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ABSTRACT

Recurrent Neural Networks (RNNs) are the state-of-the-art ap-

proach to sequential learning. However, standard RNNs use the

same amount of computation to generate their hidden states at each

timestep, regardless of the input data. Recent works have begun to

tackle this rigid assumption by imposing a priori-determined pat-

terns for updating the states at each step. These approaches could

lend insights into the dynamics of RNNs and possibly speed up in-

ference. However, the pre-determined nature of the current update

strategies limits their application. To overcome this, we instead

design the irst fully-learned approach, SA-RNN, that augments any

RNN by predicting discrete update patterns at the ine granularity

of individual hidden state neurons. This is achieved through the

parameterization of a distribution of update-likelihoods driven by

the input data. Unlike related methods, our approach imposes no

assumptions on the structure of the update patterns. Better yet,

our method adapts its update patterns online, allowing diferent

dimensions to be updated conditionally based on the input. To learn

which dimensions to update, the model solves a multi-objective

optimization problem, maximizing task performance while mini-

mizing the number of updates based on a uniied control. Using

ive publicly-available datasets spanning three sequential learning

settings, we demonstrate that our method consistently achieves

higher accuracy with fewer updates compared to state-of-the-art al-

ternatives. We also show the beneits of learning to sparsely-update

a large hidden state as opposed to densely-update a small hidden

state. As an added beneit, our method can be directly applied to a

wide variety of models containing RNN architectures.

CCS CONCEPTS

•Computingmethodologies→Neural networks; Supervised

learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19ś23, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412018

KEYWORDS

Recurrent Neural Networks, Conditional Computation, Sequential

Data

ACM Reference Format:

Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, and Elke Rundensteiner.

2020. Learning to Selectively Update State Neurons in Recurrent Networks.

In Proceedings of the 29th ACM International Conference on Information

and Knowledge Management (CIKM ’20), October 19ś23, 2020, Virtual Event,

Ireland.ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3340531.

3412018

1 INTRODUCTION

Background on Sequential Learning. Recurrent Neural Net-

works (RNN) are the state-of-the-art approach to many sequen-

tial learning problems including language modeling [26], machine

translation [36], and sequence generation [12, 37]. However, RNNs

typically rely on often computationally-taxing updates to their en-

tire hidden state at each timestep, a cost that grows with hidden

state size. As demonstrated by the success of gating mechanisms

such as the GRU [8] and LSTM [16], all dimensions rarely need to be

re-computed from scratch at each timestep. By discretely selecting

which dimensions to update at each timestep via a learned update

pattern, RNNs with a large hidden state could potentially be trained

with lower computational requirements [3, 27], inference in long

RNNs may be expedited [5], and hidden representations might be

made more robust to misleading inputs such as outliers or noise.

State-of-the-Art andLimitations. Selective activation in RNNs

has recently gained attention in the literature [5, 17, 20, 27, 31]. The

most popular methods hand-craft speciic update patterns, dictating

which dimensions of the hidden state will update at which timesteps

according to prior knowledge of a task [20, 27]. This imposes un-

due challenges in implementation, limits extensibility, and ignores

the data-driven curation of information-low through the RNN, a

signature property of recurrent memory cells [8, 16]. More recent

methods learn to react to input data but impose strict relationships

between the update patterns across both hidden dimensions and

time [5, 17, 31]. Designed for tasks with clear hierarchical compo-

nents, such as modeling character-level text [9, 22], this hierarchical

structure in update patterns may limit the expressiveness of learned

update patterns for tasks where this assumption is not applicable.

Problem Description. Speciically, we study the problem of

generating a binary update-pattern for the hidden states learned by

an RNN given input sequential data. The learned update-pattern

deines which dimensions of the hidden state to update at each



timestep, similar to the motivation for Residual Networks [14, 34]

and Highway Networks [32, 38]. Ideally, only a small subset of the

hidden state’s dimensions needs to be updated at each timestep,

which is especially important for high-dimensional hidden states.

In this way, powerful representations can be learned while both

solving a sequential learning task and minimizing the number of

updates. This can result in a reduction of the overall computational

time. A solution to this multi-objective optimization problem should

have a comparable accuracy to a traditional constantly-updating

RNN, while at the same time saving the majority of (unnecessary)

computation steps along the way, ultimately targeting accelerated

training and inference [27].

Technical Challenges. Despite the potential for reducing com-

putation required by RNNs, learning update patterns is a challeng-

ing problem for the three following reasons:

• First, binary-output neurons making discrete decisions, such

as whether or not to update a hidden state dimension, in

the interior of a neural network is a classic challenge to

gradient-based learning. Such decisions are by nature non-

diferentiable and therefore back-propagation cannot be di-

rectly used for training [3]. To generate lexible and data-

reactive update patterns (which are by nature binary), the

network must learn to make such discrete decisions.

• Second, the quality of an update pattern is unsupervised and

thus the only feedback available is task-speciic. This lack of

supervision discourages a priori assumptions of the update

patterns, which may not be optimal for a particular task.

• Third, task performance and sparse updates to the hidden

state are contradictory goals. An RNN that never updates its

hidden state will by deinition learn nothing about the input

sequence. Balancing these two targets is a multi-objective

optimization problem, which must be balanced case-by-case.

Our Proposed Approach: SA-RNN. To address the aforemen-

tioned challenges, we propose the Selective-Activation RNN, or SA-

RNN, which parameterizes a distribution of update-likelihoods, one

per hidden state dimension, from which update-decisions can be

made at each timestep, removing the need for a priori assumptions

on the form of the update decisions. We achieve this by augment-

ing an RNN with an update Coordinator that adaptively controls

which coordinate directions to update in the hidden state on the

ly. The Coordinator is modeled as a lightweight neural network

that observes incoming data at each timestep and makes a discrete

decision about whether or not enough information is stored in each

individual hidden dimension to warrant an update. Subsequently,

each hidden dimension is either computed by the RNN or copied

from the previous timestep, avoiding the RNN update.

The Coordinator is kept as simple as possible so the complexity

of the RNN can scale without outsourcing computation to another

network, similar to the controller in [13]. In contrast to other recent

approaches [5, 17, 20, 24, 27, 31] we impose no assumptions about

which individual hidden dimensions should or should not be up-

dated together. Instead, we illustrate that using an entirely-learned

approach indeed results in complex task-speciic update patterns.

Contributions Our contributions can be described as follows:

• Ours is the irst method to predict fully-learned update pat-

terns for RNNs. Our approach relaxes assumptions of previ-

ous methods and demonstrates that this strategy is a feasible

and lower-bias approach to reducing computation in RNNs.

• We compare against four state-of-the-art methods and two

baselines on ive datasets spanning three sequential learning

settings. On all tasks, SA-RNN achieves better task perfor-

mance while using far fewer updates to its hidden states.

• Our results show that sparsely updating a large hidden state

is superior to densely updating small hidden states in RNNs.

2 RELATED WORK

Recurrent neuron update patterns have gained much interest in

recent literature [9, 17, 20, 24, 27, 31]. All of these methods boast

fewer updates to the hidden states than standard RNN architectures.

However, there are several limitations of these methods.

First, the most popular methods rely on extensively-handcrafted

update patterns consisting of periodic neuron activations [20, 24,

27]. This requires either prior knowledge of sampling frequencies

or seasonal patterns present in the data, reducing the potential

extension to many sequential learning problems. Clockwork RNN

[20] requires hand-picking rates at which to update ixed-sized

contiguous blocks of a vanilla RNN’s hidden state. PhasedLSTM

[27] and its variant, HE-LSTM [24], sample rates at which to update

independent neurons, then learn individual periods for each neu-

ron on the training set which remains ixed during testing. These

input-agnostic periodic updates are ixed prior to inference and

thus remain rigid, failing to adapt their update patterns, regardless

of the input data. The choice of update periods heavily impacts

the performance of the model, and sequences with irregular infor-

mation low are challenging to model without massive states and

carefully hand-picked parameters.

Second, more recent works allow for data-reactive update pat-

terns [5, 17, 31] but assume temporal hierarchies in the input se-

quences and typically study settings where this efect is exceedingly

obvious (for example, character-level sentence modeling [9, 22]).

In many real-world settings, temporal hierarchies are often subtle

and forcing this assumption into the architectural design may limit

application. VC-RNN [17] predicts a proportion � ∈ [0, 1] of the

hidden state to update, then updates that proportion of neurons,

ordered by index. SkipRNN [5] predicts a binary value � ∈ {0, 1},

deciding whether or not to update the entire hidden state, updating

all neurons together in lock-step. SkipRNN also assumes that the

likelihood of updating the state increases monotonically, which

may not be appropriate for a variety of settings. This assumption

that one neuron’s update should be conditional to its neighbors

is unnecessary since the dimensions of the hidden state are not

computed with respect to their location in the network, and does

not need to be relected in the update pattern.

Our work is also related to conditional computation in neural

networks, which selectively activates diferent sub-networks of

large neural networks, conditioned on input data [2, 7, 23]. This area

has recently gained much interest as it could extend the application

of deep neural networks without increasing the size of the models.
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Figure 1: Computing new hidden states with SA-RNN. Prior to computing ℎ� , the hidden state at timestep � , the Coordinator C�
predicts a binary mask given current input �� and previous hidden state ℎ�−1, determining which dimensions of ℎ� should be

computed anew. The Recurrence function R� is typically a gated recurrent memory cell, such as a GRU or LSTM. C� is modeled

as a light-weight neural network and can augment a wide variety of RNN architectures. In this example, when computing ℎ� ,

hidden dimensions 1 and 4 are updated, while dimensions 2 and 3 remain unchanged. This igure is best viewed in color.

In many cases, when a concept can be represented by only a sub-

network of a large neural network, computation can be preserved

by learning to activate only the said sub-network [29, 30].

3 SELECTIVE ACTIVATION FOR RECURRENT
NEURAL NETWORKS

We introduce the Selective-Activation RNN, or SA-RNN, a broadly-

applicable augmentation to RNNs which minimizes the computa-

tion required for RNNs by facilitating unimpeded information-low

across timesteps for individual dimensions of the hidden state. At

its core, SA-RNN learns a data-driven strategy for discretely read-

ing and writing information to the latent state space through the

learned parameterization of an update-likelihood distribution. De-

spite leaving hidden dimension update patterns independent from

one another, complex strategies still arise naturally depending on

the sequential learning task at hand. In this section, we describe the

training process of SA-RNN with �-dimensional hidden states on

sequences of length � for input data � with � variables. We omit

biases from aine transformation equations and use notation for

one training instance for ease of readability. An overview of the

forward pass through SA-RNN is shown in Figure 1.

3.1 Computing Hidden States

RNNs compute a sequence of hidden states one timestep at a time

[10], each computed by a parametric transition function R(·): ℎ� =

R(ℎ�−1, �� |�� ). The result is a sequence of vector representations

� = {ℎ1, . . . , ℎ� } where each ℎ� ∈ R� represents temporal dy-

namics of an input sequence up to step � with respect to a task,

preserving not only temporal dependencies but also the ordering

of the inputs.

The most popular augmentations to the RNN add a series of gates

between ℎ�−1 and ℎ� to alleviate the vanishing gradient problem

[4]. For example, the Gated Recurrent Unit (GRU) is composed of

an intuitive set of gating functions that balance newly-computed

hidden states ℎ� with previous states ℎ�−1:

�� = � (��ℎ�−1 +���� ) (1)

�� = � (��ℎ�−1 +���� ) (2)

�� = � (���� +�� (�� ⊙ ℎ�−1)) (3)

ℎ̃� = (1 − �� ) ⊙ ℎ�−1 + �� ⊙ �� (4)

where� s and � s are matrices of learnable parameters of shape

� ×� and � ×� respectively, �� ∈ R
� is the input data at timestep

� , ⊙ represents the element-wise multiplication, � represents the

sigmoid function, and � represents a non-linearity (traditionally

the hyperbolic tangent function). Its design is motivated heavily

by the LSTM [16]. Similar to the LSTM, the GRU performs soft

read/write operations, recomputing the entire vector ℎ� at each

timestep since gate � ∈ [0, 1]� , the space of vectors with values

inclusively between 0 and 1. Instead, we propose that all dimensions

do not need to be updated at each timestep, as the position of the

hidden state in many dimensions may often encode enough of the

modeled input. In the next section, we describe how to compute ℎ� ,

the inal hidden state for timestep � which is subsequently used to

compute ℎ�+1.

3.2 Selective Neuron Activation

To reduce computation required to generate state representations,

we update representations via a sequence of binary decisions ś at

each step, each neuron will either be updated or not. Intuitively
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Figure 3: Sample skipping patterns from compared methods for the Seizures task with 50-dimensional state representations.

Black squares indicate update while white squares indicate copy. Time progresses from left to right. The standard RNN would

be all black.

prediction, and � is the label.

� (� ) =
1

�

�
∑

�=1

(

L���� (�
(�) , �̂ (�) ) + �

�
∑

�=1

�̃��

)

(9)

� tunes the emphasis on the minimization of �̃, the update proba-

bility, and in practice it is reasonable to set � = 0, encouraging the

model to make update decisions solely with respect to the learning

task. As � is increased and predicted update likelihoods thus de-

crease, the hidden dimension is update fewer times until eventually

ℎ0 = ℎ� where the hidden state is not updated at all. Additionally,

since Ltask difers by task, the appropriate range for � may vary.

4 EXPERIMENTS

We compare the performance of SA-RNN to four state-of-the-art

alternatives and two baselines. Since RNNs are the primary solu-

tion to a wide variety of problem settings, we use three separate

sequential learning settings, each of which tests a diferent capacity

of RNNs while reducing the number of updates to their hidden

states using each compared method. First, we use three common

publicly-available time series classiication tasks. Here, an RNN

must summarize the relevant information in an entire sequence

with respect to a class label prediction. Second, we use a common

and complex language modeling task, requiring an RNN to predict

future words in a long sentence, one at a time. Third, we use the

classic Adding task to evaluate long-term dependency modeling in

gated RNNs. Across all tasks, we demonstrate that SA-RNN consis-

tently achieves superior task-speciic performance while updating

its hidden states fewer times than the state-of-the-art alternatives.

4.1 Alternative Algorithms

We compare SA-RNN to two baselines and four recent state-of-the-

art related methods for computing update-patterns for RNNs:

• GRU [8]: The Gated Recurrent Unit (GRU) is a widely-used

gated RNN architecture and is described in detail in Section

3.1. The entire hidden state is updated at every timestep.

• Random Updates: This method is efectively the random

version of our proposal. At each step, random hidden dimen-

sions are updated. This is similar to Zoneout regularization

[21] however we maintain random updating during testing.

• Clockwork RNN [20]: Hidden dimensions are updated in

groups at pre-determined łclockž rates. For example, the irst

ive dimensions in the hidden state may update every step

while the second ive neurons update every 3 steps. This

pattern remains ixed during training and testing.

• Phased LSTM [27]: Hidden dimensions are updated inde-

pendently at sampled rates where the user deines the distri-

bution from which to sample. Each hidden dimension has

its own update pattern. During testing, the update periods

remain unchanged. The dynamics of the updates are user-

designed.

• VC-RNN [17]: A value � ∈ [0, 1] is predicted at each step

indicating the proportion of the hidden state to update. Then,

the irst � ∗� dimensions are updated, imposing a hierarchi-

cal structure to the update patterns. While optimizing this

method, a łtargetž update proportion is included in the loss

function, penalizing deviations from this target value. This

method only uses the irst � ∗ � neurons in the hidden state

at each step.

• SkipRNN [5]: A value � ∈ {0, 1} is predicted at each step.

Hidden dimensions update together in lock-step according

to � so the entire state is either modiied or left unchanged

at each step. Additionally, update likelihood increases mono-

tonically after each update, regardless of the input data.

In our experiments all methods are implemented using GRU update

equations except for the PhasedLSTM, which is designed specii-

cally for LSTM cells. VC-RNN and PhasedLSTM both employ soft



Method
√

Acc. × Skip % (↑) Skip % (↑) Accuracy (%) (↑) FLOPs (×105) (↓)

GRU [8] 0 0 84.7 (0.8) 25.7

CW-RNN [20] 73.7 81 67.1 (0.4) 1.6

PhasedLSTM [27] 74.9 69 81.4 (1.4) 10.6

VC-RNN [17] 68.7 66 71.6 (3.4) 8.9

SkipRNN [5] 69.2 82 58.4 (5.5) 4.8

Random Updates 62.3 76 51.1 (0.1) 6.2

SA-RNN 78.8 76 81.6 (0.6) 6.4

Table 1: Performance on the Seizures task.
√

Accuracy × Skip% is the geometric mean of Accuracy and Skip Percent. The irst

section contains the baseline GRU, the second contains non-reactive methods, the third contains learned methods, and the

fourth is our proposed method and random baseline. For SA-RNN we use � = 2�−4.

Method
√

Acc. × Skip % (↑) Skip % (↑) Accuracy (%) (↑) FLOPs (×104) (↓)

GRU [8] 0 0 82.8 (2.2) 56.9

CW-RNN [20] 72.1 81 64.2 (0.8) 3.65

PhasedLSTM [27] 70.2 70 70.5 (1.8) 22.8

VC-RNN [17] 61.9 66 58.1 (2.2) 19.7

SkipRNN [5] 72.2 87 60.0 (1.1) 7.5

Random Updates 61.2 76 49.4 (0.7) 13.1

SA-RNN 76.1 77 75.4 (3.0) 25.2

Table 2: Performance on the TwitterBuzz task. For SA-RNN we use � = 2�−3.

updates to the dimensions of the hidden state, simply altering the

scale of the contribution of previous states to current states, similar

to the update gates in LSTMs and GRUs. To compute their numbers

of updates, we discretize their inal masks via a ceiling function

since a reduced-size update is still an update.

4.2 Implementation Details

For the Time Series Classiication and Adding task experiments,

we use 80% of the dataset for training, 10% for validation, and 10%

for testing. However, for the PTB dataset, there are given test sets.

The training data are used to tune the parameters of the models;

the validation data are used to validate hyperparameter selection;

while the testing data are inally used to report inal performances.

We randomly repeat this process ten times to compute conidence

intervals for all performance metrics.

For � selection in SkipRNN and our proposed method, SA-RNN,

we search in a log-space ranging from 0.0 to 0.1 in 11 steps. On

the Adding, Seizures, Yahoo, and Twitter tasks, we found that

very-small � values covered the entire Skip % space, from 0 to

100, for SA-RNN. For PTB, however, larger � values were required,

increasing up to ∼ 5.0 due to the diferences in the scale of Ltask.

For all methods on all tasks, we search for learning rates from a

log-space ranging from 1�−05 to 1�−01 using the validation datasets.

All models are optimized using Adam [19]. While we describe our

method in the case of the GRU network architecture, it can also

be directly applied to other gating mechanisms such as the LSTM.

The code for our method is implemented in PyTorch [28] and is

available at https://github.com/thartvigsen/sarnn.

4.3 Experiments with Time Series

First, we show each model’s performance on three classiication

tasks using the following common publicly-available datasets.

Seizures [1]: From 11,800 178-timestep time series, the task is

to detect which EEGs contain evidence of epileptic seizure activity.

Since there are only 2,300 cases of such activity, we down-sample

an equal number from the negative class, resulting in a balanced

dataset with 4,600 time series. Finally, we center the time series

around zero and compute the mean value of every 10-timestep

chunk, summarizing each series into 17 inal timesteps.

TwitterBuzz1 [18]: To predict buzz events on Twitter, we work

with 77-dimensional time series with labels indicating whether or

not a spike in tweets on a particular topic is observed. Starting

with over 140,000 timesteps, we compute the mean of every ive

steps, center the time series around zero, and break the resulting

28,000 timesteps into 2,800 length-15 sequences. We then extract

the 776 time series containing any buzz events and balance the

dataset by randomly selecting an equal number of no-buzz time

series, resulting in 1552 labeled time series.

Yahoo2: We re-frame this outlier detection dataset as a classiica-

tion problem: whether or not a sequence contains an anomaly. We

irst chunk the time series into subsequences of length 25. Then, we

create a balanced dataset by selecting all subsequences with anom-

alies present along with an equal number of randomly-selected

subsequences with no anomalies to serve as our negative class.

Thus we end up with a dataset containing 418 length-25 time series.

1http://ama.liglab.fr/resourcestools/datasets/buzz-prediction-in-social-media/
2https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70



Method
√

Acc. × Skip % (↑) Skip % (↑) Accuracy (%) (↑) FLOPs (×104) (↓)

GRU [8] 0 0 64.8 (1.6) 37.9

CW-RNN [20] 68.2 81 57.4 (1.9) 2.4

PhasedLSTM [27] 65.3 70 60.9 (4.0) 15.2

VC-RNN [17] 62.9 66 59.9 (2.8) 13.1

SkipRNN [5] 69.2 88 54.4 (8.1) 4.8

Random Updates 72.2 89 58.6 (1.9) 4.2

SA-RNN 75.0 89 63.1 (1.8) 4.4

Table 3: Performance on the Yahoo task. For SA-RNN we use � = 1�−3.
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Figure 4: The efect of skip percent and � on accuracy. Accuracy and skip percent contrast one another, resulting in a trade-of.

4.3.1 Contrasting update paterns of alternative algorithms. We be-

gin with a qualitative visual comparison of the update-patterns gen-

erated by each baseline algorithm on the Seizures task, as shown

in Figure 3 in which black cells indicate updates. Both PhasedLSTM

and VC-RNN use partial updates, and do not make fully-binary

update decisions. For this visualization we binarize their update

patterns using a ceiling function on non-zero update decisions since

the neurons are still updated. Importantly, all algorithms are sub-

ject to update-budgets, which clearly afect the observed patterns.

For example, since the SkipRNN updates all neurons at the same

time, deciding to update has a large cost, eating through the up-

date budget quickly. Meanwhile, other methods such as our own

SA-RNN and the PhasedLSTM take much smaller bites into the

update budget since the neurons are updated independently. From

these visuals, it is clear that ours is the only method which can

adaptively learn to update independent neurons for many steps at

a time, according to the data. Thus, some neurons may update a

few times in the middle of the sequence instead of at the beginning

or end, a decision which is driven directly by the data. This allows

our method to spend its computational budget in a more informed

way, choosing to update some neurons many times while leaving

others unchanged. This process is learned entirely with respect to

the corresponding task and so naturally diferent patterns emerge.

4.3.2 Accuracy vs. Update-frequency. To evaluate the degree to

which neurons are updated across all methods, we introduce and

compute the Skip %, which is the average proportion of the hidden

state that has been skipped across all� steps in the input sequence:

Skip % = 1 −

(

1

� ∗ �

�
∑

�=0

�
∑

�=0

���

)

(10)

A higher Skip % is preferred to a lower Skip %, indicating that the

hidden state was updated fewer times. Additionally, we compute

FLOPs, which is a standard approach to evaluating complexity in

conditionally-computed neural networks [5]. This metric measures

the number of multiplications required to compute the new states

across each testing sequence, including the networks used to output

the skip decisions. We use this metric as a surrogate for wall-clock

time, which is hardware-dependent and may luctuate dramatically

in practice. To assess performance on these binary classiication

tasks, in addition to Skip % and FLOPs, we compute the Accuracy,

or the proportion of correct label assignments, of each model on

a randomly-selected 10% hold-out testing set. Finally, Skip % and

Accuracy are contradictory objectives and so to balance these two

measures we compute the geometric mean of eachmodel’sAccuracy

and its associated Skip %:
√

Accuracy × Skip% since Accuracy and





Method Solved Skip % FLOPs (×106)

GRU Yes 0.0 49.7

Random Updates No 25.0 24.9

Random Updates No 50.0 12.4

Random Updates No 90.0 4.97

SkipRNN (� = 0) Yes 2.1 (3.3) 44.8

SkipRNN (� = 1�−7) Yes 21.6 (39.7) 39.6

SA-RNN (� = 0) Yes 25.2 (5.1) 37.5

SA-RNN (� = 1�−5) Yes 49.6 (9.6) 25.3

SA-RNN (� = 1�−4) Yes 90.0 (3.9) 15.3

Table 4: Adding task with 500 timesteps. łSolvedž indicates

whether or not the model successfully solved the task.

language model evaluation practices and measure Perplexity, which

quantiies how likely are the words �̂ predicted by the model:

Perplexity = �−
1
�

∑

�

�=0 ln� (�̂� ) (12)

Since minimizing Perplexity is equivalent to maximizing the proba-

bility of the correct predictions, the lower the Perplexity, the better.

In addition to the state-of-the-art alternative algorithms, in this

experiment we compare against GRU models with hidden states of

equal size to the number of hidden dimensions updated by the con-

ditional computation models (green line in Figure 5). This compari-

son tests the intuitive option of simply training a smaller densely-

updated RNN instead of updating a larger RNN more sparsely. For

this experiment, instead of Skip %, we show Neurons Updated, al-

lowing us to directly compare the alternative algorithms to these

GRU models. These two metrics are direct functions of one another

and thus measure the same property, though inversely. We train

each model under a large variety of settings, described in Section

4.2, to achieve many diferent numbers of neurons updated.

As shown in Figure 5, the fully-learned update patterns from

SA-RNN have a major positive impact on learning in the presence

of long sequences on this complicated task. Of all the compared

state-of-the-art methods, SA-RNN clearly preserves the low error

rate (91.3) of the fully-updating 256-dimensional hidden state while

updating fewer and fewer neurons in the hidden state on the test set.

Additionally, we note that the Perplexity of the predictions made by

smaller and smaller GRUs baseline models increases more rapidly

than most state-of-the-art alternatives as its hidden dimension de-

creases in size. This indicates the value inherent to maintaining

a large sparsely-updated hidden state instead of small densely-

updated states, partially explaining the value associated with sheer

size in the hidden state. We also note that the Perplexity of Ran-

dom Updates increases rapidly as the number of neurons update

decreases, emphasizing the necessity of learned update patterns.

Results from the Clockwork RNN are omitted from these ex-

periments as this method consistently failed to solve the problem

adequately (Perplexity ∼ 1000). This is likely due to the fact that

the Clockwork RNN has no gating mechanisms, and thus the ex-

tremely long sequences in this dataset may lead to the vanishing

gradient problem solved by gating mechanisms. Notably, as ex-

pected SkipRNN performs poorly as fewer of its states are updated.

Since this task involves predicting one output per input, skipping

an entire hidden state corresponds to ignoring an input word. As

soon as words begin being skipped, the prediction of future words

is severely impacted. On the contrary, our proposed method and

the VC-RNN reduce hidden state computation by updating fewer

neurons per hidden state instead of skipping entire updates.

We additionally notice that the PhasedLSTM performs particu-

larly poorly in this setting compared to the other methods. This

may be due to this method’s unreasonable assumption of update

patterns for this particular task: periodic information low in the

input data. This would explain the Clockwork RNN’s poor perfor-

mance as well. This negative impact may be compounded by the use

of LSTM cells instead of GRU. In principle, both perform roughly

equivalently, but this may vary on a setting-by-setting basis.

4.5 Experiments with the Adding Task

We inally evaluate SA-RNN on the Adding task, which is a founda-

tional synthetic setting for testing RNNs. In this experiment, the

network must learn to use a binary mask to sum the corresponding

values in a corresponding real-valued sequence. This task is com-

monly used to validate an RNN’s memory capacity in the presence

of extremely long-term dependencies [5, 16, 27]. The problem is

deined as follows: We are given a data sequence � consisting of

of � values (� = [�0, . . . , �� ]) sampled uniformly between 0 and 1

and a binary masking sequence� = [�0 . . . . ,�� ] containing� − 2

zeros and 2 ones, which are located at indices � and � . The ground

truth � is computed as � = �� + � � , the sum of the random values

at indices � and � . Given a new data sequence � and a masking

sequence� , the mean squared error (MSE) between � and �� (�,�),

the prediction of the target, should be approximately 0.

We set � = 500 to stress-test long-term dependencies and use

128-dimensional hidden states, as suggested in [15]. This is a partic-

ularly challenging setting due to the large number of timesteps. To

adequately solve the problem, an RNN needs to remember the real

values at two given timesteps and disregard all others. Intuitively,

this implies that the largest amount of computation should occur

only where the signals are, and computation outside these locations

is wasted. Additionally, as is typical for the Adding task, we use the

MSE between � and �� (�,�) for Ltask: (�
(�) − �� (�

(�) ,� (�) ))2.

As shown in Table 4, SA-RNN consistently solves the adding task

with far higher Skip % and lower FLOPs than the baseline GRU and

the SkipRNN, a data-reactive method. While SkipRNN theoretically

can and should ind the proper timesteps to observe, it did not solve

the problem consistently, only performing well under a couple of

choice settings which updated the vast majority of the hidden states.

However, we note that the sequence-length � = 500 used in this

experiment is ten times greater than was originally explored in [5].

5 CONCLUSIONS

In this paper, we study the problem of reducing the number of

updates to the state representations learned by Recurrent Neural

Networks, allowing for less computation per timestep. We propose

an augmentation to general RNN models, called SA-RNN, which

is carefully designed to lexibly skip updates to state dimensions

while maintaining task-speciic performance through the param-

eterization of a distribution of update-likelihoods, making binary

decisions for each dimension of the hidden state at each step. This

not only reduces computation in the hidden state, but could serve



as a regularizer [21]. It thus may lend insights into and lead to the

improvement of the robustness of hidden states learned by RNNs.

We conduct extensive experiments on ive publicly-available

datasets: three real-world time series classiication tasks, the com-

plex Penn TreeBank language modeling task, and the classic Adding

task for gated RNNs. Each of these tests all our solution as well as

state-of-the-art alternative methods on diferent sequence modeling

settings, each of which is commonly solved using RNNs. Across all

ive datasets, we show that SA-RNN consistently achieves stronger

performance while using fewer state updates compared to state-of-

the-art alternatives. By using three diferent settings (regression,

classiication, language modeling), we also show that SA-RNN is

generally more generally applicable. Our results ultimately demon-

strate that selectively updating hidden states without imposing

high-bias decisions on the update-patterns is not only easier to

implement and train, but also superior in terms of performance.
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