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Abstract—Infrastructure assistance has been proposed as a
viable solution to improve the capabilities of commercial Un-
manned Aerial Vehicles (UAV), especially toward fully au-
tonomous operations. The airborne nature of these devices
imposes constrains limiting the onboard available energy supply
and computing power. The assistance of the surrounding com-
munication and computing infrastructure can mitigate such lim-
itations by extending the communication range and taking over
the execution of compute-intense tasks. However, autonomous
operations impose specific, and rather extreme in some cases,
demands to the infrastructure. Focusing on flight assistance and
task offloading to edge servers, this paper presents an in-depth
evaluation of the ability of the communication infrastructure
to support the necessary flow of information from the UAV to
the infrastructure. The study is based on our recently proposed
FlyNetSim, an open-source UAV-network simulator accurately
modeling both UAV and network operations.

Unmanned Aerial Vehicles, Edge computing, Autonomous
UAVs, UAV-Network Simulation

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) have been the center
of significant recent attention from the research community.
The traditional focus on robotics aspects of these interesting
airborne systems, such as flight dynamics, autonomy, naviga-
tion and group coordination [1]-[3], is being complemented
by a growing body of work on innovative communication,
networking and signal processing techniques supporting their
operations [4]-[6].

Along the latter line of inquiry, a recent trend interconnects
the UAVs to the Internet of Things (IoT) infrastructure to
augment their capabilities. For instance, cellular networks can
increase the communication range of the UAVs, and grant them
access to the infrastructure. Edge or cloud servers can take
over the execution of heavy-weight computing tasks, and coor-
dinate the operations of multiple autonomous UAVs operating
in the same area [7]. Finally, through the infrastructure, UAVs
can access data streams from external sensors, thus increasing
their sensing accuracy and range [8].

The objective of this paper is to assess the main challenges
and trends in establishing an effective interconnection between
the UAVs and the infrastructure. Intuitively, the degree of
“trust” the UAV can afford to give to the infrastructure
depends on a number of Quality of Service (QoS) metrics
heavily influenced by network and environment parameters,
such as the used protocol suite and technology, network load,
building density, and UAV motion characteristics. We explore
a wide range of scenarios and identify parameter regions where

remote control or assistance through the IoT infrastructure
is feasible. We focus our investigation on two case-study
applications: (i) The UAVs transmit telemetry to a remote
controller at the network edge to inform navigation control;
(ii) the UAVs offload computing tasks to an edge server.

In the former case, network impairments may impact delay
or loss of telemetry packets, influencing the estimation error
of UAVs’ position or speed. An excessive estimation error
may affect the ability of a remote controller to, for instance,
determine disjoint navigation trajectories for multiple UAVs
operating in the same area.

In the latter case, which refers to edge computing
paradigm [9], the UAVs transfer data to be processed to an
edge server connected to the communication infrastructure.
Clearly, the tolerable delay and delay variations, as well as
the frequency and distribution of trains of data packets to be
delivered to the edge server depend on the level of support the
UAV asks to the infrastructure. For instance, the offloading
of sporadic, although heavy-load, tasks at the application
layer may not impose extremely stringent requirements to
the network. Conversely, the offloading of the processing of
signals used for fine-grain navigation control, may require
a tight distribution of data delivery timing to result in an
effective control.

In order to capture the characteristics and complexity of
infrastructure-assisted UAV systems, we use the FlyNetSim
simulator we presented in [10], [11]. The FlyNetSim simulator
integrates two open source simulators — NS3 [12] and ArduPi-
lot [13], [14] — to create a UAV-network simulator preserving
the control stack and operations of real-world UAVs while
enabling the detailed simulation of the surrounding network
environment.

Our results emphasize how the performance of
infrastructure-assistance are heavily influenced by the
characteristics of the environment, such as the number
of nodes active in the network, the distance, and the
characteristics of the application and its corresponding traffic
emission pattern. We conclude that effective infrastructure-
assistance can be only achieved by enabling UAVs to use
multiple technologies, and by implementing algorithms
capable to switch from one to another during a mission.

The rest of the paper is organized as follows. Section II
summarizes current trends and approaches in UAVs commu-
nications amd infrastructure assistance to UAVs’ operations.
Section III presents the system considered in this paper and
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Fig. 1. Scenario considered in this paper: UAVs connect to the communica-
tion/processing infrastructure to enhance their capabilities.

illustrates the challenges associated with some case study sce-
narios of infrastructure-assistance. In Section IV, we provide a
brief overview of FlyNetSim simulator we proposed in [10].
Section V presents numerical results and a thorough discussion
on the ability of the communication/computing infrastructure
to support the autonomous operations of UAVs. Section VII
concludes the paper.

II. RELATED WORK

Autonomous UAVs necessitate to execute algorithms an-
alyzing in real-time information rich signals, and extend
their communication range to interconnect with remote flight
coordinators or other UAVs. In the literature, many solutions
and frameworks are available. We summarize the key ap-
proaches by dividing them into two specific categories: (a)
Infrastructure-assisted communications; and (b) Infrastructure-
assisted computing.

A. Infrastructure-Assisted UAV Communications

Clearly, urban area are at the same time the most chal-
lenging and infrastructure-rich environments. Thus, the UAVs
have the opportunity to obtain help from available base sta-
tions and users, but also face many communication issues at
different layers, including poor and/or unstable signal gain and
contention from other active users.

Several contributions address the problem of interconnect-
ing the UAVs with the infrastructure. [15] proposes to use
properly aligned directional antennas to extend the range of
UAVs communications over WiFi. An experimental evaluation
of UAV communications based on several WiFi standards was
presented in [16]. However, the aforementioned works do not
consider UAV specific applications and the impact of UAV-
specific characteristics on communication performance. In [8],
the authors presented a multi-hop communication strategy with
dynamic make-before-break mechanism. The framework uses
probes to evaluate available paths and select the one providing
performance matching the needs of the UAV.

Cellular infrastructure-based UAV communications were
proposed in [17], where aerial and ground UEs coexist in the
same area. To increase the reliability of the cellular connection
of the UAVs, an interference cancellation approach was used

in [18]. A communication strategy over unlicenced bands
was derived in [19], where a regret function is defined to
learn optimal duty cycle selection and support the coexistence
of WiFi with other active technologies. Different from these
contributions, herein we study the feasibility of using the in-
frastructure for relevant UAV based applications over multiple
communication technologies and different channel conditions.

B. Infrastructure-Assisted Computing

To mitigate the limitations of on-board computation on the
UAVs, the infrastructure can assist by taking over computation
tasks necessary for autonomous UAV operations. By placing
compute-capable devices at one — wireless — hop distance from
mobile devices, edge computing offers low-latency services
compared to traditional cloud computing. Remarkably, offload-
ing to edge servers not only has the potential for improving
computing quality — for instance by executing more complex
algorithms — and/or delay compared to on-board options,
but also is a natural platform to support coordination across
multiple UAVs.

Several contributions address challenges related to edge
computing for UAVs. A framework to determine trajectories
optimal both from the point of view of offloading and mission
was proposed in [20]. The framework also accounts for con-
straints on the speed of the UAV. A hierarchical offloading ap-
proach was presented in [21] with real-world UAV-embedded
setup for a computer vision based computing application.
A framework for UAV-cloud computing for disaster rescue
applications was proposed in [22]. In this paper, we investigate
the impact of the network channel conditions and network
parameters on task offloading.

III. INFRASTRUCTURE-ASSISTED UAV SYSTEM

We consider an UAV operating in an urban environment,
where multiple wireless access networks coexist. Specifi-
cally, we focus our attention on widely used communication
technologies, that is, Wi-Fi and Long-Term Evolution (LTE)
networks, which may support the intense transfer of data
necessary to assist UAV operations. We do not assume that a
channel is dedicated to the traffic generated by the UAV but,
instead, the channel resource can be shared by other wireless
nodes in the environment. This will enable the study of
the interactions between data streams induced by networking
protocols at the different layers of the stack.

The UAV is assumed autonomous, meaning that it is not
directly controlled by a human operator. However, some
functionalities can be delegated to the infrastructure, that
is, the UAV might depend on the help of other remote
devices. In general, autonomy requires the acquisition and
processing of signals from the surrounding environment to
inform control. This transformation of the input signals to
the output control has a rather broad meaning. The UAV
can be simply programmed to follow a trajectory through a
series of waypoints, in such case the input signal are GPS
coordinates, and the UAV determines its motion to reach
the next waypoint from its current position. However, in
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many practical use-cases, an autonomous UAV may need to
acquire and process complex signals, a task which may impose
a significant burden to the battery-powered UAV in terms
of energy expense. Furthermore, due to weight constraints
UAVs often have weak on-board computing platforms, which
may lead to a large time needed to execute compute-intense
algorithms. Thus, offloading to compute-capable edge servers
may lead to considerable energy consumption reduction as
well as a faster capture to control pipeline for autonomy.

A. Cross-layer Complexity in UAV Communications

We provide in the following a short summary description
of the class of infrastructure assistance problems we consider
in this paper. The UAV produces a series of bursts of data at
the application layers. We define, then, the series of instants
{7i}i=1,2,3,..., where 7; corresponds to the emission time of
the i—th burst. The bursts are characterized by a variable set
B; that determines the amount of data generated in the i—th
burst. We abstract the communication between the UAV and
the access point — Wi-Fi access point or LTE eNodeB in the
considered environment — through the transformation ®, which
maps the emission time 7; and burst size B; into the vectors
ti=[t:(1),...,t(NV;)] and w;=[w;(1),...,w;(N;)]. The vec-
tor t; contains the delivery times of the IN; network packets
associated with the burst, the element w;(n) of w; is equal to
1 if the packet is delivered and O otherwise. For convenience,
we set to oo the delivery time of a failed packet. We define as
A, the difference between the delivery time of the last packet
of the burst ¢ delivered and the generation time 7;.

Intuitively, the transformation ® is a function of a number of
variables describing the complex state of the network. Clearly,
analytically modeling the interactions between channel physi-
cal, access, link and transport layer protocols implemented by
all the active nodes, as well as their packet arrival processes,
is an impossible task, and we rely on detailed simulations
to characterize the transformation ® associated with specific
communication strategies and environmental conditions.

B. Network Environment

In urban network infrastructure, the most commonly used
wireless technologies are WiFi and LTE. WiFi is tradition-
ally operated in unlicensed frequency bands, whereas LTE
primarily operates in licensed spectrum — although recent
propositions extend its usage in the unlicensed spectrum as
well. WiFi is a bidirectional communication technology spec-
ified in the IEEE 802.11 standard. In common infrastructure,
WiFi stations (users) connect to an access point (AP) to
communicate with other users or a remote server. The most
used Medium Access Control (MAC) layer is Distributed
Coordination Function (DCF), where the users contend for
channel access using channel sensing and random backoff.
Recent standards of WiFi support bitrate adaptation to improve
the reliability of communications and Orthogonal Frequency
Division Multiplexing (OFDM) modulation to increase ca-
pacity. We refer the reader to the literature for a detailed
description of WiFi and LTE technologies.

In the urban infrastructure, both WiFi and LTE networks are
available to assist the UAV to enable the autonomous mission.
However, the different characteristics of the protocol of the
two technologies introduces different challenges in terms of
protocol overhead, reliability, handling mobility, congestion
and interference.

C. Infrastructure Assistance

Within this general environment, we consider the two spe-
cific infrastructure-assisted models described in the following.

Remote Navigation Assistance: In a scenario where multiple
UAVs share the same space, a remote unit can assist their
navigation to avoid collisions, for instance by creating safe
corridors for each UAV. To this aim, the UAV periodically
transmits telemetry variables — GPS coordinates, altitude,
speed and battery level and other information if enabled on
the UAV - to the remote controller. The telemetry information
are short messages usually contained within the maximum
transmission unit (MTU) size of one network packet. The
packets are usually sent at some update interval based on
the polling request set by the GCS to fetch the telemetry
information. Let’s denote as s(t)=(p(t), v(t),b(t)) the state
of the UAV at time ¢, where p(t), v(t) and b(¢t) are position,
speed, and battery level, respectively. In our model, the emis-
sion of telemetry variables corresponds to a small data burst,
that is, burst ¢ contains the state s(7;). Based on the received
telemetry, the remote controller maintains a state estimate
§(t). Clearly, as the UAV emits telemetry only at the time
instants {7;},=1,2,3,..., even in an idealized case where A;=0
and w;=1, Vi, there is a mismatch between the actual and
estimated state of the UAV due to the evolution of the state
in between telemetry emission. The network transformation
might increase the estimation error by delaying telemetry
delivery and erasing some updates due to packet failure. Intu-
ition may suggest that more frequent updates would decrease
the estimation error. However, frequent updates may increase
network congestion and buffer overload at the source.

Computing Task Offloading: As discussed earlier, the infras-
tructure can provide a deeper degree of assistance by taking
over the execution of complex processing tasks. For instance,
a UAV may capture pictures in pre-set locations to detect
events of interest (e.g., a car accident or suspicious human
activities). In case of a positive detection, the UAV may be
programmed to autonomously alter his course and acquire
more information in that specific area. In a more extreme
example of autonomy, the UAV may be closely pursuing a
specific object based on sensor feed. In this case, as the UAV
uses the outcome of processing to control fine-grain motion,
the frequency of offloading is much higher compared to the
previous example, and the requirements on delay and delay
variations much more stringent. Clearly, the emission of pro-
cessing tasks corresponds to the emission of a burst. The level
of autonomy and the nature of the task (e.g., object detection
on a video stream) determines the burst size distribution, as
well as the delay and reliability requirements on the task
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delivery. In a typical use-case scenario, the on-board camera
captures video with 720p HD resolution for video streaming,
that requires a throughput of at least 1.8 Mbps. Depending
on the computation requirement, one can vary the frame rate
or resolution and hence modify the task size. Usually, for
tasks like image classification or object detection an entire
image frame is sent as a burst of data to the server. For
example, if images of average frame size 150K B are captured
with 10 frames per second, and one application packet size
is about 1500 bytes (including all headers) then a burst of
(150000/1500) = 100 packets will be sent over network in
every 100 milliseconds.

The above case-study scenarios generate a broad spec-
trum of characteristics of infrastructure assistance in terms
of both generated traffic — frequency and size of bursts —
and requirements. Our simulation study attempts to bridge
the UAV and communication/networking domains to provide
a comprehensive discussion on the feasibility of infrastructure
assistance to UAV operations.

IV. SIMULATION ENVIRONMENT

We briefly summarize the structure and main characteristics
of the FlyNetSim simulator we presented in [10], [11], as
well as the main general settings, used to obtain the results
presented herein.

A. FlyNetSim Simulator

The objectives of FlyNetSim are: (i) accurately model
UAV operations and dynamics using a software-in-the-loop
approach, where the data structures and control pipeline of
UAV software are fully preserved; (i) accurately model a
multi-scale multi-technology IoT communication environment
and its interactions with the UAVs; (iii) establish a one-to-one
correspondence between UAVs and wireless nodes in NS-3,
where the UAVs implement a full network stack supporting
multiple network interfaces; (iv) preserve individual data paths
from and to UAV sensors and controllers.

To this aim, FlynetSim takes as starting point two open
source simulators — Network Simulator NS-3 [12] and UAV
simulator ArduPilot [13] — and build a fully open source simu-
lation environment for academic research. FlyNetSim includes
a middleware layer to interconnect the two simulators, pro-
viding temporal synchronization between network and UAV
operations, and a publish and subscribe based framework [23]
to create end-to-end data-paths across the simulators. The
middleware architecture we developed is lightweight, and
enables FlyNetSim to simulate a large number of UAVs and
support a wide range of IoT infrastructures and applications.

B. Urban Environment

Based on the discussion presented earlier in this paper,
it is clear that infrastructure assistance is a key enabler
of autonomous UAV technologies. However, the UAVs and
the infrastructure are necessarily connected through volatile
wireless links. Especially in urban environments, parameters
such as network load, signal propagation and mobility may

degrade the ability of these links to reliably support assistance.
In the following, we briefly describe the most salient aspects
we explore in our simulations.

Propagation: In urban environments, high buildings often
induce Non-Line of Sight (NLoS) signal propagation, where
penetration loss and reflection through on building walls can
cause highly varying attenuation. The dimension and location
of the buildings, the thickness and materials of the walls also
contribute to determine the overall amplitude of the received
signals. The reliability of infrastructure assistance can be
greatly impaired by these characteristics.

To model these properties, we adopt a pathloss model for
urban environments built as the combination of the standard
ITU R1411 pathloss model [24] and other variable components
function of salient parameters. Specifically, the path loss is
defined as L = Ly + L¢y +Gp,, Where L., is the loss through
the external walls and G}, is the gain due to the altitude of
the device. The loss L; is the basic pathloss function

_ [ Lips, if Line of sight
Ly = {Lnlos; otherwise M
In line of sight, the pathloss term is defined as:
)\2
Liys =| 201 — C, 2
los | og ( Sﬁhbshuau) | + ( )

where hys and h,q, are the altitudes of the base station and
UAV respectively, A is the wavelength and C is a variable
whose upper and lower bound are a function of distance,
wavelength and altitude of the devices. In non-LoS, the
pathloss term is defined as Lyjos = Lgs + Lgp, where Ly
is the free space pathloss and Lgs is the total pathloss due
to diffraction, including that generated by the roof top and
from the rows of the buildings. The value of L4 depends
on the frequency of the signal, distance of transmitter and
receiver, and altitude of the devices. Note that urban pathloss
not only restricts the communication range, but also has large
impact on resource allocation and modulation schemes in the
communication. In our feasibility study, we consider non-LoS
pathloss model.

Mobility: The maximum speed of UAVs can be of the order
of 100 mph and the mobility patterns depend on several fac-
tors including the mission objective and environment. Unlike
MANET, the UAVs move in the network in a 3D space leading
to an increased range of dynamics, and the high speed leads
to a faster change in terms of channel gain. In infrastructure-
based UAV network, UAV may go out of coverage of the
current base station or access point. However, most of the
infrastructures provide handover mechanisms for continued
connectivity.

Exogenous Traffic: In case of infrastructure-assisted UAV
networks, the mission-based application data stream is affected
by the contention of data streams generated by users using
the same access point or base station. The infrastructure
can provide flow control and congestion control, and attempt
to achieve fairness in resource allocation among coexisting
applications and communicating devices.
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Note that interference can be generated by coexisting
wireless networks or the presence of local Device-to-Device
(D2D) communications using the same frequency band. The
infrastructure can implement a centralized or distributed co-
ordination in terms of transmission scheduling and power
control to avoid or mitigate the impact of interference. Espe-
cially when heterogeneous network technologies share same
spectrum causing interference, the different technologies can
cooperate through the core backbone network to improve
overall performance.

Network Technology: Technologies and protocols are often
designed under certain assumptions and tailored to specific
scenarios. The technologies in urban environments have dif-
ferent specifications and approaches to data transmission and
channel sharing, e.g., WiFi employs a distributed algorithm for
contention based resource allocation, whereas in LTE resource
allocation is controlled using a centralized policy by the base
station. The technologies also differ in terms of retransmission
strategy, error correction, interference control, security and
many other aspects which advocates to choose appropriate
technology and protocol in different application scenarios and
different network conditions.

V. RESULTS AND DISCUSSION

We simulate the environment and applications described ear-
lier using the integrated UAV-network simulator FlyNetSim.
The simulated UAV performs a predefined mission, which
corresponds to a navigation plan in an urban environment.
The wireless environment is created using ns-3, the network
simulator component of FlyNetSim. The mobility of the ve-
hicle is updated in the network simulator in real time and
network parameters are varied to evaluate the performance in a
range of scenarios. A realistic simulation of motion and control
and control of the UAV is obtained using ArduPilot. The
simulated UAV uses simulated sensors to provide telemetry
information to the GCS over a simulated network. In the
second application, the UAV generates tasks/packet bursts with
different statistics and uses simulated WiFi and LTE networks
to transport them to an edge server.

Parameters Value

UAV Mobility

WiFi Standard

WiFi Bandwidth

Propagation loss Model
Propagation Delay Model

LTE EARFCN

LTE Bandwidth

LTE RLC Mode

LTE downlink MAC Scheduler

Constant Speed

IEEE 802.11a

20 MHz

TtuR1411 Propagation Loss
Constant Speed

18000

20 MHz

Acknowledgement (RLC AM)
Proportional Fair

LTE uplink MAC Scheduler Round Robin
TCP Congestion Control New Reno
TABLE I

EXPERIMENT PARAMETERS USED IN THE SIMULATIONS.

Ground WiFi/LTE nodes are added with uniform disc posi-
tion allocation close to the GCS node. These nodes produce
data streams directed to the same access point or eNodeB.
The number of nodes, datarate and packet size of the ground
users are tunable parameters. The pathloss and shadowing
parameters are set based on the ItuR1411 Propagation Loss
Model. Motion, shadowing and exogenous traffic all affect
the transformation induced by the network on the packet
stream from the UAV. The parameters used in the simulation
are summarized in table I. The UAV moves in a rectangular
trajectory around the AP or base station as shown in Figure 2.

A. Remote Navigation Assistance

We measure the performance of remote navigation assis-
tance in terms of the estimation of position error of the UAV.
Figure 3 shows an example of temporal evolution of error in
position estimation while the UAV performs a mission over
the predefined trajectory. In this experiment, communication
is over WiFi, and the different lines correspond to a different
number of nodes contending the shared channel resource with
the UAV. The contending nodes are placed with uniform
disc position allocation in close distance from the AP/base
station and transmits periodic bursts of packets of size 800
bytes with uniform periodicity based on the traffic rate; e.g.,
for traffic rate of 6 Mbps, the packets are transmitted at
interval of (800 % 8)/6 = 1067 us. It can be seen how not
only the mean of estimation error grows as the number of
contending nodes increases, but also the variance. The line
corresponding to 2 nodes has few sections where the error
doubles, probably caused by TCP timeouts, but otherwise
shows a considerable stability. Note that the error has periodic
low spikes, corresponding to periods of time where the UAV is
stationary. A higher number of nodes contending the wireless
resource further increase average and variations of delay, with
extended sections of the trace where the error significantly
increases with respect to the minimum. This latter effect maps
to a general inability of a remote node to maintain a tight
control over UAV trajectories.

We measure the average performance of telemetry transmis-
sion for navigation and computation task offloading in various
scenarios. For the external traffic, we define two extreme
regimes - no load conditions, where no wireless node other
than the UAV is present, and high load conditions, where
8 contending nodes are present generating 6 Mbps in the
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application layer. We also define Low Distance and High
Distance scenarios, where the distance between the UAV and
the access point or base station is 10 m and 40 m, respectively.
Figure 4 compares the average position error in High and
Low Distance conditions over WiFi and LTE networks as
a function of the number of ground nodes. It can be seen
how both networks maintain a low error as the number of
nodes is small, with WiFi being a slightly better option. At
40 m, WiFi has an manifestly lower error compared to LTE in
mild contention environments, but presents a sharp degradation
as the number of ground nodes grows. This is due to the
inefficiency of DCF and random access in high-load conditions
compared to the LTE which has more controlled MAC.
Figure 5 shows the same metric over WiFi and LTE in
High and No Load conditions as a function of distance. Note
that 40 m is the disconnection limit for WiFi, whereas LTE
has a much extended range, although at the price of a large
position error. The effect of distance and load is apparent in
both technologies. However, it can be seen how in the absence
of traffic from other nodes the two options are essentially
equivalent until disconnection due to coverage limit of WiFi.
Conversely, in High Load conditions the difference is marked:
WiFi has a much lower error at moderate distance, and then
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sharply degrades as the UAV approaches the maximum range.

We also measure the impact of speed on the position error.
Intuitively, a higher speed of the vehicle would result in a
larger error simply due to the fact that the UAV would have
moved farther since a packet containing the last update was
received. Figure 6 shows the effect of increasing speed of UAV
in High and No Load conditions. As expected, the absolute
position error increases with the vehicle speed. The impact of
load is also manifest: the higher inter-packet delay maps to a
faster error increase for both WiFi and LTE.

We also measure how the frequency of updates from the
the UAV affects the absolute value of the position estimation
error. Figure 7 shows the variation at distance 20 m. Intuitively,
a low update frequency generates a small network load, but
also allows the UAV to travel farther in between updates.
Conversely, frequent updates means a smaller error in idealized
conditions, but impose a larger traffic load to the network. This
trend is shown in the plot, where the error has a minimum
which depends on the technology and external load. Note that
the effect of the additional load introduced by frequent updates
is more pronounced in LTE High Load, due to the smaller
maximum throughput of the network in those conditions.
Hence, based on the network conditions, one can choose
appropriate telemetry frequency to minimize the position error.
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Fig. 7. Variation of Average position error with different update frequency
at the UAV for telemetry over WiFi and LTE. The measurements are taken
in two regimes: no traffic load and UAV is at low distance (10 m), and high
traffic load (6 nodes, 6 Mbps each) when UAV is at high distance (40 m).
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Fig. 8. Task delay over WiFi and LTE with varying distance of the UAV from
the Base Station for task of burst size 50 KB every second. The measurement
are taken in two different external traffic regimes of no load and high load.

B. Computing Task Offloading

We now focus on evaluation of the performance when
the UAV is transmitting burst of packets with certain char-
acteristics of the computations to offload. Figure 8 shows
the variation of task delay as a function of distance in a
scenario where the tasks correspond to small 50 K' B data are
transmitted from the UAV every second. Interestingly, it can
be observed that in this case load conditions have a small
impact on WiFi, whereas LTE suffers a larger number of
nodes using the same channel. LTE clearly outperforms WiFi
in No Load conditions unless the UAVs is very close to the
access point. Conversely, WiFi has a smaller delay compared
to LTE in High Load conditions up to 30 m distance, where
the smaller range of WiFi penalizes this choice. These results
are strongly influenced by the small size of the task, which
makes the corresponding packets go through transmissions in
the WiFi MAC. In LTE, the round robin allocation of resources
increases the delay in the presence of other users.

Figure 9 shows the same plot where tasks are of size
200 K B. It can be observed a general shift of all the delays,
with WiFi being the most penalized by the size increase. One
of the reason for LTE incurring a less perceivable degradation
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Fig. 9. Task delay over WiFi and LTE with varying distance of the UAV
from the Base Station for task of burst size 200 KB every second. The
measurement are taken in two different external traffic regimes of no load
and high load

with respect to WiFi is the RLC buffer, that reduces the
retransmission at the TCP layer compared to WiFi, where the
large burst size can cause more back-offs. However, when the
network is congested, resource allocation still penalizes LTE
in uplink as round robin is used.

We give a more clear view of this effect in Figure 10, where
we show delay as a function of task size in No Load conditions
for different distances and technology. WiFi suffers a larger
delay at long range, but provides better performance compared
to LTE in the short range for smaller task only. For short range,
LTE still performs better when the task size increase due to
better resource allocation. It can also be seen how WiFi has a
steeper delay increase as the task size increases compared to
increase rate in LTE.

Finally, Figure 11 shows that in presence of external traffic
in the network, WiFi has a smaller delay compared to LTE in
closer range for all task sizes. This is due to the fact that the
task is transmitted over LTE uplink which schedules in round
robin for all the UE nodes’ data. Also, it adds additional delays
every time it needs to seek transmission opportunity from the
eNodeB for a new chunk of data from any given UE. However,
in longer distance, WiFi deteriorates fast and slightly worsen
the performance compared to LTE.

C. Discussion

Based on the results from the two use case scenarios of
infrastructure-assisted UAV, we can see that the choice of
network depends on the network conditions, distance from the
access point or base station, as well as the class of application
that UAV is serving. In remote navigation assistance, the
telemetry data are more suitable to be transmitted over WiFi
when the UAV is close to the AP. In applications such as
task offloading, the size of the task has a great impact on
the network to be used. When large data bursts are to be
transmitted efficiently to the edge with low latency, the LTE
network provides best performance in low-load conditions.
However, if the network is congested, connecting the UAV
over WiFi is still advantageous at short distance from the AP,
whereas LTE is the best option. We conclude that in order to
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Fig. 10. Task delay over WiFi and LTE with varying task sizes for low and
high distance of the UAV from the Base Station. The measurement are taken
in in absence of any external traffic.

achieve efficient network infrastructure-assistance, the UAV
should be multi-homed, that is, it should have both WiFi and
LTE interfaces and use a context and application aware policy
to determine which network should be used.
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VII. CONCLUSIONS

The main objective of this paper is to provide a comprehen-
sive evaluation of communication strategies for infrastructure
assistance to the operations of autonomous UAVs. Based on
detailed UAV-network simulations, we focus our attention
on remote navigation assistance and offloading of process-
ing tasks to edge servers. Our results, obtained using the
recently proposed UAV-network simulator FlyNetSim, indicate
the need for the UAVs to be equipped with multiple network
interfaces and switch from one to another during missions.
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