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Abstract—Infrastructure assistance has been proposed as a
viable solution to improve the capabilities of commercial Un-
manned Aerial Vehicles (UAV), especially toward fully au-
tonomous operations. The airborne nature of these devices
imposes constrains limiting the onboard available energy supply
and computing power. The assistance of the surrounding com-
munication and computing infrastructure can mitigate such lim-
itations by extending the communication range and taking over
the execution of compute-intense tasks. However, autonomous
operations impose specific, and rather extreme in some cases,
demands to the infrastructure. Focusing on flight assistance and
task offloading to edge servers, this paper presents an in-depth
evaluation of the ability of the communication infrastructure
to support the necessary flow of information from the UAV to
the infrastructure. The study is based on our recently proposed
FlyNetSim, an open-source UAV-network simulator accurately
modeling both UAV and network operations.

Unmanned Aerial Vehicles, Edge computing, Autonomous

UAVs, UAV-Network Simulation

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) have been the center

of significant recent attention from the research community.

The traditional focus on robotics aspects of these interesting

airborne systems, such as flight dynamics, autonomy, naviga-

tion and group coordination [1]–[3], is being complemented

by a growing body of work on innovative communication,

networking and signal processing techniques supporting their

operations [4]–[6].

Along the latter line of inquiry, a recent trend interconnects

the UAVs to the Internet of Things (IoT) infrastructure to

augment their capabilities. For instance, cellular networks can

increase the communication range of the UAVs, and grant them

access to the infrastructure. Edge or cloud servers can take

over the execution of heavy-weight computing tasks, and coor-

dinate the operations of multiple autonomous UAVs operating

in the same area [7]. Finally, through the infrastructure, UAVs

can access data streams from external sensors, thus increasing

their sensing accuracy and range [8].

The objective of this paper is to assess the main challenges

and trends in establishing an effective interconnection between

the UAVs and the infrastructure. Intuitively, the degree of

“trust” the UAV can afford to give to the infrastructure

depends on a number of Quality of Service (QoS) metrics

heavily influenced by network and environment parameters,

such as the used protocol suite and technology, network load,

building density, and UAV motion characteristics. We explore

a wide range of scenarios and identify parameter regions where

remote control or assistance through the IoT infrastructure

is feasible. We focus our investigation on two case-study

applications: (i) The UAVs transmit telemetry to a remote

controller at the network edge to inform navigation control;

(ii) the UAVs offload computing tasks to an edge server.

In the former case, network impairments may impact delay

or loss of telemetry packets, influencing the estimation error

of UAVs’ position or speed. An excessive estimation error

may affect the ability of a remote controller to, for instance,

determine disjoint navigation trajectories for multiple UAVs

operating in the same area.

In the latter case, which refers to edge computing

paradigm [9], the UAVs transfer data to be processed to an

edge server connected to the communication infrastructure.

Clearly, the tolerable delay and delay variations, as well as

the frequency and distribution of trains of data packets to be

delivered to the edge server depend on the level of support the

UAV asks to the infrastructure. For instance, the offloading

of sporadic, although heavy-load, tasks at the application

layer may not impose extremely stringent requirements to

the network. Conversely, the offloading of the processing of

signals used for fine-grain navigation control, may require

a tight distribution of data delivery timing to result in an

effective control.

In order to capture the characteristics and complexity of

infrastructure-assisted UAV systems, we use the FlyNetSim

simulator we presented in [10], [11]. The FlyNetSim simulator

integrates two open source simulators – NS3 [12] and ArduPi-

lot [13], [14] – to create a UAV-network simulator preserving

the control stack and operations of real-world UAVs while

enabling the detailed simulation of the surrounding network

environment.

Our results emphasize how the performance of

infrastructure-assistance are heavily influenced by the

characteristics of the environment, such as the number

of nodes active in the network, the distance, and the

characteristics of the application and its corresponding traffic

emission pattern. We conclude that effective infrastructure-

assistance can be only achieved by enabling UAVs to use

multiple technologies, and by implementing algorithms

capable to switch from one to another during a mission.

The rest of the paper is organized as follows. Section II

summarizes current trends and approaches in UAVs commu-

nications amd infrastructure assistance to UAVs’ operations.

Section III presents the system considered in this paper and
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Fig. 1. Scenario considered in this paper: UAVs connect to the communica-
tion/processing infrastructure to enhance their capabilities.

illustrates the challenges associated with some case study sce-

narios of infrastructure-assistance. In Section IV, we provide a

brief overview of FlyNetSim simulator we proposed in [10].

Section V presents numerical results and a thorough discussion

on the ability of the communication/computing infrastructure

to support the autonomous operations of UAVs. Section VII

concludes the paper.

II. RELATED WORK

Autonomous UAVs necessitate to execute algorithms an-

alyzing in real-time information rich signals, and extend

their communication range to interconnect with remote flight

coordinators or other UAVs. In the literature, many solutions

and frameworks are available. We summarize the key ap-

proaches by dividing them into two specific categories: (a)
Infrastructure-assisted communications; and (b) Infrastructure-

assisted computing.

A. Infrastructure-Assisted UAV Communications

Clearly, urban area are at the same time the most chal-

lenging and infrastructure-rich environments. Thus, the UAVs

have the opportunity to obtain help from available base sta-

tions and users, but also face many communication issues at

different layers, including poor and/or unstable signal gain and

contention from other active users.

Several contributions address the problem of interconnect-

ing the UAVs with the infrastructure. [15] proposes to use

properly aligned directional antennas to extend the range of

UAVs communications over WiFi. An experimental evaluation

of UAV communications based on several WiFi standards was

presented in [16]. However, the aforementioned works do not

consider UAV specific applications and the impact of UAV-

specific characteristics on communication performance. In [8],

the authors presented a multi-hop communication strategy with

dynamic make-before-break mechanism. The framework uses

probes to evaluate available paths and select the one providing

performance matching the needs of the UAV.

Cellular infrastructure-based UAV communications were

proposed in [17], where aerial and ground UEs coexist in the

same area. To increase the reliability of the cellular connection

of the UAVs, an interference cancellation approach was used

in [18]. A communication strategy over unlicenced bands

was derived in [19], where a regret function is defined to

learn optimal duty cycle selection and support the coexistence

of WiFi with other active technologies. Different from these

contributions, herein we study the feasibility of using the in-

frastructure for relevant UAV based applications over multiple

communication technologies and different channel conditions.

B. Infrastructure-Assisted Computing

To mitigate the limitations of on-board computation on the

UAVs, the infrastructure can assist by taking over computation

tasks necessary for autonomous UAV operations. By placing

compute-capable devices at one – wireless – hop distance from

mobile devices, edge computing offers low-latency services

compared to traditional cloud computing. Remarkably, offload-

ing to edge servers not only has the potential for improving

computing quality – for instance by executing more complex

algorithms – and/or delay compared to on-board options,

but also is a natural platform to support coordination across

multiple UAVs.

Several contributions address challenges related to edge

computing for UAVs. A framework to determine trajectories

optimal both from the point of view of offloading and mission

was proposed in [20]. The framework also accounts for con-

straints on the speed of the UAV. A hierarchical offloading ap-

proach was presented in [21] with real-world UAV-embedded

setup for a computer vision based computing application.

A framework for UAV-cloud computing for disaster rescue

applications was proposed in [22]. In this paper, we investigate

the impact of the network channel conditions and network

parameters on task offloading.

III. INFRASTRUCTURE-ASSISTED UAV SYSTEM

We consider an UAV operating in an urban environment,

where multiple wireless access networks coexist. Specifi-

cally, we focus our attention on widely used communication

technologies, that is, Wi-Fi and Long-Term Evolution (LTE)

networks, which may support the intense transfer of data

necessary to assist UAV operations. We do not assume that a

channel is dedicated to the traffic generated by the UAV but,

instead, the channel resource can be shared by other wireless

nodes in the environment. This will enable the study of

the interactions between data streams induced by networking

protocols at the different layers of the stack.

The UAV is assumed autonomous, meaning that it is not

directly controlled by a human operator. However, some

functionalities can be delegated to the infrastructure, that

is, the UAV might depend on the help of other remote

devices. In general, autonomy requires the acquisition and

processing of signals from the surrounding environment to

inform control. This transformation of the input signals to

the output control has a rather broad meaning. The UAV

can be simply programmed to follow a trajectory through a

series of waypoints, in such case the input signal are GPS

coordinates, and the UAV determines its motion to reach

the next waypoint from its current position. However, in

297

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 21:56:10 UTC from IEEE Xplore.  Restrictions apply. 



many practical use-cases, an autonomous UAV may need to

acquire and process complex signals, a task which may impose

a significant burden to the battery-powered UAV in terms

of energy expense. Furthermore, due to weight constraints

UAVs often have weak on-board computing platforms, which

may lead to a large time needed to execute compute-intense

algorithms. Thus, offloading to compute-capable edge servers

may lead to considerable energy consumption reduction as

well as a faster capture to control pipeline for autonomy.

A. Cross-layer Complexity in UAV Communications

We provide in the following a short summary description

of the class of infrastructure assistance problems we consider

in this paper. The UAV produces a series of bursts of data at

the application layers. We define, then, the series of instants

{τi}i=1,2,3,..., where τi corresponds to the emission time of

the i–th burst. The bursts are characterized by a variable set

Bi that determines the amount of data generated in the i–th

burst. We abstract the communication between the UAV and

the access point – Wi-Fi access point or LTE eNodeB in the

considered environment – through the transformation Φ, which

maps the emission time τi and burst size Bi into the vectors

ti=[ti(1), . . . , ti(Ni)] and ωi=[ωi(1), . . . , ωi(Ni)]. The vec-

tor ti contains the delivery times of the Ni network packets

associated with the burst, the element ωi(n) of ωi is equal to

1 if the packet is delivered and 0 otherwise. For convenience,

we set to ∞ the delivery time of a failed packet. We define as

Δi the difference between the delivery time of the last packet

of the burst i delivered and the generation time τi.
Intuitively, the transformation Φ is a function of a number of

variables describing the complex state of the network. Clearly,

analytically modeling the interactions between channel physi-

cal, access, link and transport layer protocols implemented by

all the active nodes, as well as their packet arrival processes,

is an impossible task, and we rely on detailed simulations

to characterize the transformation Φ associated with specific

communication strategies and environmental conditions.

B. Network Environment

In urban network infrastructure, the most commonly used

wireless technologies are WiFi and LTE. WiFi is tradition-

ally operated in unlicensed frequency bands, whereas LTE

primarily operates in licensed spectrum – although recent

propositions extend its usage in the unlicensed spectrum as

well. WiFi is a bidirectional communication technology spec-

ified in the IEEE 802.11 standard. In common infrastructure,

WiFi stations (users) connect to an access point (AP) to

communicate with other users or a remote server. The most

used Medium Access Control (MAC) layer is Distributed

Coordination Function (DCF), where the users contend for

channel access using channel sensing and random backoff.

Recent standards of WiFi support bitrate adaptation to improve

the reliability of communications and Orthogonal Frequency

Division Multiplexing (OFDM) modulation to increase ca-

pacity. We refer the reader to the literature for a detailed

description of WiFi and LTE technologies.

In the urban infrastructure, both WiFi and LTE networks are

available to assist the UAV to enable the autonomous mission.

However, the different characteristics of the protocol of the

two technologies introduces different challenges in terms of

protocol overhead, reliability, handling mobility, congestion

and interference.

C. Infrastructure Assistance

Within this general environment, we consider the two spe-

cific infrastructure-assisted models described in the following.

Remote Navigation Assistance: In a scenario where multiple

UAVs share the same space, a remote unit can assist their

navigation to avoid collisions, for instance by creating safe

corridors for each UAV. To this aim, the UAV periodically

transmits telemetry variables – GPS coordinates, altitude,

speed and battery level and other information if enabled on

the UAV – to the remote controller. The telemetry information

are short messages usually contained within the maximum

transmission unit (MTU) size of one network packet. The

packets are usually sent at some update interval based on

the polling request set by the GCS to fetch the telemetry

information. Let’s denote as s(t)=(p(t), v(t), b(t)) the state

of the UAV at time t, where p(t), v(t) and b(t) are position,

speed, and battery level, respectively. In our model, the emis-

sion of telemetry variables corresponds to a small data burst,

that is, burst i contains the state s(τi). Based on the received

telemetry, the remote controller maintains a state estimate

s̃(t). Clearly, as the UAV emits telemetry only at the time

instants {τi}i=1,2,3,..., even in an idealized case where Δi=0
and ωi=1, ∀i, there is a mismatch between the actual and

estimated state of the UAV due to the evolution of the state

in between telemetry emission. The network transformation

might increase the estimation error by delaying telemetry

delivery and erasing some updates due to packet failure. Intu-

ition may suggest that more frequent updates would decrease

the estimation error. However, frequent updates may increase

network congestion and buffer overload at the source.

Computing Task Offloading: As discussed earlier, the infras-

tructure can provide a deeper degree of assistance by taking

over the execution of complex processing tasks. For instance,

a UAV may capture pictures in pre-set locations to detect

events of interest (e.g., a car accident or suspicious human

activities). In case of a positive detection, the UAV may be

programmed to autonomously alter his course and acquire

more information in that specific area. In a more extreme

example of autonomy, the UAV may be closely pursuing a

specific object based on sensor feed. In this case, as the UAV

uses the outcome of processing to control fine-grain motion,

the frequency of offloading is much higher compared to the

previous example, and the requirements on delay and delay

variations much more stringent. Clearly, the emission of pro-

cessing tasks corresponds to the emission of a burst. The level

of autonomy and the nature of the task (e.g., object detection

on a video stream) determines the burst size distribution, as

well as the delay and reliability requirements on the task
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delivery. In a typical use-case scenario, the on-board camera

captures video with 720p HD resolution for video streaming,

that requires a throughput of at least 1.8 Mbps. Depending

on the computation requirement, one can vary the frame rate

or resolution and hence modify the task size. Usually, for

tasks like image classification or object detection an entire

image frame is sent as a burst of data to the server. For

example, if images of average frame size 150KB are captured

with 10 frames per second, and one application packet size

is about 1500 bytes (including all headers) then a burst of

(150000/1500) = 100 packets will be sent over network in

every 100 milliseconds.

The above case-study scenarios generate a broad spec-

trum of characteristics of infrastructure assistance in terms

of both generated traffic – frequency and size of bursts –

and requirements. Our simulation study attempts to bridge

the UAV and communication/networking domains to provide

a comprehensive discussion on the feasibility of infrastructure

assistance to UAV operations.

IV. SIMULATION ENVIRONMENT

We briefly summarize the structure and main characteristics

of the FlyNetSim simulator we presented in [10], [11], as

well as the main general settings, used to obtain the results

presented herein.

A. FlyNetSim Simulator

The objectives of FlyNetSim are: (i) accurately model

UAV operations and dynamics using a software-in-the-loop

approach, where the data structures and control pipeline of

UAV software are fully preserved; (ii) accurately model a

multi-scale multi-technology IoT communication environment

and its interactions with the UAVs; (iii) establish a one-to-one

correspondence between UAVs and wireless nodes in NS-3,

where the UAVs implement a full network stack supporting

multiple network interfaces; (iv) preserve individual data paths

from and to UAV sensors and controllers.

To this aim, FlynetSim takes as starting point two open

source simulators – Network Simulator NS-3 [12] and UAV

simulator ArduPilot [13] – and build a fully open source simu-

lation environment for academic research. FlyNetSim includes

a middleware layer to interconnect the two simulators, pro-

viding temporal synchronization between network and UAV

operations, and a publish and subscribe based framework [23]

to create end-to-end data-paths across the simulators. The

middleware architecture we developed is lightweight, and

enables FlyNetSim to simulate a large number of UAVs and

support a wide range of IoT infrastructures and applications.

B. Urban Environment

Based on the discussion presented earlier in this paper,

it is clear that infrastructure assistance is a key enabler

of autonomous UAV technologies. However, the UAVs and

the infrastructure are necessarily connected through volatile

wireless links. Especially in urban environments, parameters

such as network load, signal propagation and mobility may

degrade the ability of these links to reliably support assistance.

In the following, we briefly describe the most salient aspects

we explore in our simulations.

Propagation: In urban environments, high buildings often

induce Non-Line of Sight (NLoS) signal propagation, where

penetration loss and reflection through on building walls can

cause highly varying attenuation. The dimension and location

of the buildings, the thickness and materials of the walls also

contribute to determine the overall amplitude of the received

signals. The reliability of infrastructure assistance can be

greatly impaired by these characteristics.

To model these properties, we adopt a pathloss model for

urban environments built as the combination of the standard

ITU R1411 pathloss model [24] and other variable components

function of salient parameters. Specifically, the path loss is

defined as L = Lb+Lew +Gh , where Lew is the loss through

the external walls and Gh is the gain due to the altitude of

the device. The loss Lb is the basic pathloss function

Lb =

{
Llos , if Line of sight
Lnlos , otherwise

(1)

In line of sight, the pathloss term is defined as:

Llos =
∣∣ 20log ( λ2

8πhbshuav
)
∣∣ + C, (2)

where hbs and huav are the altitudes of the base station and

UAV respectively, λ is the wavelength and C is a variable

whose upper and lower bound are a function of distance,

wavelength and altitude of the devices. In non-LoS, the

pathloss term is defined as Lnlos = Lfs + Ldf , where Lfs

is the free space pathloss and Ldf is the total pathloss due

to diffraction, including that generated by the roof top and

from the rows of the buildings. The value of Ldf depends

on the frequency of the signal, distance of transmitter and

receiver, and altitude of the devices. Note that urban pathloss

not only restricts the communication range, but also has large

impact on resource allocation and modulation schemes in the

communication. In our feasibility study, we consider non-LoS

pathloss model.

Mobility: The maximum speed of UAVs can be of the order

of 100 mph and the mobility patterns depend on several fac-

tors including the mission objective and environment. Unlike

MANET, the UAVs move in the network in a 3D space leading

to an increased range of dynamics, and the high speed leads

to a faster change in terms of channel gain. In infrastructure-

based UAV network, UAV may go out of coverage of the

current base station or access point. However, most of the

infrastructures provide handover mechanisms for continued

connectivity.

Exogenous Traffic: In case of infrastructure-assisted UAV

networks, the mission-based application data stream is affected

by the contention of data streams generated by users using

the same access point or base station. The infrastructure

can provide flow control and congestion control, and attempt

to achieve fairness in resource allocation among coexisting

applications and communicating devices.
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Fig. 2. Simulation setup: UAV follows a predefined trajectory, external nodes
are fixed and disposed in a circle centered on the AP or eNodeB.

Note that interference can be generated by coexisting

wireless networks or the presence of local Device-to-Device

(D2D) communications using the same frequency band. The

infrastructure can implement a centralized or distributed co-

ordination in terms of transmission scheduling and power

control to avoid or mitigate the impact of interference. Espe-

cially when heterogeneous network technologies share same

spectrum causing interference, the different technologies can

cooperate through the core backbone network to improve

overall performance.

Network Technology: Technologies and protocols are often

designed under certain assumptions and tailored to specific

scenarios. The technologies in urban environments have dif-

ferent specifications and approaches to data transmission and

channel sharing, e.g., WiFi employs a distributed algorithm for

contention based resource allocation, whereas in LTE resource

allocation is controlled using a centralized policy by the base

station. The technologies also differ in terms of retransmission

strategy, error correction, interference control, security and

many other aspects which advocates to choose appropriate

technology and protocol in different application scenarios and

different network conditions.

V. RESULTS AND DISCUSSION

We simulate the environment and applications described ear-

lier using the integrated UAV-network simulator FlyNetSim.

The simulated UAV performs a predefined mission, which

corresponds to a navigation plan in an urban environment.

The wireless environment is created using ns-3, the network

simulator component of FlyNetSim. The mobility of the ve-

hicle is updated in the network simulator in real time and

network parameters are varied to evaluate the performance in a

range of scenarios. A realistic simulation of motion and control

and control of the UAV is obtained using ArduPilot. The

simulated UAV uses simulated sensors to provide telemetry

information to the GCS over a simulated network. In the

second application, the UAV generates tasks/packet bursts with

different statistics and uses simulated WiFi and LTE networks

to transport them to an edge server.

Parameters Value
UAV Mobility Constant Speed
WiFi Standard IEEE 802.11a
WiFi Bandwidth 20 MHz
Propagation loss Model ItuR1411 Propagation Loss
Propagation Delay Model Constant Speed
LTE EARFCN 18000
LTE Bandwidth 20 MHz
LTE RLC Mode Acknowledgement (RLC AM)
LTE downlink MAC Scheduler Proportional Fair
LTE uplink MAC Scheduler Round Robin
TCP Congestion Control New Reno

TABLE I
EXPERIMENT PARAMETERS USED IN THE SIMULATIONS.

Ground WiFi/LTE nodes are added with uniform disc posi-

tion allocation close to the GCS node. These nodes produce

data streams directed to the same access point or eNodeB.

The number of nodes, datarate and packet size of the ground

users are tunable parameters. The pathloss and shadowing

parameters are set based on the ItuR1411 Propagation Loss

Model. Motion, shadowing and exogenous traffic all affect

the transformation induced by the network on the packet

stream from the UAV. The parameters used in the simulation

are summarized in table I. The UAV moves in a rectangular

trajectory around the AP or base station as shown in Figure 2.

A. Remote Navigation Assistance

We measure the performance of remote navigation assis-

tance in terms of the estimation of position error of the UAV.

Figure 3 shows an example of temporal evolution of error in

position estimation while the UAV performs a mission over

the predefined trajectory. In this experiment, communication

is over WiFi, and the different lines correspond to a different

number of nodes contending the shared channel resource with

the UAV. The contending nodes are placed with uniform

disc position allocation in close distance from the AP/base

station and transmits periodic bursts of packets of size 800
bytes with uniform periodicity based on the traffic rate; e.g.,

for traffic rate of 6Mbps, the packets are transmitted at

interval of (800 ∗ 8)/6 = 1067μs. It can be seen how not

only the mean of estimation error grows as the number of

contending nodes increases, but also the variance. The line

corresponding to 2 nodes has few sections where the error

doubles, probably caused by TCP timeouts, but otherwise

shows a considerable stability. Note that the error has periodic

low spikes, corresponding to periods of time where the UAV is

stationary. A higher number of nodes contending the wireless

resource further increase average and variations of delay, with

extended sections of the trace where the error significantly

increases with respect to the minimum. This latter effect maps

to a general inability of a remote node to maintain a tight

control over UAV trajectories.

We measure the average performance of telemetry transmis-

sion for navigation and computation task offloading in various

scenarios. For the external traffic, we define two extreme

regimes - no load conditions, where no wireless node other

than the UAV is present, and high load conditions, where

8 contending nodes are present generating 6Mbps in the
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Fig. 3. Temporal evolution of position error based on the telemetry emitted
by the UAV over WiFi with TCP in an urban environment with buildings.
Each external node transmits traffic with rate 6 Mbps. The UAV navigates on
a rectangular trajectory where the access point is at the center.
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Fig. 4. Average position error and variation range for different communication
technologies and protocols with respect to varying number of contending
nodes. Each node is transmitting 6 Mbps data traffic.

application layer. We also define Low Distance and High
Distance scenarios, where the distance between the UAV and

the access point or base station is 10m and 40m, respectively.

Figure 4 compares the average position error in High and

Low Distance conditions over WiFi and LTE networks as

a function of the number of ground nodes. It can be seen

how both networks maintain a low error as the number of

nodes is small, with WiFi being a slightly better option. At

40m, WiFi has an manifestly lower error compared to LTE in

mild contention environments, but presents a sharp degradation

as the number of ground nodes grows. This is due to the

inefficiency of DCF and random access in high-load conditions

compared to the LTE which has more controlled MAC.

Figure 5 shows the same metric over WiFi and LTE in

High and No Load conditions as a function of distance. Note

that 40m is the disconnection limit for WiFi, whereas LTE

has a much extended range, although at the price of a large

position error. The effect of distance and load is apparent in

both technologies. However, it can be seen how in the absence

of traffic from other nodes the two options are essentially

equivalent until disconnection due to coverage limit of WiFi.

Conversely, in High Load conditions the difference is marked:

WiFi has a much lower error at moderate distance, and then
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Fig. 5. Average position error and variance as a function of distance between
the UAV and the base station for different communication technologies. The
measurements are taken in no load and high load (8 nodes 6 Mbps each)
conditions.
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Fig. 6. Variation of Average position error with the speed of the UAV in
different network load conditions over LTE and WiFi.

sharply degrades as the UAV approaches the maximum range.

We also measure the impact of speed on the position error.

Intuitively, a higher speed of the vehicle would result in a

larger error simply due to the fact that the UAV would have

moved farther since a packet containing the last update was

received. Figure 6 shows the effect of increasing speed of UAV

in High and No Load conditions. As expected, the absolute

position error increases with the vehicle speed. The impact of

load is also manifest: the higher inter-packet delay maps to a

faster error increase for both WiFi and LTE.

We also measure how the frequency of updates from the

the UAV affects the absolute value of the position estimation

error. Figure 7 shows the variation at distance 20m. Intuitively,

a low update frequency generates a small network load, but

also allows the UAV to travel farther in between updates.

Conversely, frequent updates means a smaller error in idealized

conditions, but impose a larger traffic load to the network. This

trend is shown in the plot, where the error has a minimum

which depends on the technology and external load. Note that

the effect of the additional load introduced by frequent updates

is more pronounced in LTE High Load, due to the smaller

maximum throughput of the network in those conditions.

Hence, based on the network conditions, one can choose

appropriate telemetry frequency to minimize the position error.
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Fig. 7. Variation of Average position error with different update frequency
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Fig. 8. Task delay over WiFi and LTE with varying distance of the UAV from
the Base Station for task of burst size 50 KB every second. The measurement
are taken in two different external traffic regimes of no load and high load.

B. Computing Task Offloading

We now focus on evaluation of the performance when

the UAV is transmitting burst of packets with certain char-

acteristics of the computations to offload. Figure 8 shows

the variation of task delay as a function of distance in a

scenario where the tasks correspond to small 50KB data are

transmitted from the UAV every second. Interestingly, it can

be observed that in this case load conditions have a small

impact on WiFi, whereas LTE suffers a larger number of

nodes using the same channel. LTE clearly outperforms WiFi

in No Load conditions unless the UAVs is very close to the

access point. Conversely, WiFi has a smaller delay compared

to LTE in High Load conditions up to 30m distance, where

the smaller range of WiFi penalizes this choice. These results

are strongly influenced by the small size of the task, which

makes the corresponding packets go through transmissions in

the WiFi MAC. In LTE, the round robin allocation of resources

increases the delay in the presence of other users.

Figure 9 shows the same plot where tasks are of size

200KB. It can be observed a general shift of all the delays,

with WiFi being the most penalized by the size increase. One

of the reason for LTE incurring a less perceivable degradation
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Fig. 9. Task delay over WiFi and LTE with varying distance of the UAV
from the Base Station for task of burst size 200KB every second. The
measurement are taken in two different external traffic regimes of no load
and high load

with respect to WiFi is the RLC buffer, that reduces the

retransmission at the TCP layer compared to WiFi, where the

large burst size can cause more back-offs. However, when the

network is congested, resource allocation still penalizes LTE

in uplink as round robin is used.

We give a more clear view of this effect in Figure 10, where

we show delay as a function of task size in No Load conditions

for different distances and technology. WiFi suffers a larger

delay at long range, but provides better performance compared

to LTE in the short range for smaller task only. For short range,

LTE still performs better when the task size increase due to

better resource allocation. It can also be seen how WiFi has a

steeper delay increase as the task size increases compared to

increase rate in LTE.

Finally, Figure 11 shows that in presence of external traffic

in the network, WiFi has a smaller delay compared to LTE in

closer range for all task sizes. This is due to the fact that the

task is transmitted over LTE uplink which schedules in round

robin for all the UE nodes’ data. Also, it adds additional delays

every time it needs to seek transmission opportunity from the

eNodeB for a new chunk of data from any given UE. However,

in longer distance, WiFi deteriorates fast and slightly worsen

the performance compared to LTE.

C. Discussion

Based on the results from the two use case scenarios of

infrastructure-assisted UAV, we can see that the choice of

network depends on the network conditions, distance from the

access point or base station, as well as the class of application

that UAV is serving. In remote navigation assistance, the

telemetry data are more suitable to be transmitted over WiFi

when the UAV is close to the AP. In applications such as

task offloading, the size of the task has a great impact on

the network to be used. When large data bursts are to be

transmitted efficiently to the edge with low latency, the LTE

network provides best performance in low-load conditions.

However, if the network is congested, connecting the UAV

over WiFi is still advantageous at short distance from the AP,

whereas LTE is the best option. We conclude that in order to
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Fig. 10. Task delay over WiFi and LTE with varying task sizes for low and
high distance of the UAV from the Base Station. The measurement are taken
in in absence of any external traffic.

achieve efficient network infrastructure-assistance, the UAV

should be multi-homed, that is, it should have both WiFi and

LTE interfaces and use a context and application aware policy

to determine which network should be used.
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VII. CONCLUSIONS

The main objective of this paper is to provide a comprehen-

sive evaluation of communication strategies for infrastructure

assistance to the operations of autonomous UAVs. Based on

detailed UAV-network simulations, we focus our attention

on remote navigation assistance and offloading of process-

ing tasks to edge servers. Our results, obtained using the

recently proposed UAV-network simulator FlyNetSim, indicate

the need for the UAVs to be equipped with multiple network

interfaces and switch from one to another during missions.
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