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Abstract. We determine the asymptotics for the variance of the num-
ber of zeros of random linear combinations of orthogonal polynomials of
degree ≤ n in subintervals [a, b] of the support of the underlying orthog-
onality measure µ. We show that, as n→∞, this variance is asymptotic
to cn, for some explicit constant c > 0.

1. Introduction and main results

Let µ be a positive Borel measure compactly supported in the real line,
whose support contains infinitely many points. For n ≥ 0, n ∈ Z, we
consider the nth orthonormal polynomial

(1.1) pn (x) = γnx
n + ...

for µ, with γn > 0, so that∫
pn(x)pm(x) dµ(x) = δmn, m, n ≥ 0.

Define the ensemble of random orthogonal polynomials of the form

(1.2) Gn(x) =
n∑
j=0

ajpj(x), n ≥ 0,

where {aj}∞j=0 are standard Gaussian N (0, 1) i.i.d. random variables. For
any interval [a, b] ⊂ R, let Nn([a, b]) (resp. Nn (R)) denote the number of
zeros of Gn lying in [a, b] (resp. total number of real zeros).

Real zeros of high degree random polynomials have been studied since
the 1930s. The early work concentrated on the expected number of real
zeros E[Nn(R)] for Pn(x) =

∑n
k=0 akx

k, where {ak}nk=0 are i.i.d. random
variables. Bloch and Pólya [9] gave the upper bound E[Nn(R)] = O(

√
n)

for polynomials with coeffi cients in {−1, 0, 1}. Improvements and general-
izations were obtained by Littlewood and Offord [26]-[27], Erdős and Offord
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[14] and others. Kac [22] introduced the "Kac-Rice formula" to establish
the important asymptotic result

E[Nn(R)] = (2/π + o(1)) log n as n→∞,

for polynomials with independent real Gaussian coeffi cients.
More precise forms of this asymptotic were obtained by Kac [23], Edelman

and Kostlan [13], Wilkins [40] and others. For related further directions, see
[7] and [16]. Maslova [32] proved that the variance of real zeros for Kac
polynomials

∑n
k=0 akz

k satisfies

Var[Nn(R)] =
4

π

(
1− 2

π

)
log n+ o(log n)

for i.i.d. coeffi cients with mean 0, variance 1 and P(ak = 0) = 0. This result
was recently generalized by Nguyen and Vu [33].

Das [10] considered random Legendre polynomials corresponding to Lebesgue
measure dµ(x) = dx on [−1, 1], and found that E[Nn([−1, 1])] is asymptoti-
cally equal to n/

√
3. Wilkins [39] estimated the error term in this asymptotic

relation. For random Jacobi polynomials, Das and Bhatt [11] established
that E[Nn([−1, 1])] is asymptotically equal to n/

√
3 too. Farahmand [15],

[16], [17] considered the expected number of the level crossings of random
sums of Legendre polynomials with coeffi cients having different distribu-
tions. These results were generalized to wide classes of random orthogonal
polynomials by Lubinsky, Pritsker and Xie [30] and [31]. In particular, they
showed that the first term in the asymptotics for E[Nn(R)] remains the same
as for the Legendre case.

The asymptotic variance and the Gaussianity for real zeros of random
trigonometric polynomials were established by Granville and Wigman [19],
and subsequently by Azaïs and León [2] via different methods. Su and
Shao [35] found the asymptotic variance for the real zeros of random cosine
polynomials, while Azaïs, Dalmao and León [1] gave a different proof. Xie
[41] showed that the variance of real zeros for a general class of random
orthogonal polynomials is o(n2). A recent paper of Do, H. Nguyen and O.
Nguyen [12] studied dependence of the variance on the distribution of the
i.i.d. random coeffi cients in the trigonometric case.

In this paper our main goal is determining the asymptotic for the variance
of the number of real zeros for the ensemble of random orthogonal polynomi-
als of the form (1.2). To state our results, we require the following definition:

Definition 1.1
We say that a measure is regular in the sense of Stahl, Totik, and Ullman, if
the leading coeffi cients

{
γj
}
of the orthonormal polynomials in (1.1) satisfy

lim
j→∞

γ
1/j
j =

1

cap (supp [µ])
,

where cap (supp [µ]) denotes the logarithmic capacity of supp[µ].
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While not a transparent condition, it is a weak one. For example, if the
support of µ consists of finitely many intervals, and µ′ is positive a.e. in each
of those intervals, then µ is regular. However, much less is needed [34]. We
let ν denote the equilibrium measure ν for supp[µ] in the sense of potential
theory, and let ω (x) = dν

dx . In any open subinterval of supp[µ] , ω exists, and
is positive and continuous [34]. For example, when supp[µ] = [−1, 1],

ω (x) =
1

π
√

1− x2
.

Let

(1.3) S (u) =
sinπu

πu
;

(1.4) F (u) = det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0
0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

 ;

(1.5) G (u) = det

 1 S (u) −S′ (u)
S (u) 1 0
−S′ (u) 0 −S′′ (0)

 ;

(1.6) H (u) = det

 1 S (u) 0
S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

 .
Sylvester’s determinant identity and the fact that G (−u) = G (u) show that(

1− S (u)2
)
F (u) = G (u)2 −H (u)2 .

Also let
(1.7)

Ξ (u) =
1

π2


√
F (u)

1− S (u)2
+

1(
1− S (u)2

)3/2H (u) arcsin

(
H (u)

G (u)

)− 1

3

and

(1.8) c =

∫ ∞
−∞

Ξ (u) du+
1√
3
.

Theorem 1.2
Let µ be a measure with compact support on the real line, that is regular in
the sense of Stahl, Totik, and Ullmann. Let ω denote the Radon-Nikodym
derivative of the equilibrium measure for the support of µ. Let [a′, b′] be a
subinterval in the support of µ, such that µ is absolutely continuous there,
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and its Radon-Nikodym derivative µ′ is positive and continuous there. As-
sume moreover, that

(1.9) sup
n≥1
‖pn‖L∞[a′,b′] <∞.

If [a, b] ⊂ (a′, b′), then

(1.10) lim
n→∞

1

n
Var [Nn ([a, b])] = c

(∫ b

a
ω (y) dy

)
.

Note that the limit does not depend on the particular measure µ, but
involves the equilibrium density of the support of µ. The bounds for the
orthonormal polynomials are known for example when µ′ satisfies a Dini-
Lipschitz condition. Therefore an application of Theorem 1.2 gives:

Corollary 1.3
Let µ be a measure supported on [−1, 1] satisfying the Szeg̋o condition∫ 1

−1
log µ′ (x)

dx

π
√

1− x2
> −∞.

Let [a′, b′] be a subinterval of (−1, 1), in which µ is absolutely continuous,
while µ′ is positive and continuous in [a′, b′]. Assume moreover that its local
modulus of continuity,

Ω (t) = sup
{∣∣µ′ (x)− µ′ (y)

∣∣ : x, y ∈
[
a′, b′

]
and |x− y| ≤ t

}
, t > 0,

satisfies the Dini-Lipshitz condition∫ 1

0

Ω (t)

t
dt <∞.

If [a, b] ⊂ (a′, b′), then

(1.11) lim
n→∞

1

n
Var [Nn ([a, b])] = c

(∫ b

a

1

π
√

1− y2
dy

)
.

Remarks
(a) We believe that this result is new even for the Legendre weight µ′ = 1.
(b) The hypotheses of Theorem 1.2 are also satisfied for exponential weights
investigated in [25] that do not satisfy the Szegő condition. For example,
the conclusion of Theorem 1.2 holds for any [a, b] ⊂ (−1, 1), when

µ′ (x) = exp
(
− expk

(
1− x2

)−α)
, x ∈ (−1, 1)

where α > 0 and expk = exp (exp (... exp())) denotes the kth iterated expo-
nential.
(c) For a class of weights supported on several disjoint intervals, in a classic
paper, H. Widom [38] established asymptotics of the orthonormal polyno-
mials under some smoothness conditions on the weight. These imply the
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uniform boundedness of the orthonormal polynomials in subintervals of the
interior of the support, so that Theorem 1.2 applies to Widom’s weights.
(d) As noted above, the analogous limit for trigonometric polynomials was
established by Granville and Wigman in [19]. We have indications that
our results are related to those of [19] via the same limiting Paley-Wiener
process.
(e) Azaïs, Dalmao and León [1, Theorem 1] found the asymptotics for the
variance of zeros of random cosine polynomials

∑n
k=0 ak cos ky on [0, π].

These random cosine polynomials are equivalent to the random Chebyshev
polynomials

∑n
k=0 akTk (x) on [−1, 1] by the change of variable y = arccosx.

Our asymptotic variance result of Theorem 1.2 for the random Chebyshev
polynomials agrees with that of [1, Theorem 1] for random cosine polyno-
mials.

This paper is organised as follows: in Section 2, we state the Kac-Rice
formula for the variance, and prove Theorem 1.2 and Corollary 1.3, deferring
technical details to later sections. In Section 3, we record some technical
estimates and gather results from elsewhere. In Section 4, we estimate the
"tail term" with |x− y| ≥ Λ

n in the integral defining the main term in the
variance. In Section 5, we handle the "central term" where x and y are
close, which gives the dominant contribution to the integral. In Section 6,
the appendix, we prove the formula for the variance.

In the sequel, C,C1, C2, ... denote constants independent of n, x, y. The
same symbol may be different in different occurrences.

Acknowledgements
The authors would like to acknowledge the input of Igor Wigman of King’s

College London. He provided essential insight into the literature and ideas
for this paper. The authors would also like to thank a referee for finding an
error in the statement of Lemma 3.2.

2. The Proofs of Theorem 1.2 and Corollary 1.3

We begin with the Kac-Rice formulas for the expectation and variance.
These involve the reproducing kernel

(2.1) Kn (x, y) =
n−1∑
j=0

pj (x) pj (y)

and for nonnegative integers r, s, its derivatives

(2.2) K(r,s)
n (x, y) =

n−1∑
j=0

p
(r)
j (x) p

(s)
j (y) .

Lemma 2.1
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Let [a, b] ⊂ R, and let Gn be defined by (1.2). Then the expected number of
real zeros for Gn is expressed by

(2.3) E [Nn ([a, b])] =
1

π

∫ b

a
ρ1 (x) dx,

where

(2.4) ρ1 (x) =
1

π

√√√√K
(1,1)
n+1 (x, x)

Kn+1 (x, x)
−
(
K

(0,1)
n+1 (x, x)

Kn+1 (x, x)

)2

.

Proof
See [30]. �

We note that ρ1 depends on n, but we omit this dependence to simplify
the notation. The same applies to ρ2 below. The variance of real zeros of
Gn is found from the following formula, which was derived in [41] by using
the method of [19].

Lemma 2.2
Let [a, b] ⊂ R, and let Gn be defined by (1.2).
(2.5)

Var [Nn ([a, b])] =

∫ b

a

∫ b

a
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dxdy +

∫ b

a
ρ1 (x) dx,

where

(2.6) ρ2(x, y) =
1

π2
√

∆

(√
Ω11Ω22 − Ω2

12 + Ω12 arcsin

(
Ω12√

Ω11Ω22

))
.

Here

(2.7) ∆(x, y) := Kn+1(x, x)Kn+1(y, y)−K2
n+1(x, y)

and Ω is the covariance matrix of the random vector (P ′n(x), P ′n(y)) condi-
tional upon Pn(x) = Pn(y) = 0:

Ω =

[
Ω11 Ω12

Ω12 Ω22

]
,

with

Ω11(x, y) := K
(1,1)
n+1 (x, x)−

1

∆

(
Kn+1(y, y)(K

(0,1)
n+1 (x, x))2 − 2Kn+1(x, y)K

(0,1)
n+1 (x, x)K

(0,1)
n+1 (y, x) +Kn+1(x, x)(K

(0,1)
n+1 (y, x))2

)
,

(2.8)

Ω22(x, y) := K
(1,1)
n+1 (y, y)−

1

∆

(
Kn+1(y, y)(K

(0,1)
n+1 (x, y))2 − 2Kn+1(x, y)K

(0,1)
n+1 (x, y)K

(0,1)
n+1 (y, y) +Kn+1(x, x)(K

(0,1)
n+1 (y, y))2

)
,
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(2.9)

Ω12(x, y) := K
(1,1)
n+1 (x, y)−

1

∆
[Kn+1(y, y)K

(0,1)
n+1 (x, x)K

(0,1)
n+1 (x, y)−Kn+1(x, y)K

(0,1)
n+1 (x, y)K

(0,1)
n+1 (y, x)

−Kn+1(x, y)K
(0,1)
n+1 (x, x)K

(0,1)
n+1 (y, y) +Kn+1(x, x)K

(0,1)
n+1 (y, x)K

(0,1)
n+1 (y, y)].

(2.10)

Proof
See the Appendix. It is also shown there that the matrix Ω is nonnegative
definite, so that the square root defining ρ2 is well defined. �

To prove Theorem 1.2, we split the first integral in (2.5) into a central
term that provides the main contribution, and a tail term: for some large
enough Λ, write∫ b

a

∫ b

a
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

=

[∫ ∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/n}

+

∫ ∫
{(x,y):x,y∈[a,b],|x−y|<Λ/n}

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy

= Tail + Central.

We handle the tail term by proving the following estimate and a simple con-
sequence:

Lemma 2.3
(a) There exist C1, n0, and Λ0 such that for n ≥ n0 and |x− y| ≥ Λ0

n ,

(2.11) |ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ C1

|x− y|2
.

(b) There exist C2, n0, and Λ0 such that for n ≥ n0 and Λ ≥ Λ0,

(2.12)
∫ ∫

{(x,y):x,y∈[a,b],|x−y|≥Λ/n}
|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dx dy ≤ C2

n

Λ
.

Proof
See Section 4. �

Recall that Ξ is defined by (1.7). For the central term we will prove:

Lemma 2.4
(a) Uniformly for u in compact subsets of C\ {0}, and x ∈ [a, b] and
y = x+ u

nω(x) ,

(2.13)
(

1

nω (x)

)2

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} = Ξ (u) + o (1) .
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(b) Let η > 0. There exists C such that for x ∈ [a, b] , y = x + u
nω(x) ,

u ∈ [−η, η] and n ≥ 1,

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| ≤ Cn2.

Proof
See Section 5. �

The second integral in (2.5) is simpler:

Lemma 2.5

(2.14)
1

n

∫ b

a
ρ1 (x) dx =

1√
3

∫ b

a
ω (x) dx+ o (1) .

Proof
See Section 5. �

Proof of Theorem 1.2
We fix Λ > η > 0 and split∫ b

a

∫ b

a
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a

[∫
I

+

∫
J

+

∫
K

]
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx,(2.15)

where for a given x,

I = {y ∈ [a, b] : |y − x| ≥ Λ/ (nω (x))} ;

J = {y ∈ [a, b] : η/ (nω (x)) ≤ |y − x| < Λ/ (nω (x))} ;

K = {y ∈ [a, b] : |y − x| < η/ (nω (x))} .

If ω0 is the maximum of ω (x) in [a, b], (recall that ω is positive and contin-
uous in [a, b]) then∣∣∣∣∫ b

a

∫
I
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

∣∣∣∣
≤

∫ ∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/(nω0)}

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dy dx

≤ C1
nω0

Λ
,

(2.16)
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by Lemma 2.3(b), provided Λ/ω0 ≥ Λ0. Next,

1

n

∫ b

a

∫
J
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx

=

∫ b

a
ω (x)

∫
η≤|u|≤Λ,

x+ u
nω(x)

∈[a,b]

{
ρ2

(
x, x+

u

nω (x)

)
− ρ1 (x) ρ1

(
x+

u

nω (x)

)}
1

(nω (x))2
du dx.

Note that if η ≤ |u| ≤ Λ and x ∈ [a, b] but x + u
nω(x) /∈ [a, b], then x is at a

distance of O
(
Λ
n

)
to a or b, and in view of Lemma 2.4(b), the integral over

such (x, u) is O
(
1
n

)
. Using Lemma 2.4(a), we deduce that

lim
n→∞

1

n

∫ b

a

∫
J
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx

=

(∫ b

a
ω (x) dx

) (∫
η≤|u|≤Λ

Ξ (u) du

)
.(2.17)

Finally, from Lemma 2.4(b), (but with a different fixed η there),

(2.18)
1

n

∣∣∣∣∫ b

a

∫
K
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dydx

∣∣∣∣ ≤ Cη,
where C is independent of n, η. Combining the three estimates (2.16-2.18)
over I, J,K, with (2.15) and Lemma 2.5, we obtain

lim sup
n→∞

∣∣∣∣∣ 1nV ar [Nn ([a, b])]−
(∫ b

a
ω (x) dx

) (∫
η≤|u|≤Λ

Ξ (u) du+
1√
3

)∣∣∣∣∣
≤ C

(
1

Λ
+ η

)
,

where C is independent of n,Λ, η. Now if B > A ≥ Λ0, then Lemma 2.3(b)
and Lemma 2.4(a) show that(∫ b

a
ω (x) dx

) ∣∣∣∣∫
A≤u≤B

Ξ (u) du

∣∣∣∣
= lim

n→∞
1

n

∣∣∣∣∣
∫ b

a

∫
{y∈[a,b]:Aω(x)/n≤y−x<Bω(x)/n}

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx
∣∣∣∣∣ ≤ C1/A.

It follows that
∫∞
Λ0

Ξ (u) du converges. Similarly,
∫ −Λ0

−∞ Ξ (u) du converges.
So we may let Λ→∞ above and deduce that

lim sup
n→∞

∣∣∣∣∣ 1nV ar [Nn ([a, b])]−
(∫ b

a
ω (x) dx

) (∫
|u|≥η

Ξ (u) du+
1√
3

)∣∣∣∣∣
≤ Cη.



10 DORON S. LUBINSKY 1, IGOR E. PRITSKER 2

On the other hand, Lemma 2.4(a) and Lemma 2.4(b) show that if 0 < δ < η,(∫ b

a
ω (x) dx

) ∣∣∣∣∫
δ≤u≤η

Ξ (u) du

∣∣∣∣
= lim

n→∞
1

n

∣∣∣∣∣
∫ b

a

∫
{y∈[a,b]:δω(x)/n≤y−x<ηω(x)/n}

{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dy dx
∣∣∣∣∣ ≤ C2η.

It follows that
∫ η
0 Ξ (u) du converges. Similarly,

∫ 0
−η Ξ (u) du converges. So

we may let η → 0+ above to deduce the result. �

Proof of Corollary 1.3
Under the hypotheses of this theorem, Badkov even established asymptotics
for the orthonormal polynomials [4, p. 42, Corollary 2] that trivially imply
(1.9). Also, as noted above, since µ′ satisfies Szegő’s condition and so is
positive a.e. in [−1, 1], it is regular [34, Corollary 4.1.3]. Then the result
follows from Theorem 1.2. �

3. Auxiliary Results

Throughout this section, we assume that µ is as in Theorem 1. We begin
by recording some determinantal and other formulae: let ∆,Ω11,Ω12,Ω22 be
as in (2.7) - (2.10). Also let

(3.1) Σ =


Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1 (x, y) Kn+1 (y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

 .

Lemma 3.1
(a)

(3.2) ∆ (x, y) = det

[
Kn+1 (x, x) Kn+1 (x, y)
Kn+1 (y, x) Kn+1 (y, y)

]
;

(b)

(3.3) ∆Ω11 = det

 Kn+1 (y, y) Kn+1 (y, x) K
(0,1)
n+1 (y, x)

Kn+1 (x, y) Kn+1 (x, x) K
(0,1)
n+1 (x, x)

K
(1,0)
n+1 (x, y) K

(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

 ;

(c)

(3.4) ∆Ω22 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, y)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, y)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) K

(1,1)
n+1 (y, y)

 ;
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(d)

(3.5) ∆Ω12 = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

 .
(e) Let Σ be given by (3.1). Then

(3.6)
(
Ω11Ω22 − Ω2

12

)
∆ = det (Σ) .

Proof
(a) - (d): These follow by expanding the determinants for example along
the bottom row.
(e) This can be established using Sylvester’s determinant identity [5, p. 24,
Thm. 1.4.1]: on the matrix Σ defined by (3.1):

det (Σ) det (Σ3,4;3,4) = det (Σ3;3) det (Σ4;4)− det (Σ3;4) det (Σ4;3)

where Σ3,4;3,4 denotes the 2× 2 matrix formed from Σ by removing the 3rd
and 4th rows and columns of Σ, while Σr;s denotes the 3× 3 matrix formed
from Σ by removing the rth row and sth column. This identity and (a-d)
yield

det (Σ) ∆ = (∆Ω22) (∆Ω11)− (∆Ω12)
2 .

Note that in identifying det (Σ4;4) with ∆Ω11, we have to swap the 1st and
2nd rows and columns. Moreover, we use that ΣT

4;3 = Σ3;4. �
Next, we record some estimates on the reproducing kernels and their

derivatives:

Lemma 3.2
Let [a, b] be a subinterval of (a′, b′). Then for r, s = 0, 1 and r = 2, s = 0;
and for all n ≥ 1 and x, y ∈ [a, b] ,

(3.7)
∣∣∣K(r,s)

n (x, y)
∣∣∣ ≤ Cnr+s

|x− y|+ 1
n

.

Proof
First we note that since µ has compact support [18, p. 41],

C2 = sup
n≥1

γn−1
γn

<∞.

The Christoffel-Darboux formula asserts that

Kn (x, y) =
γn−1
γn

pn (x) pn−1 (y)− pn−1 (x) pn (y)

x− y
so that using our bound |pn (x)| ≤ C1 for x, y ∈ [a′, b′] ,

|Kn (x, y)| ≤ 2C2C
2
1

|x− y| .
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Moreover, by Cauchy-Schwartz,

|Kn (x, y)| ≤

n−1∑
j=0

p2j (x)

1/2n−1∑
j=0

p2j (y)

1/2

≤ C2
1n.

Combining the last two inequalities gives

|Kn (x, y)| ≤ C2
1 min

{
2C2

|x− y| , n
}

so that (for example, using the inequality between arithmetic and harmonic
means) we have the result (3.7) for r = s = 0. Next,

K(1,0)
n (x, y)

=
γn−1
γn

(
p′n (x) pn−1 (y)− p′n−1 (x) pn (y)

x− y +
pn−1 (x) pn (y)− pn−1 (y) pn (x)

(x− y)2

)
.

(3.8)

To estimate the derivatives, we use Bernstein’s inequality for derivatives,
namely for polynomials of degree ≤ n,∣∣P ′ (x)

∣∣ ≤ n√
1− x2

‖P‖L∞[−1,1] , x ∈ (−1, 1) .

This has the following consequence: for j, n ≥ 1 and polynomials P of degree
≤ n, ∥∥∥P (j)

∥∥∥
L∞[a,b]

≤ C3n
j ‖P‖L∞[a′,b′] .

Here C3 depends on j, a, b, a′, b′ but not on P nor on the degree n of P . It
then follows that for j = 0, 1, 2,

C4 = sup
n≥1

∥∥∥p(j)n ∥∥∥
L∞[a,b]

/nj <∞.

Also then, from (3.8), for x, y ∈ [a, b] ,∣∣∣K(1,0)
n (x, y)

∣∣∣ ≤ 2C2

{
C1C4n

|x− y| +
C2
1

|x− y|2

}
.

Next, by Cauchy-Schwartz,

∣∣∣K(1,0)
n (x, y)

∣∣∣ ≤
n−1∑
j=0

p′j (x)2

1/2n−1∑
j=0

p2j (y)

1/2

≤ C4C1n
2.

Thus ∣∣∣K(1,0)
n (x, y)

∣∣∣ ≤ C5 min

{
n

|x− y| +
1

|x− y|2
, n2
}
.
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This yields (3.7) for r = 1, s = 0. Of course r = 0, s = 1 follows by
symmetry. Finally,

K(1,1)
n (x, y) =

γn−1
γn

(
p′n (x) p′n−1 (y)− p′n−1 (x) p′n (y)

x− y +
p′n (x) pn−1 (y)− p′n−1 (x) pn (y)

(x− y)2

+
pn−1 (x) p′n (y)− p′n−1 (y) pn (x)

(x− y)2
+ 2

pn−1 (x) pn (y)− pn−1 (y) pn (x)

(x− y)3
)

Thus using our bounds on
{
p
(j)
n

}
, j = 0, 1, 2, gives for x, y ∈ [a, b] ,∣∣∣K(1,1)

n (x, y)
∣∣∣ ≤ C6

{
n2

|x− y| +
n

|x− y|2
+

1

|x− y|3

}
and again Cauchy-Schwartz gives

∣∣∣K(1,1)
n (x, y)

∣∣∣ ≤
n−1∑
j=0

p′j (x)2

1/2n−1∑
j=0

p′j (x)2

1/2

≤ C7n
3.

This and the previous inequality give (3.7) for r = s = 1. The case r =
2, s = 0 is similar. �

Next, we record some universality limits. Recall that S is defined by (1.3):

Lemma 3.3
Let [a′, b′] be a subinterval in the support of µ such that µ is absolutely con-
tinuous there, and µ′ is positive and continuous there. Let [a, b] ⊂ (a′, b′).
Let r, s be non-negative integers. Then
(a) Uniformly for x ∈ [a, b] and u, v in compact subsets of C,
(3.9)

lim
n→∞

K
(r,s)
n

(
x+ u

nω(x) , x+ v
nω(x)

)
Kn (x, x)

(
1

nω (x)

)r+s
= (−1)s S(r+s) (u− v) .

(b) Let

(3.10) τ r,s =

{
0, r + s odd

(−1)(r−s)/2

r+s+1 , r + s even
.

Then uniformly for x ∈ [a, b] ,

(3.11) lim
n→∞

1

nr+s+1
K(r,s)
n (x, x)µ′ (x) = πr+sω (x)r+s+1 τ r,s

and

(3.12) lim
n→∞

1

nr+s
K

(r,s)
n (x, x)

Kn (x, x)
= (πω (x))r+s τ r,s.

(c) In particular, uniformly for x ∈ [a, b] ,

(3.13) lim
n→∞

1

n2
K(1,0)
n (x, x) = 0
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and for r = 0, 1,

(3.14) K(r,r)
n (x, x) ≥ Cn2r+1.

(d)

(3.15) S′′ (0) = −π
2

3
.

Proof
(a) We start with a result of Totik [37, Theorem 2.2]: uniformly for x ∈ [a, b],
and u, v in compact subsets of R,

(3.16) lim
n→∞

1

n
Kn

(
x+

u

n
, x+

v

n

)
µ′ (x) /ω (x) = S ((u− v)ω (x)) .

In particular, it then follows that uniformly for x ∈ [a, b], and u in compact
subsets of R,

lim
n→∞

Kn

(
x+ u

n , x+ u
n

)
Kn (x, x)

= 1.

Theorem 1.1 in [28, p. 375] then asserts that uniformly for x ∈ [a, b], and
u, v in compact subsets of C,

lim
n→∞

Kn

(
x+ u

Kn(x,x)µ′(x)
, x+ v

Kn(x,x)µ′(x)

)
Kn (x, x)

= S (u− v) .

Here the uniformity and Totik’s (3.16) allows us to replace Kn (x, x)µ′ (x)
by nω (x): uniformly for x ∈ [a, b], and u, v in compact subsets of C,

(3.17) lim
n→∞

Kn

(
x+ u

nω(x) , x+ v
nω(x)

)
Kn (x, x)

= S (u− v) .

This is the case r = s = 0 of (3.9). Because the limit holds uniformly for u, v
in compact subsets of C, we may differentiate this asymptotic with respect
to u, v to get the general case of (3.9).
(b) For the special case where the support of µ is [−1, 1], this is Corollary
1.3 in [29, p. 917]. There it was shown that [29, p. 937]

(3.18) S (u− v) =
∞∑

j,k=0

uj

j!

vk

k!
πj+kτ j,k,

so we can reformulate (3.9) for r = s = 0 as

lim
n→∞

∞∑
j,k=0

(
u

nω(x)

)j
j!

(
v

nω(x)

)k
k!

K
(j,k)
n (x, x)

Kn (x, x)
=

∞∑
j,k=0

uj

j!

vk

k!
πj+kτ j,k.

Comparing coeffi cients of like powers of u, v gives (3.12). That this holds
uniformly in x for a given r, s follows easily from the uniformity of the
original limit in x (cf. [29, p. 938]). Finally Totik’s limit (3.16) gives

lim
n→∞

1

n
Kn (x, x)µ′ (x) /ω (x) = 1,
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uniformly for x ∈ [a, b], so we also obtain the first asymptotic (3.11).
(c) This follows directly from (b).
(d) From (3.18),

(3.19) S (u) =
∞∑
j=0

uj

j!
πjτ j,0.

So S′′ (0) = π2τ2,0 = −π2

3 . �

4. The Tail Term - Lemma 2.3

Recall that ρ1, ρ2 are defined by (2.4) and (2.6). First write

(4.1) ρ1 (x) =
1

πKn+1 (x, x)

√
Ψ (x)

where

(4.2) Ψ (x) = K
(1,1)
n+1 (x, x)Kn+1 (x, x)−K(0,1)

n+1 (x, x)2 .

Next, write

(4.3) ρ2 (x, y)− ρ1 (x) ρ1 (y) = T1 + T2 + T3,

where

T1 =
1

π2∆

(√(
Ω11Ω22 − Ω2

12

)
∆−

√
Ψ (x) Ψ (y)

)
;

T2 =
1

π2
√

∆
|Ω12| arcsin

(
|Ω12|√
Ω11Ω22

)
;

T3 =
1

π2

(
1

∆
− 1

Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y).(4.4)

We estimate each T term separately. It is the following lemma that contains
the main idea, namely cancellation using Laplace’s determinant formula:

Lemma 4.1
There exist n0 and Λ0 > 0 such that for n ≥ n0 and all x, y ∈ [a, b] , with
|x− y| ≥ Λ0/n,

(4.5) |T1| ≤
C(

|x− y|+ 1
n

)2 .
Proof
Write

T1 =

(
Ω11Ω22 − Ω2

12

)
∆−Ψ (x) Ψ (y)

π2∆
[√(

Ω11Ω22 − Ω2
12

)
∆ +

√
Ψ (x) Ψ (y)

] =
Num
Denom

.

The numerator is (recall (3.6))

Num =
(
Ω11Ω22 − Ω2

12

)
∆−Ψ (x) Ψ (y)

= det (Σ)−Ψ (x) Ψ (y)
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= det


Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1 (x, y) Kn+1 (y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)


− det

[
Kn+1 (x, x) K

(0,1)
n+1 (x, x)

K
(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

]
det

[
Kn+1 (y, y) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, y)

]
.

Let Σ be the 4× 4 matrix above. Then we can write this as

Num = det [Σ]− det

[
Σ

(
1 3
1 3

)]
det

[
Σ

(
2 4
2 4

)]
where Σ

(
r s
j k

)
denotes the matrix formed from Σ by taking the elements

that lie in rows r, s and columns j, k. Now let us use Laplace’s determinant
expansion [24, p. 37]: we have chosen rows 1, 3. Laplace’s expansion gives

det (Σ) =
∑

1≤j<k≤4
(−1)1+3+j+k det

[
Σ

(
1 3
j k

)]
det

[
Σc

(
1 3
j k

)]
,

where Σc is formed from the complimentary rows and columns. The choices
for (j, k) are {(1, 2) , (1, 3) , (1, 4) , (2, 3) (2, 4) , (3, 4)}, This gives det (Σ) as a

sum of 6 terms, one of which is det

[
Σ

(
1 3
1 3

)]
det

[
Σ

(
2 4
2 4

)]
. So

Num = − det

[
Σ

(
1 3
1 2

)]
det

[
Σ

(
2 4
3 4

)]

− det

[
Σ

(
1 3
1 4

)]
det

[
Σ

(
2 4
2 3

)]
− det

[
Σ

(
1 3
2 3

)]
det

[
Σ

(
2 4
1 4

)]
+ det

[
Σ

(
1 3
2 4

)]
det

[
Σ

(
2 4
1 3

)]
− det

[
Σ

(
1 3
3 4

)]
det

[
Σ

(
2 4
1 2

)]

= − det

[
Kn+1 (x, x) Kn+1 (x, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x)

]
det

[
K

(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]

− det

[
Kn+1 (x, x) K

(0,1)
n+1 (x, y)

K
(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

]
det

[
Kn+1 (y, y) K

(0,1)
n+1 (y, x)

K
(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y)

]

− det

[
Kn+1 (x, y) K

(0,1)
n+1 (x, x)

K
(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x)

]
det

[
Kn+1 (x, y) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]

+ det

[
Kn+1 (x, y) K

(0,1)
n+1 (x, y)

K
(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, y)

]
det

[
Kn+1 (x, y) K

(0,1)
n+1 (y, x)

K
(0,1)
n+1 (x, y) K

(1,1)
n+1 (x, y)

]

− det

[
K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

K
(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

]
det

[
Kn+1 (x, y) Kn+1 (y, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y)

]
.
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Using the estimate (3.7) and that
(
|x− y|+ 1

n

)−1 ≤ n, we continue this as

= − det

 O (n) O
(

1
|x−y|+ 1

n

)
O
(
n2
)

O
(

n
|x−y|+ 1

n

)  det

 O
(

n
|x−y|+ 1

n

)
O
(
n2
)

O
(

n2

|x−y|+ 1
n

)
O
(
n3
)


− det

 O (n) O
(

n
|x−y|+ 1

n

)
O
(
n2
)

O
(

n2

|x−y|+ 1
n

)  det

 O (n) O
(

n
|x−y|+ 1

n

)
O
(
n2
)

O
(

n2

|x−y|+ 1
n

) 

− det

 O
(

1
|x−y|+ 1

n

)
O
(
n2
)

O
(

n
|x−y|+ 1

n

)
O
(
n3
)
 det

 O
(

1
|x−y|+ 1

n

)
O
(
n2
)

O
(

n
|x−y|+ 1

n

)
O
(
n3
)


+ det

 O
(

1
|x−y|+ 1

n

)
O
(

n
|x−y|+ 1

n

)
O
(

n
|x−y|+ 1

n

)
O
(

n2

|x−y|+ 1
n

)  det

 O
(

1
|x−y|+ 1

n

)
O
(

n
|x−y|+ 1

n

)
O
(

n
|x−y|+ 1

n

)
O
(

n2

|x−y|+ 1
n

) 

− det

 O
(
n2
)

O
(

n
|x−y|+ 1

n

)
O
(
n3
)

O
(

n2

|x−y|+ 1
n

)  det

 O
(

1
|x−y|+ 1

n

)
O (n)

O
(

n
|x−y|+ 1

n

)
O
(
n2
)


= O

(
n6(

|x− y|+ 1
n

)2
)
.

Thus

(4.6) Num = O

(
n6(

|x− y|+ 1
n

)2
)
.

Also

Denom = π2∆

[√(
Ω11Ω22 − Ω2

12

)
∆ +

√
Ψ (x) Ψ (y)

]
≥ π2∆

√
Ψ (x) Ψ (y).

Here from (3.14) and (3.13), for n large enough,

Ψ (x) = K
(1,1)
n+1 (x, x)Kn (x, x)−K(0,1)

n (x, x)2 ≥ Cn4 − o
(
n4
)
≥ Cn4.

Also from (3.14) and (3.7),

1− ∆

Kn (x, x)Kn (y, y)
=

K2
n (x, y)

Kn (x, x)Kn (y, y)

≤ C(
|x− y|+ 1

n

)2
n2

=
C

(n |x− y|+ 1)2
≤ 1

2
,
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if |x− y| ≥ Λ0/n with Λ0 large enough. Then

(4.7) ∆ ≥ 1

2
Kn (x, x)Kn (y, y) ≥ Cn2

and

(4.8) Denom ≥ Cn6.

Then combined with (4.6), this yields

|T1| =
∣∣∣∣ Num
Denom

∣∣∣∣ ≤ C(
|x− y|+ 1

n

)2 .
�

Next, let us deal with T2 :

Lemma 4.2
There exist n0 and Λ0 such that for n ≥ n0 and all x, y ∈ [a, b] , with
|x− y| ≥ Λ0/n,

(4.9) |T2| ≤
C(

|x− y|+ 1
n

)2 .
Proof
Recall that

|T2| = T2 =
1

π2
√

∆
|Ω12| arcsin

(
|Ω12|√
Ω11Ω22

)
.

From |sinu| ≥ 2
π |u|, |u| ≤

π
2 , we obtain for |v| ≤ 1,

2

π
|arcsin v| ≤ |v|

so

(4.10) |T2| ≤
1

2π∆3/2

|Ω12∆|2√
Ω11Ω22∆2

.

Here from Lemma 3.1(d) and Lemma 3.2,

Ω12∆ = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)



= det


O (n) O

(
1

|x−y|+ 1
n

)
O
(
n2
)

O
(

1
|x−y|+ 1

n

)
O (n) O

(
n

|x−y|+ 1
n

)
O
(

n
|x−y|+ 1

n

)
O
(
n2
)

O
(

n2

|x−y|+ 1
n

)

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We expand by the first row and continue this as

(4.11) Ω12∆ = O

(
n4

|x− y|+ 1
n

)
.

Next, we examine Ω11 and Ω22. From Lemma 3.1(b), followed by (3.7),
(3.13),

Ω11∆ = det

 Kn+1 (y, y) Kn+1 (y, x) K
(0,1)
n+1 (y, x)

Kn+1 (x, y) Kn+1 (x, x) K
(0,1)
n+1 (x, x)

K
(1,0)
n+1 (x, y) K

(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)



= det


Kn+1 (y, y) O

(
1

|x−y|+ 1
n

)
O
(

n
|x−y|+ 1

n

)
O
(

1
|x−y|+ 1

n

)
Kn+1 (x, x) o

(
n2
)

O
(

n
|x−y|+ 1

n

)
o
(
n2
)

K
(1,1)
n+1 (x, x)

 .
Expanding by the first row, and using K(r,r)

n+1 (x, x) = O
(
n2r+1

)
, we see that

Ω11∆ = Kn+1 (y, y)
{
Kn+1 (x, x)K

(1,1)
n+1 (x, x)− o

(
n4
)}

−O
(

1

|x− y|+ 1
n

){
O

(
n3

|x− y|+ 1
n

)
+ o

(
n3

|x− y|+ 1
n

)}

+O

(
n

|x− y|+ 1
n

){
O

(
n2

|x− y|+ 1
n

)
+O

(
n2

|x− y|+ 1
n

)}
so if |x− y| ≥ Λ0/n, and Λ0 ≥ 1,

Ω11∆ = Kn+1 (y, y)Kn+1 (x, x)K
(1,1)
n+1 (x, x)− o

(
n5
)

+O

(
n5

Λ2
0

)
≥ Cn5 − o

(
n5
)

+O

(
n5

Λ2
0

)
≥ C1n

5(4.12)

if Λ0 and n are large enough, say n ≥ n0, by (3.13) and (3.14). Of course
the constant C1 depends on the size of C, and the decay of the o

(
n5
)
term,

as does n0. In much the same way,

Ω22∆ = det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, y)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, y)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) K

(1,1)
n+1 (y, y)


= Kn+1 (x, x)Kn+1 (y, y)K

(1,1)
n+1 (y, y)− o

(
n5
)

+O

(
n5

Λ2
0

)
≥ C1n

5.(4.13)
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Again the threshholds n0 and Λ0 influence the choice of C1. Then combining
(4.10-4.13), followed by (4.7),

T2 ≤ C
(

n4

|x− y|+ 1
n

)2
1

∆3/2

1

n5
≤ C

(
1

|x− y|+ 1
n

)2

.

�
Next, we handle T3 :

Lemma 4.3
There exist n0 and Λ0 such that for n ≥ n0 and all x, y ∈ [a, b] , with
|x− y| ≥ Λ0/n,

(4.14) |T3| ≤
C(

|x− y|+ 1
n

)2 .
Proof
Note first from (4.2), (3.13), and (3.14),

Ψ (x) = O
(
n4
)
− o

(
n4
)

= O
(
n4
)
.

Next, recall from (4.4),

T3 =
1

π2

(
1

∆
− 1

Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y)

=
1

π2
K2
n+1 (x, y)

∆Kn+1 (x, x)Kn+1 (y, y)

√
Ψ (x) Ψ (y)

≤ C(
|x− y|+ 1

n

)2
∆n2

n4

≤ C(
|x− y|+ 1

n

)2 ,
by (4.7). Note too that T3 ≥ 0. �

Proof of Lemma 2.3(a)
Just combine the estimates for T1, T2, T3 from Lemmas 4.1, 4.2, 4.3 and re-
call (4.3). �

Proof of Lemma 2.3(b)
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From Lemma 2.3(a), for y ∈ [a, b] ,∫
{x∈[a,b],|x−y|≥Λ/n}

|ρ2 (x, y)− ρ1 (x) ρ1 (y)| dx

≤
∫
{x∈[a,b],|x−y|≥Λ/n}

C

|x− y|2
dx

≤
∫
{x∈[a,b],|x−y|≥Λ/n}

2C

|x− y|2 +
(
Λ
n

)2dx
≤

∫ ∞
−∞

2C

|x− y|2 +
(
Λ
n

)2dx.
We make the substitution x− y = Λ

n t in the integral:

=
n

Λ

∫ ∞
−∞

2C

t2 + 1
dt.

Then (2.12) follows. �

5. The Central Term - Lemma 2.4

Recall that ∆,Ω11,Ω22,Ω12 were defined in (2.7-2.10), while S, F,G,H
were defined in (1.3-1.6):

Lemma 5.1
Uniformly for u in compact subsets of the plane, and uniformly for x ∈ [a, b]
and y = x+ u

nω(x) ,

(a)

(5.1)

(
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)4

(
1

nω (x)

)4

= F (u) + o (1) ;

(b)

(5.2)
∆

Kn+1 (x, x)2
= 1− S (u)2 + o (1) ;

(c)

(5.3)
∆Ω11

Kn+1 (x, x)3

(
1

nω (x)

)2

= G (u) + o (1) ;

(d)

(5.4)
∆Ω22

Kn+1 (x, x)3

(
1

nω (x)

)2

= G (u) + o (1) ;

(e)

(5.5)
Ω12∆

Kn+1 (x, x)3

(
1

nω (x)

)2

= H (u) + o (1) .
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Proof
We repeatedly use that Kn+1(y,y)

Kn+1(x,x)
= 1 + o (1), as follows from (3.11).

(a) Recall that Σ was defined by (3.1). Then (3.6) gives

[(
Ω11Ω22 − Ω2

12

)
∆
]

Kn+1 (x, x)4

(
1

nω (x)

)4

=
det Σ

Kn+1 (x, x)4

(
1

nω (x)

)4

= det



1 Kn+1(x,y)
Kn+1(x,x)

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)

Kn+1(x,y)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)

K
(1,1)
n+1 (x,x)

Kn+1(x,x)

(
1

nω(x)

)2 K
(1,1)
n+1 (x,y)

Kn+1(x,x)

(
1

nω(x)

)2
K

(0,1)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)

K
(1,1)
n+1 (x,y)

Kn+1(x,x)

(
1

nω(x)

)2 K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
1

nω(x)

)2


.

Here we have factored in 1
nω(x) into the 3rd and 4th rows and columns. Using

(3.9) and recalling that y = x+ u
nω(x) , we continue this as

= det


1 S (−u) −S′ (0) −S′ (−u)

S (−u) 1 −S′ (u) −S′ (0)
−S′ (0) −S′ (u) −S′′ (0) −S′′ (−u)
−S′ (−u) −S′ (0) −S′′ (−u) −S′′ (0)

+ o (1)

= det


1 S (u) 0 S′ (u)

S (u) 1 −S′ (u) 0
0 −S′ (u) −S′′ (0) −S′′ (u)

S′ (u) 0 −S′′ (u) −S′′ (0)

+ o (1) = F (u) + o (1)

as S is even, so S′ is odd and S′′ is even.
(b) From (3.9),

∆

Kn+1 (x, x)2
= det

[
1 Kn+1(x,y)

Kn+1(x,x)
Kn+1(x,y)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

]
= det

[
1 S (−u)

S (−u) 1

]
+o (1) .
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(c) From (3.3) and then (3.9),

∆Ω11

Kn+1 (x, x)3

(
1

nω (x)

)2

= det


Kn+1(y,y)
Kn+1(x,x)

Kn+1(y,x)
Kn+1(x,x)

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)

Kn+1(x,y)
Kn+1(x,x)

1
K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)

K
(1,0)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)

K
(1,1)
n+1 (x,x)

Kn+1(x,x)

(
1

nω(x)

)2


= det

 1 S (u) −S′ (u)
S (−u) 1 −S′ (0)
S′ (−u) −S′ (0) −S′′ (0)

+ o (1)

= det

 1 S (u) −S′ (u)
S (u) 1 0
−S′ (u) 0 −S′′ (0)

+ o (1) = G (u) + o (1) ,

recall (1.5).
(d) From (3.4) and then (3.9),

∆Ω22

Kn+1 (x, x)3

(
1

nω (x)

)2

= det


1 Kn+1(x,y)

Kn+1(x,x)

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)

Kn+1(y,x)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)

K
(1,0)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)

K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
1

nω(x)

)2


= det

 1 S (−u) −S′ (−u)
S (u) 1 −S′ (0)
S′ (u) S′ (0) −S′′ (0)

+ o (1) = G (u) + o (1)

as S′ is odd, and we can multiply both the 3rd row and 3rd column by −1.
(e) From (3.5) and then (3.9),

Ω12∆

Kn+1 (x, x)3

(
1

nω (x)

)2

= det


1 Kn+1(x,y)

Kn+1(x,x)

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)

Kn+1(y,x)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)

K
(1,0)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)

K
(1,1)
n+1 (y,x)

Kn+1(x,x)

(
1

nω(x)

)2


= det

 1 S (−u) 0
S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

+ o (1) = H (u) + o (1) ,
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recall (1.6). �

Now we can obtain the asymptotics for ρ2 (x, y) − ρ1 (x) ρ1 (y) stated in
(2.13):

Proof of Lemma 2.4(a)
Recall as in (4.3)-(4.4), that(

1

nω (x)

)2

{ρ2 (x, y)− ρ1 (x) ρ1 (y)}

=

(
1

nω (x)

)2

{T1 + T2 + T3} .(5.6)

We handle the terms Tj , j = 1, 2, 3 one by one:
Step 1: T1
Firstly from (3.9), (3.10), (3.15), and (4.2),

Ψ (x)

Kn+1 (x, x)2

(
1

nω (x)

)2

=

K(1,1)
n+1 (x, x)

Kn+1 (x, x)
−
(
K

(0,1)
n+1 (x, x)

Kn+1 (x, x)

)2
( 1

nω (x)

)2

= −S′′ (0) + o (1) =
π2

3
+ o (1) .

Also, from (3.9), uniformly for u in compact subsets of C,

Ψ (y)

Kn+1 (x, x)2

(
1

nω (x)

)2

=

K(1,1)
n+1 (y, y)

Kn+1 (x, x)

Kn+1 (y, y)

Kn+1 (x, x)
−
(
K

(0,1)
n+1 (y, y)

Kn+1 (x, x)

)2
( 1

nω (x)

)2

= −S′′ (0) + o (1) =
π2

3
+ o (1) .(5.7)

Then (
1

nω (x)

)4 Ψ (x) Ψ (y)

∆2

=
Kn+1 (x, x)4

∆2

[
Ψ (x)

Kn+1 (x, x)2

(
1

nω (x)

)2
][

Ψ (y)

Kn+1 (x, x)2

(
1

nω (x)

)2
]

=
1(

1− S (u)2
)2 (π23

)2

+ o (1) ,
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by the above and Lemma 5.1(b). Hence also with an obvious choice of
branches, uniformly for u in compact subsets of C\ {0} ,

(5.8)
(

1

nω (x)

)2 1

∆

√
Ψ (x) Ψ (y) =

1

1− S (u)2

(
π2

3

)
+ o (1) .

(Note that ∆ occurs outside the square root, and only it leads to the pole
at 0). Then from (5.1) and (5.8), and recalling the definition of T1 at (4.4),(

1

nω (x)

)2

T1

=
Kn+1 (x, x)2

π2∆

√ (
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)4 (nω (x))4
−
(

1

nω (x)

)2 1

π2∆

√
Ψ (x) Ψ (y)

=
1

π2
(

1− S (u)2
) (√F (u)− π2

3

)
+ o (1) .

Step 2: T2
From (4.4),(

1

nω (x)

)2

T2

=
Kn+1 (x, x)3

π2∆3/2

[
Ω12∆

Kn+1 (x, x)3

(
1

nω (x)

)2
]

arcsin

(
Ω12√

Ω11Ω22

)
=

1

π2
(

1− S (u)2
)3/2H (u) arcsin

(
H (u)

G (u)

)
+ o (1) ,

by (5.2) - (5.5).
Step 3: T3
From (4.4) and (5.5),(

1

nω (x)

)2

T3

=

(
1

nω (x)

)2 1

π2

(
Kn+1 (x, y)2

∆Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y)

=
1

π2

(
Kn+1 (x, y)

Kn+1 (x, x)

)2 Kn+1 (x, x)

Kn+1 (y, y)

[
1

(nω (x))2 ∆

√
Ψ (x) Ψ (y)

]
=

1

π2

(
S (u)2

1− S (u)2

)
π2

3
+ o (1) ,
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by (5.8) and (3.9). Substituting the asymptotics for Tj , j = 1, 2, 3 into (5.6)
gives (

1

nω (x)

)2

{ρ2 (x, y)− ρ1 (x) ρ1 (y)}

=
1

π2
(

1− S (u)2
)
√F (u)− π2

3

(
1− S (u)2

)
+

H (u)√
1− S (u)2

arcsin

(
H (u)

G (u)

)+ o (1)

= Ξ (u) + o (1) ,

recall (1.7). �
We next deal with u near 0, which turns out to be challenging. First, we

prove

Lemma 5.2
(a) ∆

(
x, x+ u

nω(x)

)
has a double zero at u = 0, and there is ρ > 0 such

that for all x ∈ [a, b] and n large enough, ∆
(
x, x+ u

nω(x)

)
has no other

zeros in |u| ≤ ρ. Moreover, uniformly for u in compact subsets of C, and
x ∈ [a, b],

(5.9) lim
n→∞

∆
(
x, x+ u

nω(x)

)
Kn+1 (x, x)2 u2

=
1− S (u)2

u2
.

The right-hand side is interpreted as its limiting value at u = 0.

(b)
[(

Ω11Ω22 − Ω2
12

)
∆
] (
x, x+ u

nω(x)

)
has a zero of even order at least 4 at

u = 0. Moreover, uniformly for u in compact subsets of C, and x ∈ [a, b],

lim
n→∞

(
Ω11Ω22 − Ω2

12

)
∆

(
1

nω (x)

)4

=
F (u)(

1− S (u)2
)2 .

The right-hand side is interpreted as its limiting value at u = 0.
Proof
(a) First,

∆

(
x, x+

u

nω (x)

)
= Kn+1 (x, x)Kn+1

(
x+

u

nω (x)
, x+

u

nω (x)

)
−Kn+1

(
x, x+

u

nω (x)

)2

is a polynomial in u, and by Cauchy-Schwarz is non-negative for real u, with
a zero at u = 0. This then must be a zero of even multiplicity. But since

lim
n→∞

∆
(
x, x+ u

nω(x)

)
Kn+1 (x, x)2

= 1− S (u)2 ,
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uniformly in compact sets by Lemma 5.1(b) and (3.9), and the right-hand
side has an isolated double zero at 0, it follows from Hurwitz’Theorem and

the considerations above, that necessarily for large enough n, ∆
(
x, x+ u

nω(x)

)
has a double zero at 0, and no other zeros in some neighborhood of 0 that is
independent of n. Since the convergence is uniform in x, the neighborhood

may also be taken independent of x. But then

{
∆
(
x,x+ u

nω(x)

)
Kn+1(x,x)

2u2

}
n≥1

is a se-

quence of polynomials in u that converges uniformly in compact subsets of
C\ {0} and hence also in compact subsets of C.
(b) Recall (3.6): (

Ω11Ω22 − Ω2
12

)
∆ = det (Σ) .

Here det(Σ) is also a polynomial in u when y = x + u
nω(x) . As in the proof

of Lemma 2.2 in the Appendix, Σ is a positive definite matrix when x 6= y,
so is nonegative definite for all x, y. Then det(Σ) ≥ 0 for real x, y while
det (Σ) = 0 when u = 0. Thus as a polynomial in u, det(Σ) can only have
an even multiplicity zero at u = 0. We need to show that it has a zero of
multiplicity at least 4 when u = 0. By a classical inequality for determinants
of positive definite matrices and their leading submatrices [6, p. 63, Thm.
7], when y is real,

0 ≤ det (Σ) ≤ ∆ (x, y) det

[
K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]
.

We already know that ∆ has a double zero at u = 0 for y = x+ u
nω(x) . But

the second determinant also vanishes when y = x, that is u = 0. It follows
that necessarily as a polynomial in u, det (Σ) has a zero of multiplicity at
least 4 at u = 0. Then

Ω11Ω22 − Ω2
12

∆
=

det (Σ)

∆2

has a removable singularity at 0, since the zero of multiplicity 4 in the
denominator is cancelled by the zero of multiplicity ≥ 4 in the numerator.
Then from (5.1), (5.2), uniformly for x ∈ [a, b] and u in some neighborhood
of 0,

Ω11Ω22 − Ω2
12

∆

(
1

nω (x)

)4

=

(
Ω11Ω22 − Ω2

12

)
∆

Kn+1 (x, x)4

(
1

nω (x)

)4
[
Kn+1 (x, x)2

∆

]2
=

F (u)(
1− S (u)2

)2 + o (1) .

Moreover, since S (u) = 1 only at u = 0, this limit actually holds uniformly
for u in compact subsets of C. �
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Next, we deal with the most diffi cult term Ω12 :

Lemma 5.3
(Ω12∆)

(
x, x+ u

nω(x)

)
has a zero of multiplicity at least 3 at u = 0. More-

over, uniformly for u in compact subsets of R, and x ∈ [a, b],

lim
n→∞

Ω12√
∆

(
1

nω (x)

)2

=
H (u)

(1− S2 (u))3/2
.

The right-hand side is interpreted as its limiting value at u = 0. In addition,
uniformly for u in compact subsets of R, and x ∈ [a, b],

|Ω12|√
∆

arcsin

(
|Ω12|√
Ω11Ω22

)(
1

nω (x)

)2

≤ C.

Proof
We first perform row and column operations in the determinant defining
∆12 and then expand using Taylor series. More precisely, we subtract the
first row from the second; then the first column from the second; and then
subtract 1

y−x × the second row, from the third:

Ω12∆

= det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)


= det

 Kn+1 (x, x) Kn+1 (x, y) K
(0,1)
n+1 (x, x)

Kn+1 (y, x)−Kn+1 (x, x) Kn+1 (y, y)−Kn+1 (x, y) K
(0,1)
n+1 (y, x)−K(0,1)

n+1 (x, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)



= det


Kn+1 (x, x) Kn+1 (x, y)−Kn+1 (x, x) K

(0,1)
n+1 (x, x)

Kn+1 (y, x)−Kn+1 (x, x)
Kn+1 (y, y) +Kn+1 (x, x)

−2Kn+1 (x, y)
K

(0,1)
n+1 (y, x)−K(0,1)

n+1 (x, x)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y)−K(1,0)

n+1 (y, x) K
(1,1)
n+1 (y, x)



= det


Kn+1 (x, x) Kn+1 (x, y)−Kn+1 (x, x) K

(0,1)
n+1 (x, x)

Kn+1 (y, x)−Kn+1 (x, x)
Kn+1 (y, y) +Kn+1 (x, x)

−2Kn+1 (x, y)
K

(0,1)
n+1 (y, x)−K(0,1)

n+1 (x, x)

K
(1,0)
n+1 (y, x)

−Kn+1(y,x)−Kn+1(x,x)
y−x

K
(1,0)
n+1 (y, y)−K(1,0)

n+1 (y, x)

−Kn+1(y,y)+Kn+1(x,x)−2Kn+1(x,y)
y−x

K
(1,1)
n+1 (y, x)

−K
(0,1)
n+1 (y,x)−K(0,1)

n+1 (x,x)

y−x


(5.10)

Let us examine the entries in the second and third rows. First, for some t
between x, y,

Kn+1 (y, x)−Kn+1 (x, x) = K
(1,0)
n+1 (t, x) (y − x) = O

(
n2 (y − x)

)
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by Lemma 3.2. Second, using the estimates from that lemma, for some r, s, v
between x, y,

Kn+1 (y, y) +Kn+1 (x, x)− 2Kn+1 (x, y)

= Kn+1 (x, x) + (y − x) 2K
(1,0)
n+1 (x, x) +

1

2
(y − x)2 2

{
K

(1,1)
n+1 (r, r) +K

(2,0)
n+1 (r, r)

}
+Kn+1 (x, x)− 2

{
Kn+1 (x, x) + (y − x)K

(0,1)
n+1 (x, x) +

1

2
(y − x)2K

(0,2)
n+1 (x, s)

}
= (y − x)2

{
K

(1,1)
n+1 (r, r) +K

(2,0)
n+1 (r, r)−K(0,2)

n+1 (x, s)
}

= O
(
n3 (y − x)2

)
.

Third,

K
(0,1)
n+1 (y, x)−K(0,1)

n+1 (x, x) = O
(
n3 (y − x)

)
.

Fourth, for some t between y, x,

K
(1,0)
n+1 (y, x)− Kn+1 (y, x)−Kn+1 (x, x)

y − x
= K

(1,0)
n+1 (y, x)−K(1,0)

n+1 (t, x) = O
(
n3 (y − x)

)
.

Fifth, for some r, ζ, s between y, x, with r, s as above,

K
(1,0)
n+1 (y, y)−K(1,0)

n+1 (y, x)− Kn+1 (y, y) +Kn+1 (x, x)− 2Kn+1 (x, y)

y − x
= (y − x)K

(1,1)
n+1 (y, ζ)− (y − x)

{
K

(1,1)
n+1 (r, r) +K

(2,0)
n+1 (r, r)−K(0,2)

n+1 (x, s)
}

= (y − x)
{
K

(1,1)
n+1 (y, ζ)−K(1,1)

n+1 (r, r)−K(2,0)
n+1 (r, r) +K

(0,2)
n+1 (x, s)

}
= O

(
n4 (y − x)2

)
,

by the estimates in Lemma 3.2. Sixth, for some ξ between x, y,

K
(1,1)
n+1 (y, x)−

K
(0,1)
n+1 (y, x)−K(0,1)

n+1 (x, x)

y − x
= K

(1,1)
n+1 (y, x)−K(1,1)

n+1 (ξ, x) = O
(
n4 (y − x)

)
.

Then substituting all these into (5.10),

Ω12∆

= det


O (n) O

(
n2 (y − x)

)
O
(
n2
)

O
(
n2 (y − x)

)
O
(
n3 (y − x)2

)
O
(
n3 (y − x)

)
O
(
n3 (y − x)

)
O
(
n4 (y − x)2

)
O
(
n4 (y − x)

)


= (y − x)3 det

 O (n) O
(
n2
)

O
(
n2
)

O
(
n2
)

O
(
n3
)

O
(
n3
)

O
(
n3
)

O
(
n4
)

O
(
n4
)
 = O

(
n8 (y − x)3

)
.
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Here we extracted factors of y−x from the second and third rows, and then

the second column. It follows that as a polynomial in u, (Ω12∆)
(
x, x+ u

nω(x)

)
has a zero of multiplicity at least 3 at 0. Then Ω12∆

u3
is a polynomial in u,

and Ω12√
∆

= Ω12∆
u3

(
u2

∆

)3/2
, which is analytic in some neighborhood of 0 that

is independent of n, x, u. The uniform convergence in (5.5) gives uniformly
for u in compact subsets of R,

Ω12√
∆

(
1

nω (x)

)2

=

[
Ω12∆

Kn+1 (x, x)3

(
1

nω (x)

)2
]
Kn+1 (x, x)3

∆3/2

=
H (u)

(1− S2 (u))3/2
+ o (1) .

Also then, H (u) necessarily has a zero of multiplicity ≥ 3 at 0. Finally,
uniformly for u in compact subsets of R,

|Ω12|√
∆

arcsin

(
|Ω12|√
Ω11Ω22

)(
1

nω (x)

)2

≤ |Ω12|√
∆

π

2

(
1

nω (x)

)2

≤ C.

�
Now we can deduce the desired bound near the diagonal:

Proof of Lemma 2.4(b)
Recall from (2.6) that

|ρ2 (x, y)|
(

1

nω (x)

)2

≤ 1

π2

(√
Ω11Ω22 − Ω2

12

∆
+
|Ω12|√

∆
arcsin

(
|Ω12|√
Ω11Ω22

))(
1

nω (x)

)2

≤ C,

by Lemma 5.1(a), (b) and Lemmas 5.2 - 5.3. Next, from (4.1), followed by
(5.7), (with u = 0 there)

(5.11)
ρ1 (x)

nω (x)
=

1

π

√
Ψ (x)

Kn+1 (x, x)2 (nω (x))2
=

1√
3

+ o (1) ,

and a similar asymptotic holds for ρ1 (y). It follows that

|ρ2 (x, y)− ρ1 (x) ρ1 (y)|
(

1

nω (x)

)2

≤ C,

which gives the result, since ω is positive and continuous in [a, b].
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Proof of Lemma 2.5
This follows directly from (5.11). �

6. Appendix - Proof of Lemma 2.2

In this section, we prove Lemma 2.2. The functions ρ2 (x, y) and ρ1 (x)
arising in (2.5), are called the second and the first intensities, or the two-
point and one-point correlation functions of zeros, see, e.g., [20, pp. 7-8].
By their defining properties, we have

E [Nn ([a, b])] =

∫ b

a
ρ1 (x) dx

and

E [Nn ([a, b]) (Nn ([a, b])− 1)] =

∫ b

a

∫ b

a
ρ2 (x, y) dx dy.

Thus the variance of real zeros of random orthogonal polynomials in an
interval [a, b] ⊂ R can be written as in (2.5) by completing the following
steps:

Var [Nn ([a, b])]

= E
[
Nn ([a, b])2 − E [Nn ([a, b])]2

]
= E [Nn ([a, b]) (Nn ([a, b])− 1)]− E [Nn ([a, b])]2 + E [Nn ([a, b])]

=

∫ b

a

∫ b

a
ρ2 (x, y) dx dy −

∫ b

a

∫ b

a
ρ1 (x) ρ1 (y) dx dy +

∫ b

a
ρ1 (x) dx

=

∫ b

a

∫ b

a
{ρ2 (x, y)− ρ1 (x) ρ1 (y)} dx dy +

∫ b

a
ρ1 (x) dx.

We follow the argument of [19] in several parts of this proof. For x, y ∈ R,
define the random vector

V = V (x, y) :=
(
Gn(x), Gn(y), G′n(x), G′n(y)

)T
,

and observe that the components of this vector are Gaussian random vari-
ables satisfying

E[Gn(x)] = E[G′n(x)] = 0, Var[Gn(x)] = Kn+1(x, x) and Var[G′n(x)] = K
(1,1)
n+1 (x, x).



32 DORON S. LUBINSKY 1, IGOR E. PRITSKER 2

The covariance matrix Σ of V is defined by

Σ = Σ(x, y)

:=


Var[Gn(x)] Cov[Gn(x), Gn(y)] Cov[Gn(x), G′n(x)] Cov[Gn(x), G′n(y)]

Cov[Gn(y), Gn(x)] Var[Gn(y)] Cov[Gn(y), G′n(x)] Cov[Gn(y), G′n(y)]
Cov[G′n(x), Gn(x)] Cov[G′n(x), Gn(y)] Var[G′n(x)] Cov[G′n(x), G′n(y)]
Cov[G′n(y), Gn(x)] Cov[G′n(y), Gn(y)] Cov[G′n(y), G′n(x)] Var[G′n(y)]



=


Kn+1(x, x) Kn+1(x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1(x, y) Kn+1(y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

 ,

(6.1)

exactly as in (3.1). When x = y, the first row of Σ is the same as the
second row, and hence det Σ = 0. Our first goal is to show that V has the
multivariate normal distribution with mean zero and the covariance matrix
Σ when x 6= y and n ≥ 3. This follows in a standard way, e.g., from [21,
Corollary 16.2], by proving that Σ is positive definite, which amounts to
showing that ~vTΣ~v > 0 for all nonzero ~v ∈ R4. Recall that any covariance
matrix is positive semi-definite [21, Theorem 12.4], i.e., ~vTΣ~v ≥ 0 for all
~v ∈ R4. This means we only need to demonstrate that ~vTΣ~v = 0 implies
~v = ~0. For a vector ~v =

[
v1 v2 v3 v4

]T , observe that

~vTΣ~v = Var[~vTV ] =

n∑
k=0

(v1pk(x) + v2pk(y) + v3p
′
k(x) + v4p

′
k (y))2.

It is clear now that ~vTΣ~v = 0 if and only if

(6.2) v1pk(x) + v2pk(y) + v3p
′
k(x) + v4p

′
k(y) = 0, k = 0, . . . , n.

But this system of equations has only trivial solution ~v = ~0. Indeed, if we
write

Qn(t) =

n∑
j=0

bjpj(t),

where {bj}nj=0 ⊂ R is arbitrary, then (6.2) implies that

(6.3) v1Qn(x) + v2Qn(y) + v3Q
′
n(x) + v4Q

′
n(y) = 0.

Since {pj(x)}nj=0 is a basis for the vector space of all polynomials of degree
at most n with real coeffi cients, the set of all polynomials Qn(t) coincides
with this space. In particular, since n ≥ 3 and x 6= y, we use the following
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choices for Qn in (6.3) to conclude that

Qn(t) = (t− x)(t− y)2 ⇒ v3 = 0;

Qn(t) = (t− x)2(t− y)⇒ v4 = 0;

Qn(t) = t− y ⇒ v1 = 0;

Qn(t) = t− x⇒ v2 = 0.

We now write Σ in the following block form
(6.4)

Σ =


Kn+1(x, x) Kn+1(x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1(x, y) Kn+1(y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

 =:

[
A B
BT C

]
,

where A, B and C are the corresponding 2× 2 matrices. Note that detA =
∆ = 0 if and only if x = y by the equality case in the Cauchy-Schwarz
inequality. Thus we define Ω = C −BTA−1B for x 6= y, and write

Σ =

[
A 0
BT I

] [
I A−1B
0 Ω

]
.

The latter implies that

det Σ = detA det Ω = ∆ det Ω.

Since Σ is invertible for x 6= y, so is Ω and thus det Ω > 0 if x 6= y. It also
follows from (6.4) by direct algebraic manipulations that the elements of the
matrix

Ω = C −BTA−1B =

[
Ω11 Ω12

Ω12 Ω22

]
are as defined in (2.8-2.10).

Since the random vector V = V (x, y) has the multivariate normal distri-
bution N (0,Σ) with a non-singular covariance matrix Σ, we compute the
density of its distribution by [21, p. 130] in the form

px,y(0, 0, t1, t2) =
exp

(
−1

2(0, 0, t1, t2) Σ−1(0, 0, t1, t2)T
)

(2π)2(det Σ)1/2

=
exp

(
−1

2(t1, t2) Ω−1(t1, t2)T
)

(2π)2(det Σ)1/2
.

Using matrix algebra, we further obtain that

Σ−1 =

[
[A−BC−1BT ]−1 −A−1B[C −BTA−1B]−1

−C−1BT [A−BC−1BT ]−1 [C −BTA−1B]−1

]
.

Theorem 3.2 of [3, p. 71] states that if (a, b) ⊂ R, then

E[Nn([a, b]) (Nn([a, b])− 1)] =

∫∫
D

∫
R

∫
R
|t1t2|px,y(0, 0, t1, t2) dt1dt2dxdy,
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where D = {(x, y) ∈ R2| a ≤ x, y ≤ b}. Hence

E[Nn([a, b])(Nn([a, b])− 1)]

=

∫∫
D

∫
R

∫
R
|t1t2|

exp
(
−1

2(t1, t2)Ω
−1(t1, t2)T

)
(2π)2(det Σ)1/2

dt1dt2dxdy,

=

∫∫
D

∫
R

∫
R
|t1t2|

exp
(
−1

2(t1, t2)Ω
−1(t1, t2)T

)
(2π)2(∆ det Ω)1/2

dt1dt2dxdy,

=
1

4π2

∫∫
D

I(x, y)√
∆ det Ω

dxdy,

where the inner integral is

I(x, y) =

∫
R

∫
R
|t1t2| exp

(
−1

2
(t1, t2)Ω

−1(t1, t2)
T

)
dt1dt2.

Note if x 6= y, we have det Ω = Ω11Ω22 − Ω2
12 > 0 and

Ω−1 =
1

det Ω

[
Ω22 −Ω12

−Ω12 Ω11

]
.

It follows that

(t1, t2) Ω−1 (t1, t2)
T =

Ω22

det Ω
t21 − 2

Ω12

det Ω
t1t2 +

Ω11

det Ω
t22.

Applying the result of [8, (3.9)], we evaluate the inner integral as

I(x, y) =
4(det Ω)2

Ω11Ω22(1− δ2)

(
1 +

δ√
1− δ2

arcsin δ

)
,

with

δ = − Ω12√
Ω11Ω22

.

Finally, putting everything together, we obtain

E[Nn([a, b])(Nn([a, b])− 1)]

=
1

4π2

∫∫
D

4(det Ω)2

Ω11Ω22(1− δ2)

(
1 +

δ√
1− δ2

arcsin δ

)
dx dy√
∆ det Ω

=
1

π2

∫∫
D

√
Ω11Ω22 − Ω2

12

(
1− Ω12√

Ω11Ω22 − Ω2
12

arcsin

(
− Ω12√

Ω11Ω22

))
dx1 dx2√

∆

=
1

π2

∫∫
D

(√
Ω11Ω22 − Ω2

12 + Ω12 arcsin
Ω12√

Ω11Ω22

)
dx dy√

∆
.

This and Lemma 2.1 give the result. �
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