


A recent deep learning architecture, called Graph Convolutional

Networks (GCN) [20] approximates the spectral convolution opera-

tion on graphs by deining a layer-wise propagation that is based

on the one-hop neighborhood of nodes. The irst-order ilters used

by GCNs were found to be useful and have allowed the model

to beat many established baselines in the semi-supervised node

classiication task [20, 42].

However, in many cases, it has been shown that it may be bene-

icial to consider the higher-order structure in graphs [6, 25, 33, 35,

46]. In this work, we introduce a general class of graph convolution

networks which utilize weighted multi-hop motif adjacency ma-

trices [33] to capture higher-order neighborhoods in graphs. The

weighted adjacency matrices are computed using various network

motifs [33]. Fig. 1 shows an example of the node neighborhoods that

are induced when we consider two diferent kinds of motifs, show-

ing that the choice of motif can signiicantly alter the neighborhood

structure of nodes.

Our proposed method, which we call Motif Convolutional Net-

works (MCN), uses a novel attention mechanism to allow each

node to select the most relevant motif-induced neighborhood to

integrate information from. Intuitively, this allows a node to select

its one-hop neighborhood (as in classical GCN) when its immediate

neighborhood contains enough information for the model to clas-

sify the node correctly but gives it the additional lexibility to select

an alternative neighborhood (deined by higher-order structures)

when the information in its immediate vicinity is too sparse and/or

noisy for good classiication.

The aforementioned attention mechanism is trained using rein-

forcement learning which rewards choices (i.e, actions) that consis-

tently result in a correct classiication.

The main contributions of this paper are summarized as follows:

• We propose a model that generalizes GCNs by introducing

multiple weighted motif-induced adjacencies that capture

various higher-order neighborhoods.

• We introduce a novel attention mechanism that allows the

model to choose the best neighborhood for each node to

integrate information from.

• We demonstrate the superiority of the proposed method

by comparing against strong baselines on graphs from two

diferent domains (social network and bioinformatics). In

particular, we observed a gain of up to 5.6% over the next

best method on graphs which did not exhibit homophily.

• We demonstrate the usefulness of attention by showing how

diferent nodes prioritize diferent neighborhoods.

The rest of the paper is organized as follows. In Section 2, we

provide a review of related literature. We then introduce the details

of our proposed approach in Section 3. We discuss important ex-

perimental results in Section 4. Finally, we conclude the paper in

the last section.

2 RELATED LITERATURE

Neural Networks for Graphs Initial attempts to adapt neural

network models to work with graph-structured data started with

recursive models that treated the data as directed acyclic graphs [11,

39]. Later on, more generalized models called Graph Neural Net-

works (GNN) were introduced to process arbitrary graph-structured

data [13, 37].

Recently, with the rise of deep learning and the success of models

such as recursive neural networks (RNN) [15, 48] for sequential

data and CNNs for grid-shaped data, there has been a renewed

interest in adapting some of these approaches to more general

graph-structured data.

Some work introduced architectures tailored for more speciic

problem domains [9, 23] ś like NeuralFPS [9] which is an end-to-end

diferentiable deep architecture which generalizes the well-known

Weisfeiler-Lehman algorithm for molecular graphs ś while others

deined graph convolutions based on spectral graph theory [17].

Another group of methods attempt to substitute principled-yet-

expensive graph convolutions using spectral approaches by using

approximations of such. For instance, Deferrard et al. [8] used

Chebyshev polynomials to approximate a smooth ilter in the spec-

tral domain while GCNs [20] further simpliied the process by using

simple irst-order ilters.

The model introduced by Kipf and Welling [20] has been shown

to work well on a variety of graph-based tasks [20, 29, 45] and has

spawned variants including [1, 42]. We introduce a generalization

of GCN [20] in this work but we difer from past approaches in

two main points: irst, we use weighted motif-induced adjacencies

to expand the possible kinds of node neighborhoods available to

nodes, and secondly, we introduce a novel attention mechanism

that allows each node to select the most relevant neighborhood to

difuse (or integrate) information.

Higher-order Structures with Network Motifs Network mo-

tifs [25] are fundamental building blocks of complex networks; in-

vestigation of such patterns usually lead to the discovery of crucial

information about the structure and the function of many complex

systems that are represented as graphs. Prill et al. [32] studied mo-

tifs in biological networks showing that the dynamical property of

robustness to perturbations correlated highly to the appearance of

certain motif patterns while Paranjape et al. [30] looked at motifs

in temporal networks showing that graphs from diferent domains

tend to exhibit very diferent organizational structures as evidenced

by the type of motifs present.

Multiple work have demonstrated that it is useful to account for

higher-order structures in diferent graph-based ML tasks [3, 28, 33,

46]. DeepGL [34] uses motifs as a basis to learn deep inductive rela-

tional functions that represent compositions of relational operators

applied to a base graph function such as triangle counts. Rossi et al.

[33] proposed the notion of higher-order network embeddings and

demonstrated that one can learn better embeddings when various

motif-based matrix formulations are considered.

Yang et al. [46] deined a hierarchical motif convolution for the

task of subgraph identiication for graph classiication. Sankar et al.

[36], on the other hand, proposes a graph convolution method

designed primarily for heterogeneous graphs which utilizes motif-

based connectivities. In a recent work, Morris et al. [28] has shown

that standard GNN architectures such as GCN have the same ex-

pressiveness as the 1-dimensional WL graph isomorphism heuristic

and hence both approaches sufer from similar shortcomings. They

propose a generalization using higher-order structures for the task

of graph classiication.
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Table 1: Table of notations.

Symbol Deinition

G Undirected graph with vertex set V and edge set E.
N Number of nodes in G, i.e., |V| = N .

H The set {H1, · · · ,HT } of T network motifs (i.e., in-

duced subgraphs).

At N ×N motif-induced adjacency matrix corresponding

to motif Ht . (At )i, j encodes the number of motifs of

type Ht which contain (i, j) ∈ E. When the subscript

t is ommitted, this refers to the default edge-deined

adjacency matrix.

Ãt N × N adjacency matrix At with added self-loops.

D̃t N × N diagonal degree matrix of Ãt .

D Number of features or attributes per node.

X N × D attribute matrix.

H
(l ) Node feature embedding inputted at layer l ;H(1)

= X.

W
(l ) Trainable embedding matrix at layer l .

N(Ã)
i

The set of neighbors of node i with respect to adja-

cency matrix Ã, i.e., { j | Ãi, j , 0, for 1 ≤ j ≤ N }.
Ri Reinforcement learning reward corresponding to

training sample i . If we classify node i correctly then

Ri = 1, otherwise Ri = −1.

Our work difers from previous approaches [28, 33, 34, 36, 46]

in several key points. Speciically, in contrast to [28, 33, 34, 46], we

propose a new class of higher-order network embedding methods

which utilizes a novel motif-based attention for the task of semi-

supervised node classiication. The proposed method generalizes

previous graph convolutional approaches [20, 42]. Also, unlike [36],

we focus primarily on homogeneous graphs.

AttentionModels Attention was popularized in the deep learning

community as a way for models to attend to important parts of

the data [4, 26]. The technique has been successfully adopted by

models solving a variety of tasks. For instance, it was used by Mnih

et al. [26] to take glimpses of relevant parts of an input image for

image classiication; on the other hand, Xu et al. [44] used attention

to focus on task-relevant parts of an image for the image captioning

task. Meanwhile, Bahdanau et al. [4] utilized attention for the task

of machine translation by ixing the model attention on speciic

parts of the input when generating the corresponding output words.

There has also been a surge in interest at applying attention to

deep learning models for graphs. The work of Velickovic et al. [42]

used a node self-attention mechanism to allow each node to focus

on features in its neighborhood that were more relevant while Lee

et al. [22] used attention to guide a walk in the graph to learn

an embedding for the graph. More specialized methods of graph

attention models include [7, 14] with Choi et al. [7] using attention

on a medical ontology graph for medical diagnosis and Han et al.

[14] using attention on a knowledge graph for the task of entity

link prediction. Our approach difers signiicantly, however, from

previous approach in that we use attention to allow our model to

select task relevant neighborhoods.

3 APPROACH

We begin this section by introducing the foundational layer that

is used to construct arbitrarily deep motif convolutional networks.

When certain constraints are imposed on our model’s architecture,

the model degenerates into a Graph Attention Network (GAT) [42]

which, in turn, generalizes a GCN [20]. Because of this, we briely

introduce a few necessary concepts from [20, 42] before deining the

actual neural architecture we employ ś including the reinforcement

learning strategy we use to train our attention mechanism.

3.1 Notation

We use upper-case bold letters to denote matrices, lower-case bold

letters to represent vectors, and non-bold italicized letters for scalars.

Frequently used notation is summarized in Table 1.

3.2 Graph Self-Attention Layer

A multi-layer GCN [20] is constructed using the following layer-

wise propagation:

H
(l+1)

= σ (D̃− 1
2 ÃD̃

− 1
2H

(l )
W

(l )). (1)

Here, Ã = A + IN is the modiied adjacency matrix of the input

graph with added self-loops ś A is the original adjacency matrix of

the input undirected graph with N nodes while IN represents an

identity matrix of size N . The matrix D̃, on the other hand, is the

diagonal degree matrix of Ã (i.e., D̃i,i =
∑
j Ãi, j ). Finally, H

(l ) is the
matrix of node features inputted to layer l whileW(l ) is a trainable
embedding matrix used to embed the given inputs (typically to a

lower dimension) and σ is a non-linearity.

The term D̃
− 1

2 ÃD̃
− 1

2 in Eq. 1 produces a symmetric normalized

matrix which updates each nodes representation via a weighted

sum of the features in a node’s one-hop neighborhood (the added

self-loop allows the model to include the node’s own features).

Each link’s strength (i.e., weight) is normalized by considering

the degrees of the corresponding pair of nodes. Formally, at each

layer l , node i integrates neighboring features to obtain a new

feature/embedding via:

®h(l+1)
i

= σ
©­­«

∑
j ∈N(Ã)

i

αi, j ®h(l )j W
(l )
ª®®®¬
, (2)

where ®h(l )
i

is the feature vector of node i at layer l , with ixed

weights αi, j =
1√

deg(i) deg(j)
, and N(Ã)

i
is the set of i’s neighbors

deined by the matrix Ã ś which includes itself.

In GAT [42], Eq. 2 is modiied with weights α that are diferen-

tiable or trainable and this can be viewed as follows,

αi, j =
exp

(
LeakyReLU

(
a[®hiW ®hjW]

))
∑
k ∈N(Ã)

i

exp
(
LeakyReLU

(
a[®hiW ®hkW]

)) . (3)

The attention vector a in Eq. 3 is a trainable weight vector that

assigns importance to the diferent neighbors of i allowing the

model to highlight particular neighboring node features that are

more task-relevant.
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to a self-loop consistent with that given to each node’s most impor-

tant neighbor.

• Motif Transition w/ Row-wise Max: The random walk on

the weighted graph with added row-wise maximum self-loops has

transition probabilities Pi, j =
Ai, j

(∑k Ai,k )+(max1≤k≤NAi,k ) . Our ran-
dom walk motif transition matrix can thus be calculated by

Ã = D
−1(A +M), (6)

where, in this context, the matrix D is the diagonal square degree

matrix of A +M (i.e., Di,i = (∑k Ai,k ) + (max1≤k≤NAi,k )) while
M is deined as above. Here, Ãi, j = Pi, j or the transition probability

from node i to j is proportional to the motif count between nodes i

and j relative to the total motif count between i and all its neighbors.

• Absolute Motif Laplacian: The absolute Laplacian matrix

can be constructed as follows:

Ã = D + A. (7)

Here, the matrix D is the degree matrix of A. Note that because

the self-loop is a sum of all the weights to a node’s neighbors, the

initial importance of the node itself can be disproportionately large.

• SymmetricNormalizedMatrixw/Row-wiseMax: Finally,

we calculate a symmetric normalized matrix (similar to the normal-

ized Laplacian) via:

Ã = D
− 1

2 (A +M)D− 1
2 . (8)

Here, based on the context, the matrix D is the diagonal degree

matrix of A +M.

3.3.3 K-Step Motif Matrices. Given a step-size K , we further deine

K diferent k-step motif-based matrices for each of the T motifs

which gives a total of K ×T adjacency matrices. Formally, this is

formulated as follows:

Ã
(k )
t = Ψ(Ak

t ), for k = 1, · · · ,K and t = 1, · · · ,T (9)

where

Ψ(Ak
t ) = Ψ(At · · ·At︸     ︷︷     ︸

k

) (10)

When we set K > 1, we allow nodes to accumulate information

from a wider neighborhood. For instance if we choose to use Eq. 4

(for Ψ) and use an edge as our motif, Ã(k ) (we omit the motif-type

subscript here) then captures k-hop neighborhoods of each node.

While, in theory, using Ã(k) is equivalent to using a k-layer GCN or

GAT model, extensive experiments by Abu-El-Haija et al. [1] have

shown that GCNs don’t necessarily beneit from a wider receptive

ield as a result of increased model depth. This may be for reasons

similar as to why skip-connections are needed in deep architectures

since the signal starts to degrade as the model gets deeper [16].

As another example, we set Ψ to Eq. 6. Now for an arbitrary

motif, we see that (Ã(k ))i, j encodes the probability of transitioning

from node i to node j in k steps.

While the K-step motif-based adjacencies deined here share

some similarity to that of Rossi et al. [33] we would like to point

out that there is an important distinction with our formulation. In

particular, since graph convolutions integrate a node’s own features

via a self-loop we needed to deine reasonable weights for the self-

loops in the weighted adjacencies (i.e., the diagonal) so that a node’s

information is not łoverpoweredž by its neighbors’ features.

3.3.4 Motif Matrix Selection via Atention. GivenT diferent motifs

and a step-size ofK , we now haveK×T motif matrices we could use

with Eq. 1 to deine layer-wise propagations. A simple approach

would be to implement K × T independent GCN instances and

concatenate the inal node outputs before classiication. However,

this approach may have problems scaling whenT and/or K is large

which makes it unfeasible.

Instead, we propose to use an attention mechanism, at each layer,

to allow each node to select a single most relevant neighborhood

to integrate or accumulate information from. For a layer l , this can

be deined by two functions fl : R
Sl → RT and f ′

l
: RSl × RT →

R
K , where Sl is the dimension of the state-space for layer l . The

functions’ outputs are softmaxed to form probability distributions

over {1, · · · ,T } and {1, · · · ,K}, respectively. Essentially, what this
means is that given a node i’s state, the functions recommend

the most relevant motif t and step size k for node i to integrate

information from.

Speciically, we deine the state matrix encoding node states at

layer l as a concatenation of two matrices:

Sl =

[
Ψ(A)H(l )

W
(l )

C

]
, (11)

where W(l ) ∈ RN×Dl is the weight matrix that embeds the inputs

to dimension Dl , Ψ(A)H(l )
W

(l ) is the matrix containing local in-

formation obtained by doing a weighted sum of the features in

the simple one-hop neighborhood for each node (from the original

adjacency A), and C ∈ RN×C is a motif count matrix that gives us

basic local structural information about each node by counting the

number of C diferent motifs that each node belongs to. We note

here that C is not appended to the node attribute matrix X and

is not used for prediction. Its only purpose is to capture the local

structural information of each node. C is computed once.

Let us consider an arbitrary layer. Recall that f (for brevity,

we omit subscripts l ) produces a probability vector specifying the

importance of the various motifs, let ®fi = f (®si ) be the motif prob-

abilities for node i . Similarly, let ®f ′i = f ′(®si , ®fi ) be the probability
vector recommending the step size. Now let ti be the index of the

largest value in ®fi and similarly, let ki be the index of the largest

value in ®f ′i . In other words, ti is the recommended motif for i while

ki is the recommended step-size. Attention can now be used to

deine an N × N propagation matrix as follows:

Â =



(
Ã
(k1)
t1

)
1, :

.

.

.(
Ã
(kN )
tN

)
N , :


. (12)

This layer-speciicmatrix Â can now be plugged into Eq. 1 to replace

Ã. What this does is it gives each node the lexibility to select the

most appropriate motif t and step-size k to integrate information

from.

3.3.5 Training the Atention Mechanism. Given a labeled graph

G = (V, E, ℓ) with N nodes and a labeling function ℓ : V → L
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Figure 5: An example of a 2-layer MCN with N = 11 nodes,

step-size K = 2, and T motifs. Attention allows each node

to select a diferentmotif-induced neighborhood to accumu-

late information from for each layer. For instance, in layer

1, the nodevN considers neighbors (up to 2-hops) that share

a stronger bond (in this case, triangles) with it.

which maps each node to one of J class labels in J = {1, · · · , J },
our goal is to train a classiier that can predict the label of all the

nodes. Given a subset T ⊂ V , or the training set of nodes, we can

train an L-layer MCN (the classiier) using standard cross-entropy

loss as follows:

LC = −
∑
v ∈T

J∑
j=1

Yv j logπ (H (L+1)
i, j

), (13)

where Yv j is a binary value indicating node v’s true label (i.e.,

Yv j = 1 if ℓ(v) = j, zero otherwise), and H
(L+1) ∈ RN×L is the

softmaxed output of the MCN’s last layer.

While Eq. 13 is suicient for training the MCN to classify inputs

it does not tell us how we can train the attention mechanism that

selects the best motif and step-size for each node at each layer. We

deine a second loss function based on the REINFORCE rule:

LA = −
[∑

nL ∈T Rv

[
logπ

((
®f (L)nL

)
t
(L)
nL

)
+ logπ

((
®f (L)nL

)
k
(L)
nL

)]

+

∑
nL ∈T

∑
nL−1∈N(Â(L))

nL

Rv

[
logπ

((
®f (L−1)nL−1

)
t
(L−1)
nL−1

)
+ logπ

((
®f (L−1)nL−1

)
k
(L−1)
nL−1

)]

+ · · · +∑nL ∈T · · ·∑
n1∈N(Â(2))

n2

Rv

[
logπ

((
®f (1)n1

)
t
(1)
n1

)
+ logπ

((
®f (1)n1

)
k
(1)
n1

)] ]
(14)

Here, Rv is the reward we give to the system (Rv = 1 if we classify

v correctly, Rv = −1 otherwise). The intuition here is this: at the

last layer we reward the actions of the classiied nodes; we then

go to the previous layer (if there is one) and reward the actions

of the neighbors of the classiied nodes since their actions afect

the outcome, we continue this process until we reach the irst

layer. Please refer to [26] for a more detailed explanation of the

REINFORCE rule for reinforcement learning.

Table 2: Space of methods expressed by MCN. GCN and GAT

are shown below to be special cases of MCN.

Method Motif Adj. K Self-attention Motif-attention

GCN edge Eq. 4 K = 1 no no

GAT edge Eq. 4 K = 1 yes no

MCN-* any Eqs. 4-8 K = {1, · · · } yes yes

Table 3: Dataset statistics. Value shown in brackets is the per-

centage of the nodes used for training.

Cora Citeseer Pubmed

# of Nodes 2,708 3,327 19,717

# of Edges 5,429 4,732 44,338

# of Features/Node 1,433 3,703 500

# of Classes 7 6 3

# of Training Nodes 140 (5%) 120 (4%) 60 (<1%)

There are a few important things to point out. In practice, we use

an ϵ-greedy strategy when selecting a motif and step-size during

training. Speciically, we pick the action with highest probability

most of the time but during 1 − ϵ instances we select a random

action. During testing, we choose the action with highest proba-

bility. Also, in practice, we use dropout to train the network as in

GAT [42] which is a good regularization technique but also has the

added advantage of being a way to sample the neighborhood during

training to keep the receptive ield from growing too large during

training. Finally, to reduce model variance we can also include an

advantage term (see Eq. 2 in [22], for instance). Our inal loss can

then be written as:

L = LC + LA . (15)

We show a simple (2-layer) example of the proposed MCNmodel

in Fig. 5. As mentioned, MCN generalizes both GCN and GAT. We

list settings of these methods in Table 2.

4 EXPERIMENTAL RESULTS

4.1 Semi-supervised node classiication

We irst compare our proposed approach against a set of strong

baselines (including methods that are considered the current state-

of-the-art) on three well-known graph benchmark datasets for

semi-supervised node classiication. We show that the proposed

method is able to achieve state-of-the-art results on all compared

datasets. The compared baselines are as follows:

• MLP: Standard fully-connected multi-layer perceptron. The

model does not take into account graph structure and takes

directly as input node features.

• LP [49]: Semi-supervised method based on Gaussian ran-

dom ields which places both labeled and unlabeled samples

on a weighted graph with weights representing pair-wise

similarity.

• ICA [24]: A structured logistic regression model which lever-

ages links between objects.

• ManiReg [5]: A framework that can be used for semi-supervised

classiication which uses a manifold-based regularization.

Session: Long - Graph Nerual Network I CIKM ’19, November 3–7, 2019, Beijing, China

504



Table 4: Summary of experimental results: łaverage accuracy ± SD (rank)ž. The łAvg. Rankž column shows the average rank

of each method. The lower the average rank, the better the overall performance of the method.

Method
Dataset

Avg. Rank
Cora Citeseer Pubmed

DeepWalk (Perozzi et al. [31]) 67.2% (9) 43.2% (11) 65.3% (11) 10.3

MLP 55.1% (12) 46.5% (9) 71.4% (9) 10.0

LP (Zhu et al. [49]) 68.0% (8) 45.3% (10) 63.0% (12) 10.0

ManiReg ([5]) 59.5% (10) 60.1% (7) 70.7% (10) 9.0

SemiEmb (Weston et al. [43]) 59.0% (11) 59.6% (8) 71.7% (8) 9.0

ICA (Lu and Getoor [24]) 75.1% (7) 69.1% (5) 73.9% (7) 6.3

Planetoid (Yang et al. [47]) 75.7% (6) 64.7% (6) 77.2% (5) 5.7

Chebyshev (Deferrard et al. [8]) 81.2% (5) 69.8% (4) 74.4% (6) 5.0

MoNet (Monti et al. [27]) 81.7% (3) ś 78.8% (4) 3.5

GCN (Kipf and Welling [20]) 81.5% (4) 70.3% (3) 79.0% (2) 3.0

GAT (Velickovic et al. [42]) 83.0 ± 0.7% (2) 72.5 ± 0.7% (2) 79.0 ± 0.3% (2) 2.0

MCN (this paper) 83.5 ± 0.4% (1) 73.3 ± 0.7% (1) 79.3 ± 0.3% (1) 1.0

• SemiEmb [43]: A model which integrates an unsupervised

dimension reduction technique into a deep architecture to

boost performance of semi-supervised learning.

• DeepWalk [31]: An unsupervised network embedding ap-

proach which uses the skip-gram algorithm to learn node

embeddings that are similar for nodes that share a lot of

links.

• Chebyshev [8]: A graph convolution approach which uses

Chebyshev polynomials to approximate a smooth ilter in

the spectral domain.

• Planetoid [47]: A method which integrates graph embedding

techniques into graph-based semi-supervised learning.

• MoNet [27]: A geometric deep learning approach that gen-

eralizes CNNs to graph-structured data.

• GCN [20]: A method which approximates spectral graph

convolutions using irst-order ilters.

• GAT [42]: Generalization of GCNs with added node-level

self-attention.

• MCN (this paper): Our proposed graph attention model with

motif-based attention.

4.1.1 Datasets. We compare all baselines using three established

benchmark datasets, these are: Cora, Citeseer, and Pubmed. Specif-

ically, we use the pre-processed versions made available by Yang

et al. [47]. The aforementioned graphs are undirected citation net-

works where nodes represent documents and edges denote citation;

furthermore, a bag-of-words vector capturing word counts in each

document serves as each node’s feature. Each document is assigned

a unique class label.

Following the procedure established in previous work, we use

only 20 nodes per class for training [20, 42, 47]. Again, following

previous work, we take 1,000 nodes per dataset for testing and

utilize an additional 500 for validation [1, 20, 42]. We use the same

train/test/validation splits as deined in [20, 42]. Statistics for the

datasets is shown in Tab. 3.

4.1.2 Setup. For Cora andCiteseer, we used the same 2-layermodel

architecture as that of GAT consisting of 8 self-attention heads each

with a total of 8 hidden nodes (for a total of 64 hidden nodes) in

the irst layer, followed by a single softmax layer for classiica-

tion [42]. Similarly, we ixed early-stopping patience at 100 and

ℓ2-regularization at 0.0005. For Pubmed, we also used the same

architecture as that of GAT (irst layer remains the same but the

output layer has 8 attention heads to deal with sparsity in the train-

ing data). Patience remains the same and similar to GAT, we use a

strong ℓ2-regularization at 0.001.

We further optimized all models by testing dropout values of

{0.50, 0.55, 0.60, 0.65}, learning rates of {0.05, 0.005}, step-sizes
K ∈ {1, 2, 3}, and motif adjacencies formed using combinations

of the following motifs: edge, 2-star, triangle, 3-star, and 4-clique

(please refer to Fig. 4 for illustration of motifs).

Self-attention learns to prioritize neighboring features that are

more relevant and the motif-based adjacencies derived from Ψ

(Eqs. 4-8) can be viewed as reasonable initial estimates of self-

attention. We select the initialization that yields the best result.

Finally, we adopt an ϵ-greedy strategy (ϵ = 0.1).

We note that for classiication, our model uses exactly the same

amount of information and the same number of model parameters

as GAT [42] for fairness of comparison. The motif attention mecha-

nism uses some additional trainable parameters to allow each node

to select motifs but these parameters are separate from that of the

classiication network.

4.1.3 Comparison. For all three datasets, we report the classiica-

tion accuracy averaged over 15 runs on random seeds (including

standard deviation for methods that report these). A summary of

the results is shown in Table 4. We see that our proposed method

achieves superior performance against all compared baselines on

all three benchmarks. On the Cora dataset, the best model used a

learning rate of 0.005, dropout of 0.6, and both the edge and triangle

motifs with step-size K = 1. For Citeseer, the learning rate was

0.05 and dropout was still 0.6 while the only motif used was the

edge motif with step-size K = 2. However, the second best model

for Citeseer ś which had comparable performance ś utilized the

following motifs: edge, 2-star, and triangle. Finally, on Pubmed, the
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to the number of edges in the graph which is helpful since many

real-world graphs are quite sparse [40].

5 CONCLUSION

In this work, we introduced a new class of higher-order network

embedding methods which generalizes both GCN and GAT. The

proposed model utilizes a novel motif-based attention for the task

of semi-supervised node classiication. Attention is used to allow

diferent nodes to select the most task-relevant neighborhood to

integrate information from.

Experiments on three citation (Cora, Citeseer, & Pubmed) and

two bioinformatic (DD-6 & DD-7) benchmark graphs show the

advantage of the proposed approach over previous work. We also

show experimentally that diferent nodes do utilize attention to

select diferent neighborhoods, indicating that it may be useful to

consider various motif-deined neighborhoods. In particular, we

found that neighborhoods deined by the triangle motif seemed to

be especially useful. Finally, we benchmark a sparse implementation

of MCN on several large real-world graphs and showed that the

method can be run reasonably fast on large-scale networks.
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