.4) and (2.6). First write

1
4.1 = /¥
@) (o) = TG
where
(4.2) () = K (2,0) Ko (2,2) = K (2,2)2.
Next, write
(4.3) po (z,y) — py (7) py (y) = Th + T2 + T3,
where
1 2
T, = m \/(QHQQQ - 912) A -V (x) v (y> ;
1 . |Q212] >
T, = —— |0 el ).
2 2v/A [fh1z] arcsin <VQ11922
1 1 1
4.4 T3 = — | —— U ()W .
an o= S5 mnearaey) VOO

We estimate each T" term separately. It is the following lemma that contains
the main idea, namely cancellation using Laplace’s determinant formula:

Lemma 4.1
There exist ng and Ag > 0 such that for n > ng and all x,y € [a,b], with
|IE - y| Z AO/”?

C
(4.5) |Ty| < — 3
(Jz =yl +3)
Proof
Write
T — (211922 — Q) A — U () ¥ (y) _ Num

A [/ (@10 — 03,) A+ VT@) T ()| Denom
The numerator is (recall (3.6))
Num = (QuQxp — Q) A~ (2) ¥ (y)
— det(S)— U (2) U (y)
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Koy (z,2)  Kpya (2,9) Ky(%ﬁ? (z,2) KT(%L? (2, y)
et | K@) Ko (00 K%l;%; (%) K,f?’ll; ()
K,y (xy) Ky (vy) Ky (zy) Ky (v,9)
0,1 0,1
— det [ K?;ll) (@, 2) K{zﬁl; (z,z) ] det [ KZ]+11) (¥,9) K%H; (v,9) ] _
Kni»l (‘rwx) KnJél (3:,.7:) Knil (yay) KnJél (y,y)

Let X be the 4 x 4 matrix above. Then we can write this as

L)l (5 0)

Numzdet[E]—det[E(l 3 9 4
denotes the matrix formed from ¥ by taking the elements

s
k
that lie in rows r, s and columns j, k. Now let us use Laplace’s determinant
expansion [24, p. 37]: we have chosen rows 1, 3. Laplace’s expansion gives

det () = Z (—1)H3HI+ gt [Z( 57[ 2 ﬂ det [Ec< ; 2 )] ;

1<j<k<4
where X¢ is formed from the complimentary rows and columns. The choices
for (j,k) are {(1,2),(1,3),(1,4),(2,3) (2,4),(3,4)}, This gives det () as a

BICEER

where 2 ( r
J

sum of 6 terms, one of which is det | X 1 3 9 4

1 3] 2 4
Num = —det E(l 2>—det[2<3 4>}
[ 1 3 [ 2 4] 1 3 2
caafo (D aefs (2 )] caafm (3 )]anl(2
[ 1 3 [ 2 4] 1 3 2
cao (3 D aefo (2 )] —anfn(} 1) aafn(?
_ 4 [ Kpt1 (z,z)  Kupp(x,y) d Kf:l’ll) (y, ) Kflofl) (y,vy)
= —det K01 K01 et 1,1) (1,1)
L “in+1 (iL‘,w) n+1 (y>x) Kn+1 (x7y) Kn+1 (y7y)
et | Eonn @) K0 @) | o | B ) KD ,0)
L Kn+1 (:an) Kn+1 ($>y) i L Kn—l—l (y7y) Kn+1 ($,y) ]
et | K@y KD @) | ] K @y) K3 ()
€ (0,1) (1,1) ¢ (0,1) (1,1)
L K, (y, @) K,y (z,2) i L K,y (z,y) Koy () i
Ko (2,y) K5 (2,y) K1 (z,y) KO (y,2)
tdet | o) (1) det | (01 (1)1)
L Kn+1 (y,) Kn+1 (z,y) ] L Kn+1 (z,y) Kn+1 (z,y) |
(0,1) (0,1)
, K , K x, K ,
—aer | T () ] S i
n+1 (LU,.’L') Kn+1 ) n+1 <m7y) n+1 (Z/;y)
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Using the estimate (3.7) and that (|z — y| + ) < n, we continue this as
N I A= )] O(5miz) O
O(n*) O PR O(m:m+ ) (n?)
aa] O™ 0lem) | [ 00 o) |
det _ 0 (n?) O(|I_ZT+%) | det 0 (n?) O<|x_7j+%) |
_det_‘7(1ﬁj+;) O () _det_‘j(aﬁi+;) 0(n?) |
L o(=m) o6 | [ o(mm) o0 |
O(mr) () | 4o [ O Gemimr) 0 (e 1)]
4 det lz—yl+5 lz—yl+5 det lz—yl+5 lz—yl+5
e {()<x;+i) C)<ufj+%) | e _()<mf;+$) (9<w,ﬁ+%)
N 0 (%) (j(u—;+%) _ _()(m—;+%) O )
“Loe o) | o) 00
B <Ow—w+if>
Thus
6
(4.6) Mm:o<WH;+HJ.
Also

Denom = w2A {\/(911922 — ) A+ /U (z) ¥ (y)]
> 1AV (2) U (y).
Here from (3.14) and (3.13), for n large enough,
U(z) = K,(LlJrll) (z,2) Ky (z,2) — KOV (2,2)? > Cn* — 0 (n4) > Cn*.
Also from (3.14) and (3.7),

| A - K2 (z,y)
Ky (z,2) Kn (y,y) Ky (z,7) Ky (y,y)
C
<
(lz =yl + )" n?
C 1
- 2§77
(nlz—yl+1)° 2
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if |x — y| > Ao/n with Ag large enough. Then

1
(4.7) A2 Ky (x,2) Ku (y.y) > On’
and
(4.8) Denom > Cn®.

Then combined with (4.6), this yields
C
(o= o1+ 3)°

Num

-

Denom

[ |
Next, let us deal with T5 :

Lemma 4.2
There ezist ng and Ao such that for n > ng and all z,y € [a,b], with

|$ - y| > AO/”?

C
(4.9) |T5| < —
(lz =yl + )

Proof
Recall that

1 . Q2]
Ts| = Ty = —— |132] arcsin < .
172 T2V A [ V211822

From [sinu| > 2 [ul, |u| < %, we obtain for |v| < 1,

2 :
— |arcsinv| < |v|
7T

SO
1 Q1A
4.10 To| < .
(4.10) Tl < 5 xom V1 QA2
Here from Lemma 3.1(d) and Lemma 3.2,
[ Kni1 (z,2)  Kppr (2,9) KT(%}? (x, )
Qb = det | Ko (y0) Kot (3:9) Kél;ﬁ (y, )
, 1 1
LKD) KSY ) K (,9)
i 1 2
om  O(=rr)  00)
_ 1 n
= det| O (|x_y‘+%) O (n) 0] (\m—y|+%
n 2 n?
L lz—y|+ 0 (n’) 0 (\w—y|+%)
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We expand by the first row and continue this as

o )

Next, we examine {217 and €g3. From Lemma 3.1(b), followed by (3.7),
(3.13),

Kn+1 (y7 y) Kn+1 (y7 m) Kﬁgf-ll) <y7 )
y)

X
OnA = det | Koy (z,y) Ko (z,2) KO (2,2)
)

i1 (z, @) Kr(LlJrll) (i
[ Kn+1 (y7y) O <|x—yl|+%> 0 (m)
( 1 ) Kn+1 (337 l‘) 0 (nZ)

(2r) o) KD @w

= det

Expanding by the first row, and using KS:Q (zx,z) =0 (n”“), we see that

QuA = Kupp (y,y) {Kn+1 (z,2) KT(L1+11) (v,2) —o0 (n4)}
1 n3 n3
o ——— o —L ) +o —2—
) o () ()}
n n2 n2
ol —" Jol—"—)+0o "
e e (et o))

so if |z —y| > Ag/n, and Ag > 1,

n5
QA = Koo (y,y) Ky (z,2) K1(11+11) (z,2) —o(n°) + O </\(2)>
5
(4.12) > Cn®—o(n’)+0 (/@) > CO1n®
0

if Ag and n are large enough, say n > ng, by (3.13) and (3.14). Of course
the constant C'; depends on the size of C'; and the decay of the o (n5) term,
as does ng. In much the same way,

Knp1 (z,2)  Kng (z,y) Knarll) (z,y)
QA = det Kn1+01 (y, ) Kn1+01 (y,v) Kflf’ll) (v,y)
KLY o) K& ) KXY (0w)

"o
= Ky (z,2) Knpr (y,v) K1§1+11) (y:y) =0 (n°) + O <A(2)>

(4.13) > Cnd.
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Again the threshholds ng and Ag influence the choice of C;. Then combining
(4.10-4.13), followed by (4.7),

4 ? 1 1 1 ?
n
T, < C —<Cc{—1 .
- Qx—m+i> A32md Qw—m+i>
(]

Next, we handle T3 :

Lemma 4.3
There exist ng and Ay such that for n > ng and all x,y € [a,b], with
|‘T - y| 2 AO/”?

C
(4.14) |T5| < — -
(lz—vl+7)

Proof
Note first from (4.2), (3.13), and (3.14),

Next, recall from (4.4),

1 /1 1
- (L T (z) ¥
3 2 <A Kny1 (z,2) Ky (y,y)) ()
1 K2+1 ($,y)
_ = n U (x) U
2 AKn—i—l (HZ‘,«T) Kn+1 (Z/7y) ( ) (y>
c 4
< 2 n
(lz =yl + )" An?
C
< 2
(lz =yl +3)

by (4.7). Note too that 75 > 0. B
Proof of Lemma 2.3(a)
Just combine the estimates for 11,75, T5 from Lemmas 4.1, 4.2, 4.3 and re-

call (4.3). W

Proof of Lemma 2.3(b)
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From Lemma 2.3(a), for y € [a, b],

/ 192 (2.9) — p1 (2) pr ()| d
{z€la,b],|lz—y|>A/n}

IN

/ c
—dz
{zelab)lr—y[>A/n} |7 — y[>

IN

2C
/ 2dx
{zelabllo—y=A/n) |z — y|* + (2)

2C
< / dz.
ool =yt (3)°

We make the substitution z —y = %t in the integral:
o 20
ANJ t2+1

5. THE CENTRAL TERM - LEMMA 2.4

Recall that A, 571, Qa2,Q12 were defined in (2.7-2.10), while S, F, G, H
were defined in (1.3-1.6):

Then (2.12) follows. B

Lemma 5.1

Uniformly for u in compact subsets of the plane, and uniformly for x € [a,b]
and y =z +

nw(w)
(a)
(Q11902 — Q%) A 1 4  F ()t o(1)-
(51) Kn-‘rl( Z, )4 <nw(x)> _F( )+ (1),
(b)
A =1-S)?+o0(1);
(5.2) m—l S(u)*+o(1);
(c)
AQqq
(5:3) T (W ) G (u) +o(1);
(d)
A922
(5.4 s (i ) =60+ o0
(e)
ngA
(5.5) Ko ( 3 <nw ) H (u)+o0(1)
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Proof

We repeatedly use that

Kpt1(z,x

Kni1(y, y; =1+0(1),

(a) Recall that ¥ was defined by (3.1). Then (3.6) gives

[(2119Q20 — 0) A]( 1 ))4

KTH-I (117,33)4 le(

as follows from (3.11).

det ¥ ( 1 )4
Kpi1 (z,2)* \nw (z)
_ o .
1 Kns1(2.9) Ky @) KO @)
Kni1(z,z) KzzoJrll)(ﬂJ’z) nw(z) K?0+11)(m,a:) nw(x)
Knyi(zy) Kn+1(y,y) Kn-;-l (y,x) Kn-f—l (vy) 1
= det Olfnﬂ(x ) Offnﬂ(x@) ﬁn+1($ax) nw(z) {(lnﬂ(:wc) nw(z)
K (@) KoV we) 1 Kipee) (1 \2 KLY @) (1 2
Kpi1(z,x) nw(z) Knpti(z,z) nw(z) Kpyi(z,z) \ nw(z) Knii(z,z) \ nw(@)
K3y (@) K@y 1 KV @y) (1 2 K& (1 \?
| Kni1(@w) nw(@)  Kpri(@w) nw(@)  Kpii(zx) \ nw(s) Koii(en) \nw@ ) |

Here we have factored in
(3.9) and recalling that y = = +

1( ) into the 3rd and 4th rows and columns. Using

, we continue this as
W(x)

1 S(—u) —=5(0) =5 (-w)
 det S( w) 1 -S"(w)  =5"(0)

=5 (u)  =8"(0)  —=5"(-u)

—S'( u) —=5'(0) —=58"(-u) —5"(0)
1 0 S (u)

_ det S (u) -5 (u) 0

0 =S5 (uw) =-5"(0) —5"(u)
S’ (u) —S5"(u) —S"(0)

as S is even, so S’ is odd and S” is even.

(b) From (3.9),

A

= det
Kn—H (.’L’, .%')

Kn-&-lg g ] 1
Bnt1(@2) | — (et

Kn+1(a:7y) n+1(y y) |: S —
Kn+l(m)x) n+1($ IE) ( u>

o(1)

+o(1)=F(u)+o(1)
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(c¢) From (3.3) and then (3.9

23

AQy ( 1 )2
Ky (z,2)° \nw (x)
[ Kun(w) Koyia(y0) Kt (00)
Kpy1(z,x) Kpyi(x,z) K(no_,_ll)(x ,x) nw(z)
= det gwrlg’gg 1 I;nﬂ ((; z)) nwl(m)
K, +1n(J;lvy) 1 K @e) K&ﬁﬂt D (1 \?
| Knt1(z,x) nw(z)  Kpyi(z,z) nw(z) Kpta(z,) (nw(m))
1 Sw -5
= det | S(—u) 1 -5"(0) | +0o(1)
I S’ (_u) _Sl S// )
[ 1 S (u) —S’
= det | S(u) 1 (u)+o(1),
_S'(w) 0 S”
recall (1.5).
(d) From (3.4) and then (3.9),
AQo ( 1 )2
3
K (z,2)° \nw (z)
I 1 K’n-&-lg % Kw(l(ii—ll)(( 71/)) 1 )
Knti(z,x Kypti1(z,x) nw(z
— det Ky (y.) Konsa(y) Ky ) 1
Ky x,T n T,x Ky x) nw(x
T N T T PR T Y AT
| Knti(z,2) nw(z)  Kpti(z,z) nw(z)  Knpta(z,e) (nw(w))
1 S(—u) =S5(-u)
= det | S(u) 1 =5"(0) | 4+0(1)=G(u)+o0(1)
"(w)  S'(0)  —=5"(0)

as S is odd, and we can multiply both the 3rd row and 3rd column by —1.

(e) From (3.5) and then (3.9),

Q1A < 1 >2
Kpi1 (z,2)* \nw (2)
[ 1 Knti1(z,y) Kéill)(x,z) 1
Kny1(z,x) Zzo+11)(iv7$) nw(z)
= det Kn+1(y,x) Kn+1(y,y) Kpidwe) 1
1fgn+1(967~’0) l§n+1($@) ({fln+1(907 ©) nw(z)
Kiﬂ)( z) 1 K7(1+1)(y y) Kn+1) ( 1 )2
| Knt1(z,2) nw(z)  Kpta(z,w) nw(z) Kpta(z,z) \ nw(z)
1 S(-uw) 0
= det | S(u) 1 —S"(uw) | +o0(1)=H (u)+o0(1),
| S (u) 0 —S" (u)
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recall (1.6). W

Now we can obtain the asymptotics for py (z,y) — p; (z) p; (y) stated in
(2.13):

Proof of Lemma 2.4(a)
Recall as in (4.3)-(4.4), that

2
<W1x)> {p2 (2,9) = p1 (2) pr (1)}

(
1 2
. = [|—— T+ T+ T5}.
(5.6) <nw(a:)> {Th +T> + T3}
We handle the terms T}, j = 1,2, 3 one by one:

Step 1: T}
Firstly from (3.9), (3.10), (3.15), and (4.2),

Kni ((Z) z)? (nwl(:v) ) 2

(& @) (B @) < 1 >2
K1 (z,2) K1 (z,2) nw (x)
2

- —S"(O)—I—o(l):%—l—o(l).

Also, from (3.9), uniformly for u in compact subsets of C,

Kni EZ) z)? (nwl(w) > 2

_ (Kﬁfl) (Y 9) Knia (yy)
T

K1 (z,2) Kpy (z,)

(5.7) = =5"(0)+o0(1)

I
|
+
Q
=
~—
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by the above and Lemma 5.1(b). Hence also with an obvious choice of
branches, uniformly for u in compact subsets of C\ {0},

(5.8) <W1(I)>2 i U (2) ¥ (y) = 1_;@)2 (ﬂ;) +o(1).

(Note that A occurs outside the square root, and only it leads to the pole
at 0). Then from (5.1) and (5.8), and recalling the definition of T3 at (4.4),

1 2
(W) h
_ Kn—i—l(iﬁ,x)? (QllQQQ—Q%Q)A B 1 2 1 .
. \/Kn+l<m>4<nw<x>>4 (nw(m)) AV @)Y w)

e _15 ™ ( Flu) — 7?) +o(1).

Step 2: 15
From (4.4),
1 2
— | T
<nw <x>> :
Kn+1 (a:,:c)?’ ngA < 1 )2 arcsin < ng )
T2 A3/2 Kni1 (x’ x)g nw (a;) V211099

— S (1 - ;(u)z)?’/zﬂ(w arcsin <g((Z))> +o(1),

by (5.2) - (5.5).
Step 3: T3
From (4.4) and (5.5),

1 2
<nw<x>> 1
(1 K1 (2,9)?

1 <Kn+ (x’y)>2Kn+1 (:IZ,LL’) |: 1
) KnJrl (y7y) (nw (:E))QA

e
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by (5.8) and (3.9). Substituting the asymptotics for T}, = 1,2, 3 into (5.6)
gives

( ! )2 {p2(z,y) — p1 (z) p1 (y)}

nw (x)

B 1 2 H (u) .
= <1 - S(u>2) F(u) - 3 (1 — S(u)Q) + T(u)? arcsin (G(u)

= Z(u)+o(1),

recall (1.7). W
We next deal with v near 0, which turns out to be challenging. First, we
prove

Lemma 5.2
(a) A (:E,ﬂe + #(m» has a double zero at w = 0, and there is p > 0 such

that for all = € [a,b] and n large enough, A (:E,ﬂc—i- L) has no other

nw(x)
zeros in |u| < p. Moreover, uniformly for w in compact subsets of C, and
x € [a,b],

A(x,x+#(x)> B 1—5’(u)2'

n— oo a1 ($’ $)2 u2 o u2

(5.9)

The right-hand side is interpreted as its limiting value at u = 0.

(b) [(QHQQQ — Q%Q) A] (3:,33 + W) has a zero of even order at least 4 at

u
nw
u = 0. Moreover, uniformly for u in compact subsets of C, and x € [a, ],

(211922 - OF) ( 1 )4 F (u)

lim = 3
nw (x) (1 _ S(u)z)

The right-hand side is interpreted as its limiting value at u = 0.

Proof
(a) First,

A (w v+ W“(x)>

2
U U U
= K K — K
nt1 (z,2) Kt <x + o~ (m>,x + o~ (w)) nt1 (x,x + oy (a:))

is a polynomial in u, and by Cauchy-Schwarz is non-negative for real u, with
a zero at u = 0. This then must be a zero of even multiplicity. But since

n—00 A

A(m,x—&-L

nw(x)

>=1—S<u>27

lim 5
n—oo Kn+1 (:Ea ZL‘)
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uniformly in compact sets by Lemma 5.1(b) and (3.9), and the right-hand

side has an isolated double zero at 0, it follows from Hurwitz’ Theorem and

the considerations above, that necessarily for large enough n, A <x, T+ #(I))
has a double zero at 0, and no other zeros in some neighborhood of 0 that is

independent of n. Since the convergence is uniform in x, the neighborhood
. A(J:,:H—#(x)) .
may also be taken independent of z. But then Kooyt is a se-
quence of polynomials in u that converges uniformly in compactn Elllbsets of
C\ {0} and hence also in compact subsets of C.
(b) Recall (3.6):
(QHQQQ — Q%Q) A = det (E) .

Here det(X) is also a polynomial in u when y = z + —%—~

nw(x)*
of Lemma 2.2 in the Appendix, X is a positive definite in)atrix when x # vy,
so is nonegative definite for all x,y. Then det(X) > 0 for real z,y while
det (¥) = 0 when w = 0. Thus as a polynomial in u, det(X) can only have
an even multiplicity zero at u = 0. We need to show that it has a zero of
multiplicity at least 4 when u = 0. By a classical inequality for determinants
of positive definite matrices and their leading submatrices [6, p. 63, Thm.
7], when y is real,

As in the proof

(1,1) (1,1)
0 < det (2) < A (z,y) det Kv(zﬁ) (z,2) K,y (z,y)

K& @) K ()
We already know that A has a double zero at u =0 for y = = + #(x) But
the second determinant also vanishes when y = x, that is u = 0. It follows
that necessarily as a polynomial in u, det (X) has a zero of multiplicity at

least 4 at uw = 0. Then
QHQQQ — Q%Q . det (E)
A A2
has a removable singularity at 0, since the zero of multiplicity 4 in the
denominator is cancelled by the zero of multiplicity > 4 in the numerator.
Then from (5.1), (5.2), uniformly for € [a,b] and u in some neighborhood

of 0,
Qi — Q2% /1 \*
A nw ()

(Qnﬂzz—%)A( 1 )4 Ko (0,2)]
Kni (z,2)* nw (x) A

(1-sw?)’

Moreover, since S (u) = 1 only at u = 0, this limit actually holds uniformly
for w in compact subsets of C.

+o(1).
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Next, we deal with the most difficult term €215 :

Lemma 5.3
(Q124) (a:,a: + L) has a zero of multiplicity at least 3 at uw = 0. More-

nw(x)
over, uniformly for w in compact subsets of R, and z € [a,b],

. ng 1 2 H (u)
lim = 373"
n—oo /A \nw (x) (1— 52 (u))
The right-hand side is interpreted as its limiting value at uw = 0. In addition,
uniformly for w in compact subsets of R, and x € |[a, b,

’Qu’arcsin< Q12| )( 1 >2<C
VA V11892 nw(z)) —

Proof

We first perform row and column operations in the determinant defining
A1o and then expand using Taylor series. More precisely, we subtract the
first row from the second; then the first column from the second; and then
subtract y_% X the second row, from the third:

912A
[ (0,1)
Kn+1 (.’l?,!E Kn+1 (a:,y) Kn—H (iL‘,J})
= det | Knit (4:2) it (3:9) K,SZL? (y,z)
L KD ) KO ) KLY (,w)
Kn+1 ($,$) Kn+1 (l’,y) 1 Kr(z(ill) ($a$)1
= det Kni (yv '%i)o_ Kn+1 (IE, .’IJ) Ky (ya :l{))l_ Kyt (iL‘, y) Kr(&-l) (ya li)l_ KSL) (m> .’I))
i K1 (,2) K1 (2,y) — Ko (2,2) K%Y (x,2)
Knt1 (9, y) + Ky (@, ) (0,1) (0,1)
= det | Kpp (y7 :L‘) — Kn1 (a:, JI) —2K 11 (m’ y) Kn-i—l (y7 x) - Kn-i—l (x, JI)
1,0 1,0 1,0 1,1
K& (y,2) K& () - K8 (@, 0) K& (y,)
Ko (2,2) K1 (2,9) — Knpa (2,2) KGY (2,2)
K1 (y,y) + Kyt (2, 2) (0.1) (0.1)
K, ,x) — Kpi1 (x,x K.~ ,x)— K7
= det i (y ) +1( ) _2Kn+1 (x,y) - (y (1)1)
1,0 1,0 1,0 ,
KffLJrl) (y, 37) K7(1+ ) (y7 y) - K1(1+1) (y7 .’13) ((ff;n-&—l (y7(-gf'2)
_ Knp1(y,2)—Knya(z,3) _ Kng1(yy)+ Kot (z,2)—2Kn41(,y) K (ye) K
L Yy—x Yy—x y—x

(5.10)

Let us examine the entries in the second and third rows. First, for some t
between x, vy,

K1 (9,2) = Knp1 (z,2) = KLY (t,2) (y — 2) = O (n (y — 2))
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by Lemma 3.2. Second, using the estimates from that lemma, for some r, s, v
between z, v,

KnJrl (ya y) + Kn+1 ($7 .T) - 2Kn+1 (l‘, y)
1
= Kppi(z,2)+ (y — x) QKT(LIJ’F%) (x,z) + 3 (y — 33)2 2 {K,(Lfl) (ryr) + Kgﬂ) (r, r)}

1
+Kpi1 (z,2) — 2 {Kn+1 (z,2) + (y — ) K7(10+’11) (x,z)+ 5 (y — z)? Kr(l(ﬁ) (z, s)}

= - {K&Y o)+ K& () = K0 (3,9)}
= 0(n*(y-2)).
Third,
K5 (y.2) = K (,2) = O (n (y — )

Fourth, for some ¢ between y, z,

(1,0) Kpi1 (y,2) — Kt (2, 2)
Kn—l—l (y7$) - y—x
= KT(“LIJ;(P (y,m) - Kv(llJ;Ol) (ta $) =0 (n3 (y - 33)) :

Fifth, for some r, (, s between y, z, with 7, s as above,

Kni1 (y,y) + Kni1 (2,7) — 2K 41 (2, Y)
Yy—T

= -2 K 0.0 - -0 (K 00+ KEY ) = K0 (2,9)

= w-o {8 w0 - K ) - KEY ) + KO (@,9))

- 0(n*y-2),

by the estimates in Lemma 3.2. Sixth, for some £ between z, v,

Kfffi) (y,y) — K,Slfi) (y,z) —

0,1 0,1
J ey (y,7) — K'r(z—i-l) (y,z) — K7(1+1) (z,z)

n+1 y—z
= K o) - KLY (62) =0 (n' (y— ).
Then substituting all these into (5.10),
Q10A
O (n) O (n?(y—ux)) O (n?)
= det | O(*(y=2)) O(n’(y-2)) O(’(y—u)
O(n3 (y—m)) O (n* (yx)Z; O(n4 (y — x)
O(n) O(n?) O (n?)
= (y—x)¥det | O EnQ) ) gn?’ o) | =0 (ns (y — x)3> .
O(n*) O nt) O (n4)
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Here we extracted factors of y — z from the second and third rows, and then
u

the second column. It follows that as a polynomial in u, (212A) (x, T+ —)

nw(x)

has a zero of multiplicity at least 3 at 0. Then QL—%A is a polynomial in u,

Qo _ QoA (2 3/2 s .. .
A = A , which is analytic in some neighborhood of 0 that

is independent of n,z,u. The uniform convergence in (5.5) gives uniformly
for w in compact subsets of R,

Mo 1 \?
VA (nw <x>>

Q2A ( 1 >2 Knii (z,2)°
K (z,2) \nw (z) A3/2

H (u)

Also then, H (u) necessarily has a zero of multiplicity > 3 at 0. Finally,
uniformly for u in compact subsets of R,

and

‘3%2' arcsin (\/%) (nw1(m)>2
< \f\jlzzlg (nwl(x)>2 o
n

Now we can deduce the desired bound near the diagonal:

Proof of Lemma 2.4(b)
Recall from (2.6) that

|02 (2,9)] (Wl(ﬂf)>2

1 Q1020 — QFy | Q2] . < €21 ) < 1 >2
- + 3 — <,
5 < \/7 arcsin 102 n ( )

by Lemma 5.1(a), (b) and Lemmas 5.2 - 5.3. Next, from (4.1), followed by
(5.7), (with u = 0 there)

(@) 1 v (2) o
(5.11) nw(z) W\/Kn+1 (z,z)? (nw (z))> V3 ol

and a similar asymptotic holds for p; (y). It follows that

2
s o) = @ s )l () =€

which gives the result, since w is positive and continuous in [a, b].
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Proof of Lemma 2.5
This follows directly from (5.11). W

6. APPENDIX - PROOF OF LEMMA 2.2

In this section, we prove Lemma 2.2. The functions p, (z,y) and p; (z)
arising in (2.5), are called the second and the first intensities, or the two-
point and one-point correlation functions of zeros, see, e.g., [20, pp. 7-8].
By their defining properties, we have

b
B [N, ((a, )] = / oy (2) de
and
b b
B[N, ([a, b)) (N, ([a,b]) — 1)] = / / oo (@,y) de dy.

Thus the variance of real zeros of random orthogonal polynomials in an
interval [a,b] C R can be written as in (2.5) by completing the following
steps:

Var [NV, ([a, b))
- E[qua,b]) —E[Nnaa,b])ﬂ
= B[N ([a.8)) (N ([a.b]) — 1)) ~ B[Ny ([a. b)) + B[N, (a.b)]

= //pwcy dz dy — //m ) py ( dwdy+/b 1 (¢) dz

- / / {2 (5,9) — p1 (8) py (9)} da dy + / oy (2) da.

We follow the argument of [19] in several parts of this proof. For z,y € R,
define the random vector

V =V(z,y) = (Gu(x), Gul(y), G(), Gh(y)) ",

and observe that the components of this vector are Gaussian random vari-
ables satisfying

E[Gn(z)] = BIG!,(z)] = 0, Var[Gy(2)] = Kpy1(z, @) and Var[Gl ()] = KLY (x,
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The covariance matrix ¥ of V' is defined by

¥ =%(z,y)
Var[Gp(z)] Cov[Gpn(z),Gn(y)] Cov|G,(z),G.(z)] Cov[Gy
Cov[Gn(y), Gn(z)] Var[Gp(y) Cov[Gn(y), G, (z)] Cov[Gp
| Cov[G (), Ga(z)]  Cov]Gy,(x), Gn(y)] Var[G), ()] Cov[Gy,
Cov[Gy,(y), Gu(z)]  Cov[Gy(y),Gn(y)] Cov|[Gy(y), G (2)] Var
Knii(2,2) Kpni(oy) KOy (@0) KO (@)
_ | Kan(ey) Knalny) K500 K5 00)
Kfld’_ll)(:c,x) Kn(_);ll)(y,a:) Kifrll)(x,:c) KT(TL%)(%M
K& @) Ky K5V @) K5 )

(6.1)

exactly as in (3.1). When x = y, the first row of ¥ is the same as the
second row, and hence det ¥ = 0. Our first goal is to show that V has the
multivariate normal distribution with mean zero and the covariance matrix
Y when  # y and n > 3. This follows in a standard way, e.g., from [21,
Corollary 16. 2] by proving that X is positive definite, which amounts to
showing that o/ X7 > 0 for all nonzero ¥ € R*. Recall that any covariance
matrix is positive semi-definite [21, Theorem 12.4], i , 9I'S7 > 0 for all
¥ € R This means we only need to demonstrate that 7I'S7 = 0 implies

N = = T
v = 0. For a vector v = [111 vy U3 114] , observe that

n
T'Yg = Var| TV Z vipk(x) + vapi(y) + U3p;g(93) + U4P;<; (y))2
k=0

It is clear now that ¢7 X4 = 0 if and only if

(6.2) v1pk(z) + vapr(y) + v3pl(z) + vapr(y) =0, k=0,...,n.

But this system of equations has only trivial solution ¥ = 0. Indeed, if we
write

)= bip;(t)
j=0
where {b;}"_; C R is arbitrary, then (6.2) implies that

01Qn (%) + v2Qn(y) + v3Q, () + V4@, (y) =

Since {pj(a:) "_o is a basis for the vector space of all polynomials of degree
at most n w1th real coefficients, the set of all polynomials @, (t) coincides
with this space. In particular, since n > 3 and = # y, we use the following

(6.3) 0.
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choices for @, in (6.3) to conclude that
Qu(t) = (t—z)(t —y)? = v3 =0;
Qu(t) = (t—2)*(t —y) = v = 0;
Qn(t)=t—y= v, =0;
Qn(t)=t—x = vy =0.

We now write X in the following block form

(6.4)
Knii(2,2) Kn(ey) KOV (@2) E%)(@y)

s | Enni(@y) Kpny) KV @e) K5 (,y) ::[A B]
K% (@) K0 (we) KD (@e) K @y)| BT CL
KOV ) KOy gy KDy KD ()

where A, B and C' are the corresponding 2 x 2 matrices. Note that det A =
A = 0 if and only if x = y by the equality case in the Cauchy-Schwarz
inequality. Thus we define Q = C — BT A~!B for = # v, and write

s_[A O]]I A7B
—|BT 1|0 Q |-
The latter implies that
detX =det A detQ = A det Q.

Since ¥ is invertible for x # y, so is 2 and thus detQ > 0 if z # y. It also
follows from (6.4) by direct algebraic manipulations that the elements of the
matrix
Q11 Q
QO=C_BTAlgp— |31 12
[912 Qa2
are as defined in (2.8-2.10).
Since the random vector V' = V(z,y) has the multivariate normal distri-
bution N (0,Y) with a non-singular covariance matrix ¥, we compute the
density of its distribution by [21, p. 130] in the form

exp (—3(0,0,t1,t2) 571(0,0, 11, 85)")

pz,y(oa 07 tla t?) =

(27)2(det X2)1/2
exp (—5(t1, t2) Q7 (t1, t2)7)
(27)2(det X2)1/2
Using matrix algebra, we further obtain that
1 [A— BC BT —A7'B[C - BTA7'B]™!
—~C'BT[A- BC— BT ! [C —BTA 1Bt

Theorem 3.2 of [3, p. 71] states that if (a,b) C R, then

B[N, ([a, 5]) (N ([a,8]) — 1)] // //|t1t2|pzyo 0,41, t2) dt1dtadzdy,
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_ 2
where D = {(z,y) € R*| a < z,y < b}. Hence

B[N, Ny ([a,b]) = 1)]

exp (t1,t2)971(t17t2)T)
exp ( (t1,t2)971(t17t2)T)
it dt1dtadxd
// //‘”' (s dagyiz  BE

dxd
~ an? //D VA det 4

where the inner integral is

1
I(z,y) //|t1t2|exp (—2(t1,t2)§21(t1,t2)T> dtdts.

Note if x #£ 1y, we have det 2 = Q211099 — Q%Q > 0 and

Q-1 — 1 Qo —Q2
detQ |—12 Qo1 |

It follows that

Q2o 2o Q12 Q1 2.

2 ——— {1t
12+dtQ

—1 T
(b1,82) 277 (1, t2) T detQ Y T detQ

Applying the result of [8, (3.9)], we evaluate the inner integral as

4(det 2)? J )
I(z,y 1+ arcsiné | ,
(=.9) = Q11Q22(1 — 6%) V1 — 62
with
5 — Sy
V11022

Finally, putting everything together, we obtain

B[Nn([a, b])(Nn([a, b]) = 1)]

/ / 4(det Q)? 1+ 76 arcsin § _dvdy
4772 QHQQQ 1-— (52) 1— 62 vV A det

// v/ 211090 — 12 2 arcsin (— e ) da dus
\/ Q11902 — Q4 V211892 VA

912 dzr dy
Q11099 — Q2 Q .
// < s 1 *+ Sz arcsin \/911922> VA

This and Lemma 2.1 give the result. B
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