Learning to Selectively Update State Neurons
in Recurrent Networks

Thomas Hartvigsen
Worcester Polytechnic Institute
twhartvigsen@wpi.edu

Xiangnan Kong
Worcester Polytechnic Institute

xkong@wpi.edu

ABSTRACT

Recurrent Neural Networks (RNNs) are the state-of-the-art ap-
proach to sequential learning. However, standard RNNs use the
same amount of computation to generate their hidden states at each
timestep, regardless of the input data. Recent works have begun to
tackle this rigid assumption by imposing a priori-determined pat-
terns for updating the states at each step. These approaches could
lend insights into the dynamics of RNNs and possibly speed up in-
ference. However, the pre-determined nature of the current update
strategies limits their application. To overcome this, we instead
design the first fully-learned approach, SA-RNN, that augments any
RNN by predicting discrete update patterns at the fine granularity
of individual hidden state neurons. This is achieved through the
parameterization of a distribution of update-likelihoods driven by
the input data. Unlike related methods, our approach imposes no
assumptions on the structure of the update patterns. Better yet,
our method adapts its update patterns online, allowing different
dimensions to be updated conditionally based on the input. To learn
which dimensions to update, the model solves a multi-objective
optimization problem, maximizing task performance while mini-
mizing the number of updates based on a unified control. Using
five publicly-available datasets spanning three sequential learning
settings, we demonstrate that our method consistently achieves
higher accuracy with fewer updates compared to state-of-the-art al-
ternatives. We also show the benefits of learning to sparsely-update
a large hidden state as opposed to densely-update a small hidden
state. As an added benefit, our method can be directly applied to a
wide variety of models containing RNN architectures.
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1 INTRODUCTION

Background on Sequential Learning. Recurrent Neural Net-
works (RNN) are the state-of-the-art approach to many sequen-
tial learning problems including language modeling [26], machine
translation [36], and sequence generation [12, 37]. However, RNNs
typically rely on often computationally-taxing updates to their en-
tire hidden state at each timestep, a cost that grows with hidden
state size. As demonstrated by the success of gating mechanisms
such as the GRU [8] and LSTM [16], all dimensions rarely need to be
re-computed from scratch at each timestep. By discretely selecting
which dimensions to update at each timestep via a learned update
pattern, RNNs with a large hidden state could potentially be trained
with lower computational requirements [3, 27], inference in long
RNNs may be expedited [5], and hidden representations might be
made more robust to misleading inputs such as outliers or noise.
State-of-the-Art and Limitations. Selective activation in RNNs
has recently gained attention in the literature [5, 17, 20, 27, 31]. The
most popular methods hand-craft specific update patterns, dictating
which dimensions of the hidden state will update at which timesteps
according to prior knowledge of a task [20, 27]. This imposes un-
due challenges in implementation, limits extensibility, and ignores
the data-driven curation of information-flow through the RNN, a
signature property of recurrent memory cells [8, 16]. More recent
methods learn to react to input data but impose strict relationships
between the update patterns across both hidden dimensions and
time [5, 17, 31]. Designed for tasks with clear hierarchical compo-
nents, such as modeling character-level text [9, 22], this hierarchical
structure in update patterns may limit the expressiveness of learned
update patterns for tasks where this assumption is not applicable.
Problem Description. Specifically, we study the problem of
generating a binary update-pattern for the hidden states learned by
an RNN given input sequential data. The learned update-pattern
defines which dimensions of the hidden state to update at each



timestep, similar to the motivation for Residual Networks [14, 34]
and Highway Networks [32, 38]. Ideally, only a small subset of the
hidden state’s dimensions needs to be updated at each timestep,
which is especially important for high-dimensional hidden states.
In this way, powerful representations can be learned while both
solving a sequential learning task and minimizing the number of
updates. This can result in a reduction of the overall computational
time. A solution to this multi-objective optimization problem should
have a comparable accuracy to a traditional constantly-updating
RNN, while at the same time saving the majority of (unnecessary)
computation steps along the way, ultimately targeting accelerated
training and inference [27].

Technical Challenges. Despite the potential for reducing com-
putation required by RNNs, learning update patterns is a challeng-
ing problem for the three following reasons:

e First, binary-output neurons making discrete decisions, such
as whether or not to update a hidden state dimension, in
the interior of a neural network is a classic challenge to
gradient-based learning. Such decisions are by nature non-
differentiable and therefore back-propagation cannot be di-
rectly used for training [3]. To generate flexible and data-
reactive update patterns (which are by nature binary), the
network must learn to make such discrete decisions.

e Second, the quality of an update pattern is unsupervised and
thus the only feedback available is task-specific. This lack of
supervision discourages a priori assumptions of the update
patterns, which may not be optimal for a particular task.

e Third, task performance and sparse updates to the hidden
state are contradictory goals. An RNN that never updates its
hidden state will by definition learn nothing about the input
sequence. Balancing these two targets is a multi-objective
optimization problem, which must be balanced case-by-case.

Our Proposed Approach: SA-RNN. To address the aforemen-
tioned challenges, we propose the Selective-Activation RNN, or SA-
RNN, which parameterizes a distribution of update-likelihoods, one
per hidden state dimension, from which update-decisions can be
made at each timestep, removing the need for a priori assumptions
on the form of the update decisions. We achieve this by augment-
ing an RNN with an update Coordinator that adaptively controls
which coordinate directions to update in the hidden state on the
fly. The Coordinator is modeled as a lightweight neural network
that observes incoming data at each timestep and makes a discrete
decision about whether or not enough information is stored in each
individual hidden dimension to warrant an update. Subsequently,
each hidden dimension is either computed by the RNN or copied
from the previous timestep, avoiding the RNN update.

The Coordinator is kept as simple as possible so the complexity
of the RNN can scale without outsourcing computation to another
network, similar to the controller in [13]. In contrast to other recent
approaches [5, 17, 20, 24, 27, 31] we impose no assumptions about
which individual hidden dimensions should or should not be up-
dated together. Instead, we illustrate that using an entirely-learned
approach indeed results in complex task-specific update patterns.

Contributions Our contributions can be described as follows:

o Ours is the first method to predict fully-learned update pat-
terns for RNNs. Our approach relaxes assumptions of previ-
ous methods and demonstrates that this strategy is a feasible
and lower-bias approach to reducing computation in RNNs.

e We compare against four state-of-the-art methods and two
baselines on five datasets spanning three sequential learning
settings. On all tasks, SA-RNN achieves better task perfor-
mance while using far fewer updates to its hidden states.

e Our results show that sparsely updating a large hidden state
is superior to densely updating small hidden states in RNNs.

2 RELATED WORK

Recurrent neuron update patterns have gained much interest in
recent literature [9, 17, 20, 24, 27, 31]. All of these methods boast
fewer updates to the hidden states than standard RNN architectures.
However, there are several limitations of these methods.

First, the most popular methods rely on extensively-handcrafted
update patterns consisting of periodic neuron activations [20, 24,
27]. This requires either prior knowledge of sampling frequencies
or seasonal patterns present in the data, reducing the potential
extension to many sequential learning problems. Clockwork RNN
[20] requires hand-picking rates at which to update fixed-sized
contiguous blocks of a vanilla RNN’s hidden state. PhasedLSTM
[27] and its variant, HE-LSTM [24], sample rates at which to update
independent neurons, then learn individual periods for each neu-
ron on the training set which remains fixed during testing. These
input-agnostic periodic updates are fixed prior to inference and
thus remain rigid, failing to adapt their update patterns, regardless
of the input data. The choice of update periods heavily impacts
the performance of the model, and sequences with irregular infor-
mation flow are challenging to model without massive states and
carefully hand-picked parameters.

Second, more recent works allow for data-reactive update pat-
terns [5, 17, 31] but assume temporal hierarchies in the input se-
quences and typically study settings where this effect is exceedingly
obvious (for example, character-level sentence modeling [9, 22]).
In many real-world settings, temporal hierarchies are often subtle
and forcing this assumption into the architectural design may limit
application. VC-RNN [17] predicts a proportion p € [0, 1] of the
hidden state to update, then updates that proportion of neurons,
ordered by index. SkipRNN [5] predicts a binary value p € {0, 1},
deciding whether or not to update the entire hidden state, updating
all neurons together in lock-step. SkipRNN also assumes that the
likelihood of updating the state increases monotonically, which
may not be appropriate for a variety of settings. This assumption
that one neuron’s update should be conditional to its neighbors
is unnecessary since the dimensions of the hidden state are not
computed with respect to their location in the network, and does
not need to be reflected in the update pattern.

Our work is also related to conditional computation in neural
networks, which selectively activates different sub-networks of
large neural networks, conditioned on input data [2, 7, 23]. This area
has recently gained much interest as it could extend the application
of deep neural networks without increasing the size of the models.
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Figure 1: Computing new hidden states with SA-RNN. Prior to computing /;, the hidden state at timestep ¢, the Coordinator Cy
predicts a binary mask given current input X; and previous hidden state h;_;, determining which dimensions of h; should be
computed anew. The Recurrence function Ry is typically a gated recurrent memory cell, such as a GRU or LSTM. Cy is modeled
as a light-weight neural network and can augment a wide variety of RNN architectures. In this example, when computing h;,
hidden dimensions 1 and 4 are updated, while dimensions 2 and 3 remain unchanged. This figure is best viewed in color.

In many cases, when a concept can be represented by only a sub-
network of a large neural network, computation can be preserved
by learning to activate only the said sub-network [29, 30].

3 SELECTIVE ACTIVATION FOR RECURRENT
NEURAL NETWORKS

We introduce the Selective-Activation RNN, or SA-RNN,; a broadly-
applicable augmentation to RNNs which minimizes the computa-
tion required for RNNs by facilitating unimpeded information-flow
across timesteps for individual dimensions of the hidden state. At
its core, SA-RNN learns a data-driven strategy for discretely read-
ing and writing information to the latent state space through the
learned parameterization of an update-likelihood distribution. De-
spite leaving hidden dimension update patterns independent from
one another, complex strategies still arise naturally depending on
the sequential learning task at hand. In this section, we describe the
training process of SA-RNN with D-dimensional hidden states on
sequences of length T for input data x with V variables. We omit
biases from affine transformation equations and use notation for
one training instance for ease of readability. An overview of the
forward pass through SA-RNN is shown in Figure 1.

3.1 Computing Hidden States

RNNSs compute a sequence of hidden states one timestep at a time
[10], each computed by a parametric transition function R(-): h; =
R(ht-1,x¢|0;). The result is a sequence of vector representations
H = {hy,...,hr} where each h; € RP represents temporal dy-
namics of an input sequence up to step t with respect to a task,
preserving not only temporal dependencies but also the ordering
of the inputs.

The most popular augmentations to the RNN add a series of gates
between h;_; and h; to alleviate the vanishing gradient problem
[4]. For example, the Gated Recurrent Unit (GRU) is composed of
an intuitive set of gating functions that balance newly-computed
hidden states h; with previous states h;_1:

ry = o(Wrhi—1 + Urxy) (1)
2t = oc(Wzh—1 + Uzxy) @)
st = ¢(Wexr + U (rr © hy—1)) ®3)
hi=(1-2)0h1+2 08 ()

where W's and Us are matrices of learnable parameters of shape
D x D and D x V respectively, x; € RV is the input data at timestep
t, © represents the element-wise multiplication, o represents the
sigmoid function, and ¢ represents a non-linearity (traditionally
the hyperbolic tangent function). Its design is motivated heavily
by the LSTM [16]. Similar to the LSTM, the GRU performs soft
read/write operations, recomputing the entire vector h; at each
timestep since gate z € [0,1]P, the space of vectors with values
inclusively between 0 and 1. Instead, we propose that all dimensions
do not need to be updated at each timestep, as the position of the
hidden state in many dimensions may often encode enough of the
modeled input. In the next section, we describe how to compute h;,
the final hidden state for timestep ¢ which is subsequently used to
compute Apyq.

3.2 Selective Neuron Activation

To reduce computation required to generate state representations,
we update representations via a sequence of binary decisions - at
each step, each neuron will either be updated or not. Intuitively



the usefulness of the hidden state will often not be decayed by
allowing neurons to remain unchanged regardless of input data. As
shown in Figure 2, not all dimensions of the hidden state change
to the same degree when updated. For dimensions that would not
change much either way, such as dimension 2 in our example, there
is little geometric difference between updating hy or leaving it
unchanged. Thus, we propose a learned update coordinator, which
generates a binary mask for each hidden dimension, forecasting
which dimensions need to be updated at the next timestep.

First, an update-likelihood i; is computed for each neuron, in-
formed by both the data observed at the current timestep and
the previous update-likelihoods: @t; = o(Wy,h;—1 + Wix;) where
W, € RPXD js a diagonal matrix of trainable parameters which dic-
tate the linear relationship between h;_1 and ;. W, is kept diagonal
to maintain relationships between update-decisions of the same
dimension while avoiding the extensive computation of a fully-
connected layer, similar to hidden state decay [6]. W; € RP*V en-
codes the influence of the input data on the current update-likelihood
and o(-) represents the hard sigmoid function, bounding % accord-
ing to a slope a. Thus ii; € [0, 1]P, with one update-likelihood per
hidden dimension.

To discretize @iy, allowing information to flow unimpeded, element-
wise binarization is applied:

uy = binarize(i; ), where (5)
1 ifa> 0.5,

binarize(a) = na ) 6)
0 otherwise.

Intuitively, we then apply this final discrete update decision as
a binary gating mechanism since u; € {0,1}", augmenting the
previously-described GRU transition function:

In =ut®ﬁt+(1—ut)®ht_1 7)

In practice, the computation of the new hidden state can be directed
at only the needed updates once u; has been calculated, and the
binary gating between h; and h;—; can be avoided. This idea is
similar to the input gate, in the LSTM cell, which decides how
much of the new input information to add to the existing hidden
state. However, the LSTM’s input gate still updates every dimension
of the hidden state to some degree. To reduce computation in the
hidden states, our approach instead uses binary update decisions.
Thus when iy, the update decision for the n-th dimension in h, is 1,
h} is updated according to the new information present in I:L?

We note that this update-decision strategy does not impose the
inter-neuron assumptions of [5, 17, 20, 22, 31] while still allowing
such strategies to be learned if they are found to be optimal by the
model since decisions are made with respect to previous decisions.
We hypothesize that updating dimensions in groups may generally
be beneficial since complex temporal dependencies often require
high-dimensional representations, as discussed in [20].

Since binary output transformations are inherently not differen-
tiable, barring the direct use of back-propagation, we approximate
the gradient of the binarization via straight-through gradient esti-
mation [3], ensuring no added computational cost:

dbinarize(x) iy ®
ox

Small 6,
change

Figure 2: RNNs learn to project sequential data into se-
quences of hidden state vectors one step at a time. In this
example, when transitioning from an RNN’s hidden state h;
to hy, dimension 2 of h changes much more than dimension
1. Since dimension 1 changes only slightly, representational
capacity of the RNN is inhibited only slightly (or not at all)
by skipping this update.

By estimating the gradient in this way we avoid additional loss
terms and end up with empirically superior approximations in com-
parison to other higher-variance methods, such as REINFORCE
[5, 9, 35]. For policy gradient methods like REINFORCE, the re-
ward function is often challenging to design and computational
complexity can be significant [22]. Additionally, the relationships
between particular dimensions of the hidden state and their rele-
vance to the task are complex and latent, limiting the effectiveness
of such sampling approaches to update-pattern selection. We fur-
ther reduce estimation bias through slope annealing during training,
increasing the slope a of the hard sigma according to the sched-
ule a = min(5, 1+ 0.04 = Nepoep) as in [9]. In Section 4.5 we also
demonstrate that sampling update patterns leads to poor prediction
performance. After computing the sequence of state representations
H, they are projected into an output space via affine transformation
possibly followed by a non-linearity depending on the task at hand,
thus computing the predictions made by the model g.

3.3 Training

All weights of SA-RNN are updated together using back-propagation
and gradient descent to minimize one joint loss function. For read-
ability, we gather all weights into one parameter matrix 6. Our loss
function J(0) consists of two parts: a task-driven loss (denoted as
Li.5k) and an update-budget. The task-driven component depends
entirely on the task (for example, cross entropy for classification or
mean squared error for regression). The update-budget encourages
sparser updates to the hidden dimensions, as shown in Equation
9 where N is the number of training examples, § is the model’s
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A tunes the emphasis on the minimization of i, the update proba-
bility, and in practice it is reasonable to set A = 0, encouraging the
model to make update decisions solely with respect to the learning
task. As A is increased and predicted update likelihoods thus de-
crease, the hidden dimension is update fewer times until eventually
ho = ht where the hidden state is not updated at all. Additionally,
since Ly, differs by task, the appropriate range for A may vary.

4 EXPERIMENTS

We compare the performance of SA-RNN to four state-of-the-art
alternatives and two baselines. Since RNNs are the primary solu-
tion to a wide variety of problem settings, we use three separate
sequential learning settings, each of which tests a different capacity
of RNNs while reducing the number of updates to their hidden
states using each compared method. First, we use three common
publicly-available time series classification tasks. Here, an RNN
must summarize the relevant information in an entire sequence
with respect to a class label prediction. Second, we use a common
and complex language modeling task, requiring an RNN to predict
future words in a long sentence, one at a time. Third, we use the
classic Adding task to evaluate long-term dependency modeling in
gated RNNs. Across all tasks, we demonstrate that SA-RNN consis-
tently achieves superior task-specific performance while updating
its hidden states fewer times than the state-of-the-art alternatives.

4.1 Alternative Algorithms

We compare SA-RNN to two baselines and four recent state-of-the-
art related methods for computing update-patterns for RNNs:

GRU [8]: The Gated Recurrent Unit (GRU) is a widely-used
gated RNN architecture and is described in detail in Section
3.1. The entire hidden state is updated at every timestep.

e Random Updates: This method is effectively the random

version of our proposal. At each step, random hidden dimen-

sions are updated. This is similar to Zoneout regularization

[21] however we maintain random updating during testing.

Clockwork RNN [20]: Hidden dimensions are updated in

groups at pre-determined “clock” rates. For example, the first

five dimensions in the hidden state may update every step
while the second five neurons update every 3 steps. This
pattern remains fixed during training and testing.

e Phased LSTM [27]: Hidden dimensions are updated inde-
pendently at sampled rates where the user defines the distri-
bution from which to sample. Each hidden dimension has
its own update pattern. During testing, the update periods
remain unchanged. The dynamics of the updates are user-
designed.

e VC-RNN [17]: A value p € [0, 1] is predicted at each step
indicating the proportion of the hidden state to update. Then,
the first p * D dimensions are updated, imposing a hierarchi-
cal structure to the update patterns. While optimizing this
method, a “target” update proportion is included in the loss
function, penalizing deviations from this target value. This
method only uses the first p * D neurons in the hidden state
at each step.

SkipRNN [5]: A value p € {0, 1} is predicted at each step.

Hidden dimensions update together in lock-step according

to p so the entire state is either modified or left unchanged

at each step. Additionally, update likelihood increases mono-
tonically after each update, regardless of the input data.

In our experiments all methods are implemented using GRU update
equations except for the PhasedLSTM, which is designed specifi-
cally for LSTM cells. VC-RNN and PhasedLSTM both employ soft



Method vJAcc. x Skip % (1) Skip % (1)  Accuracy (%) (1) FLOPs (x10°) (])
GRU [8] 0 0 84.7 (0.8) 25.7
CW-RNN [20] 73.7 81 67.1(0.4) 1.6
PhasedLSTM [27] 74.9 69 81.4 (1.4) 10.6
VC-RNN [17] 68.7 66 71.6 (3.4) 8.9
SkipRNN [5] 69.2 82 58.4 (5.5) 48
Random Updates 62.3 76 51.1 (0.1) 6.2
SA-RNN 78.8 76 81.6 (0.6) 6.4

Table 1: Performance on the Seizures task. \/Accuracy X Skip% is the geometric mean of Accuracy and Skip Percent. The first
section contains the baseline GRU, the second contains non-reactive methods, the third contains learned methods, and the
fourth is our proposed method and random baseline. For SA-RNN we use 1 = 2¢™%.

Method vAcc. x Skip % (1) Skip % (1)  Accuracy (%) (1) FLOPs (x10%) (|)
GRU [8] 0 0 82.8 (2.2) 56.9
CW-RNN [20] 72.1 81 64.2 (0.8) 3.65
PhasedLSTM [27] 70.2 70 70.5 (1.8) 22.8
VC-RNN [17] 61.9 66 58.1(2.2) 19.7
SkipRNN [5] 72.2 87 60.0 (1.1) 7.5
Random Updates 61.2 76 49.4 (0.7) 13.1
SA-RNN 76.1 77 75.4 (3.0) 25.2

Table 2: Performance on the TwitterBuzz task. For SA-RNN we use A = 2¢73.

updates to the dimensions of the hidden state, simply altering the
scale of the contribution of previous states to current states, similar
to the update gates in LSTMs and GRUs. To compute their numbers
of updates, we discretize their final masks via a ceiling function
since a reduced-size update is still an update.

4.2 Implementation Details

For the Time Series Classification and Adding task experiments,
we use 80% of the dataset for training, 10% for validation, and 10%

for testing. However, for the PTB dataset, there are given test sets.

The training data are used to tune the parameters of the models;
the validation data are used to validate hyperparameter selection;

while the testing data are finally used to report final performances.

We randomly repeat this process ten times to compute confidence
intervals for all performance metrics.

For A selection in SkipRNN and our proposed method, SA-RNN,
we search in a log-space ranging from 0.0 to 0.1 in 11 steps. On
the Adding, Seizures, Yahoo, and Twitter tasks, we found that
very-small A values covered the entire Skip % space, from 0 to
100, for SA-RNN. For PTB, however, larger A values were required,
increasing up to ~ 5.0 due to the differences in the scale of L.

For all methods on all tasks, we search for learning rates from a

log-space ranging from 1% to 1e~%! using the validation datasets.

All models are optimized using Adam [19]. While we describe our
method in the case of the GRU network architecture, it can also

be directly applied to other gating mechanisms such as the LSTM.

The code for our method is implemented in PyTorch [28] and is
available at https://github.com/thartvigsen/sarnn.

4.3 Experiments with Time Series

First, we show each model’s performance on three classification
tasks using the following common publicly-available datasets.

Seizures [1]: From 11,800 178-timestep time series, the task is
to detect which EEGs contain evidence of epileptic seizure activity.
Since there are only 2,300 cases of such activity, we down-sample
an equal number from the negative class, resulting in a balanced
dataset with 4,600 time series. Finally, we center the time series
around zero and compute the mean value of every 10-timestep
chunk, summarizing each series into 17 final timesteps.

TwitterBuzz! [18]: To predict buzz events on Twitter, we work
with 77-dimensional time series with labels indicating whether or
not a spike in tweets on a particular topic is observed. Starting
with over 140,000 timesteps, we compute the mean of every five
steps, center the time series around zero, and break the resulting
28,000 timesteps into 2,800 length-15 sequences. We then extract
the 776 time series containing any buzz events and balance the
dataset by randomly selecting an equal number of no-buzz time
series, resulting in 1552 labeled time series.

Yahoo?: We re-frame this outlier detection dataset as a classifica-
tion problem: whether or not a sequence contains an anomaly. We
first chunk the time series into subsequences of length 25. Then, we
create a balanced dataset by selecting all subsequences with anom-
alies present along with an equal number of randomly-selected
subsequences with no anomalies to serve as our negative class.
Thus we end up with a dataset containing 418 length-25 time series.

!http://ama liglab.fr/resourcestools/datasets/buzz-prediction-in-social-media/
Zhttps://webscope.sandbox.yahoo.com/catalog php?datatype=s&did=70



Method vJAcc. x Skip % (1) Skip % (1)  Accuracy (%) (1) FLOPs (x10%) (])
GRU [8] 0 0 64.8 (1.6) 37.9
CW-RNN [20] 68.2 81 57.4 (1.9) 2.4
PhasedLSTM [27] 65.3 70 60.9 (4.0) 15.2
VC-RNN [17] 62.9 66 59.9 (2.8) 13.1
SkipRNN [5] 69.2 88 54.4 (8.1) 48
Random Updates 72.2 89 58.6 (1.9) 4.2
SA-RNN 75.0 89 63.1(1.8) 44

Table 3: Performance on the Yahoo task. For SA-RNN we use A = le 3.
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Figure 4: The effect of skip percent and 1 on accuracy. Accuracy and skip percent contrast one another, resulting in a trade-off.

4.3.1 Contrasting update patterns of alternative algorithms. We be-
gin with a qualitative visual comparison of the update-patterns gen-
erated by each baseline algorithm on the Seizures task, as shown
in Figure 3 in which black cells indicate updates. Both PhasedLSTM
and VC-RNN use partial updates, and do not make fully-binary
update decisions. For this visualization we binarize their update
patterns using a ceiling function on non-zero update decisions since
the neurons are still updated. Importantly, all algorithms are sub-
ject to update-budgets, which clearly affect the observed patterns.
For example, since the SkipRNN updates all neurons at the same
time, deciding to update has a large cost, eating through the up-
date budget quickly. Meanwhile, other methods such as our own
SA-RNN and the PhasedLSTM take much smaller bites into the
update budget since the neurons are updated independently. From
these visuals, it is clear that ours is the only method which can
adaptively learn to update independent neurons for many steps at
a time, according to the data. Thus, some neurons may update a
few times in the middle of the sequence instead of at the beginning
or end, a decision which is driven directly by the data. This allows
our method to spend its computational budget in a more informed
way, choosing to update some neurons many times while leaving
others unchanged. This process is learned entirely with respect to
the corresponding task and so naturally different patterns emerge.

4.3.2  Accuracy vs. Update-frequency. To evaluate the degree to
which neurons are updated across all methods, we introduce and
compute the Skip %, which is the average proportion of the hidden
state that has been skipped across all T steps in the input sequence:

1 T H
Skip%zl—(T*HZZuf)

t=0 [=0

(10)

A higher Skip % is preferred to a lower Skip %, indicating that the
hidden state was updated fewer times. Additionally, we compute
FLOPs, which is a standard approach to evaluating complexity in
conditionally-computed neural networks [5]. This metric measures
the number of multiplications required to compute the new states
across each testing sequence, including the networks used to output
the skip decisions. We use this metric as a surrogate for wall-clock
time, which is hardware-dependent and may fluctuate dramatically
in practice. To assess performance on these binary classification
tasks, in addition to Skip % and FLOPs, we compute the Accuracy,
or the proportion of correct label assignments, of each model on
a randomly-selected 10% hold-out testing set. Finally, Skip % and
Accuracy are contradictory objectives and so to balance these two
measures we compute the geometric mean of each model’s Accuracy

and its associated Skip %: v/Accuracy X Skip% since Accuracy and
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Figure 5: Results from the PTB Language Modeling task.
The GRU baseline consists of a set of models, each trained
with a hidden state of different dimension, equivalent to
the number of neurons updated by the state-of-the-art base-
lines. Both lower Perplexity and lower Neurons Updated is
preferred and thus the utopian solution is the bottom-left.

Skip % exist in the same range of [0, 1]. The geometric mean allows
comparison of all methods since they do not all update the exact
same number of times. Thus, this is our key performance metric
on these tasks, the upper and lower limits of which are 1.0 and 0.0,
respectively. During training, we tune each method to skip as close
to the same number of updates as possible. For all methods, we use
50-dimensional hidden states and pick the learning rate (1e~3) that
performed best on the validation set. We set £, to be standard
binary cross entropy to optimize all methods on the training data.
Across all three datasets, SA-RNN achieves on average higher
accuracy with fewer updates, as shown in Tables 1, 2, and 3. In Yahoo
and TwitterBuzz, SA-RNN maintains by far the closest accuracy
to that of the baseline GRU, which updates every hidden dimension
at every timestep. In Seizures, both SA-RNN and PhasedLSTM are
similar to the GRU, possibly due to periodic dynamics in the data.
We also show in Tables 1 and 2, the accuracy of Random Updates is
far worse than SA-RNN, indicating that the benefits of our proposed
update-strategy comes strongly from the learning. The benefits of
adaptation are not realized by the CW-RNN or PhasedLSTM.
SA-RNN has nearly-equivalent FLOPs to the other methods that
learn update patterns since each adds another affine transformation
to map data to update decisions. As shown in Table 2, adapting
the update decisions according to the input data adds a significant
amount of computation with high-dimensional inputs. To improve
this, update patterns may be predicted for multiple steps concur-
rently, depending on the input data. Given the same number of
updates, the FLOPs are equivalent between our method, VC-RNN,

and SkipRNN at the limit. It may be possible to only observe the
previous hidden state [5], however this results in perpetual lag as
information fills the hidden state, thus missing on-line adaptations.

CW-RNN consistently has extremely low FLOPs since there is no
data-driven decision making in the update patterns, instead hard-
coding them beforehand. Additionally, the recurrence function is
not a gated memory cell, which may inhibit its trainability due to
the vanishing gradient problem. However, with roughly-equivalent
Skip %, CW-RNN consistently performs far worse than the other
compared methods in terms of Accuracy.

4.3.3  Effect of budgeting neuron updates. Finally, we assess how the
performance of SA-RNN depends on its hyperparameter A, which
budgets the number of permitted updates. We investigate A values
from 0 to 0.1 on a log-scale, since empirically all updates stop when
A > 0.1 for this task. Interestingly, the relationship between accu-
racy and A depends heavily on the task, as demonstrated in in the
first row of Figure 4. For example, on the TwitterBuzz task, we ob-
serve a smooth transition from random guessing (when no updates
are allowed) to our peak accuracy (no constraint on updates). Mean-
while, on the Seizures task, there is a sharp increase from random
predictions to near-peak performance. This could be a feature of
the parameter search space, but with already-small changes to A
this indicates high-sensitivity. We also investigate how accuracy
changes as a function of the number of neurons skipped, as shown
in the second row of Figure 4. Interestingly, there are steep elbows
where very few updates are needed to observe near-peak accuracy.
This bolsters the intuition behind Residual Networks and others:
direct copying is often warranted for many dimensions.

4.4 Experiments with Language Modeling

We next evaluate each model’s language modeling capacity on
the word-level Penn TreeBank dataset (PTB) [25], which has a
vocabulary of 10,000 possible words. The dataset consists of 929,589
training words, 73,760 validation words, and 82,430 testing words.
Sentences are broken by <eos> symbols and the task is standard
language modeling: Given the current word x;, predict which of
the words in the vocabulary will come next. Importantly, this is a
different problem setting than the time series classification tasks.
This is a sequence-to-sequence modeling problem where at each
step, a new word is input and a new prediction is output. As is
standard for this task, we minimize Cross Entropy during training:

T A
1 eyz[claSSz]
Liask = —= log (7A, -
T ; 3;edll

where 7, is the logit predicted at step ¢ and class; is the index of
the correct word at step ¢.

This task has been studied heavily using a wide variety of high-
complexity models, the state-of-the-art for which are RNNs com-
prising of over 20 million parameters [11, 26, 33]. To directly test
our hypotheses regarding update-patterns in RNNs, we opt for
a simpler architecture. In our experiments, we use single-layer
GRU models and settle on 256-dimensional hidden states with 256-
dimensional embeddings (via the validation dataset), resulting in
roughly 5.5 million parameters across all models. Empirically, 512-
dimensional hidden states did not improve performance, while
using fewer dimensions decayed performance. We follow standard

(11)



Method Solved  Skip%  FLOPs (x10°)
GRU Yes 0.0 49.7
Random Updates No 25.0 249
Random Updates No 50.0 12.4
Random Updates No 90.0 4.97
SkipRNN (A = 0) Yes 2.1(3.3) 44.8
SkipRNN (A=1e¢7)  Yes  21.6(39.7) 39.6
SA-RNN (1 = 0) Yes  25.2(5.1) 37.5
SA-RNN (1=1e%)  Yes  49.6(9.6) 25.3
SA-RNN(1=1e%)  Yes  90.0 (3.9) 15.3

Table 4: Adding task with 500 timesteps. “Solved” indicates
whether or not the model successfully solved the task.

language model evaluation practices and measure Perplexity, which
quantifies how likely are the words § predicted by the model:

Perplexity = e~ T Sicolnp (i) (12)

Since minimizing Perplexity is equivalent to maximizing the proba-
bility of the correct predictions, the lower the Perplexity, the better.

In addition to the state-of-the-art alternative algorithms, in this
experiment we compare against GRU models with hidden states of
equal size to the number of hidden dimensions updated by the con-
ditional computation models (green line in Figure 5). This compari-
son tests the intuitive option of simply training a smaller densely-
updated RNN instead of updating a larger RNN more sparsely. For
this experiment, instead of Skip %, we show Neurons Updated, al-
lowing us to directly compare the alternative algorithms to these
GRU models. These two metrics are direct functions of one another
and thus measure the same property, though inversely. We train
each model under a large variety of settings, described in Section
4.2, to achieve many different numbers of neurons updated.

As shown in Figure 5, the fully-learned update patterns from
SA-RNN have a major positive impact on learning in the presence
of long sequences on this complicated task. Of all the compared
state-of-the-art methods, SA-RNN clearly preserves the low error
rate (91.3) of the fully-updating 256-dimensional hidden state while
updating fewer and fewer neurons in the hidden state on the test set.
Additionally, we note that the Perplexity of the predictions made by
smaller and smaller GRUs baseline models increases more rapidly
than most state-of-the-art alternatives as its hidden dimension de-
creases in size. This indicates the value inherent to maintaining
a large sparsely-updated hidden state instead of small densely-
updated states, partially explaining the value associated with sheer
size in the hidden state. We also note that the Perplexity of Ran-
dom Updates increases rapidly as the number of neurons update
decreases, emphasizing the necessity of learned update patterns.

Results from the Clockwork RNN are omitted from these ex-
periments as this method consistently failed to solve the problem
adequately (Perplexity ~ 1000). This is likely due to the fact that
the Clockwork RNN has no gating mechanisms, and thus the ex-
tremely long sequences in this dataset may lead to the vanishing
gradient problem solved by gating mechanisms. Notably, as ex-
pected SkipRNN performs poorly as fewer of its states are updated.
Since this task involves predicting one output per input, skipping
an entire hidden state corresponds to ignoring an input word. As
soon as words begin being skipped, the prediction of future words

is severely impacted. On the contrary, our proposed method and
the VC-RNN reduce hidden state computation by updating fewer
neurons per hidden state instead of skipping entire updates.

We additionally notice that the PhasedLSTM performs particu-
larly poorly in this setting compared to the other methods. This
may be due to this method’s unreasonable assumption of update
patterns for this particular task: periodic information flow in the
input data. This would explain the Clockwork RNN’s poor perfor-
mance as well. This negative impact may be compounded by the use
of LSTM cells instead of GRU. In principle, both perform roughly
equivalently, but this may vary on a setting-by-setting basis.

4.5 Experiments with the Adding Task

We finally evaluate SA-RNN on the Adding task, which is a founda-
tional synthetic setting for testing RNNs. In this experiment, the
network must learn to use a binary mask to sum the corresponding
values in a corresponding real-valued sequence. This task is com-
monly used to validate an RNN’s memory capacity in the presence
of extremely long-term dependencies [5, 16, 27]. The problem is
defined as follows: We are given a data sequence X consisting of
of T values (X = [xy, ..., xr]) sampled uniformly between 0 and 1
and a binary masking sequence M = [my. ..., mr] containing T — 2
zeros and 2 ones, which are located at indices i and j. The ground
truth y is computed as y = x; + x;, the sum of the random values
at indices i and j. Given a new data sequence X and a masking
sequence M, the mean squared error (MSE) between y and fp (x, m),
the prediction of the target, should be approximately 0.

We set T = 500 to stress-test long-term dependencies and use
128-dimensional hidden states, as suggested in [15]. This is a partic-
ularly challenging setting due to the large number of timesteps. To
adequately solve the problem, an RNN needs to remember the real
values at two given timesteps and disregard all others. Intuitively,
this implies that the largest amount of computation should occur
only where the signals are, and computation outside these locations
is wasted. Additionally, as is typical for the Adding task, we use the
MSE between y and fp(x, m) for Li,qc: (y(i) - fg(x(i), m(i)))2.

As shown in Table 4, SA-RNN consistently solves the adding task
with far higher Skip % and lower FLOPs than the baseline GRU and
the SkipRNN, a data-reactive method. While SkipRNN theoretically
can and should find the proper timesteps to observe, it did not solve
the problem consistently, only performing well under a couple of
choice settings which updated the vast majority of the hidden states.
However, we note that the sequence-length T = 500 used in this
experiment is ten times greater than was originally explored in [5].

5 CONCLUSIONS

In this paper, we study the problem of reducing the number of
updates to the state representations learned by Recurrent Neural
Networks, allowing for less computation per timestep. We propose
an augmentation to general RNN models, called SA-RNN, which
is carefully designed to flexibly skip updates to state dimensions
while maintaining task-specific performance through the param-
eterization of a distribution of update-likelihoods, making binary
decisions for each dimension of the hidden state at each step. This
not only reduces computation in the hidden state, but could serve



as a regularizer [21]. It thus may lend insights into and lead to the
improvement of the robustness of hidden states learned by RNNs.
We conduct extensive experiments on five publicly-available
datasets: three real-world time series classification tasks, the com-
plex Penn TreeBank language modeling task, and the classic Adding
task for gated RNNs. Each of these tests all our solution as well as
state-of-the-art alternative methods on different sequence modeling
settings, each of which is commonly solved using RNNs. Across all
five datasets, we show that SA-RNN consistently achieves stronger
performance while using fewer state updates compared to state-of-
the-art alternatives. By using three different settings (regression,
classification, language modeling), we also show that SA-RNN is
generally more generally applicable. Our results ultimately demon-
strate that selectively updating hidden states without imposing
high-bias decisions on the update-patterns is not only easier to
implement and train, but also superior in terms of performance.
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