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Pande et al. (2020) point out that persistence time can decrease even as invader growth rates
(IGRs) increase, which potentially undermines modern coexistence theory. However, because per-
sistence time increases rapidly with system size only when IGR > 0, to understand how any real

Schreiber® community persists, we should first identify the mechanisms producing positive IGR.
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INTRODUCTION although IGR; is much larger at 6 =1.5 than at 6=0.6, it is

Invasion analysis is central to coexistence theory (e.g. Ches-
son, 1994; Grainger et al., 2019). Absent Allee effects and
related complications (e.g. Barabas et al., 2018, p. 292) we
expect that two species coexist stably if each has a positive
geometric mean population growth rate when rare (‘invasion
growth rate’, IGR); similar invasion criteria imply coexistence
in multi-species community models without demographic
stochasticity (Schreiber, 2012; Benaim and Schreiber, 2019;
Hening et al., 2020), meaning that all species maintain positive
average long-term abundances.

Pande et al. (2020, hereafter PFCS) identified limits to IGRs
as a quantitative measure of persistence, finding that 7,,,, the
mean time to first extinction of a species, can sometimes
decrease even as IGRs increase in finite population models.
Communities with similar IGRs may differ substantially in
T,.; and other persistence measures. They conclude that ‘one
cannot quantify the contribution of a certain mechanism to
persistence by comparing the value of [IGR] in the presence
and in the absence of this mechanism’, directly challenging
the current basis for both theoretical and empirical analyses
of coexistence (e.g. Chesson, 1994, 2000; Angert et al., 2009;
Ellner et al., 2016, 2019; Letten et al., 2018; Hallett et al.,
2019).

We do not question any facts reported by PFCS, but we
argue that they emphasised part of a larger picture, and there-
fore overstated implications for past and future research.

A two-species lottery model (Fig. la,b) illustrates why
higher IGRs do not necessarily yield more robust persistence.
IGR; (the IGR of the weaker competitor) increases with envi-
ronmental variability, ¢ (the temporal standard deviation of
log per capita fecundity). The weaker competitor quickly goes
extinct when IGR;<0 (6=0.2) but not when /GR;>0. But

questionable whether persistence is stronger: excursions to low
abundance are quickly reversed, but happen faster and more
often. The same environmental fluctuations that boost IGR;
through the storage effect increase the chance of extinction.

But Figs. 1a,b fail to show how persistence depends on scale
(50 ha or whole forest?)'. Figs. lc,d, inspired by Yahalom
et al. (2019), display T,.; vs. the number of sites, N; curves
are labelled in order of increasing IGR;. T, increases slowly
with N when IGR;<0 and rapidly when /GR;>0. When ¢ and
8 (adult annual per capita mortality) both vary, the N depen-
dence is more varied (Fig. 1D), but again, positive IGR,
results in fast increase of T,,, with N. In these examples, T,
increases with IGR; at large N, but this may not always
occur; a mechanism increasing IGR; but decreasing mean
population size can decrease T,y (Schreiber et al., 2018).

Persistence times diverge even more strongly with the sign
of IGR; when demographic rather than environmental stochas-
ticity is dominant (Fig. 2) and coexistence is fluctuation-inde-
pendent. For all but the smallest systems, even mildly positive
IGR; produces very long persistence. In general, when invasi-
bility criteria apply, we expect logarithmic scaling of T, with
N when IGR;<0 and either power-law (Fig. 1c,d) or exponen-
tial scaling (Fig. 2a,b) when IGR;>0, depending on whether
extinctions are mainly driven by environmental or demo-
graphic stochasticity (see e.g. Assaf and Meerson (2017);
Doering et al. (2005); Faure and Schreiber (2014); Yahalom
and Shnerb (2019); Yahalom ez al. (2019)).

IGR, thus emerges as a crucial persistence metric because it
marks a transition between slow and rapid scaling of persistence
time with system size, so that significantly positive values of IGR;
lead to long persistence at all but small scales (e.g. Fig. 2c.,d).
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logB;(t) ~Normal(p,~,<s2 0 =0.45,u, =0.5. (a) IGR, (the smaller of the two IGRs) with §=0.5. (b) Simulations of the continuous-state model (in infinite-
N limit, where N is the total number of sites) with different ¢ values, d=0.5. (c) Average time to first species loss in 500 simulations of the finite-N model
with different ¢ values, §=0.5. Simulations started with 7;(0) =7,(0) = N/2. In each time step, random coin-tosses determined whether each adult dies
(probability 8) or lives, and whether each site vacated by mortality is occupied by species 1 (probability By ()n;(r)/(B1(7)ni(t) + B2(t)n2(z))) or by species 2.
o values on curves 1-5 are (0.2, 0.6, 1, 1.5, 2), respectively, and IGR; values are (—0.015,0.06,0.18,0.39,0.62). (d) As in C), varying both ¢ and §. Curves
1-5 have IGR;=(—0.039,0.044,0.207,0.407,0.614) resulting from o=(0.4,0.8,1.2,1.6,2.0) and 6=(0.95,0.85,0.75,0.65,0.55). Figure made by scripts

Figure 1.R and finiteLotteryTbarScaling{1,2}.R

Because extended persistence is only possible when /GR; >0,
understanding how a real community persists must begin by
identifying the mechanisms contributing to positivity of IGR;.
While PFCS acknowledged that the sign of IGR; can be used
as an indicator of persistence, they criticise papers doing
exactly that. Ellner ez al. (2019) asked: ‘If we observe that two
warbler species forage in different parts of the tree, is this cru-
cial for coexistence, or irrelevant because neither species is
resource-limited?” Contra the ‘cease and desist’ advice from
PFCS (quoted above), the way to start answering that

© 2020 John Wiley & Sons Ltd.

question is by comparing IGRs for each species in the pres-
ence and absence of each mechanism, as we and others have
done (e.g. Angert et al., 2009; Usinowicz et al., 2012; Letten
et al., 2018; Hallett et al., 2019). Analysis of IGRs can be sup-
plemented when necessary with other persistence metrics
(Jeltsch et al., 2019); a challenge for future research will be to
understand when and how the positive relationship between
IGR; and T, breaks down.

In principle, any persistence metric, including T,.;, can be
partitioned into contributions from different mechanisms, as
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Figure 2 (a,b) Simulation results for the Watkinson annual plant competition model with demographic and environmental stochasticity. For populations
ni(t) in year ¢, i=1,2, expected populations in year r+1 are 7;(1+ 1) = A;()n;(¢)/ (1 +a;1ni (¢) + a;2n2(2)) and actual populations are Poisson with means
;(t+1). We set aj) =ay»=1/N and a1, =ay; =pay 1, and A(t) were Uniform [0.94;,1.1%;] independent over time: mild environmental stochasticity that
does not maintain coexistence or cause extinction. Absent stochasticity each species alone has stable equilibrium N(4; —1), so N is a measure of system size,
and both coexist stably if p<(4;—1)/(2;—1)<1/p for i=1,j=2 and vice-versa. Simulations started with n; =n, =N/2. (a) Average time to first species loss
in 1000 simulations with small fecundity differences (4, =1.4,4, =1.5) and p=(1.2,1.1,0.9,0.8) times the maximum p allowing coexistence. IGRs for species
1 (the weaker competitor) are weakly dependent on N, but are approximately (—0.05, —0.03,0.03,0.06) on curves 1-4. (b) as in A) with 1; = 1.4,4, =2.5.
IGRs for species 1 are approximately (—0.06, —0.03,0.03,0.06) on curves 1-4. (c,d) Simulation estimates of mean extinction time for the finite-population
lottery model (as in Fig. 1c,d) with 500 randomly chosen parameter sets: means and standard deviations of log per capita fecundity were Uniform [0,1],
and & was Uniform [0.2,0.5]. Mean persistence times were estimated by the Aldous algorithm (Schreiber et al. 2018) with simulation lengths 10° and 10° for
N =200 and 1000, respectively, 25 replicates for each parameter set. Circle size is proportional to fecundity variability. The dashed line is a nonparametric
regression of log persistence time in generations on IGR; per generation (using gam in mgcv). Figure made by WatkinsonSimulateTbarScaling.R and
Lottery-random-sampling.R

in invasion analysis (Ellner ez al., 2019). However, at present, environmental change). Estimating T,,, requires much more
that is easier said than done. Differences between long persis- information, for example while mean per capita fecundity suf-
tence times (between two communities, or with/without a fices for IGR;, extinction risk depends on the entire probabil-
mechanism) are hard to estimate by simulation (but may be ity distribution of offspring numbers. It is also not evident if
ecologically irrelevant, if both exceed the time scale of or how the canonical fluctuation-dependent mechanisms

© 2020 John Wiley & Sons Ltd.
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(Chesson, 1994, 2000) extend to other persistence metrics. We
need new theory to relate other persistence metrics to underly-
ing ecological mechanisms.
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