
Optimal Task Allocation for Time-Varying Edge
Computing Systems with Split DNNs

Davide Callegaro, Yoshitomo Matsubara and Marco Levorato
Department of Computer Science, University of California, Irvine

e-mail: {dcallega,yoshitom,levorato}@uci.edu

Abstract—Many modern applications rely on complex machine
learning algorithms, such as Deep Neural Networks (DNNs),
to analyze images. However, both mobile and edge computing
strategies may fail to provide satisfactory performance in some
parameter regions. To mitigate this issue, the research commu-
nity recently proposed methods to split the execution of DNNs
to optimize the balance between computing load allocation and
channel usage. Building on this set of results, this paper presents
an optimization framework that enables the dynamic control of
how images are processed in mobile device-edge server systems.
The system is modeled as a Markov process, and a Linear
Fractional Program is defined to identify the optimal stationary
state-action distribution minimizing the overall average inference
time under a constraint on the number of discarded images.
Results indicate the advantage of using a dynamic control
strategy with respect to available fixed strategies.

I. INTRODUCTION

Many modern mobile applications rely on complex machine
learning algorithms, such as Deep Neural Networks (DNNs),
to analyze images and extract information on their con-
tent. The high computational complexity of these algorithms
clashes with the constrained computing and energy resources
available to mobile devices. To address this issue, the research
community proposed two main approaches: (i) reducing the
complexity of the DNN models to fit within the constraints
of the mobile device [1], and (ii) offloading the computing
task to more powerful computers, such as edge servers [2].
On the one hand, the former option inevitably results in some
degradation of the DNN output with respect to full models.
On the other hand, edge computing necessitates the transfer
of – possibly high resolution – images over wireless links.
The instability of wireless links, and network load patterns in
general, may degrade the performance of this strategy.

A recent trend of contributions proposed splitting the exe-
cution of DNNs models between the mobile device and edge
server [3]–[7]. The idea is to divide DNN models into head
and tail portions, which are executed at the mobile device
and edge server, respectively. The channel, then, transports
the output tensor of the head model to the edge server.
Unfortunately, the structure of DNN models for vision task
does not allow effective splitting, as they typically concentrate
most computational complexity in the early layers, where they
also tend to amplify the input size. Intuitively, splitting such
architectures would result in an excessive computation load
to the mobile device, as well as no advantage in terms of
channel load. Some split DNN approaches, then, introduce a

bottleneck layer early in the DNN structure to compress the
input image into a small tensor, thus mitigating channel im-
pairments that are the main source of performance degradation
in edge computing-based systems [4]–[7].

In this paper, we take as a starting point the splitting
approach we presented in [5], where the modification of
the architecture was paired with a specific training strategy
- Knowledge Distillation - applied to the first section of
the model. Knowledge Distillation trains that portion of the
modified model – which contains the bottleneck – to mimic
the output of the original section of the model. The model
is then split at the bottleneck to achieve compression. This
approach showed some important advantages, including the
ability to generate small bottlenecks without sacrificing overall
accuracy even in complex vision tasks, such as classification
on the ImageNet dataset.

However, splitting is of course optimal only in some regions
of parameters describing the channel capacity and the charac-
teristics and state of the edge server (e.g., task queue length
and computing capacity). In general, the three main options,
local computing, edge computing and split computing, may
be optimal in different conditions. As the system state evolves
over time due to channel and queueing dynamics, a scheduling
problem arises, where the mobile device needs to determine
which one of the three options to choose. Intuitively, as tasks
may accumulate, the decision needs to be optimal considering
the statistics of the future system’s state.

In this paper, we present a scheduling problem determining
how images periodically produced by a mobile device are
processed. We consider a system including a sensor generating
images at the mobile device, processing units at the mobile
device and edge server, a time-varying communication chan-
nel, and a selector deciding how each image is processed. As
task flow may exceed the capabilities of the processing units
and communication channel, we include in the system finite
buffers to accumulate tasks to be completed and data to be
transmitted. Notably, the presence of buffers, a crucial com-
ponents of real-world systems, induces temporal correlation,
where the choices of the selector at a given time influence the
distribution of future system’s states.

We model the system as a Markov process, and formulate
an optimization problem whose objective is to minimize the
average time between image capture and the availability of
the analysis outcome and the number of images rejected by
the buffers. The problem is mapped to a Linear Fractional

978-1-7281-8298-8/20/$31.00 ©2020 IEEE

GL
O

BE
CO

M
 2

02
0

- 2
02

0
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
29

8-
8/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
42

00
2.

20
20

.9
32

23
44

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:09:30 UTC from IEEE Xplore. Restrictions apply.

Program (LFP), whose optimization variables are state-action
stationary frequencies.

The rest of the paper is organized as follows. In Section II,
we provide an overview of prior work, and briefly explain the
split DNN technique we proposed in [5]. Sections III and IV
describe the system and the Markov process used to model
its dynamics. Section V formulates the optimization problem
and presents the resolution methods. Results are shown and
discussed in Section VI, and Section VII concludes the paper.

II. DISTILLED SPLIT DNN MODELS

There are several methods to make DNN models deployable
such as training lightweight models [1,8], model compression
and pruning [9,10]. Such approaches, however, often experi-
ence significantly degraded accuracy of the model predictions
and/or require many iterations of complex operations in train-
ing and optimization.

Kang et al. [3] and Jeong et al. [11] propose to simply
split DNN models in an edge computing scenario. However,
such approaches are not well motivated, as many state-of-the-
art DNN models do not present bottlenecks – that is, layers
with few nodes – in the early layers. As a result, splitting is
often suboptimal compared to local or edge computing from a
point of view of total inference time. Recent studies attempt
to introduce bottlenecks by modifying the architecture and
training of the models [4]–[7].

For the sake of completeness, we briefly summarize here the
split DNN technique we proposed in [5]. As mentioned in the
introduction, the core idea is to introduce a bottleneck layer,
that is, a layer composed of few nodes, in the early stages of
the model. This enables to achieve in-network compression of
the input while limiting the computing load assigned to the
mobile device. We focus on complex DNN models: DenseNet-
169, -201 [12], ResNet-152 and Inception-v3 [13], where we
first modified the models to introduce such bottlenecks, and
retrained the altered model using a technique called head
network distillation [5]. The technique stems from knowledge
distillation [14], a procedure used to train a smaller (student)
model to mimic a bigger (teacher) model’s output. Interest-
ingly, it is reported that student models trained to mimic
the teacher model often outperform equivalent models trained
using a vanilla method. Since our focus is on introducing
bottlenecks to the early layers of the pretrained model, we
only train the head portion of the altered model to reduce
training time.

Table I summarizes the head-distilled models’ accuracy and
bottleneck tensor size scaled by the input tensor size (3 ×
299× 299 for Inception-v3 and 3× 224× 224 for others) as
reported in our previous work [5]. With small test accuracy
loss, our introduced bottlenecks reduce the size of data to
be transferred to the edge computer by approximately 98%
compared to the input tensor size. The reduction in network
payload corresponds to a reduced communication delay withe
respect to transmitting the input data, as shown in Section VI.

Table I: Classification performance of head-distilled (student)
models with bottlenecks [5]

Altered model DenseNet-169 DenseNet-201 ResNet-152 Inception-v3

Test accuracy [%] 83.3 (-1.2) 84.1 (-1.1) 83.2 (-1.1) 85.7 (-0.8)
Data size [%] 1.68 1.68 1.68 1.53

* The numbers in brackets indicate difference in accuracy from the original
(teacher) models.

III. SYSTEM DESCRIPTION

We consider a system composed of a mobile device (MD)
and an edge server (ES). The overall objective of the system
is to analyze images acquired by the MD in the shortest
possible time and with the highest possible accuracy with the
assistance of the ES. We consider a specific family of vision
tasks, that is, image classification. In this work, we focus on
a specific classification model being used to analyze all the
images produced by the MD.

We denote the total time lapse from image acquisition to
the availability of the output as T . To minimize T , the MD
has three options:
Local Computing: the MD executes the DNN model using
its own resources.
Edge Computing: The MD transmits the full image to the
ES, which executes the model and transmits the outcome to
the MD.
Split Computing: The MD executes the head model, trans-
mits over the wireless channel the output tensor to the ES,
which executes the tail model and sends back the outcome to
the MD.

As explained in [5], the three different choices are optimal
in different regions of parameters describing the computing
capacity of the MD and ES, as well as the capacity of the
wireless channel connecting them.

Herein, we develop a technique to allow the MD to dynam-
ically select the best option in response to the system state.
As both computing and communication tasks may accumulate
within the system, we describe the latter as the concatenation
of queues illustrated in Fig. 1. The MD acquires images,
which are forwarded to a selector to determine which of local,
edge and split computing is used. In the first case, the task
is forwarded to the task buffer of the MD, and eventually
executed by the embedded MD’s processor. In the second case,
the full input image is forwarded to the communication buffer
and eventually delivered over the communication channel to
the ES task buffer for processing. In the third case, the image
is sent to the local task buffer, but only the head portion
of the model is executed by the embedded processor, which
then forwards the tensor to the communication buffer for
transmission to the ES task buffer. The ES then executes the
tail portion. Note that in the edge and split computing options,
the model output needs to be transmitted back to the MD. The
size of the MD task buffer, ES task buffer and communication
buffer are denoted with Nmd, Nes and Ncomm, respectively.
We adopt a First-In First-Out service model.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:09:30 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Schematics of the system considered in this paper.

The total delay Ti of image i is the sum of many compo-
nents, whose value depends on the computing capacity of the
MD and ES – which here is assumed fixed – as well as the
current channel capacity and the state of the buffers, which
vary over time. In order to minimize the average delay, the
selector, then, inevitably needs to implement a policy capable
of reacting to the dynamics of the system’s state.

IV. STOCHASTIC MODEL

In this section, we characterize the state space and dynamics
of the stochastic process associated with the system described
earlier. We note that in the following we use capital and
lowercase letters to denote random variables and their values,
respectively.

A. State Space

We define the state space of the system as the vector

s = [c,bmd,bcomm,bes], (1)

where c is the state of the wireless channel, and bmd, bcomm,
and bes are vectors describing the state of the MD task buffer,
communication buffer and ES task buffer, respectively. The
state of the channel corresponds to the Signal-to-Noise-Ratio
(SNR) experienced by the link. We quantize the SNR to define
C transmission rates, obtained using a capacity model, that is

Ψ(c)=W log2(1 + SNRc), (2)

where SNRc is the SNR associated with channel state
c∈{1, . . . , C}, and W is the channel bandwidth.

The vector bmd = {ak}1,...,Nmd
contains Nmd elements

each of those is associated with a slot in the MD task buffer.
The variables ak lie in the set {0, full, split}, whose elements
respectively correspond to an empty slot, a slot containing an
input image to be processed using the original full model,
and an image to be processed using the head model only. The
buffer is organized to rank tasks in order of arrival, that is,
the oldest task is in the first position, the second oldest on the
second and so on, and empty slots are at the vector end. We
define the functions

Zmd(z) = z, Fmd(z) = a1, (3)

where z is the number of empty slots and a1 is the first
element in the vector bmd within the state z. We define

analogous functions extracting the same quantities from bes

and bcomm, whose definition is analogous. The elements ak of
bcomm are associated with empty slots (ak=0), input images
(ak=full), and tensors (ak=split) to be delivered to the ES
buffer for processing. The elements ak of bes correspond to
empty slots (ak=0), input images to be fully processed by the
ES (ak=full), and tensors (ak=split) that are inputs to the tail
DNN model. On these models, we define similar functions as
in Eq. 3.

In addition to the system state, we define the decision
variable u ∈ {lc, ec, split}. The components of the decision
space correspond to a task being fully executed locally at the
MD, being fully offloaded to the ES, and split computing.

B. System Dynamics

In order to analyze the system and locate the optimal
selection policy, we make some assumptions that are common
in queueing system analysis. Specifically, we assume that the
image interarrival time at the MD, the data transfer time, and
the task execution time are exponentially distributed random
variables. The distributions are centered on values extracted
from the real-world experiments reported in [5].

We define, then, the following parameters
• λ as the arrival rate of images (that is, 1/λ is the average
inter-capture time of images),
• γfull and γhead as the execution rate of the full and head
DNN models at the MD, respectively.
• ρfull and ρtail as the execution rate of the full and tail DNN
models at the ES, respectively.
• ν(i,in) and ν(i,head) as the transmission rate (i.e., the channel
service rate) of full images and output tensors, respectively.
The parameters are computed as the channel capacity of that
state divided by the data size of the input image/tensor.
• Finally, we assume a jump model for the channel, where the
channel state switches from state i to state j with probability
ϕij after an exponentially distributed time with parameter ω.

We emphasize that the service rate of the MD and ES
task buffers depends on the nature of the task being executed
(oldest in the buffer), which can be either the execution of the
full DNN model, or the execution of the head (MD) and tail
(ES) DNN models. Similarly, the channel service rate depends
on the tag associated with the oldest data chunk in the buffer,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:09:30 UTC from IEEE Xplore. Restrictions apply.

but also on the current channel capacity (described by the
element c in the overall state vector).

Under the assumption that the service rates are exponen-
tially distributed as defined above, the system dynamics can
be described as a stationary Semi-Markov process {St} with
a finite state space as described in Section IV-A, where
t=1, 2, Different from plain Markov processes, in Semi-
Markov processes the permanence time in each state is a
random variable. The discrete temporal index t, then, refers to
time instants right after a state change. We remark that as the
timing of all events in the system is determined by exponen-
tially distributed random variables, then the probability that a
particular event is the next is computed as the probability that
the corresponding random variable is the smallest. Moreover,
again due to the exponential nature of inter-event time, the
residual time of the variables upon the occurrence of an
event has the same distribution. Importantly, the overall inter-
event time is distributed as the minimum set of exponentially
distributed variables.

Assuming a recurrent Markov chain, the long-term dy-
namics of the process are fully defined by the transition
probabilities

Pu(ij) = Pr{St+1=j | St=i, Ut=u}, (4)

where Ut is the decision variable at time t. Listing the
transition probabilities is laborious and cumbersome. Instead,
we provide an operational description of the process dynamics
and associated probabilities.

Consider an empty system, that is

s0,c = [c,0,0,0], (5)

where 0 are zero-vectors of an appropriate size. In this state,
then, all the buffers are empty, and the channel is in state c.
Intuitively, the next “event” driving the system in a different
state can be either (i) the channel state changes, or (ii) a new
image arrives. The probability of event (i) being the first to
happen is simply ω/(ω + λ). Then the probability that the
process transitions from s0,c to s0,c′ is equal to ϕcc′ω/(ω+λ).
Note that u is irrelevant in this case. The probability that
the next event is (ii) is λ/(ω + λ). In this case, the decision
variable determines the next state, and we have the following
transitions with probability λ/(ω + λ):

s0,c→[c, [0, . . . , 0, full],0,0] if u = lc, (6)
s0,c→[c,0, [0, . . . , 0, full],0] if u = ec, (7)
s0,c→[c, [0, . . . , 0, split],0,0] if u = split. (8)

Thus, if u=lc a full size image is sent to the MD’s task
buffer for full processing (note that the full DNN model is
immediately executed locally as the task is in first position),
if u=ec a full size image is sent to the communication
buffer (and transmission immediately begins), and if u=split
then the full image is sent to the MD’s task buffer and the
head model is used to generate a tensor. From s0,c, all the
other transitions have a probability equal to zero. Consider
a state s = [c,bmd,bcomm,bes], where 0<Zmd(s)<Nmd,

0<Zcomm(s)<Ncomm, and 0<Zes(s)<Nes. Thus, all the
buffers are non-empty, but also non-full.

From s, the following events might be the first to occur:
(i) a new image arrives; (ii) a task is completed in the MD
task buffer; (iii) a task is completed in the ES task buffer; (iv)
the transmission of a data chunk from the communication
buffer is completed; and (v) the channel changes its state.
As expected, when (i) to (iv) occurs, the task/data chunk is
removed from the buffer, and either sent to the next buffer or
removed from the system. Event (v) is different, in that the
state vector remains the same excluding (possibly) the channel
state variable c.

Again, the probability that the first event is a specific one
in the set of the five possible is the probability that the
corresponding exponential variable controlling the time is the
smallest in the set. We, then, define the variables

γ = γfull1(Fmd(z) = full)+γhead1(Fmd(z) = split) (9)
ρ = ρfull1(Fes(z) = full)+ρtail1(Fes(z) = split) (10)
ν = νc,in1(Fcomm(z) = full)+νc,head1(Fcomm(z) = split)

(11)

where 1(x) is the indicator function of event A. We remark
that λ and ω are the parameters of the variables determining
image arrival and channel state change frequency, respectively.
We also define µ=λ+ ω + γ + ρ+ ν.

The probability that the first event from z is (i), (ii), (iii),
(iv) or (v) is λ/µ, γ/µ, ρ/µ, ν/µ and ω/µ, respectively. Given
the occurrence of any of these specific events, the next state is
deterministic irrespective of the decision variable u, excluding
in (v), where the channel transition statistics determine the
next state.

Let’s define the state vector s′ = [c′,b′
md,b

′
comm,b

′
es].

Given the occurrence of (v), the state remains the same
excluding the channel component, that is, the state transitions
to s′ = [c′,bmd,bcomm,bes] with probability ϕcc′ .

Let’s now look at the individual state vectors:

bmd = [0 . . . 0 akmd
. . . a1], (12)

bcomm = [0 . . . 0 akcomm
. . . a1], (13)

bes = [0 . . . 0 akes
. . . a1], (14)

where kmd=Nmd−Zmd(z), kes=Nes−Zes(z), and
kcomm=Ncomm−Zcomm(z). Given the occurrence of (i), the
process transitions to the following states

s→[c [0 . . . full akmd
. . . a1] bcomm bes] if u=lc, (15)

s→[c bmd [0 . . . full akmd
. . . a1] bes] if u=es, (16)

s→[c bmd [0 . . . split akmd
. . . a1] bes] if u=split, (17)

with probability one.
If (ii) occurs and the first element of bmd is equal to full

then the vector shifts right (removing the first element) and a
zero is appended. If the first element of bmd is equal to split,
then that first element is moved to replace a zero in bcomm,
the vector bmd shifts right (removing the first element) and
a zero is appended. If (iii) occurs, then the vector bes shifts

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:09:30 UTC from IEEE Xplore. Restrictions apply.

right (removing the first element) and a zero is appended. If
(iv) occurs, then the first element of the bcomm is moved to
replace a zero in bes, the vector bcomm shifts right (removing
the first element) and a zero is appended.

If one or more buffers are empty, then the corresponding
event has probability equal to zero, and the respective rates are
removed from the denominator of the transition probabilities.
If one or more buffer is full, then the transitions described
above need to be modified to account for the fact that
tasks/data cannot be moved to them and are, instead, erased.

V. OPTIMAL POLICY

The transition probabilities described in the previous section
are conditioned on the action u chosen by the selector. We
define, then, the policy ξ guiding such choice.

A. Performance Metrics and Cost Functions

We are interested in two key metrics: (a) the average time
lapse between task arrival and departure from the system
(total inference time) and (b) the task loss rate, that is,
the probability that a task is sent to a full buffer. Given
the complexity of the system, the definition of such metrics
is non-trivial. Due to space constraints, we again provide
an operational description that allows the derivation of the
metrics.

Given the nature of the process, for each metric ri : S ×
S×U → R, that assigns a cost to the tuple (state, state, action),
we associate the time-average of the metric ri defined as

r̄i = lim
n→+∞

1

n

n∑
k=1

E [ri(sk, s
′
k, uk)] . (18)

We now express the quantities needed to compute the
performance metrics listed above. The average number of
tasks successfully completed is the time average of the cost
function:

r1(sk, s
′
k, uk) =

{
1 if task successful at MD or ES
0 otherwise.

(19)
Similarly we denote r2(sk, s

′
k, uk) the average number of

tasks discarded and r3(sk, s
′
k, uk) the time passed.

The average total inference time is the ratio between the
accumulated delay of all the images and the number of images
whose analysis is completed. Therefore we can express it as

r̄3
r̄1

=
limn→+∞

∑n
k=1 E[r3(sk, s

′
k, uk)]

limn→+∞
∑n

k=1 E[r1(sk, s′k, uk)]
. (20)

B. Optimization Problem

Let us introduce Û, the sequence of actions that minimizes
the objective R(U) over the space U∞ of all possible infinite
action sequences under Mc linear constraints. Then we can
express the problem as a Linear Fractional Program:

Û = arg inf
ξ

∑
s∈S πξ(s)r3(s, ξ)∑
s∈S πξ(s)r1(s, ξ)

s.t. βq

∑
s∈S πξ(s)rcn(q)(s, ξ)∑
s∈S πξ(s)rcd(q)(s, ξ)

+ λq ≤ γq (21)

where q = 1, 2, ...,Mc enumerates the program constraints
and cn(q), cd(q) are indexes for the necessary cost functions
appearing in the constraints. The problem stated above has
multiple dependencies between the randomized stationary
policy ξ(s, u): πξ(s), the stationary distribution of being in
a given state, and the cost ri(s, ξ(s, u)).

For this reason we define κ = gω = gπξ(s)ξ(s, u),
where the intermediate variables ω can be interpreted as the
probability that the process is in state s and action u is taken.
The change of variables κ = gω is necessary to scale the
magnitude of probabilities to the one of the cost functions,
reaching the final problem formulation:

{κ̂, ĝ} = argmin
κ,g

rT3 κ

s.t. (βrcn + (λ− γ)rcd)
Tκ ≤ 0Mc,1

11,Aκ− g = 0

rTcdκ = 1

Pκ = 0|S|,1

g ≥ 0, κs,u ≥ 0 ∀s ∈ S,∀u ∈ U , (22)

where A = |S × U| is the cardinality of the state-action
space, and where 0m,n,1m,n are matrices with m rows and
n columns, with all elements equal to 0 and 1 respectively.

C. Optimal Policy

As demonstrated in [15], if the Markov process is unichain,
that is, the whole state space is a single recurrent class, then
at least one optimal memoryless stationary policy exists in the
form of the following conditional probability

ξ(s, u)=Pr{Ut=u | St=s}. (23)

We use the problem formulated above to find the policy
ξ through direct computation using the Linear Fractional
Problem defined in the previous section. Applying the Simplex
Algorithm to the problem in Eq. (22) we find κs,u, from which
we can extract the policy using the following formulas:

ξ̂(s, u) =
κ(s, u)∑

u∈U κ(s, u)
(24)

where if κ(s, u) = 0 the state is transient under the optimal
policy, making ξ̂(s, u) = 1 for one random action and
ξ̂(s, u) = 0 otherwise.

VI. RESULTS

In this section, we provide results discussing the perfor-
mance of the dynamic selection we proposed with respect to
edge computing. In order to find the parameters to use in
solving LFP, we measured the inference time of DenseNet-
169 over a large image classification dataset, on two devices:
a Raspberry Pi 3b+ and Nvidia Jetson TX2. We created a split
architecture using the head distillation technique described in
[5] with a similarly shaped bottleneck. Note that we selected
the smallest bottleneck size that preserved accuracy. The
inference time and size of the data to be transmitted over
the network are reported in Table II.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:09:30 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Delay ratio w.r.t. edge computing as a function of
transmission rate.

Table II: Inference time and size of data to be transferred

Mobile Device Edge Server Data

Full comp. 7.4 s 0.3 s 600 Kb

Split comp. 0.44 s 0.25 s 85 Kb

Fig. 2 shows the ratio between the delay incurred using
a fixed edge computing policy and the split computing. We
remark that both adaptive and Split Computing outperform
simple task offloading when transmission rates are below
2 Mbps. From the plot, it is clear that edge computing
is the best strategy when data rates are sufficiently large
(over 10 Mbps in the considered setting). The optimal policy
implements a hybrid behavior. Whe the transmission rate is
small, it mainly uses split computing. As the transmission rate
increases, edge computing is used more often.

In Fig. 3, we plot the tradeoff between the number of
successful tasks and the average delay. It can be observed
how not only the delay is reduced using an adaptive approach,
but also the number of successfully processed tasks increases.
This is again due to the flexibility that split computing offers in
a range of data rates where edge offloading is simply unusable
due to the size of the full frame.

VII. CONCLUSIONS

In this paper we leveraged head network distillation tech-
nique, using an adaptable logic, reinterpreting edge offloading,
generally thought as a binary choice. We presented a detailed
stochastic model for such scenarios using queuing theory, for-
mulated an optimization problem, and solved it using Linear
Fractional Programming. Results show a clear improvement
for asymmetric systems with impaired communications.

ACKNOWLEDGMENT

This work was supported by the NSF grant IIS-1724331
and MLWiNS-2003237.

Figure 3: Gain in task computed w.r.t. edge computing, as a
function of the total inference delay.

REFERENCES

[1] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[2] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in Proceedings of IEEE INFOCOM 2013, 2013, pp. 1285–1293.

[3] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of ACM ASPLOS. New York, NY,
USA: ACM, 2017, pp. 615–629.

[4] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep learning
architecture for intelligent mobile cloud computing services,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 2019, pp. 1–6.

[5] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,”
in Proceedings of the 2019 MobiCom Workshop on Hot Topics in Video
Analytics and Intelligent Edges, 2019, pp. 21–26.

[6] Y. Matsubara and M. Levorato, “Split computing for complex ob-
ject detectors: Challenges and preliminary results,” arXiv preprint
arXiv:2007.13312, 2020.

[7] Y. Matsubara and M. Levorato, “Neural compression and filtering for
edge-assisted real-time object detection in challenged networks,” arXiv
preprint arXiv:2007.15818, 2020.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in Fourth International Conference on Learning Representations, 2016.

[10] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in Fourth International Conference on
Learning Representations, 2016.

[11] H.-J. Jeong, I. Jeong, H.-J. Lee, and S.-M. Moon, “Computation offload-
ing for machine learning web apps in the edge server environment,” in
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 1492–1499.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, vol. 1, no. 2, 2017, p. 3.

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016.

[14] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Deep Learning and Representation Learning Workshop:
NIPS 2014, 2014.

[15] K. W. Ross, “Randomized and past-dependent policies for markov
decision processes with multiple constraints,” Operations Research,
vol. 37, no. 3, 1989.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:09:30 UTC from IEEE Xplore. Restrictions apply.

