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ABSTRACT: Stirring in the subsurface Southern Ocean is examined using RAFOS float trajectories, collected during the
Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), along with particle trajectories from a regional eddy
permitting model. A central question is the extent to which the stirring is local, by eddies comparable in size to the pair separation, or
nonlocal, by eddies at larger scales. To test this, we examine metrics based on averaging in time and in space. The model particles
exhibit nonlocal dispersion, as expected for a limited resolution numerical model that does not resolve flows at scales smaller than
~10 days or ~20-30 km. The different metrics are less consistent for the RAFOS floats; relative dispersion, kurtosis, and relative
diffusivity suggest nonlocal dispersion as they are consistent with the model within error, while finite-size Lyapunov exponents (FSLE)
suggests local dispersion. This occurs for two reasons: (i) limited sampling of the inertial length scales and a relatively small number of
pairs hinder statistical robustness in time-based metrics, and (ii) some space-based metrics (FSLE, second-order structure functions),
which do not average over wave motions and are reflective of the kinetic energy distribution, are probably unsuitable to infer
dispersion characteristics if the flow field includes energetic wave motions that do not disperse particles. The relative diffusivity, which
is also a space-based metric, allows averaging over waves to infer the dispersion characteristics. Hence, given the error characteristics
of the metrics and data used here, the stirring in the DIMES region is likely to be nonlocal at scales of 5-100 km.
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1. Introduction consideration. At length scales greater than the size of dominant
mesoscale eddies the stirring can approximately be expressed
as enhanced molecular diffusion with a constant eddy diffusivity
that is O(1000) m?s~ ! (Zhurbas and Oh 2003; Koszalka et al.
2011; LaCasce et al. 2014; Balwada et al. 2016b; Roach et al.
2016, 2018). On the other hand, at scales smaller than the
typical mesoscale eddies, this eddy diffusivity generally in-
creases with the length scale (Richardson 1926; Okubo 1971).
At these scales two qualitatively different regimes are possible,
which can be categorized based on how stirring influences the rate of
Lagrangian particle pair spreading or relative dispersion—nonlocal
and local dispersion (Bennett 1984). Nonlocal dispersion occurs
when the kinetic energy spectrum is steeper than k> in this case

Oceanic flows are turbulent over a large range of length
scales and are very efficient at stirring tracers along isopycnals,
enhancing the effects of molecular diffusion by many orders of
magnitude (Garrett 2006). The parameterization of this lateral
stirring is key to the proper representation of the oceanic
transport of heat, carbon, nutrients, and other climatically
important tracers in climate models (e.g., Gnanadesikan et al.
2015; Fox-Kemper et al. 2013). The details of these parame-
terizations are particularly important in the Southern Ocean,
where the surface is connected to the deep ocean via sloping
isopycnals and along-isopycnal stirring plays a key role in biological
production (Uchida et al. 2019, 2020) and ventilation of the deep

ocean (Marshall and Speer 2012; Abernathey and Ferreira 2015;
Balwada et al. 2018; Jones and Abernathey 2019). To ensure the
fidelity of these parameterizations, it is essential that quantitative
estimates of stirring are obtained using in situ measurements.
The nature and strength of the lateral or along-isopycnal
eddy stirring in the ocean depends on the length scales under
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stirring is dominated by the largest eddies. Under local dispersion,
in contrast, stirring is dominated by eddies comparable in scale to
the size of the cluster or tracer patch. Knowledge about which
regime is active in the ocean can help to define parameterizations
of stirring for use in eddy-permitting models (Cushman-Roisin
2008; Kémpf and Cox 2016).

Observational characterization of the stirring regime is
practically difficult, and requires dense sampling with pairs of
Lagrangian instruments, which is why most previous studies
have focused on the surface ocean using surface drifters
(LaCasce and Ohlmann 2003; Koszalka et al. 2009; Lumpkin
and Elipot 2010; Poje et al. 2014; van Sebille et al. 2015; Sansén
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2015; Beron-Vera and LaCasce 2016; Corrado et al. 2017;
Essink et al. 2019). These studies have indicated that a single
universal stirring regime is not present everywhere in the sur-
face ocean; some regions show nonlocal dispersion up to
roughly the deformation scale and others show local dispersion
over the same scale range. Sometimes different metrics also
lead to contrasting results in the same region. The large-scale
dispersion varies as well, with some suggesting a transition to
diffusive spreading (dispersion grows linearly in time) (e.g.,
Koszalka et al. 2009) and other studies suggesting super-
diffusive motion (dispersion grows faster than linear in time)
most likely due to advection by the large-scale shear (e.g.,
LaCasce and Ohlmann 2003).

Deep ocean studies of stirring, which are very rare, rely on
sampling the flow using either an anthropogenic tracer (e.g.,
SFs) (Ledwell et al. 1998; Watson et al. 2013) or RAFOS floats
(Rossby et al. 1986). While a tracer is an excellent means for
measuring diapycnal diffusivities (Ledwell et al. 2000; Watson
et al. 2013; Ledwell et al. 2016), sampling the details of the
lateral spatiotemporal evolution of the tracer by ships is not
usually possible and thus limits its usefulness for diagnosing the
scale dependence of lateral stirring. RAFOS floats (Swift and
Riser 1994), which drift at depth and are acoustically tracked,
can be used to characterize and quantify the properties of
stirring by evaluating how rapidly float pairs disperse. We are
aware of only two previous studies that reported on relative
dispersion in the deep ocean (LaCasce and Bower 2000;
Ollitrault et al. 2005), both in the North Atlantic Ocean at
depths of about 1 km. LaCasce and Bower (2000) concluded
the dispersion in the western Atlantic was either local or driven
by mean flow shear up to scales of approximately 100km, while
the particle pairs separated diffusively in the eastern Atlantic.
Ollitrault et al. (2005) also reported local stirring between
40 and 300 km, and some indications of nonlocal stirring at
shorter scales.

In this study, we examine stirring at length scales of
5-100 km and depths of 500-2000 m in the southeast Pacific
Ocean sector of the Antarctic Circumpolar Current (ACC),
using RAFOS floats deployed during the Diapycnal and
Isopycnal Mixing Experiment in the Southern Ocean (DIMES)
(Balwada et al. 2016b). The floats were deployed in pairs and
triplets to resolve smaller-scale dispersion. This work builds on
the studies by Tulloch et al. (2014), LaCasce et al. (2014), and
Balwada et al. (2016b), which had reported on the eddy diffusivity
in the DIMES experiment using both tracer and float observa-
tions at scales larger than the dominant mesoscale eddies.

To quantify the flow variability and stirring in the DIMES
region we use several different metrics. We start by quantifying
the flow variability at different scales using Lagrangian fre-
quency spectra and second-order structure functions in section 3.
Stirring or particle dispersion is a result of the integrated effect
of the flow variability, and is usually quantified and categorized
as local versus nonlocal using metrics that either quantify
temporal evolution or spatial structure (Table 1). The pair
separation probability distribution function (PDF), and its
moments, e.g., the relative dispersion and kurtosis, fall under
the time-based metrics. These quantify the temporal evolution
of the separation between pairs of particles and are discussed
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in section 4. The relative diffusivity, discussed in section 5,
quantifies the rate of change of relative dispersion. As the
averages are conditioned by separation, the relative diffusivity
is a space-based metric. Finite-size Lyapunov exponents (FSLE),
discussed in section 6, quantify the rate at which particle pairs
at different scales separate and is also a space-based metric.
Space-based metrics advantageously employ more and more
pairs at larger separations, since the same pairs usually visit
the larger scales more often than the smaller scales. In contrast,
the time-based metrics are limited at all time by the number of
samples at the initial pair separation. A summary of the dif-
ferent metrics is presented in Table 1, and Table 2 provides a
quick overview of the results.

2. Data and methods
a. Lagrangian trajectories

We examine two sets of Lagrangian trajectories: RAFOS floats
released during the DIMES experiment (Balwada et al. 2016b),
and numerical particles advected in a MITgem simulation of the
southeast Pacific Ocean and Scotia Sea (LaCasce et al. 2014).

The DIMES RAFOS floats, referred to as the floats in the
rest of the manuscript, were released in 2009 and 2010 along
the 105°W meridian and between 54° and 60°S, spanning the
ACC at this F1 location (Figs. 1a,c). Acoustic tracking was
used to determine their position once per day. The motion of
the floats was primarily along isobars, and they were spread
over a depth range of 500-2000 m, with the greatest sampling
near depths of 750 and 1400 m (Fig. 1d). In this study we
grouped the floats into two depth bins: shallow (500-1000 m)
and deep (1000-1800 m), and only considered segments of the
trajectories to the west of 80°W. The data to the east of 80°W, in
the Scotia Sea, are not considered because the floats there
rarely came within 100 km of each other.

The MITgem numerical particles, referred to as particles
in the rest of the manuscript, are the same as those used in
LaCasce et al. (2014) (Fig. 1b). The velocity fields used to ad-
vect the particles were simulated using the MITgem with a
horizontal resolution of 5 km and 70 vertical levels. The model
domain spanned 160°-20°W and 75°-35°S, and was forced at the
lateral boundaries by the Ocean Comprehensive Atlas (OCCA;
Forget 2010) and at the surface by ECMWF ERA-Interim 6h
wind fields (Berrisford et al. 2009). Details of the simulation
and comparison to hydrography can be found in Tulloch et al.
(2014). One hundred particles were released along 150°W at
20 vertical levels, between 75° and 60°S, at the numerical grid
separation of 5 km every 10 days for 120 days—12 releases
totaling to 1200 particles. The particles were advected using
one-day averaged 3D velocity fields, since the model had negli-
gible variance at faster time scales. Correspondingly, the particle
positions were saved at a daily resolution. This provided 1200
particle trajectories at each of the 20 levels from 300 to 3000 m.

The velocity time series following the float and particle
trajectories was calculated using discrete forward differences
{u(t) = [x(t + 8t) — x(1)]/8t}, except at the end points where a
backward difference was used. As the temporal resolution of
the floats (6¢) is 1 day, the variability at periods faster than
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vertical shear in this region is approximately O(10™%)s™!
(Balwada et al. 2016a), which can result in a net dispersion on the
order of 10km? in 10 days and 10°km? in 100 days, which is
negligible compared to the observed relative dispersion (Fig. 5).
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FIG. 1. (a) The 100-day trajectories of RAFOS floats and (b) a representative set of numerical particles from the
MITgcm simulation at different depths. The black dots indicate the position of the trajectory on the first day. The
climatological Sub-Antarctic Front (SAF) and Polar Front (PF) are marked by dashed purple lines (Orsi et al. 1995).
The gray colors represent the bathymetry, with the lightest contour color starting at 6000-m depth, and decreasing by
1000-m intervals as contour regions get darker. (¢c) The mean longitude of the RAFOS float trajectory pair vs the
number of days since 1 Jan 2009 at different depths. The first day when the pair formed—when the two trajectories
came within the relative separation threshold—is marked as the black dot. (d) The mean pressure of the RAFOS float
trajectory pair vs the mean difference in pressure of the two trajectories, averaged over the first 100 days. (¢) The
number of RAFOS float pairs as a function of time conditioned on initial separation and in different depth ranges, used
for the time-based metrics. (f) The number of RAFOS float pairs as a function of separation distance in different depth
ranges, used for the space-based metrics. The “0” markers indicate the center of the separation bin.

Unauthenticated | Downloaded 02/02/21 07:17 PM UTC

557

The corresponding particle analysis was performed on par-
ticle pairs that were released at initial separations of 11.1 and
33.3 km. There are 20 sets of model particles released between
500 and 2000 m, and each set was composed of between 1100
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and 1200 pairs. In most of the sections we focused on particles
released at depths of 750 and 1500 m. These set of particles are
qualitatively similar (have similar time scales and scaling re-
lationships) to the shallow and deep sets of floats, but an exact
quantitative match should not be expected. In section 3, where
we quantify the variability, we selected depths that enclose the
two sampled ranges, 500 and 900 m corresponding to the
shallow set and 1100 and 1700 m corresponding to the deep set.

For all space-based metrics, which parse data along a sepa-
ration axis ((-)), we defined separation bin edges as r(n) =
a'r(0)r(n) = a"r(0), where a = 1.4 and r(0) = 1 km. For floats,
we only used pairs that were separated by less than 100 m in the
vertical. The numbers of float pairs in each bin for the shallow
and deep set are shown in Fig. 1f. The number of pairs increases
from less than 100 at the smallest separation to close to 10000
at separations of 300 km, with the deeper set having more pairs.
For the particles more than 1000 pairs were available for each
separation bin (not shown).

All error bars in this study are derived using the boot-
strapping algorithm. We estimate the metric 1000 times, per-
forming random draws with repetition, and use the 5th and
95th percentiles as the limits of the error bars.

3. Temporal and spatial flow variability

In this section, we quantity the distribution of the kinetic en-
ergy at different temporal and spatial scales. This will provide a
helpful context to the stirring metrics that will be discussed later.

a. Rotary Lagrangian frequency spectra

Rotary spectra decompose the power in the velocity time
series into counterclockwise (positive frequencies) and clock-
wise (negative frequencies) motions at different time scales
(Thomson and Emery 2014), which correspond to anticyclonic
and cyclonic motions in the Southern Hemisphere, respectively.
Here we perform this spectral decomposition on the velocity
following the Lagrangian trajectory, using trajectory segments
of 120 days and the multitaper method (Lilly 2019).

The float rotary spectra show a plateau at low frequencies,
transitioning to a power law behavior with slope of about —4 at
intermediate frequencies (Figs. 2a,b). At frequencies higher than
(10 days) ™" a much flatter power law is observed. This flattening
of the spectra at high frequencies can potentially be attributed to
internal waves; near-inertial waves (NIWs); tides, which have
been aliased to these frequencies; and some contributions from
the position tracking errors. The cyclonic and anticyclonic com-
ponents of the float spectra are almost indistinguishable, with no
preference for a particular polarization, and the spectral energy
at the shallower depths is higher than at greater depths.

At the lower frequencies, the behavior of the particle spectra
is similar to the float spectra, with the low-frequency plateau
from the observations lying within the range of energy levels
from the model at comparable depths (Figs. 2a,b). A power law
regime, with a slope of approximately —5, extends from in-
termediate to high frequencies. Thus, the model spectra lack
the high-frequency flattening seen in the observations, which
is a result of limited model resolution and the daily averaged
velocities used to advect the particles.
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b. Longitudinal velocity structure function

Second-order velocity structure functions represent flow
correlations across spatial scales, and are related to the kinetic
energy spectra (Babiano et al. 1985; LaCasce 2016). The lon-
gitudinal second-order structure function is defined as

§2,(r) = ((du(r) - )", (1)

where du(r) = u(x + r) — u(x)du(r) =u(x +r) —u(x) is the
velocity difference between two particles separated by distance
r, ¥ is the unit vector connecting these two particles. We assume
homogeneity and isotropy to drop the dependence on x and r,
respectively.

The second-order longitudinal structure function is re-
lated to the longitudinal frequency—wavenumber spectrum
[Eu(k, )] via

$2,(r) = zJ: U:E”(k, ) dw} (1 —J,(kr)] dk, )

where k is the horizontal wavenumber and Jy() is the zeroth-
order Bessel function. Thus, $2,(r) has contributions, filtered
by the Bessel function, from all wavenumbers and frequencies.
If the wavenumber energy spectrum follows a power law
[Eu(k) = [, En(k, @) dw ~ k] over a long enough range of
scales and 1< « < 3, then the integral is dominated by wave-
numbers near k ~ 1/r and the structure function follows a
power law [S2;(r) ~ r*~!]. While, if « > 3 then S2;(r) ~ /* for
all n (Bennett 1984; Balwada et al. 2016a). At scales where the
velocities are uncorrelated the structure function is constant
and equals twice the velocity variance.

Both shallow and deep float $2, (Figs. 2c,d) approach a
constant at scales larger than approximately 200 km, with this
length scale being slightly larger for the shallower floats. The
kinetic energy level, the large-scale constant value of $2,, ob-
served by the shallower floats is approximately 3 times greater
than the deeper floats. For the shallow floats, $2; follows a
power law of approximately ' between separation of 20 and
100 km, and becomes flatter at smaller scales. For the deep
floats S2; follows a power law that is slightly flatter than the
shallower floats, and closer to 3.

In contrast, the model structure functions are similar to
those expected for a flow with a kinetic energy spectrum
steeper than k>, with a power law behavior of /* at small scales
and transitioning to uncorrelated motions at scales larger than
about 100-200 km. The kinetic energy level decreases with
depth similar to observations.

Thus, the structure functions also indicate energy at small
scales present in the observations but not in the model. This is
true for scales less than roughly 20 km and for times less than
about a week.

4. Relative dispersion and kurtosis
a. Theory

The characteristics of the stirring are encoded in how
the separation between particle pairs evolves, and can be
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FIG. 2. Mean Lagrangian frequency rotary spectra from the RAFOS floats (a) between 500 and 1000 m and
(b) between 1000 and 1800 m. The mean Lagrangian frequency rotary spectra from the model particles released at
mean depths of 500 and 900 m are shown in (a), and at depths of 1100 and 1700 m are shown in (b)—the spectra at
shallower depth in the model are more energetic. Power laws of > and > are also shown in (a) and (b). (c),(d)
Second-order longitudinal velocity structure functions for the RAFOS floats and model particles corresponding to

the same depths as (a) and (b), respectively. Power laws of ¥ and #* are also shown in (c) and (d).

quantified by considering the evolution of pair separation
PDF and its moments: relative dispersion (second mo-
ment), which is a measure of the size of the tracer cloud, and
kurtosis (normalized fourth moment).

The relative dispersion, the mean square pair separation,
evolution can be derived using purely kinematic arguments
(Babiano et al. 1990). These are based on the relative diffu-
sivity, the derivative of the relative dispersion 7,

1dr2(t|r,)

wltlr) =5,

O(SV(t\rO) -8V (tr,)) dr,

= <r0 . 6V(t\r0))r0 + J 3)

where 8V(t|ro) is the relative velocity of a pair, and the
dependence on the initial condition ry is explicitly noted.

For flow randomly seeded with particles, the correlation in
the first term of the RHS is typically small, as it was for both
particles and floats (not shown). At short times (t — 0),
Eq. (3) is approximated as k(t|rg) =~ t52,(ro), and the rela-
tive dispersion grows ballistically [r2 = r2(1 + C,/)], where
C, is a constant proportional to the total enstrophy). At
large times (1 — =), the relative velocities are uncorrelated
[(|6V(00)|2>r0 =4KE]. If the integral of the time correlation
of the relative velocities converges, then the relative dis-
persion grows linearly (r>~1) as for a diffusive process
(Taylor 1922).

Of primary interest are the scales at intermediate times,
when pair separations lie in the inertial range and pair ve-
locities are still correlated. Here, the stirring properties can
be well quantified using the pair separation PDF, from which
the relative dispersion derives. The separation PDF can be
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FIG. 3. Pair velocity correlations for trajectories at different depths with initial separation of (a) 10-15 and (b) 30-35 km. (c) Pair velocity
correlations plotted as a function of mean pair separation [r* = /r?(¢)] showing that correlation curves approximately collapse. Colors
correspond to different depths and different initial separations as indicated in the legends, while the observational (Obs) floats are marked
by solid lines and model (Mod) particles by dashed lines. Black circles mark the first day for different the correlation time series in (c).

modeled using a Fokker-Plank (FP) equation (Richardson
1926; Bennett 2006),

o 1o @

i ;5(’“51’) :
where p(r, f) is the pair separation PDF, and k() is a diffusivity
as a function of separation r. The nth raw moment of the PDF
is defined as 7(t) =2 [, 7" "'p(r, t) dr. This equation can be
solved for the turbulent inertial ranges (LaCasce 2010; Graff
et al. 2015), assuming all particle pairs have the same initial
separation. The inertial range slope enters via the relative
diffusivity [k(r)], which can be inferred from scaling. For
shallow-sloped KE spectra, where 1 < « < 3, the diffusivity
scales k(r) « #* * V2 and the dispersion is characterized as
“local.” For steeply sloped KE spectra, @ = 3, the relative
diffusivity scales as k(r) o #*, and the dispersion is “nonlocal.”
When solving the FP equation, it is assumed the same diffu-
sivity applies across all scales. We list the analytical expressions
for the PDF, the relative dispersion and kurtosis for the
nonlocal regime, the Richardson regime (a particular local
regime), and the diffusive regime in Table 1.

4)

b. Correlation and isotropy from floats and particles

Correlated pair velocities are expected at scales smaller than
those of the largest eddies. We define a pair velocity correlation
coefficient, p(1]ro) = (wi (1) - ws(0)), Al (1)) {ua(0)]),,. which
can vary between —1 and 1. The subscripts on the velocity
correspond to two members of the pair. As expected, p(¢|ro) for
floats and particles generally decreases as a function of time, and
the maximum value of p decreases as a function of initial sepa-
ration (Figs. 3a,b). Moreover, the rate of decrease is more rapid
for the shallower sets than the deeper sets.

Alternatively the correlation can be visualized as a function
of spatial scale by plotting p(t|ro) against the corresponding

mean pair separation [r* = 1/r2(¢t|rg)] (Koszalka et al. 2011;
Graff et al. 2015). This causes all the p(r*) curves to approxi-

mately collapse together (Fig. 3c), suggesting that the decrease
in correlation over time is a result of pairs exiting the range of

length scales over which the flow is correlated. This explains
why the correlation drops more rapidly for the shallower
depths, as the particles disperse faster there (seen clearly for
the model particles). The collapsed curves fall below 0.5 at a
length scale (r*) of approximately 60-70 km.

Most relative dispersion theory assumes the flow is isotropic.
We quantity isotropy as a ratio of the square root of the mean
zonal separation to the square root of the meridional separa-
tion (|r%/|rf]) (Morel and Larceveque 1974); this is 1 if the
zonal and meridional spreading is the same. For the shallow
floats and particles the ratio exceeds 1 after about 50 days
(Fig. 4a) and at length scales greater than 100 km (Fig. 4c),
while for the deeper sets the ratio stays close to 1 over 100 days
(Fig. 4b). The only exception is the shallow float set with ry ~
10-15 km that shows enhanced zonal dispersion after only
10 days (though there are fewer than 50 pairs in this group).
The particles always exhibit a small ratio for the first few days,
which is due to the particles being deployed along a longitude
line. Thus, the dispersion is nearly isotropic at scales where the
velocities are correlated. Isotropy is discussed further in the
section on relative diffusivity (section 5b), where we show
more conclusively that the flow is isotropic at length scales
smaller than approximately 100 km.

c. Relative dispersion and kurtosis from floats and particles

Due to the small number of float pairs, it is difficult to
draw conclusions about PDFs themselves. The float PDFs
are statistically indistinguishable from both the nonlocal and
Richardson (local) theoretical PDFs (Table 1), while the particle
PDFs are suggestive of nonlocal dispersion. Details are given in
appendix B.

The relative dispersion increases in time, showing that on
average the floats and particles disperse (Figs. 5a,d). The dis-
persion for the floats and particles is very similar over the first
100 days, suggesting the additional high-frequency and small-
scale variability in the ocean does not contribute much to dis-
persion. At the shallower depth the relative dispersion increased
to 300’ km? by the end of the 100 days for both initial separa-
tions, while the deeper relative dispersion was smaller. Toward
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FIG. 4. Isotropy, defined as ratio of mean zonal separation to mean meridional separation for pairs at different depths—(a) shallow and
(b) deep—and for different initial separations. (c) Isotropy ratio plotted as a function of mean pair separation r*.

the end of the 100 days the dispersion for most sets has transi-
tioned to a diffusive linear growth.

Under Richardson dispersion, the relative dispersion would
grow cubically in time. However, this asymptotic limit likely
cannot be achieved in the ocean because of the finite size of the
inertial ranges, and would likely not be reflected in the data. So to

was derived in Graff et al. (2015) (presented in Table 1); this
expression is relatively complex. However, we found (not shown)
that the less rigorous but simpler expression, (13” + Czt)3, de-
rived by Ollitrault et al. (2005) is visually indistinguishable
from the more complex expression of Graff et al. (2015), when

both are plotted in a compensated form: 72~ — 3. This form,

based on the expression from Ollitrault et al. (2005), re-
moves the dependence on initial condition and has a slope

study the relative dispersion before the asymptotic limit is
reached, an expression for the Richardson dispersion at all times
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FIG. 5. Relative dispersion as a function of time for different r, and at different depths from the floats (solid lines) and particles (dashed
lines). (top) Shallow sets and (bottom) deep sets, where different colors correspond to different sets as indicated in the legends that are
shared between panels: (a),(d) the dispersion on a log-log axis; (b),(e) the dispersion normalized by the initial dispersion on a semilog axis
for ease of comparison to nonlocal dispersion; and (c),(f) the dispersion in a compensated form as indicated in the axis label for ease of
comparison against Richardson dispersion. The gray lines correspond to the linear (solid) and cubic (dashed) power laws.
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of one on a log-log plot under Richardson dispersion. The
compensated relative dispersion from the floats and particles,
using the compensated form, not show a distinct linear range
(Figs. 5c,f). Generally, the growth rate is faster than the expec-
tation from Richardson dispersion initially and then slower. A
short range from approximately 6-20 days for the shallower sets
and 15-30 days for the deeper sets shows a growth rate that
might be comparable to Richardson dispersion, but it is more
likely that this is simply a transition period. The shallow float set
with 7y ~ 10-15 km is a slight exception, since it approximately
matches with Richardson dispersion from 2 to 40 days (also
true for kurtosis discussed next). As noted though this set has
few pairs, and thus the approximate match to Richardson
dispersion may not be robust.

If the dispersion were nonlocal, it would grow exponentially in
time. The relative dispersion, for both floats and particles, in-
creases rapidly for the first 10-25 days and then settles into a
slower growth afterward (Figs. Sb,e). The initial growth is not
distinguishable from exponential. For example, the relative
dispersion for the shallow particles with ry, = 11 km between 4
and 15 days suggests that exponential growth occurs up to ap-
proximately length scales of ~5ry =~ 55 km. Similar phases of
exponential growth are also seen at other depths for the parti-
cles, and to some degree for the floats. This rapid growth ends
when the mean separation reaches »* ~ 50-90 km for all cases
considered, and is thus shorter for larger ry. The relative
dispersion from the particles for the first 3—4 days shows a
slightly slower growth rate, which is likely a result of de-
pendence on initial conditions and a short phase of ballistic
growth (see further discussion in appendix B).

Under nonlocal dispersion, the kurtosis also grows expo-
nentially, while it asymptotes to 5.6 under 2D Richardson
dispersion; it asymptotes to 2 if the dispersion is diffusive
(Table 1) (LaCasce 2010). Local dispersion with a spectral
slope between —3 and —5/3 can also result in kurtosis sur-
passing 5.6 (Foussard et al. 2017).

The kurtosis from the floats and particles evolves similarly,
with a rapid initial increase for approximately 10-20 days fol-
lowed by a decay toward 2 (Fig. 6). The kurtoses do not rise to
very large values because r is large. The pairs in the tails of the
PDFs transition to the uncorrelated regime at about 10-20 days
(Fig. B1), so that the kurtosis could not rise to large values even
under exponential initial growth. Thus, one cannot distinguish
local or nonlocal dispersion at small scales based on the kurtosis.
But the similarity between float and particle kurtoses suggests the
floats disperse similarly to the particles.

Thus the pair separation moments from the floats and par-
ticles are similar within the errors. However, it is difficult to
distinguish the exact type of dispersion occurring at small
scales. This is likely due to the relatively large initial separa-
tions ry. Next we consider space-based metrics, which average
without any conditioning on 7.

5. Relative diffusivity

Now we examine the relative diffusivity. The initial sepa-
ration ry is used to assign the spatial scale, so that k(r) ~ k(t|ro)
[Eqg. (3)]- We estimate «(r) using finite difference,
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FIG. 6. Kurtosis (F/r_zz) as a function of time for the floats (solid
lines) and the particles (dashed lines) for different r, and depths:
(a) shallow sets and (b) deep sets, and different colors correspond
to different sets as indicated in the legends. The horizontal lines
correspond to the kurtosis for Richardson dispersion (5.6, dashed
line) and simple diffusion (2, solid line).

dr(Ai2lry)  P(Adlr,) = 2(0]r,)

dt At )

k(r) = k(At/2]r,)

Itis possible to use different time spacings, At, which we will
vary to estimate the longer time estimate of relative diffusivity
and to filter high-frequency motions in the observations. The
time spacing should also be small enough so that the diffusivity
is less than the asymptotic value of twice the single particle
diffusivity (LaCasce 2008). The single particle integral time
scale for the region is approximately 5-6 days (Balwada et al.
2016b); as discussed below, this works well as a practical esti-
mate of Ar. Further consideration about the link between
second-order structure function and relative diffusivity, effects
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FIG. 7. Relative diffusivity as a function of separation scale. (a) Shallow and (b) deep estimates of «(r), for the
floats and particles with At of 1 and 6 days. (c) Slope of the relative diffusivity curve between 6 and 50 km as a
function of Ar. The horizontal gray lines are the values of the slope corresponding to nonlocal (2; solid) and
Richardson (4/3; dashed) dispersion. (d) Relative diffusivity estimated as k(r*, o) for the deep floats and particles,
with At of 6 days. The gray lines correspond to the power laws expected for nonlocal (solid) and Richardson
(dashed) dispersion. The position of these gray lines is the same in the three panels [(a), (b), and (d)] and can be

used to compare the estimates more easily.

of the high-frequency motions, and theoretical guidance for
varying At is given in appendix C.

We first examine the dependence of k(r) on Af using the
model particles. The diffusivities for the shallow and deep
particles with Ar = 1 day increase as r*, up to scales of ap-
proximately 50-60 km, in line with a steep spectrum. At larger
scales the diffusivity flattens out. At still larger scales, the dif-
fusivity increases again, approximately as #** (Fig. 7a). The
slope of the power law dependence for the particles between 6
and 50 km is not very sensitive to Ar up to moderate values,
~6 days for shallow and ~10 days for deep particles, but flat-
tens out with larger Ar. This follows as pairs with smaller r, start
to experience more uncorrelated motion and the relative dif-
fusivity asymptotes to the large-scale diffusivity, flattening the
slope (Fig. 7c). Increasing At to 6 days increases the magnitude
of the diffusivity for separations between 6 and 50 km, because

at 6 days the pairs are sampling larger scales than r, with larger
diffusivities, but this does not change the power law depen-
dence significantly. The choice to plot the results hereafter
using 6 days is a pragmatic one; the slope of the relative dif-
fusivity of the shallow particles is not very sensitive within this
time frame, and 6 days is similar to the single particle integral
time scale for the floats in this region.

The float-derived diffusivities exhibit a different depen-
dence on Ar (Figs. 7a—c). With At = 1day, «(r) exhibits a power
law dependence close to r*° at scales smaller than 100 km. This
is consistent with 52,(r) being flatter, as shown in section 3 [«(r,
1) =~ t52,(r) at short times (Babiano et al. 1990)]. As At is in-
creased, the power law steepens (Fig. 7c), and over a range of
intermediate values of Ar agrees well with the power law of the
particle diffusivity down to scales of Skm. This suggests in-
creasing At acts as a filter, removing the high-frequency motions
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estimated with At of 6 days. The short black line at 500 km corresponds to twice the single particle diffusivity from
Balwada et al. (2016b). The gray lines correspond to the power laws expected for nonlocal (solid) and Richardson
(dashed) dispersion. The meridional relative diffusivity for the (b) shallow and (d) deep floats as a function of

separation and At is contoured. Values of 100 and 1000 m*s™~

that cause the relative diffusivity power law from the floats to be
flatter than that of the particles at short times. As with the par-
ticles, when At is increased further (Ar > 15 days) the slope
flattens, as the influence of the uncorrelated scales becomes
more dominant. It should be noted that a perfect match be-
tween the relative diffusivity slope dependence on At from
floats and particles at these longer At should not be expected,
because the floats are spread over a depth range and the
particle depths were chosen to only match the float depth
approximately (section 2).

Thus, the high-frequency motions present in the observa-
tions are responsible for the diffusivity’s weaker dependence
on r (local dispersion) when the evolution of the pairs over a
short time period is considered. However, the diffusivity’s
dependence on r steepens (nonlocal dispersion) when the
evolution of the same pairs over a few days is considered; in-
dicating that the smaller scales have a relatively weaker net
impact as some of the higher-frequency pulsation in separation

! are contoured using dashed white lines.

averages out to zero. We find that wave-like motions are a
likely process that can result in this observed behavior for the
relative diffusivity, as detailed in appendixes A and C.

As the mean flow here is nearly zonal (LaCasce et al. 2014;
Balwada et al. 2016a), the zonal and meridional diffusivities
reflect the stirring along and across the mean flow. Using the
longer time spacing (At = 6 days), the zonal and meridional
diffusivities for the floats and particles are very similar, sug-
gesting isotropy up to roughly 100 km separations (Figs. 8a,c). At
larger scales, the zonal and meridional diffusivities diverge as the
flow becomes anisotropic and pair velocities are uncorrelated.
The zonal diffusivity continues growing with a scaling close to r*>.
This anisotropic growth could be indicative of shear dispersion
(Bennett 1984; LaCasce 2008). At these scales of uncorrelated
motion the meridional diffusivity approaches a constant value
close to twice the single particle diffusivity estimate for the region
(LaCasce et al. 2014; Balwada et al. 2016b). At the correlated
scales, the meridional relative diffusivity is an increasing
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function of separation scale and time scale (Ar) and is greater at
the shallower depth (Figs. 8b,d).

Some studies [e.g., Sinha et al. (2019) and Sansén (2015)
most recently], estimate the scale dependence of relative dif-
fusivity by differentiating the relative dispersion time series
for a particular initial separation and assigning the mean sep-
aration [r*(¢)] as the spatial scale [k (r*|rp)]. Using this estimate
(Fig. 7d), we were even unable to detect * regime for the
particles, possibly since the average occurs over a wider range
of scales. This estimate was very noisy for the floats.

6. Finite size Lyapunov exponents
a. Theory

Finite size Lyapunov exponents are an alternate way of
quantifying stirring, and measures the average time taken
[7(r)] for a pair of particles to grow in separation from scale of r
to ar, where a > 1 (Artale et al. 1997). FSLE (A) is defined as

_ log(a)

Theoretical scalings for FSLE can derived based on turbu-
lent scaling arguments. If the stirring is local and the energy
spectrum follows a power law of k™ * (a < 3), then the FSLE
scales as A(r) « *~ 32 Thus, for Richardson dispersion the
FSLE scales as A(r) « r~ . For & = 3, the FSLE converges to a
constant [A(r) « 7°], and for uncorrelated diffusive spreading
A(r) o r~2. These are summarized in Table 1.

b. FSLE from floats and particles

The floats were tracked daily, and the output of the particles
was saved daily. This sets an artificial discretization on the
possible values of A, which would particularly be an issue at
smaller r when particle pairs will separate to ar in one or two
time steps. To alleviate this issue, we linearly interpolated the
separation time series between the resolved times (LaCasce
2008; Lumpkin and Elipot 2010; Haza et al. 2014). The inter-
polation caused an increase in the value of the FSLE for floats,
and also slightly steepened the power law behavior at smaller
scales (not shown). The linear interpolation also increases the
value of FSLE slightly for the particles, but does not change the
power law behavior of FSLE (not shown). The FSLE estimated
using the linear interpolation was not sensitive to the size of the
bins (value of a, which is chosen to be 1.4 here).

The FSLE from the floats shows an approximate —2/3 de-
pendence at scales smaller than 100 km, at both the shallow and
deep levels (Fig. 9). At scales larger than 100 km the FSLE
slope becomes steeper, tending toward —2. The FSLE from the
particles at scales smaller than 100 km is almost flat, and
markedly different from the floats. At scales greater than
100 km the FSLE from particles is almost identical to that from
floats. At the shortest scales, smaller than the model resolution,
the particle FSLE slightly diverges from a constant, which is
presumably a result of interpolation used in particle tracking.
There is no qualitative difference between the results of the
shallow and deep sets, except for the time scales being faster at
shallower depth.
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The results suggest the floats experience local dispersion and
the particles nonlocal dispersion at scales smaller than 100 km.
Both exhibit diffusive spreading at larger scales. The time scale
associated with the FSLE at small scales is 1-10 days, which is
where the high-frequency motions appear in the observations
(section 2). So these motions are likely associated with the local
dispersion seen here.

We consider the effects of high-frequency motion on the
FSLE further in appendix A. We show that wave energy at
time scales shorter than a day can be aliased to scales of 1-
10 days when the temporal resolution is a day; and this aliased
energy can potentially cause the FSLE to appear local even
when the dispersion is a result of nonlocal stirring. Thus, we
cannot conclude based on the float FSLE that the dispersion is
local, but the characterization of the particle FSLE being
nonlocal is appropriate.

7. Discussion

The southeast Pacific Ocean sector of the ACC, between
the East Pacific Rise and Drake Passage, was sampled by a
subset of DIMES RAFOS floats and simulated with an eddy-
permitting model. We provide an observational perspective
on turbulent stirring in the ACC at length scales comparable
to and smaller than the mesoscale eddies, in one of the few
observational studies that addresses relative dispersion in
the deep ocean. The stirring is quantified using time-based
and space-based metrics (summarized in Table 2).

At scales comparable to and larger than the mesoscale
eddies the pair velocities are uncorrelated, and the dispersion is
anisotropic. The meridional dispersion behaves like random
walk and zonal dispersion behaves like shear dispersion. The
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meridional relative diffusivity saturates at a value near 1000 m?s ™!
in agreement with single particle-based estimates (Balwada et al.
2016b; LaCasce et al. 2014; Tulloch et al. 2014). This is
approximately two orders of magnitude larger than the
relative diffusivity at scales smaller than 10 km, in agree-
ment with the estimates based on DIMES tracer roughness
(Boland et al. 2015).

At scales smaller than the mesoscale eddies the pair veloc-
ities are correlated, and the dispersion is isotropic. Under these
conditions the stirring can be characterized as local, primarily
influenced by eddies at the scales of the pair separations, or
nonlocal, primarily influenced by eddies that are much bigger
than the scales of the pair separations. Overall, we concluded
that the RAFOS floats likely experienced nonlocal stirring at
scales longer than a few inertial periods and at approximately
5-100km in this part of the ocean, since at these scales their
dispersion is broadly similar to that of nonlocally dispersed
model particles. However, some important distinctions be-
tween the different time- and space-based metrics for the floats
and particles are present.

The time-based metrics, relative dispersion and kurtosis,
for the floats and particles are broadly consistent, but neither
floats nor particles could conclusively categorize the stirring
as local versus nonlocal. This consistency is not completely
expected, since the Lagrangian frequency spectrum and
second-order structure functions indicated that the floats
experienced a flow field that was more energetic than the
model, at scales less than roughly a week and 20-30 km. The
main issue with the time-based metrics was that in an effort to
have a sufficient number of samples, a relatively large initial
separation had to be selected. Having a large initial separa-
tion results in the pairs dispersing to the uncorrelated scales
relatively fast, which does not allow the distinct signatures of
the dispersion regimes to emerge very prominently.

The space-based metrics, relative diffusivity and FSLE, in-
dicated that the dispersion is local for the floats and nonlocal
for the particles, when these metrics are computed at the
sampling time scale of 1 day. For the relative diffusivity,
which allows integration in time, we found that after inte-
grating over time scale of 6 days the relative diffusivity from
the floats had the same characteristics as the relative diffu-
sivity from the particles at scales larger than 5 km. This sug-
gests that the highest-frequency motions have little or no
impact on dispersion. It is not possible to say from float tra-
jectories alone, but it is likely that the high-frequency range is
dominated by NIWs, internal wave continuum, and tides.
Independent observations suggest these high-frequency flows
are abundant in the ACC (e.g., Ledwell et al. 2011; Waterman
et al. 2013; Kilbourne and Girton 2015). Despite having su-
perinertial frequencies, this wave energy can be aliased into
the float positions, which are sampled once a day. We showed
in appendix A that adding linear waves, which do not add any
particle dispersion, to the nonlocally dispersed model particle
trajectories can make the space-based metrics to appear local
at length scales that are 20-30 times the displacement am-
plitude of these waves. Integrating the relative diffusivity in
time is found to be a practical way to recover the underlying
dispersion characteristics.

>
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Linear waves have relatively little effect on lateral stirring of
Lagrangian particles (Holmes-Cerfon et al. 2011), but they can
cause appreciable stirring for a tracer that can diffuse diapyc-
nally (Young et al. 1982). Previously it was shown that inertial
oscillations have a similar minimal effect with surface drifter
pairs, contributing substantial energy to the structure functions
at small scales without impacting lateral dispersion (Beron-
Vera and LaCasce 2016). Local stirring at small scales has been
observed in several studies, most comprehensively in the global
drifter study of Corrado et al. (2017). The evidence for this
usually comes from space-based metrics. While it is certain that
superinertial motions affect energy spectra at submesoscales, it
remains to be seen to what extent these motions affect lateral
dispersion. At least in the present case, the effect appears to
be small.

Our conclusion of nonlocal dispersion from the floats is also
consistent with the behavior of the tracer released during the
DIMES experiment, which showed small irreversible diffu-
sivity during the initial filamentation phase up to the scales of
the mesoscale eddies, and growing irreversible diffusivity after
the tracer filaments start to merge and form a large tracer cloud
(Zika et al. 2020). This is in line with the characteristics of
stirring and filamentation in the deep ocean that was hypoth-
esized by Garrett (1983), and has also been observed in the
North Atlantic during the North Atlantic Tracer Release
Experiment (NATRE; Sundermeyer and Price 1998).

We cannot entirely discount the possibility that small-scale
flows in the interior ocean can lead to some net dispersion,
particularly at the smallest scales (<10 km), and the true dis-
persion might be in some sense weakly local at these smaller
scales. Some recent studies have identified that submesoscale
flows with surface origins can penetrate appreciably below the
mixed layer (Yu et al. 2019; Siegelman 2020). Strong sub-
mesoscale flows and eddies in interior ocean, without any
surface association, can also potentially result from interaction
between internal waves and balanced flows (Thomas and
Yamada 2019), or result due to breaking waves creating mixed
patches that then coalesce into pancake vortices due to an in-
verse cascade (Sundermeyer et al. 2005; Polzin and Ferrari
2004), or be generated by flow interacting with topography and
spinning off eddies (Srinivasan et al. 2019; Vic et al. 2018;
Bracco et al. 2016). It is also possible that isobaric floats, which
do not follow water parcels in the vertical, can disperse away
from the water parcels that they were originally tracking
(Dewar 1980). However, it seems that the influence of these
small-scale flows, if they are present, does not appear as a first-
order effect in the metrics and at the scales considered here,
and if these scales are causing any significant stirring then it is
not easily distinguishable from sampling noise and biases.
Hence, it is also important to devise new metrics that will be
more sensitive to the stirring at smaller scales.

Most current ocean models use diffusive parameterizations
(Fox-Kemper et al. 2019), even at scales where the stirring is
not diffusive. Our hope is that the present observations will
inspire new stirring parameterizations (e.g., Kampf and Cox
2016), along with efforts in improvement of parameterizations
of ocean energetics (Bachman et al. 2017; Zanna 2019), for
ocean models that partially resolve mesoscale eddies.
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FIG. Al. The impact of adding monochromatic waves with inertial frequency to model trajectories on different metrics: (a) Lagrangian
frequency spectrum, (b) longitudinal structure function, (c) relative dispersion, relative diffusivity with (d) d7 = 1 day and (e) dT = 6 days,
and (f) FSLE. All plots have data from five sets of trajectories: the original trajectories at a depth of 1500 m and the same with added waves of
different spatial properties, as noted in legend in (a). In (b), (d), (e), and (f) some lines corresponding to standard scalings are also added in gray.
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APPENDIX A

Impact of Linear Waves on Space-Based and Time-Based
Metrics

Recent studies have shown that the space-based stirring met-
rics, which average the data into spatial bins, can sometimes re-
sult in misleading conclusions in the presence of linear waves,
which do not cause any net particle dispersion (Beron-Vera and
LaCasce 2016), or position errors in trajectories (Haza et al.
2014). For completeness, and because neither of the previous
studies considered all the metrics together, here we demonstrate
the biases in conclusions about the stirring regime that can occur
if monochromatic waves are added to the particle trajectories.

We modified the position vectors of the particle trajectory
pair members (X; and X;) by adding oscillations with a single
frequency,

X, = X, + Alsin (wt + ¢), cos (wt + ¢) — 1],
X —X + [A + Bg (r)][sin (wt + ¢),cos (wt + ¢) —1].  (Al)
Here A is the amplitude of the oscillation common to
both members, and B is the difference in the amplitude for
the pair member, with the function g(r) depending on pair
separation (r = |X; — X;|). The term w is the frequency, and
¢ is the starting phase of the waves. The function g(r)
models the change in amplitude as the particles move away
from each other. The function g(r) is modeled as a power
law with slope n below a length scale r; and a constant at
larger scales,

g(r)= (L> , for r<r, =1,
L

for r=r,. (A2)

Beron-Vera and LaCasce (2016) employed a similar func-
tion in time rather than space, to mimic inertial oscillations in
the Gulf of Mexico. The variables A and B are prescribed
as random numbers from a uniform distribution that can
vary between 0-2A ,.x and 0-2B,,,.x. The starting phase ¢ was
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FIG. Bl. Pair separation cumulative distribution functions for the (a)—(d) floats and (e)—(h) particles. Each panel corresponds to a
different depth and different r(, as indicated in the panel titles. The contour color bar ranges from 0 to 1, with increment steps of 0.1. The
0.1, 0.5, and 0.9 contours are marked with dashed black lines, while the mean pair separation is the solid blue line.

chosen as a random number on the interval (0, 277). The fre-
quency w was set to the local inertial frequency. We ex-
perimented with different choices of the parameters (Amax,
Biax» 1, 71), and here we show results for four cases with
physically reasonable values: A,y = 1.5km, r, = 50km,
Bax = 2and 3.5 km, and n = 0.3 and 0.5. These values result in
waves that are reasonably close in magnitude to the NIWs
measured in the same region and during the same time as the
floats (Kilbourne and Girton 2015). Since the waves are
monochromatic and the inertial frequency [~1 (14h)7!] is
greater than the sampling frequency [~1 (24h)™'], the fre-
quency spectrum shows a peak in a narrow band at a lower-
frequency where most of the wave signal has been aliased
(Fig. Ala). We do not expect such a pronounced peak in the
observations because the waves in the ocean are spread over a
wider frequency range.

The space-based stirring metrics estimated using the modified
trajectories are qualitatively different from those estimated using
the original trajectories (Figs. Alb,d,f). The addition of waves
impacts the metrics significantly, with the range of influence de-
pending on the strength and spatial correlation of waves. For
example, the FSLE for n = 0.5 and B = 3.5 km (dashed purple
line in Figs. A1f), indicates local dispersion up to scales that are
~20-30 times larger than the relative amplitude of the waves.
Thus, high-frequency motions due to linear waves preferentially
impact the space-based metrics.

The time-based metrics are less affected: the relative dis-
persion (Fig. Alc), the separation PDFs, and kurtosis (not
shown). This is because the added oscillations cancel out when
integrated over time, with the integration time depending
on the noise magnitude; Fig. Alc shows that it takes ap-
proximately 5-8 days for the wave contributions to inte-
grate out of the relative dispersion with rg = 11 km. This
initial influence on relative dispersion influences the relative

diffusivity—«(r) (Fig. Ald) when At is small. However, waves
can be filtered by increasing the At used to estimate the time
derivative (Fig. Ale), which allows for recovering the sub-
inertial signal. We used the same filtering method in section 5.
The objective here was not to develop a realistic model for the
wave effects on the trajectories, but to simply show that wave
motions that do not disperse particle pairs can easily impact
some metrics commonly used to the infer the characteristics of
pair dispersion. Further, this is meant to be an Occam’s razor
approach—if all the small-scale motions absent in the model
were represented using only waves that do not disperse particles,
could they make the metrics from the model looks similar to the
observations within realistic ranges of wave parameters?

APPENDIX B

Separation PDFs and Initial Evolution of Separation from
Floats and Particles

The pair separation PDFs provide direct insight into how the
turbulent flow stirs and disperses floats and particles. For easier
visualization we show the cumulative distribution function
(CDF), which is monotonic and varies between 0 and 1.

Qualitatively the evolution of the CDFs from the floats and
particles is very similar (Fig. B1). Only a small distinction is
seen in the initial behavior, when the float CDFs are wider than
the particle CDFs, which is simply a result of the float pairs
having a spread over the initial separation bin. During the first
5-10 days the pair separations spread to both larger and
smaller scales than ry, and after this the pair separations in-
crease on average as the trajectory clusters get more dispersed.
Also during the initial phase the mean pair separation (r*)
coincides with the separation where the CDF is around 0.8-0.9,
indicating that the long tails of the PDF are responsible for
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controlling the mean pair separation or dispersion. As time
progresses r* starts to coincide more with smaller values of the
CDF (~0.5-0.6), as is expected for diffusive pair separation. Also,
at most times during the evolution the pairs occupy 1-2 decades of
spatial scales, suggesting that the pairs potentially sample many
different turbulent regimes, and the PDFs might only evolve like
the theoretical solutions for short periods of time.

We compare the PDFs of the float and particle pairs with
the different theoretical solutions using the two sample
Kolmogorov-Smirnov (KS) test, which is used to test the null
hypothesis that the data from two sets of samples comes from
the same continuous distribution (Berger and Zhou 2014). It
returns a KS statistic or p value, where a large p value (>0.05)
suggests that the null hypothesis cannot be rejected, implying
that the two sets of samples might have been sampled from
the same distribution. Here our first sample set was the sep-
arations measured by the float or particle pairs, while the
second sample set was 10000 randomly generated samples
using the theoretical PDF (equations in Table 1).

To generate the random samples from the theoretical
PDFs, and compare against the float and particle PDFs, we
need two parameters: ry and the growth parameters—g for
the Richardson or 7' for the nonlocal dispersion. We do not
assume a priori that one regime is a better descriptor than the
other, instead we estimate the growth parameters corre-
sponding to both regimes and then use the KS test to check
how well do both the theoretical PDFs with the estimated
parameters match the measured separation PDF.

The parameter estimation is done by fitting the different
theoretical relative dispersion (equations in Table 1) to the
relative dispersion measured by the floats and particles (dis-
cussed in section 4d). Similar fittings to estimate parameters
were done by Graff et al. (2015) and Beron-Vera and LaCasce
(2016), where the fitting was done over the time period it took
for the mean separation to increase to some chosen multiple of
the initial separation. Here instead of fitting over a specified
period, we fit over a range of times, and test the sensitivity of
the parameters and PDF matching between theory and mea-
surements to the choice of the duration over which the fit is
done. We fit both the theoretical curves during the period
between day 0 and day #,, where ¢, ranges from 3 to 50 days,
using least squares fitting. The parameters are estimated even if
the theoretical curve is a poor fit to the dispersion, but since
these parameters also give a poor fit to the PDF they are ruled
out by the KS test. Using these estimated parameters (Fig. B2)
we calculated the KS statistic to compare the measured PDFs
against theoretical PDFs (Fig. B3).

The comparison of the float PDFs to the theoretical PDFs
suggests that for much of the time the PDFs measured by the
floats could correspond to both the Richardson and the non-
local PDF (Fig. B3), as ¢, is varied. This result is particularly
relevant when ry = 10-15 km. The deep float set released with
initial o = 30-35 km is a notable exception; for ¢, > 20 days a
match to nonlocal regime is seen for approximately 10 days
followed by a Richardson regime from approximately 10 to
70 days (Figs. B3d,l). This suggests nonlocal stirring up to
scales of 50km and Richardson like stirring at scales larger than
50 km, where the length scale estimate is based on the mean
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particles are marked by dashed lines. Panels (a) and (b) share their
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separation curve in Fig. B1d. A similar, but relatively less well
defined behavior is also seen for the shallow float set released
with the same initial r( (Figs. B3b,j).

A comparison of the particle PDFs to the theoretical PDFs
shows different behavior compared to the float PDFs. The
particle PDFs are better determined due to having significantly
larger number of samples (>1000 pairs), which results in very
short periods over which the measured particle PDFs comply
with any of the two theoretical PDFs. All combinations of r
and depths considered here show a range where the corre-
sponding particle PDF matched with the theoretical PDF
for nonlocal dispersion (Figs. B3e-h). The Richardson PDF
does not match the particle PDF at either of the depths for
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F1G. B3. Kolmogorov-Smirnov test statistic comparing the measured PDFs to the theoretical PDFs, plotted as a function of time and
time over which the relative dispersion is fit to estimate the parameters (¢,). A value greater than 0.05, marked by black contour line,
suggests that the measured and theoretical PDFs are statistically similar. Rows 1 and 3 [(a)—(d) and (i)-(1)] compare the float PDFs to the
nonlocal and Richardson dispersion, while rows 2 and 4 [(e)—(h) and (m)—(p)] compare the particle PDFs to the nonlocal and Richardson
dispersion. The dashed blue vertical line corresponds to the time when the mean pair separation (r*) reaches 100 km. The depth and initial

separation (ry) are indicated in the panel titles.

ro = 11 km (Figs. B3m,0), while a match over a very short time
period is seen for ry = 33 km (Figs. B3n,p). Notably none of the
particle sets matched either of the theoretical PDFs over the
first 5-10 days; this might be because the particles experienced
ballistic dispersion during this time (shown next). Overall,
these results suggest that the numerical model shows nonlocal
dispersion as expected.

The relative dispersion from the particles for the first 3—
4 days also showed a slower growth rate than exponential
(Figs. 5b,e), which is likely the result of dependence on initial
conditions and ballistic growth. Trajectory pairs need to lose
memory of their initial conditions for the canonical scaling
relationships to be expressed (Babiano et al. 1990; Nicolleau

and Yu 2004; Bourgoin et al. 2006; Foussard et al. 2017). We
quantify the rate of loss of memory of the initial conditions
using a memory index, M(t|ro) = (r- rg),o/ror_2 , which is a
measure of correlation between the pair orientation relative to
its initial orientation (Foussard et al. 2017). Both floats and
particles lose memory of their initial orientation as time
progresses (Fig. B4a). The memory index M(¢) for the floats is
almost insensitive to the depth but depends strongly on ry,
while M(¢) for the particles varies more strongly with depth and
is relatively insensitive to rj.

During the initial phase, when pairs have not lost memory of
their initial conditions, the pairs disperse ballistically [r2(¢) =
r3(1 + C1£2)]. Since different choices of depth and ry lead to
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FIG. B4. (a) The memory index, quantifying how quickly the dependence on initial condition is lost for all
different choices of depth and r(. The legend for all the figures in shown in (b). (b) The memory index plotted as a
function of rescaled time ¢,, = t/7,,, where 7, is the time it takes for M(¢) to reach a value of 0.6. (c) Float and
(d) particle relative dispersion plotted in compensated form as a function of rescaled time £,,, to identify if a ballistic
regime is observed. In (c) and (d) power laws have been plotted for reference as labeled in the legend in (d).

different evolution of M(r), we define a time scale 7, as the
time it takes for M(z) to reach a value of 0.6, and rescale time
using this time scale, t,,, = t/7,,,. The factor of 0.6 was chosen
because it caused all the different rescaled relative disper-
sion curves [r2(t,|r)/r2 — 1] for the particles to collapse to-
gether during this initial phase (Fig. B4d), and also caused
M(1,,) to approximately collapse (Fig. B4b). The particles
show a perfect ballistic growth up to approximately ~0.5¢,,,
after which the different curves diverge. The range of this
ballistic growth is observed approximately to length scales of
r* ~ 2-3rq, which are within the numerical model’s viscous
range. Foussard et al. (2017) also observed a similar ballistic
range in a family of two dimensional numerical models, and
noted that the departure from the ballistic regime seemed to
occur around the time that the mean separation became
comparable to the smallest length scales corresponding to
the start of the inertial ranges. The rescaled relative disper-
sion curves from the floats did not show such a clear range of
quadratic growth, and were relatively noisy (Fig. B4c), which
is probably a result of high-frequency variability resulting

in a very rapid loss of memory of initial conditions that is not
properly quantified by M(z).

APPENDIX C

Relative Diffusivity and Waves

Here we show that waves, which can be a dominant part of
energy spectrum or the second-order structure function at the
submesoscales, may not impact the relative diffusivity. As « is
related to the relative velocity autocorrelation, it can be ex-
pressed in terms of the wavenumber—frequency energy spec-
trum (Bennett 1984; Babiano et al. 1990), as

K(r, 1) = ZEK{E”(k’ o)1 - Jo(kr)]J;R(k, 0,7) dT} dodk.

(&)

This equation is similar to Eq. (2) for the longitudinal
second-order structure function, except that it is weighted
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by the integral of the normalized wavenumber—frequency
Lagrangian energy spectrum R(k, w, 7). The energy spec-
trum R(k, w, 7) is the Lagrangian autocorrelation for flows
of wavenumber k and frequency w, defined as R(k, w, 7) =
Uk, w, 7)/Uy(k, o, 0), where

U,(k,0,7) = ﬁ”J(u,(x +r,t+T,1)

Xu,(x,t,t — 7)) exp(ik - r + wT) d’rdT (2)
and Uy(k, w,0) = (271-k)7l E)(k, w). The term u/(x, t,t — 7) is the
longitudinal velocity at time (r — 7) of a trajectory r that passes
through x at time ¢, while u,(x + r, ¢t + T, t) is the longitudinal
velocity at time ¢ + T at a location x + r. The purpose of having
two time lags: an Eulerian time (7)) and a Lagrangian time (7), in
contrast to only a Lagrangian time as in Bennett (1984), is to be
able to do a spectral decomposition in frequency. The depen-
dence on x and ¢ on is dropped assuming homogeneity in space
and stationarity in time of the underlying Eulerian flow field.

At small times the R(k, w, 7) is 1, and «(r, 1) =~ tS2,(r); im-
plying that the relative diffusivity and second-order structure
function follow the same scaling (Babiano et al. 1990). If time is
longer than the integral time scales [t > Ti(k, w)] for all
wavenumbers and frequencies but smaller than the uncorre-
lated limit, then the relative diffusivity follows,

K(r) = ZJ:E{E” (ko) T, (k)[1 — J,(kn)]} dw dk.  (C3)

Here T, (k, w) = ng(k, w, 7) dt acts as a filter in Eq. (C3), and
modulates the extent to which the Ej(k, w) at each wavenumber
and frequency impacts the stirring. The integral time scale that is
usually estimated from the single-particle velocity autocorrelation
(LaCasce 2008; Balwada et al. 2016b) is equivalent to the integral
of T)(k, w) over all wavenumber and frequency. The estimate of
relative diffusivity in Eq. (C3) is the estimate that we are inter-
ested in, since we care about the integrated impacts of stirring.

Since linear waves do not contribute significantly to stirring
(Holmes-Cerfon et al. 2011; Biihler et al. 2013), the wave-
numbers and frequencies composed primarily of waves will
have 7; ~ 0 and the kinetic energy of these scales will not
contribute to the relative diffusivity estimate in Eq. (7).
Balwada et al. (2018) showed that a conceptually similar result
is also true for the time-mean vertical tracer flux, where the
wavenumber—frequency energy spectrum of the vertical velocity
has a dominant peak at the superinertial frequencies, as a result
of linear waves, but the corresponding cross-spectrum of the
vertical tracer flux has no contribution from these scales. Scaling
based estimates of relative diffusivity (discussed toward the
end of section 4a), which stem from 2D turbulence theory,
assume the flow is not composed of any linear waves, and thus
all of the kinetic energy spectrum contributes to the relative
diffusivity.
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