Session: Long - Graph Nerual Network |

CIKM ’19, November 3-7, 2019, Beijing, China

Graph Convolutional Networks with Motif-based Attention

John Boaz Lee Ryan A. Rossi Xiangnan Kong
Worcester Polytechnic Institute Adobe Research Worcester Polytechnic Institute
jtlee@wpi.edu rrossi@adobe.com xkong@wpi.edu

Sungchul Kim Eunyee Koh Anup Rao
Adobe Research Adobe Research Adobe Research

sukim@adobe.com

ABSTRACT

The success of deep convolutional neural networks in the domains
of computer vision and speech recognition has led researchers
to investigate generalizations of the said architecture to graph-
structured data. A recently-proposed method called Graph Convo-
lutional Networks has been able to achieve state-of-the-art results
in the task of node classification. However, since the proposed
method relies on localized first-order approximations of spectral
graph convolutions, it is unable to capture higher-order interactions
between nodes in the graph. In this work, we propose a motif-based
graph attention model, called Motif Convolutional Networks, which
generalizes past approaches by using weighted multi-hop motif
adjacency matrices to capture higher-order neighborhoods. A novel
attention mechanism is used to allow each individual node to select
the most relevant neighborhood to apply its filter. We evaluate our
approach on graphs from different domains (social networks and
bioinformatics) with results showing that it is able to outperform
a set of competitive baselines on the semi-supervised node clas-
sification task. Additional results demonstrate the usefulness of
attention, showing that different higher-order neighborhoods are
prioritized by different kinds of nodes.

CCS CONCEPTS

« Mathematics of computing — Graph algorithms; « Human-
centered computing — Social network analysis; « Computing
methodologies — Reinforcement learning; Semi-supervised learn-
ing settings.

KEYWORDS

Graph attention; motifs; graph convolution; higher-order proximity;
structural role; deep learning

ACM Reference Format:

John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh,
and Anup Rao. 2019. Graph Convolutional Networks with Motif-based
Attention. In The 28th ACM International Conference on Information and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM 19, November 3-7, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6976-3/19/11...$15.00
https://doi.org/10.1145/3357384.3357880

eunyee@adobe.com

499

anuprao@adobe.com

(a) Initial graph

(c) Weighted 4-path graph

Figure 1: Node neighborhoods can differ significantly when
we define adjacency based on higher-order structures or mo-
tifs. The size (weight) of nodes and edges in (b) and (c) corre-
spond to the frequency of 4-node cliques and 4-node paths
between nodes, respectively.

Knowledge Management (CIKM °19), November 3-7, 2019, Beijing, China.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3357384.3357880

1 INTRODUCTION

In recent years, deep learning has made a significant impact on
the field of computer vision. Various deep learning models have
achieved state-of-the-art results on a number of vision-related
benchmarks. In most cases, the preferred architecture is a Con-
volutional Neural Network (CNN). CNN-based models have been
applied successfully to the tasks of image classification [21], image
super-resolution [19], and video action recognition [10], among
many others.

CNNs, however, are designed to work for data that can be rep-
resented as grids (e.g., videos, images, or audio clips) and do not
generalize well to graphs — which have more irregular structure.
Due to this limitation, it cannot be applied directly to many real-
world problems whose data come in the form of graphs — social
networks [31] or collaboration/citation networks [24] in social net-
work analysis, for instance.

Session: Long - Graph Nerual Network |

A recent deep learning architecture, called Graph Convolutional
Networks (GCN) [20] approximates the spectral convolution opera-
tion on graphs by defining a layer-wise propagation that is based
on the one-hop neighborhood of nodes. The first-order filters used
by GCNs were found to be useful and have allowed the model
to beat many established baselines in the semi-supervised node
classification task [20, 42].

However, in many cases, it has been shown that it may be bene-
ficial to consider the higher-order structure in graphs [6, 25, 33, 35,
46]. In this work, we introduce a general class of graph convolution
networks which utilize weighted multi-hop motif adjacency ma-
trices [33] to capture higher-order neighborhoods in graphs. The
weighted adjacency matrices are computed using various network
motifs [33]. Fig. 1 shows an example of the node neighborhoods that
are induced when we consider two different kinds of motifs, show-
ing that the choice of motif can significantly alter the neighborhood
structure of nodes.

Our proposed method, which we call Motif Convolutional Net-
works (MCN), uses a novel attention mechanism to allow each
node to select the most relevant motif-induced neighborhood to
integrate information from. Intuitively, this allows a node to select
its one-hop neighborhood (as in classical GCN) when its immediate
neighborhood contains enough information for the model to clas-
sify the node correctly but gives it the additional flexibility to select
an alternative neighborhood (defined by higher-order structures)
when the information in its immediate vicinity is too sparse and/or
noisy for good classification.

The aforementioned attention mechanism is trained using rein-
forcement learning which rewards choices (i.e, actions) that consis-
tently result in a correct classification.

The main contributions of this paper are summarized as follows:

e We propose a model that generalizes GCNs by introducing
multiple weighted motif-induced adjacencies that capture
various higher-order neighborhoods.

e We introduce a novel attention mechanism that allows the
model to choose the best neighborhood for each node to
integrate information from.

e We demonstrate the superiority of the proposed method
by comparing against strong baselines on graphs from two
different domains (social network and bioinformatics). In
particular, we observed a gain of up to 5.6% over the next
best method on graphs which did not exhibit homophily.

e We demonstrate the usefulness of attention by showing how
different nodes prioritize different neighborhoods.

The rest of the paper is organized as follows. In Section 2, we
provide a review of related literature. We then introduce the details
of our proposed approach in Section 3. We discuss important ex-
perimental results in Section 4. Finally, we conclude the paper in
the last section.

2 RELATED LITERATURE

Neural Networks for Graphs Initial attempts to adapt neural
network models to work with graph-structured data started with
recursive models that treated the data as directed acyclic graphs [11,

500

CIKM ’19, November 3-7, 2019, Beijing, China

39]. Later on, more generalized models called Graph Neural Net-
works (GNN) were introduced to process arbitrary graph-structured
data [13, 37].

Recently, with the rise of deep learning and the success of models
such as recursive neural networks (RNN) [15, 48] for sequential
data and CNNs for grid-shaped data, there has been a renewed
interest in adapting some of these approaches to more general
graph-structured data.

Some work introduced architectures tailored for more specific
problem domains [9, 23] - like NeuralFPS [9] which is an end-to-end
differentiable deep architecture which generalizes the well-known
Weisfeiler-Lehman algorithm for molecular graphs — while others
defined graph convolutions based on spectral graph theory [17].
Another group of methods attempt to substitute principled-yet-
expensive graph convolutions using spectral approaches by using
approximations of such. For instance, Defferrard et al. [8] used
Chebyshev polynomials to approximate a smooth filter in the spec-
tral domain while GCNs [20] further simplified the process by using
simple first-order filters.

The model introduced by Kipf and Welling [20] has been shown

to work well on a variety of graph-based tasks [20, 29, 45] and has
spawned variants including [1, 42]. We introduce a generalization
of GCN [20] in this work but we differ from past approaches in
two main points: first, we use weighted motif-induced adjacencies
to expand the possible kinds of node neighborhoods available to
nodes, and secondly, we introduce a novel attention mechanism
that allows each node to select the most relevant neighborhood to
diffuse (or integrate) information.
Higher-order Structures with Network Motifs Network mo-
tifs [25] are fundamental building blocks of complex networks; in-
vestigation of such patterns usually lead to the discovery of crucial
information about the structure and the function of many complex
systems that are represented as graphs. Prill et al. [32] studied mo-
tifs in biological networks showing that the dynamical property of
robustness to perturbations correlated highly to the appearance of
certain motif patterns while Paranjape et al. [30] looked at motifs
in temporal networks showing that graphs from different domains
tend to exhibit very different organizational structures as evidenced
by the type of motifs present.

Multiple work have demonstrated that it is useful to account for
higher-order structures in different graph-based ML tasks [3, 28, 33,
46]. DeepGL [34] uses motifs as a basis to learn deep inductive rela-
tional functions that represent compositions of relational operators
applied to a base graph function such as triangle counts. Rossi et al.
[33] proposed the notion of higher-order network embeddings and
demonstrated that one can learn better embeddings when various
motif-based matrix formulations are considered.

Yang et al. [46] defined a hierarchical motif convolution for the
task of subgraph identification for graph classification. Sankar et al.
[36], on the other hand, proposes a graph convolution method
designed primarily for heterogeneous graphs which utilizes motif-
based connectivities. In a recent work, Morris et al. [28] has shown
that standard GNN architectures such as GCN have the same ex-
pressiveness as the 1-dimensional WL graph isomorphism heuristic
and hence both approaches suffer from similar shortcomings. They
propose a generalization using higher-order structures for the task
of graph classification.

Session: Long - Graph Nerual Network |

Table 1: Table of notations.

Symbol Definition

G Undirected graph with vertex set V and edge set &.

N Number of nodes in G, i.e., |'V| = N.

H The set {Hi,--- ,Ht} of T network motifs (i.e., in-
duced subgraphs).

A; NN motif-induced adjacency matrix corresponding
to motif Hy. (A;);,j encodes the number of motifs of
type H; which contain (i, j) € &. When the subscript
t is ommitted, this refers to the default edge-defined
adjacency matrix.

A, N X N adjacency matrix A; with added self-loops.

D; N x N diagonal degree matrix of A;.

D Number of features or attributes per node.

X N X D attribute matrix.
310 Node feature embedding inputted at layer [; HD =X
w) Trainable embedding matrix at layer [.

The set of neighbors of node i with respect to adja-
cency matrix A, ie, {j |A~i,j #0,for1 <j < N}
Reinforcement learning reward corresponding to
training sample i. If we classify node i correctly then
R; = 1, otherwise R; = —1.

Our work differs from previous approaches [28, 33, 34, 36, 46]
in several key points. Specifically, in contrast to [28, 33, 34, 46], we
propose a new class of higher-order network embedding methods
which utilizes a novel motif-based attention for the task of semi-
supervised node classification. The proposed method generalizes
previous graph convolutional approaches [20, 42]. Also, unlike [36],
we focus primarily on homogeneous graphs.

Attention Models Attention was popularized in the deep learning
community as a way for models to attend to important parts of
the data [4, 26]. The technique has been successfully adopted by
models solving a variety of tasks. For instance, it was used by Mnih
et al. [26] to take glimpses of relevant parts of an input image for
image classification; on the other hand, Xu et al. [44] used attention
to focus on task-relevant parts of an image for the image captioning
task. Meanwhile, Bahdanau et al. [4] utilized attention for the task
of machine translation by fixing the model attention on specific
parts of the input when generating the corresponding output words.

There has also been a surge in interest at applying attention to
deep learning models for graphs. The work of Velickovic et al. [42]
used a node self-attention mechanism to allow each node to focus
on features in its neighborhood that were more relevant while Lee
et al. [22] used attention to guide a walk in the graph to learn
an embedding for the graph. More specialized methods of graph
attention models include [7, 14] with Choi et al. [7] using attention
on a medical ontology graph for medical diagnosis and Han et al.
[14] using attention on a knowledge graph for the task of entity
link prediction. Our approach differs significantly, however, from
previous approach in that we use attention to allow our model to
select task relevant neighborhoods.

501

CIKM ’19, November 3-7, 2019, Beijing, China

3 APPROACH

We begin this section by introducing the foundational layer that
is used to construct arbitrarily deep motif convolutional networks.
When certain constraints are imposed on our model’s architecture,
the model degenerates into a Graph Attention Network (GAT) [42]
which, in turn, generalizes a GCN [20]. Because of this, we briefly
introduce a few necessary concepts from [20, 42] before defining the
actual neural architecture we employ - including the reinforcement
learning strategy we use to train our attention mechanism.

3.1 Notation

We use upper-case bold letters to denote matrices, lower-case bold
letters to represent vectors, and non-bold italicized letters for scalars.
Frequently used notation is summarized in Table 1.

3.2 Graph Self-Attention Layer

A multi-layer GCN [20] is constructed using the following layer-
wise propagation:

D = G(ﬁ—%Af)—%H(l)w(l)). 1)

Here, A = A + Iy is the modified adjacency matrix of the input
graph with added self-loops — A is the original adjacency matrix of
the input undirected graph with N nodes while Iy represents an
identity matrix of size N. The matrix D, on the other hand, is the
diagonal degree matrix of A (i.e, D ; = 3, i Ay ;). Finally, H® s the
matrix of node features inputted to layer [while WO is a trainable
embedding matrix used to embed the given inputs (typically to a
lower dimension) and o is a non-linearity.

The term D2 AD"? in Eq. 1 produces a symmetric normalized
matrix which updates each nodes representation via a weighted
sum of the features in a node’s one-hop neighborhood (the added
self-loop allows the model to include the node’s own features).
Each link’s strength (i.e, weight) is normalized by considering
the degrees of the corresponding pair of nodes. Formally, at each
layer I, node i integrates neighboring features to obtain a new
feature/embedding via:

fl(ih—l) =0 Z a,-,jﬁy)w(l) s
'eNﬁA)

@)

where fls.l) is the feature vector of node i at layer [/, with fixed

1 A) . R .
————— and N(is the set of i’s neighbors
Vdeg(i) deg(j) !

defined by the matrix A — which includes itself.
In GAT [42], Eq. 2 is modified with weights « that are differen-
tiable or trainable and this can be viewed as follows,

weights a; j =

exp (LeakyReLU (a[ﬁiW ﬁ]w]))

(3)

aij =

ZkeN‘.A) exp (LeakyReLU (a[fliW }_ikW])) .

The attention vector a in Eq. 3 is a trainable weight vector that
assigns importance to the different neighbors of i allowing the
model to highlight particular neighboring node features that are
more task-relevant.

Session: Long - Graph Nerual Network |

Layer 3

Layer 2 Layer 1 Input

Figure 2: We can view a GCN [20, 42] as a message-passing al-
gorithm. Each additional layer in a GCN allows the model to
integrate information from a wider neighborhood. We illus-
trate this from the perspective of a target node (in gray). The
target node integrates information from its one-hop neigh-
bors (in) in layer 3. Previously, in layer 2, the

nodes integrated information from their own one-hop
neighborhood. Thus the target node also receives informa-
tion from its two-hop neighbors (in blue). Similarly, in layer
1, the blue nodes integrated information from their imme-
diate neighbors which results in the target node receiving
information from its three-hop neighbors (in). Image
best viewed in color.

legend:

. visualization

M machine Ieamingi
M theory :
target node

[] L]
L] &

inferred vs groundtruth
(b) neighborhood using triangle motif

v
[g]
inferred vs groundtruth
(a) one-hop neighborhood

Figure 3: A researcher (target node) may have collaborated
on various projects in visualization and theory. However, his
main research focus is ML and he collaborates closely with
lab members who also work among themselves. (a) If we sim-
ply use the target node’s one-hop neighborhood, we may in-
correctly infer his research area; however, (b) when we limit
his neighborhood using the triangle motif, we reveal neigh-
bors connected via stronger bonds giving us a better chance
at inferring the correct research area. This observation is
empirically shown in our experimental results. Illustration
best viewed in color.

Using the formulation in Eq. 3 with Egs. 1 and 2, we can now
define multiple layers which can be stacked together to form a deep
GCN (with self-attention) that is end-to-end differentiable. The
initial input to the model can be set as H(W = X, where X € RNXP
is the initial node attribute matrix with D attributes. The final
layer’s weight matrix can also be set accordingly to output node
embeddings at the desired output dimensions.

Figure 2 illustrates how an L-layer GCN (or GAT) enables a node
to integrate information from its L-hop neighborhood. We see that
this is done via repeated propagation via each nodes’ one-hop neigh-
borhood, layer by layer. Also, the size of the final neighborhood
that information is propagated through is equivalent to the depth
of the model.

502

CIKM ’19, November 3-7, 2019, Beijing, China

IFVPRNIMTON N X

edge 2-star triangle 3-star 4-path 4-cycle tailed-triangle chordal-cycle 4-clique

Figure 4: Network motifs or graphlets of sizes 2-4.
3.3 Convolutional Layer with Motif Attention

We observe that both GCN and GAT rely on the edge-defined one-
hop neighborhood of nodes (i.e, A in Eq. 1) to propagate infor-
mation. However, it may not always be suitable to apply a single
uniform definition of node neighborhood for all nodes. For instance,
we show an example in Fig. 3 where a node can benefit from using a
neighborhood defined using triangle motifs to keep only neighbors
connected via a stronger bond which is a well-known concept from
social theory allowing us to distinguish between weaker ties and
strong ones via the triadic closure [12].

3.3.1 Weighted Motif-Induced Adjacencies. Given a network G =
(V,8) with N = |V| nodes, M = |&E| edges, as well as a set of
T network motifs H = {Hy,--- ,Hr}, we can construct a set of
T different motif-induced adjacency matrices A = {Ay,--- ,AT}
where A is defined as follows:

(Ay)i,j = # of motifs of type H; which contains both i and j.

In this paper, we use a loose definition for motifs and it can also
mean induced subgraphs (e.g., graphlets or orbits [2]). Motifs of
sizes 2-4 are shown in Fig. 4. As shown in Fig. 1, neighborhoods
defined by different motifs can vary significantly. Furthermore, the
weights in a motif-induced adjacency A; can also vary as motifs
can appear in varying degrees of frequency between different pairs
of nodes.

3.3.2 Motif Matrix Functions. Each of the calculated motif adjacen-
cies A; € A can now be potentially used to define motif-induced
neighborhoods NEAt) with respect to a node i. While Eq. 3 de-
fines self-attention weights over a node’s neighborhood, the initial
weights in A; can still be used as reasonable initial estimates of
each neighbor’s “importance”

Hence, we introduce a motif-based matrix formulation as a func-
tion ¥ : RNXN — RNXN gyer a motif adjacency A; € A similar
o [33]. Given a function ¥, we can obtain motif-based matrices
A, = ¥(A;), fort = 1,---,T. Below, we summarize the different
variants of ¥ that we chose to investigate.

e Unweighted Motif Adjacency w/ Self-loops: In the sim-
plest case, we can construct A (here on, we omit the subscripts ¢
for brevity) from A by simply ignoring the weights:

1 i=j
Ai,]’: 1 Ajj>0

0 otherwise.

4)

But, as mentioned above, we lose the initial benefit of leveraging
the weights in the motif-induced adjacency A.

¢ Weighted Motif Adjacency w/ Row-wise Max: We can also
choose to retain the weighted motif adjacency A without modifica-
tion save for added row-wise maximum self-loops. This is defined
as follows:

A=A+M, (5)

where M is a diagonal square matrix with M; ; = max;<j<nAj,j.
Intuitively, this allows us to assign an equal amount of importance

Session: Long - Graph Nerual Network |

to a self-loop consistent with that given to each node’s most impor-
tant neighbor.

o Motif Transition w/ Row-wise Max: The random walk on
the weighted graph with added row-wise maximum self-loops has
Ai’ i
[0 Ai.k)+(ma;¢15ngAi,k)'
dom walk motif transition matrix can thus be calculated by

transition probabilities P; ; = Our ran-

A=D1A+M), (6)

where, in this context, the matrix D is the diagonal square degree
matrix of A + M (i.e, Dj; = (X Aj k) + (max; < <NA; i) While
M is defined as above. Here, Ai’ j = Pj,j or the transition probability
from node i to j is proportional to the motif count between nodes i
and j relative to the total motif count between i and all its neighbors.

o Absolute Motif Laplacian: The absolute Laplacian matrix
can be constructed as follows:

A=D+A. (7)

Here, the matrix D is the degree matrix of A. Note that because
the self-loop is a sum of all the weights to a node’s neighbors, the
initial importance of the node itself can be disproportionately large.
o Symmetric Normalized Matrix w/ Row-wise Max: Finally,
we calculate a symmetric normalized matrix (similar to the normal-
ized Laplacian) via:
A=D"2(A+M)D 2. ®)
Here, based on the context, the matrix D is the diagonal degree
matrix of A + M.

3.3.3 K-Step Motif Matrices. Given a step-size K, we further define
K different k-step motif-based matrices for each of the T motifs
which gives a total of K X T adjacency matrices. Formally, this is
formulated as follows:

AP = w(AR), fork=1,---,Kandt=1,---,T (9
where
Y(AF) = ¥(A; - Ay) (10)
N——
k

When we set K > 1, we allow nodes to accumulate information
from a wider neighborhood. For instance if we choose to use Eq. 4
(for ¥) and use an edge as our motif, A%) (we omit the motif-type
subscript here) then captures k-hop neighborhoods of each node.
While, in theory, using A i equivalent to using a k-layer GCN or
GAT model, extensive experiments by Abu-El-Haija et al. [1] have
shown that GCNs don’t necessarily benefit from a wider receptive
field as a result of increased model depth. This may be for reasons
similar as to why skip-connections are needed in deep architectures
since the signal starts to degrade as the model gets deeper [16].

As another example, we set ¥ to Eq. 6. Now for an arbitrary
motif, we see that (AK)); j encodes the probability of transitioning
from node i to node j in k steps.

While the K-step motif-based adjacencies defined here share
some similarity to that of Rossi et al. [33] we would like to point
out that there is an important distinction with our formulation. In
particular, since graph convolutions integrate a node’s own features

503

CIKM ’19, November 3-7, 2019, Beijing, China

via a self-loop we needed to define reasonable weights for the self-
loops in the weighted adjacencies (i.e., the diagonal) so that a node’s
information is not “overpowered” by its neighbors’ features.

3.3.4 Motif Matrix Selection via Attention. Given T different motifs
and a step-size of K, we now have K X T motif matrices we could use
with Eq. 1 to define layer-wise propagations. A simple approach
would be to implement K X T independent GCN instances and
concatenate the final node outputs before classification. However,
this approach may have problems scaling when T and/or K is large
which makes it unfeasible.

Instead, we propose to use an attention mechanism, at each layer,
to allow each node to select a single most relevant neighborhood
to integrate or accumulate information from. For a layer /, this can
be defined by two functions f; : RS/ — RT and e RS xRT —
RX, where ; is the dimension of the state-space for layer [. The
functions’ outputs are softmaxed to form probability distributions
over {1,---,T} and {1,--- , K}, respectively. Essentially, what this
means is that given a node i’s state, the functions recommend
the most relevant motif ¢ and step size k for node i to integrate
information from.

Specifically, we define the state matrix encoding node states at
layer [as a concatenation of two matrices:

s; = |raHPWD cl, (11)

where WD) € RN*D s the weight matrix that embeds the inputs
to dimension Dy, P(AHOWD is the matrix containing local in-
formation obtained by doing a weighted sum of the features in
the simple one-hop neighborhood for each node (from the original
adjacency A), and C € RV*XC is a motif count matrix that gives us
basic local structural information about each node by counting the
number of C different motifs that each node belongs to. We note
here that C is not appended to the node attribute matrix X and
is not used for prediction. Its only purpose is to capture the local
structural information of each node. C is computed once.

Let us consider an arbitrary layer. Recall that f (for brevity,
we omit subscripts [) produces a probability vector specifying the
f(8;) be the motif prob-
abilities for node i. Similarly, let ?l’ =f '81, ;) be the probability
vector recommending the step size. Now let ¢; be the index of the

importance of the various motifs, let f; =

largest value in E— and similarly, let k; be the index of the largest
value in Fl’ . In other words, t; is the recommended motif for i while
ki is the recommended step-size. Attention can now be used to
define an N X N propagation matrix as follows:

(A5")..

(12)

This layer-specific matrix A can now be plugged into Eq. 1 to replace
A. What this does is it gives each node the flexibility to select the
most appropriate motif t and step-size k to integrate information
from.

3.3.5 Training the Attention Mechanism. Given a labeled graph
G = (V,&,¢) with N nodes and a labeling function ¢ : V — £

Session: Long - Graph Nerual Network |

hidden layer hidden layer
Dattributes ;& v
8 /

: - | [v
S / leaky ReLU | softmax
X i i 2

- :
2 P i N
2 FCNI A
N ! ' !
1 Pl ;
X A :
EEEFEE 1
TA] L S|
i\ 1 2 T

triangle chordal-cycle

T motifs

Figure 5: An example of a 2-layer MCN with N = 11 nodes,
step-size K = 2, and T motifs. Attention allows each node
to select a different motif-induced neighborhood to accumu-
late information from for each layer. For instance, in layer
1, the node vx considers neighbors (up to 2-hops) that share
a stronger bond (in this case, triangles) with it.

which maps each node to one of J class labels in J = {1,---, J},
our goal is to train a classifier that can predict the label of all the
nodes. Given a subset 7~ C V, or the training set of nodes, we can
train an L-layer MCN (the classifier) using standard cross-entropy
loss as follows:

J
Leo=- Z Z Yo log iT(HE’Lj-H)),

veT j=1

(13)

where Y; is a binary value indicating node v’s true label (i.e.,
Yyj = 1if £(v) = j, zero otherwise), and HL*D e RNXL s the
softmaxed output of the MCN’s last layer.

While Eq. 13 is sufficient for training the MCN to classify inputs
it does not tell us how we can train the attention mechanism that
selects the best motif and step-size for each node at each layer. We
define a second loss function based on the REINFORCE rule:

L0 == | By o logr (([)) + o (7))
e (82)) <o (7).)
np

1‘3
Il
(1

n,
(1) (1)
tot e aneNf,é(z)) Ry [logn ((fn1)t(nll)) +logn ((fm)k(nl
4)

+), R
ZnLETZnLqENLAL(y o

Here, R, is the reward we give to the system (R, = 1 if we classify
v correctly, R, = —1 otherwise). The intuition here is this: at the
last layer we reward the actions of the classified nodes; we then
go to the previous layer (if there is one) and reward the actions
of the neighbors of the classified nodes since their actions affect
the outcome, we continue this process until we reach the first
layer. Please refer to [26] for a more detailed explanation of the
REINFORCE rule for reinforcement learning.

504

CIKM ’19, November 3-7, 2019, Beijing, China

Table 2: Space of methods expressed by MCN. GCN and GAT
are shown below to be special cases of MCN.

Method Motif Adj. K Self-attention Motif-attention
GCN edge Eq. 4 K=1 no no
GAT edge Eq. 4 K=1 yes no
MCN-* any Eqs.4-8 K={1,---} yes yes

Table 3: Dataset statistics. Value shown in brackets is the per-
centage of the nodes used for training,.

Cora Citeseer Pubmed
of Nodes 2,708 3,327 19,717
of Edges 5,429 4,732 44,338
of Features/Node 1,433 3,703 500
of Classes 7 6 3
of Training Nodes 140 (5%) 120 (4%) 60 (<1%)

There are a few important things to point out. In practice, we use
an e-greedy strategy when selecting a motif and step-size during
training. Specifically, we pick the action with highest probability
most of the time but during 1 — € instances we select a random
action. During testing, we choose the action with highest proba-
bility. Also, in practice, we use dropout to train the network as in
GAT [42] which is a good regularization technique but also has the
added advantage of being a way to sample the neighborhood during
training to keep the receptive field from growing too large during
training. Finally, to reduce model variance we can also include an
advantage term (see Eq. 2 in [22], for instance). Our final loss can
then be written as:

L=Lc+La. (15)

We show a simple (2-layer) example of the proposed MCN model
in Fig. 5. As mentioned, MCN generalizes both GCN and GAT. We
list settings of these methods in Table 2.

4 EXPERIMENTAL RESULTS

4.1 Semi-supervised node classification

We first compare our proposed approach against a set of strong
baselines (including methods that are considered the current state-
of-the-art) on three well-known graph benchmark datasets for
semi-supervised node classification. We show that the proposed
method is able to achieve state-of-the-art results on all compared
datasets. The compared baselines are as follows:

e MLP: Standard fully-connected multi-layer perceptron. The
model does not take into account graph structure and takes
directly as input node features.

e LP [49]: Semi-supervised method based on Gaussian ran-
dom fields which places both labeled and unlabeled samples
on a weighted graph with weights representing pair-wise
similarity.

o ICA [24]: A structured logistic regression model which lever-
ages links between objects.

e ManiReg [5]: A framework that can be used for semi-supervised
classification which uses a manifold-based regularization.

Session: Long - Graph Nerual Network |

CIKM ’19, November 3-7, 2019, Beijing, China

Table 4: Summary of experimental results: “average accuracy + SD (rank)”. The “Avg. Rank” column shows the average rank
of each method. The lower the average rank, the better the overall performance of the method.

Dataset

Method Cora Citeseer Pubmed Avg. Rank
DeepWalk (Perozzi et al. [31]) 67.2% (9) 43.2% (11) 65.3% (11) 10.3
MLP 55.1% (12) 46.5% (9) 71.4% (9) 10.0
LP (Zhu et al. [49]) 68.0% (8) 45.3% (10) 63.0% (12) 10.0
ManiReg ([5]) 59.5% (10) 60.1% (7) 70.7% (10) 9.0
SemiEmb (Weston et al. [43]) 59.0% (11) 59.6% (8) 71.7% (8) 9.0
ICA (Lu and Getoor [24]) 75.1% (7) 69.1% (5) 73.9% (7) 6.3
Planetoid (Yang et al. [47]) 75.7% (6) 64.7% (6) 77.2% (5) 5.7
Chebyshev (Defferrard et al. [8]) 81.2% (5) 69.8% (4) 74.4% (6) 5.0
MoNet (Monti et al. [27]) 81.7% (3) - 78.8% (4) 3.5
GCN (Kipf and Welling [20]) 81.5% (4) 70.3% (3) 79.0% (2) 3.0
GAT (Velickovic et al. [42]) 83.0 £0.7% (2) 725+ 0.7%(2) 79.0 £ 0.3% (2) 2.0
MCN (this paper) 835+ 04% (1) 733 +0.7% (1) 793 +0.3% (1) 1.0

e SemiEmb [43]: A model which integrates an unsupervised
dimension reduction technique into a deep architecture to
boost performance of semi-supervised learning.

e DeepWalk [31]: An unsupervised network embedding ap-
proach which uses the skip-gram algorithm to learn node
embeddings that are similar for nodes that share a lot of
links.

e Chebyshev [8]: A graph convolution approach which uses
Chebyshev polynomials to approximate a smooth filter in
the spectral domain.

o Planetoid [47]: A method which integrates graph embedding
techniques into graph-based semi-supervised learning.

e MoNet [27]: A geometric deep learning approach that gen-
eralizes CNNs to graph-structured data.

e GCN [20]: A method which approximates spectral graph
convolutions using first-order filters.

e GAT [42]: Generalization of GCNs with added node-level
self-attention.

e MCN (this paper): Our proposed graph attention model with
motif-based attention.

4.1.1 Datasets. We compare all baselines using three established
benchmark datasets, these are: Cora, Citeseer, and Pubmed. Specif-
ically, we use the pre-processed versions made available by Yang
et al. [47]. The aforementioned graphs are undirected citation net-
works where nodes represent documents and edges denote citation;
furthermore, a bag-of-words vector capturing word counts in each
document serves as each node’s feature. Each document is assigned
a unique class label.

Following the procedure established in previous work, we use
only 20 nodes per class for training [20, 42, 47]. Again, following
previous work, we take 1,000 nodes per dataset for testing and
utilize an additional 500 for validation [1, 20, 42]. We use the same
train/test/validation splits as defined in [20, 42]. Statistics for the
datasets is shown in Tab. 3.

4.1.2 Setup. For Cora and Citeseer, we used the same 2-layer model
architecture as that of GAT consisting of 8 self-attention heads each

505

with a total of 8 hidden nodes (for a total of 64 hidden nodes) in
the first layer, followed by a single softmax layer for classifica-
tion [42]. Similarly, we fixed early-stopping patience at 100 and
{3-regularization at 0.0005. For Pubmed, we also used the same
architecture as that of GAT (first layer remains the same but the
output layer has 8 attention heads to deal with sparsity in the train-
ing data). Patience remains the same and similar to GAT, we use a
strong {»-regularization at 0.001.

We further optimized all models by testing dropout values of
{0.50,0.55, 0.60, 0.65}, learning rates of {0.05,0.005}, step-sizes
K € {1,2,3}, and motif adjacencies formed using combinations
of the following motifs: edge, 2-star, triangle, 3-star, and 4-clique
(please refer to Fig. 4 for illustration of motifs).

Self-attention learns to prioritize neighboring features that are
more relevant and the motif-based adjacencies derived from ¥
(Egs. 4-8) can be viewed as reasonable initial estimates of self-
attention. We select the initialization that yields the best result.
Finally, we adopt an e-greedy strategy (¢ = 0.1).

We note that for classification, our model uses exactly the same
amount of information and the same number of model parameters
as GAT [42] for fairness of comparison. The motif attention mecha-
nism uses some additional trainable parameters to allow each node
to select motifs but these parameters are separate from that of the
classification network.

4.1.3 Comparison. For all three datasets, we report the classifica-
tion accuracy averaged over 15 runs on random seeds (including
standard deviation for methods that report these). A summary of
the results is shown in Table 4. We see that our proposed method
achieves superior performance against all compared baselines on
all three benchmarks. On the Cora dataset, the best model used a
learning rate of 0.005, dropout of 0.6, and both the edge and triangle
motifs with step-size K = 1. For Citeseer, the learning rate was
0.05 and dropout was still 0.6 while the only motif used was the
edge motif with step-size K = 2. However, the second best model
for Citeseer — which had comparable performance — utilized the
following motifs: edge, 2-star, and triangle. Finally, on Pubmed, the

Session: Long - Graph Nerual Network |

Table 5: Micro-F1 scores of compared methods on DD.

Dataset
Method —5% DD-7
GCN 11.9+0.6% 12.4+0.8%
GAT 11.8+£0.5% 11.8+1.1%
MCN 12.4+0.5% 13.1+0.9%

best model used learning rate 0.05 and dropout of 0.5. Once again,
the best motifs were the edge and triangle motifs on K = 1.

One interesting observation that can be made is the fact that
the triangle motif is consistently used by the top models on all
the datasets. This highlights an important advantage of MCN over
past approaches (e.g., GCN & GAT) which are not able to handle
neighborhoods based on higher-order structures such as triangles.
The results indicate that it can be beneficial to consider stronger
bonds (friends that are friends themselves) when selecting a neigh-
borhood.

Our experimental results show that we can improve model per-
formance simply by relaxing the notion of node neighborhoods by
allowing the model to choose attention-guided motif-based neigh-
borhoods. We argue that the performance gain from this subtle
but important change is significant especially since both MCN and
GAT use an equal number of parameters for classification.

We also conducted some experiments on a random version of
MCN which does not use attention to select motif-based neighbor-
hoods. From our tests, we find that the method cannot outperform
MCN with attention and the performance drops especially if there
is a large number of motifs.

4.2 Comparison on Networks with Heterophily

The benchmark datasets (Cora, Citeseer, and Pubmed) that we
initially tested our method on exhibited strong homophily where
nodes that share the same labels tend to form densely connected
communities. Under these circumstances, methods like GAT or
GCN that use a first-order propagation rule will perform reasonably
well. However, not all real-world graphs share this characteristic
and in some cases the node labels are more spread out. In this latter
case, there is reason to believe that neighborhoods constructed
using different motifs — other than just edges and triangles — may
be beneficial.

We test this hypothesis by comparing GAT and GCN against
MCN on two graphs from the DD dataset [18]. Specifically, we
chose two of the largest graphs in the dataset: DD-6 and DD-7 —
with a total of 4, 152 and 1, 396 nodes, respectively. Both graphs had
twenty different node labels with the labels being quite imbalanced.

We stick to the semi-supervised training regime, using only 15
nodes per class for training with the rest of the nodes split evenly
between testing and validation. This makes the problem highly
challenging since the graphs do not exhibit homophily. Since the
nodes do not have any attributes, we use the WL algorithm (we
initialize node attributes to a single value and run the algorithm for
3 iterations) to generate node attributes that capture each node’s
neighborhood structure [38] as in previous work [41].

For the three approaches (GCN, GAT, and MCN), we fix early-
stop patience at 50 and use a two-layer architecture with 32 hidden

506

CIKM ’19, November 3-7, 2019, Beijing, China

Table 6: Statistics of large benchmark graphs. ‘Edge %’ de-
notes the ratio of the graph’s edges versus the total number
of edges in the largest dataset (LastFM).

Dataset # of Nodes # of Edges Max Degree Avg.Degree Edge %
Cora 2,708 5,429 168 ~4 <1.0%
Delicious ~536K ~1.4M ~3K ~5 31.1%
YouTube-Snap ~1.1IM ~3M ~29K ~5 66.7%
LastFM ~1.2M ~4.5M ~5K ~7 100.0%
One-time Training Cost in Hours
100.0%
20.0
17.5
15.0 66.7%
125
D
3
o
T 10.0
7.5
31.1%
5.0
2.5
<1.0%
0.0 T

Cora Delicious YouTube-Snap LastFM

Figure 6: Runtime of proposed method on large real-world
graphs. Percent values above the bars indicate the ratio of
the dataset’s edges compared to the number of edges in the
largest dataset (LastFM).

nodes in the first layer followed by the softmax output. We op-
timized the hyperparameters by searching over learning rate in
{0.05,0.005}, €2 regularization in {0.01, 0.001, 0.0001, 0.00001}, and
dropout at {0.2,0.3,0.4, 0.5,0.6}. Furthermore, for MCN, we con-
sidered combinations of the following motifs {edge, 2-star, triangle,
4-path-edge, 3-star, 4-cycle, 4-clique} and considered K-steps from
1,---,4. Since there are multiple classes and they are highly imbal-
anced, we report the Micro-F1 score averaged over 10 runs.

A summary of the results are shown in Table 5. These results
demonstrate the effectiveness of MCN for realistic graphs that lack
strong homophily. In particular, motif attention is shown to be
extremely valuable as MCN achieves a 5.6% gain over the next best
method for DD-7.

For DD-6, the best method utilized all motifs except for the 4-
path-edge with K = 1 while in DD-7 the best approach used the
edge, triangle, and 4-clique motifs with K = 4. In both cases, the
model utilized multiple motifs.

4.3 Visualizing Motif Attention

We ran an instance of MCN (K = 1) on the Cora dataset with the
following motifs: edge, 4-path, and triangle. Fig. 7 shows the nodes
from two of the larger classes (class 3 and class 4) with each node
colored by the motif that was selected by the attention mechanism.

Three important and interesting observations can be made here,
we summarize them below.

e First, we find evidence of the model taking advantage of
the flexibility provided by the attention mechanism to select
a different motif-induced neighborhood for each node. We

Session: Long - Graph Nerual Network | CIKM ’19, November 3-7, 2019, Beijing, China

(a) Nodes in class 3 (b) Nodes in class 4

Figure 7: The largest connected components taken from the two induced subgraphs in Cora of nodes from (a) class 3 and (b)
class 4, respectively. Nodes are colored to indicate the motif selected by the motif attention mechanism in the first layer. The
motif's are: edge (blue), 4-path (red), and triangle ()- We observe that the nodes near the fringe of the cluster — particularly
in (b) — tend to select the 4-path allowing them to aggregate information from a wider neighborhood. On the other hand, nodes
that choose the triangle motif are fewer in number and can be found in the denser regions where it may be helpful to take
advantage of stronger bonds. Image best viewed in color.

observe that all three types of motifs are selected and the and LastFM!, For reference, we also include Cora. The statistics for
model is not simply “defaulting” to a single type. Since our these datasets are shown in the Tab. 6.
model can generalize to GAT [42], it can very well choose In our tests, we used the architecture of the model which per-
to just utilize the edge-based connections for every node if formed the best in previous experiments. Specifically, we used a
the other motif-based neighborhoods were not necessary. two-layer MCN with 8 self-attention heads (each with 8 hidden
e Second, we note that nodes that chose the triangle motif nodes) in the first layer and a softmax binary classification layer
appear predominantly in denser parts of the cluster. This in the second layer. We tested the model with the following mo-
shows that it can be beneficial in these cases to consider the tifs: edge, triangle, and 4-clique. These were shown to give good
many strong bonds in the dense parts (especially if these performance in all our previous tests with K = 1 and weighted
nodes also share connections with nodes from other classes, motif adjacencies. Finally, we used 5% of the total number of nodes
e.g., there is noise). For class 3, we observe 3 nodes selecting for training and used an equal number for validation and testing.
the neighborhood based on the triangle motif while more Since the graphs do not have corresponding node attributes, we
than 20 nodes chose the triangle motif for class 4. randomly generated 50-dimensional node features for each node.
e Lastly, we notice that nodes at the fringe of the cluster often Likewise we also assigned random class labels to the nodes.
prioritized the 4-path motif. This is quite intuitive since this We report the average one-time training runtime (over five runs)
allows the fringe nodes to aggregate information from a of our model when run for 400 epochs — which we have found in
wider (4-hop) neighborhood which is useful since they are previous experiments to be sufficient in most cases for convergence.
more separated from the other nodes in the same class. All experiments were performed on a MacBook Pro with 2.2 GHz

Intel Core i7 processors and 16GB of RAM.

The plot in Fig. 6 shows the one-time training cost for the model
on four large real-world datasets. Once the model is trained, the
parameters can be loaded and prediction can be performed in O(1)
or constant time. We observe that training time does not exceed 21
hours for any of the datasets which is reasonable especially since
the experiments were conducted on a standard work laptop. Also,
the increase in runtime seems to be roughly linear with respect

4.4 Runtime on Large-scale Datasets

In the paper, we report semi-supervised classification results for
smaller datasets as these are the standard graph benchmarks used
by previous work [20, 42, 47] and also because these datasets have
ground-truth node labels. However, the approach is fast and scalable
forlarger graph data. We demonstrate this in experiments on several
large real-world social networks.

We benchmark a sparse implementation of our proposed method
on three large real-world social networks: Delicious, Youtube-Snap, IThese are available at http://networkrepository.com

507

Session: Long - Graph Nerual Network |

to the number of edges in the graph which is helpful since many
real-world graphs are quite sparse [40].

5 CONCLUSION

In this work, we introduced a new class of higher-order network
embedding methods which generalizes both GCN and GAT. The
proposed model utilizes a novel motif-based attention for the task
of semi-supervised node classification. Attention is used to allow
different nodes to select the most task-relevant neighborhood to
integrate information from.

Experiments on three citation (Cora, Citeseer, & Pubmed) and
two bioinformatic (DD-6 & DD-7) benchmark graphs show the
advantage of the proposed approach over previous work. We also
show experimentally that different nodes do utilize attention to
select different neighborhoods, indicating that it may be useful to
consider various motif-defined neighborhoods. In particular, we
found that neighborhoods defined by the triangle motif seemed to
be especially useful. Finally, we benchmark a sparse implementation
of MCN on several large real-world graphs and showed that the
method can be run reasonably fast on large-scale networks.

ACKNOWLEDGEMENTS

This work is supported in part by National Science Foundation
through grant IIS-1718310.

REFERENCES

[1] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. 2018. N-
GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification.
In arXiv:1802.08888v1.

Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, Nick Duffield, and Theodore L.
Willke. 2017. Graphlet Decomposition: Framework, Algorithms, and Applications.
KAIS 50, 3 (2017), 689-722.

Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong,
Theodore L. Willke, and Hoda Eldardiry. 2018. Learning Role-based Graph
Embeddings. In StarAI @ IJCAL 1-8.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In ICLR. 1-15.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
JMLR 7 (2006), 2399-2434.

Aldo G. Carranza, Ryan A. Rossi, Anup Rao, and Eunyee Koh. 2018. Higher-order
Spectral Clustering for Heterogeneous Graphs. In arXiv:1810.02959. 1-15.
Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart, and Jimeng
Sun. 2017. GRAM: Graph-based Attention Model for Healthcare Representation
Learning. In KDD. 787-795.

Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filtering. In NIPS.
3837-3845.

David K. Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael
Gomez-Bombarelli, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P. Adams.
2015. Convolutional Networks on Graphs for Learning Molecular Fingerprints.
In NIPS. 2224-2232.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2016. Convolutional
Two-Stream Network Fusion for Video Action Recognition. In WSDM. 601-610.
Paolo Frasconi, Marco Gori, and Alessandro Sperduti. 1998. A general framework
for adaptive processing of data structures. IEEE TNNLS 9, 5 (1998), 768-786.
Adrien Friggeri, Guillaume Chelius, and Eric Fleury. 2011. Triangles to Capture
Social Cohesion. In SocialCom/PASSAT. 258-265.

M. Gori, G. Monfardini, and F. Scarselli. 2005. A new model for learning in graph
domains. In IJCNN. 729-734.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2018. Neural Knowledge Acquisition
via Mutual Attention Between Knowledge Graph and Text. In AAAL 1-8.
Matthew Hausknecht and Peter Stone. 2015. Deep Recurrent Q-Learning for
Partially Observable MDPs. In AAAI Fall Symposium. 1-9.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770-778.

[2

=

[9

=

[10]

—
—

[12

[13]

[14

[15]

[16

508

oy
=

=
&

™~
2

&
&

~
=

&
2

[29

[30

(31]

[32

(33]

(34]

[36

[37

(38]

[39

[40]

N
furg

[42

[43]

[44]

[45

[46

N
)

(48

[49

CIKM ’19, November 3-7, 2019, Beijing, China

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks
on Graph-Structured Data. In arXiv:1506.05163v1.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Mar-
ion Neumann. 2016. Benchmark Data Sets for Graph Kernels. (2016). http:
//graphkernels.cs.tu-dortmund.de

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Deeply-Recursive Convo-
lutional Network for Image Super-Resolution. In CVPR. 1637-1645.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR. 1-14.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In NIPS. 1106-1114.

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph Classification using
Structural Attention. In KDD. 1666-1674.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated
Graph Sequence Neural Networks. In ICLR. 1-20.

Qing Lu and Lise Getoor. 2003. Link-based classification. In ICML. 496-503.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002.
Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 5594
(2002), 824-827.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014.
Recurrent Models of Visual Attention. In NIPS. 2204-2212.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo-
boda, and Michael M. Bronstein. 2016. Deep Convolutional Networks on Graph-
Structured Data. In arXiv:1611.08402.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and Leman Go
Neural: Higher-order Graph Neural Networks. In AAAL 1-16.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph Convolutional Networks
with Argument-Aware Pooling for Event Detection. In AAAL 5900-5907.
Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal
Networks. In WSDM. 601-610.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. 701-710.

Robert J. Prill, Pablo A. Iglesias, and Andre Levchenko. 2005. Dynamic Properties
of Network Motifs Contribute to Biological Network Organization. PLoS Biology
3,11 (2005), 1881-1892.

Ryan A. Rossi, Nesreen K. Ahmed, and Eunyee Koh. 2018. Higher-order Network
Representation Learning. In WWW. 3—-4.

Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2018. Deep Inductive Network
Representation Learning. In BigNet @ WWW. 1-8.

Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2018. Estimation of Graphlet
Counts in Massive Networks. In TNNLS. 1-14.

Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2018. Motif-
based Convolutional Neural Network on Graphs. In arXiv:1711.05697v3. 1-7.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2009. The Graph Neural Network Model. IEEE TNNLS 20, 1 (2009),
61-80.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. JMLR 12
(2011), 1-23.

Alessandro Sperduti and Antonina Starita. 1997. Supervised neural networks for
the classification of structures. IEEE TNNLS 8, 3 (1997), 714-735.

Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. 2007. Less is More:
Compact Matrix Decomposition for Large Sparse Graphs. In SDM. 366-377.
Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. 2018. Learning Graph
Representations with Recurrent Neural Network Autoencoders. In Deep Learning
Day @ KDD. 1-8.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR. 1-12.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. 2012. Deep
Learning via Semi-supervised Embedding. Springer, 639-655.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan
Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In ICML. 2048-2057.
Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition. In AAAIL 3482-3489.
Carl Yang, Mengxiong Liu, Vincent W. Zheng, and Jiawei Han. 2018. Node,
Motif and Subgraph: Leveraging Network Functional Blocks Through Structural
Convolution. In ASONAM. 1-8.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
Semi-Supervised Learning with Graph Embeddings. In ICML. 40-48.

Guo-Bing Zhou, Jianxin Wu, Chen-Lin Zhang, and Zhi-Hua Zhou. 2016. Minimal
gated unit for recurrent neural networks. IJAC 13, 3 (2016), 226-234.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In ICML. 912-919.

	Abstract
	1 Introduction
	2 Related Literature
	3 Approach
	3.1 Notation
	3.2 Graph Self-Attention Layer
	3.3 Convolutional Layer with Motif Attention

	4 Experimental Results
	4.1 Semi-supervised node classification
	4.2 Comparison on Networks with Heterophily
	4.3 Visualizing Motif Attention
	4.4 Runtime on Large-scale Datasets

	5 Conclusion
	References

