
0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 1

Optimal Edge Computing for Infrastructure-Assisted
UAV Systems

Davide Callegaro, Member, IEEE, and Marco Levorato, Member, IEEE,

Abstract—The ability of Unmanned Aerial Vehicles (UAV) to
autonomously operate is constrained by the severe limitations
of their on-board resources. The limited processing capacity
and energy storage of these devices inevitably makes the real-
time analysis of complex signals – the key to autonomy –
challenging. In urban environments, the UAVs can leverage the
communication and computation resources of the surrounding
city-wide Internet of Things infrastructure to enhance their
capabilities. For instance, the UAVs can interconnect with edge
computing resources and offload computation tasks to improve
response time to sensor input and reduce energy consumption.
However, the complexity of the urban topology and large number
of devices and data streams competing for the same network
and computation resources create an extremely dynamic environ-
ment, where poor channel conditions and edge server congestion
may penalize the performance of task offloading. This paper
develops a framework enabling optimal offloading decisions as
a function of network and computation load parameters and
current state. The optimization is formulated as an optimal
stopping time problem over a semi-Markov process. We solve the
optimization problem using Dynamic Programming and Deep
Reinforcement learning at different levels of abstraction and
prior knowledge of the system underlying stochastic processes.
We validate our results in a realistic scenario, where a UAV
performs a building inspection task while connected to an edge
server.

Index Terms—Edge Computing, Urban Internet of Things,
Unmanned Aerial Vehicles, Autonomous Systems.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAV) is being
increasingly proposed for a wide spectrum of applications,
including surveillance and monitoring, disaster management,
agriculture, and network coverage extension [1]–[5]. Their
autonomous operations require the acquisition and real-time
analysis of information from the surrounding environment.
However, processing information-rich signals, such as video
and audio input, to inform navigation and, in general, au-
tonomous decision making, is an extremely demanding task
for these constrained platforms. In fact, due to the limited
on-board computation resources, the analysis process may
require a significant amount of time, thus decreasing the UAV
responsiveness to stimuli. Additionally, continuously running
heavy-duty analysis algorithms imposes a considerable energy
expense burden to these battery-powered devices. In summary,
the degree of autonomy of UAVs may be limited, and may
come at the price of a reduced operational lifetime.

D. Callegaro and M. Levorato are with the Department of Computer
Science, University of California, Irvine, CA, 92697.
E-mail: {dcallega, levorato}@uci.edu

This work was partially supported by the NSF under grant IIS-172433.

In urban environments, the UAVs can leverage the resources
of the surrounding urban Internet of Things (IoT) infrastruc-
ture to overcome some of its limitations and enhance its
capabilities. For instance, the UAV can use the communication
infrastructure to connect to edge servers – that is, compute-
capable machines positioned at the network edge – to offload
data processing tasks [6]. By offloading the computation task
to a more powerful device, a UAV can possibly reduce the
capture-to-decision time, thus improving its reaction time
to sensor input. Additionally, offloading data processing to
an edge server can reduce the amount of energy needed to
complete the mission.

However, the urban IoT is a highly dynamic system, where
a myriad of devices, and data streams, compete for the
available communication and computation resources. As a
result, the network connecting the UAV and edge server may
be congested, and the transportation of the data to the edge
server may require a large time. Additionally, the topology of
urban areas may degrade the capacity of the channel due to
path loss and shadowing. Finally, the edge server may have a
queue of computation tasks from other devices and services
that need to be completed before processing the data from the
UAV. Therefore, in some conditions and locations, the time
needed to transport the data to the edge server and receive the
outcome of analysis may exceed that of local processing at
the UAV.

In this paper, we present an optimized decision process
through which the UAV decides whether to process locally
or offload the computation task to the edge server. The
decision is based on a series of interactions between the UAV
and the IoT system, where the UAV receives feedback on
the state of the network and edge server, which allows the
estimation of the residual time to task completion. Based on
this information, the UAV solves an optimization problem
aiming at the minimization of a weighted sum of delay and
energy expense. Formally, the problem is formulated as an
Optimal Stopping Time problem over a semi-Markov process.

Numerical results, which are based on parameters extracted
from a real-world implementation of the system, demonstrate
that the proposed intelligent and sequential probing technique
effectively adapts the processing strategy to the instantaneous
state of the network-edge server system. The outcome is a
reduced processing delay and energy expense, two extremely
important metrics in the considered application. These results
are evaluated on the aforementioned urban scenario, where
we place particular emphasis on the components that could
decrease the performance of the UAV across a mission. In ad-
dition to analytical evaluations, we characterize the, temporal

Copyright c© 2017 IEEE. Personal use of this material is permitted. However, permission to use this
material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 2

and average, performance of the adaptive offloading scheme
we proposed in a scenario where a UAV mission requires
to complete a trajectory around a building while analyzing
images.

In the setting described above, we train a Deep Rein-
forcement Learning (DRL) agent capable of learning spatio-
temporal characteristics of the environment to learn effective
offloading policies. Results indicate the importance of features
such as position and recent offloading outcomes in maximiz-
ing the ability of the controller to optimize its decisions across
missions.

The rest of the paper is organized as follows. Section II
provides an overview of the system considered in this paper.
Section III describes in detail the parameters and operations of
the UAV-edge server system. Section IV introduces a Marko-
vian description of the system’s dynamics and formulates
and solves the problem for the optimization of the offloading
decisions. Section V presents numerical results illustrating the
performance of the proposed adaptive offloading strategy, and
comparing it with alternative solutions. Section VI discuss
related research and Section VII concludes the paper.

Figure 1: Illustration of the considered scenario and system: a
UAV interconnects with an edge server through a low latency
wireless link to offload computation tasks. Poor channel
conditions and high processing load at the edge server may
result in a larger delay and energy expense compared to local
on-board processing.

II. SYSTEM AND PROBLEM OVERVIEW

We consider a scenario where a UAV autonomously nav-
igates an urban environment. The UAV is assigned the task
to acquire and process complex data in predefined locations
within the city, where the outcome of processing may influ-
ence sensing and navigation actions. A relevant case-study
application is city-monitoring, in which the UAV captures a
panoramic sequence of pictures at each location and process
them using a classification algorithm to detect objects or
situations of interest. In case of positive detection, the UAV

may stay at the location to capture more detailed or higher-
resolution pictures of a specific portion of its view.

Intuitively, processing information-rich signals using a
computation-intense algorithm is a challenging task for in-
herently constrained platforms such as UAVs. In fact, the
limited processing power of the on-board computation re-
sources results in long capture-to-output time of the algo-
rithm, which decreases responsiveness to stimuli and increases
mission time. Additionally, on-board processing consumes a
significant amount of energy, even when compared to motion
and navigation, thus shortening the lifetime of these battery-
powered systems. Note that in the scenario described above,
the UAV is hovering while waiting for the classification
algorithm to complete, as the outcome will determine its
subsequent action. Thus, a large processing time incurs at
additional energy expense penalty associated with longer flight
time.

The UAV can leverage the resources of the surrounding
urban IoT infrastructure to improve its performance. In the
scenario at hand, edge servers placed at the network edge
can take over the task of processing the data acquired by the
UAV. Intuitively, the larger processing power of edge servers
compared to that of UAVs grants a much faster completion
of the processing task, thus allowing a faster decision making
and a smaller capture-to-decision time, defined as the time
between image capture and the availability of the its analysis’
outcome. Additionally, the UAV would be relieved from the
energy expense burden of processing, at the price of energy
expense associated with data transmission. We remark that a
shorter time to receive the output of the classification algo-
rithm also corresponds to a smaller energy expense associated
with hovering.

However, as noted in the introduction, the urban IoT is a
highly dynamic environment, where a myriad of data streams
and services coexist and compete for the same communication
resources. In the considered scenario, the wireless channel
connecting the UAV to a wireless access point may have a low
capacity due to the physical properties of signal propagation,
but also due to the existence of interfering communications
which use part of the time/frequency channel resource. Ad-
ditionally, the edge servers may be serving other devices
offloading their computation tasks, and the UAV task may
suffer queuing delay, or a reduced processing speed. As a
result, in certain conditions, offloading the computation task
to an overloaded edge server connected to the UAV through a
poor communication channel may lead to a longer capture-to-
decision time. Again, this corresponds to less efficient mission
operations, but also a possibly large energy expense due to
hovering while waiting for a response.

In order to fully harness the possible performance gain
granted by the available resources provided by the urban IoT
infrastructure, the UAV needs to make informed decisions
about whether or not to offload the execution of image
analysis. To this aim, we equip the UAV with the ability to
interact with the surrounding network and edge devices and
acquire information regarding the status of the communication
and processing pipeline. The information is used to evaluate
the progress of the task and predict the future cost of the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 3

binary decision between local and edge-assisted computing.
We remark that the optimization framework can be used in

scenarios with multiple base stations and edge servers. As the
sequential decisions are made on a task by task basis, handover
and connectivity can be managed by the network infrastructure
without a major impact on decision making. However, we note
that when considering agents learning spatio-temporal corre-
lation properties (as those shown in Section V.C), the agent
will need to implicitly incorporate connectivity information
associated with spatial features. In fact, handover may cause
abrupt loss of temporal correlation – for instance in server
load if a different edge server is connected to the new base
station.

III. SYSTEM MODEL

In this section, we formalize and discuss an abstraction of
the system composed of the UAV, a network access point
and an edge server. We divide the description into modules
focusing on the communication, computation and energy
expense aspects of the system.

A. Communications

The UAV is connected to the network access point through
a wireless channel of finite capacity. The data to be transferred
for offloading have size L-bits. The UAV transmits with fixed
power P and rate R in the finite set of K+1 transmission rates
{R0, R1, R2, . . . , RK}, where R0=0 corresponds to discon-
nection from the network, and thus no data transmission. The
link between the UAV and the AP is a wireless link affected
by path loss, fading and noise. The SNR at the receiver is

SNR =
gP

σ2
, (1)

where σ2 is the noise power and g is the channel attenua-
tion coefficient including path loss and fading. We assume
exponential path loss and Rayleigh flat fading. Thus, the
distribution of g is

Θg(x)= Pr(g ≤ x)=1−e−
x
γ , (2)

where γ is the path loss.
Assuming channel knowledge and a capacity achieving

scheme, the selected transmission rate of the UAV is equal
to Ri bits/s if g ∈ (gi, gi+1], where

gi = g : Ri = C(gSNR), i=1, . . . ,K, (3)

and
C(x)=log(1 + x). (4)

The resulting transmission time is L/Ri seconds. In the
paper, we use a capacity model to abstract the communication
layer, where the channel gain is matched with a maximum
achievable data rate. The integration in the model of more
realistic communication models, for instance to capture inter-
actions between physical, channel access and transport layers,
would lead to a much more convoluted analysis. We point
the interested reader to our work [7] for the evaluation and
analysis of real-world edge computing for UAVs with dynamic
offloading.

B. Computation

The time to complete the computation task locally at the
UAV and at the edge server are captured using the random
variables X ′ and X , respectively. We assume that X ′ and X
follow an exponential distribution of rate µ′ and µ tasks/s,
respectively. The edge server accumulates incoming compu-
tation tasks in a finite buffer of size B tasks. Excluding the
task generated by the UAV, tasks arrive according to a Poisson
process of rate λ tasks/s, with λ<µ.

C. Energy

As described in the previous section, at each predefined
location the UAV captures the data, and then completes the
computation task – either locally or at the edge server –
while hovering maintaining the position. We define a rate of
energy expense for the two fundamental operational blocks
that are influenced by the offloading decision: processing and
hovering. Specifically, we define PP and PH as the Watts
used to respectively process the data and hover. As mentioned
earlier, the transmission power is equal to P Watts.

IV. OPTIMAL OFFLOADING DECISIONS

In the considered scenario, the two most relevant perfor-
mance metrics are energy expense E and time T per location.
Herein, we assume the state of the system at each location to
be independent. Importantly, the costs E and T are a function
of the offloading decision, that is, whether the computation
task is completed at the UAV or at the edge server.

Given the knowledge of the system parameters, the UAV
can compute the average cost E and time T corresponding to
each of the two options, where the average is over realizations
of the stochastic process associated with the system dynam-
ics. However, within that average there are realizations in
which offloading is advantageous (high channel capacity and
low processing congestion) or disadvantageous (low channel
capacity and high processing congestion). In order to fully
harness the performance gain edge computing can offer,
while facing the dynamics of the IoT system, we develop a
sequential probing and decision making framework. At each
stage, the UAV observes the current realization, estimates the
residual cost to complete the task, and makes a decision about
whether to initiate local processing or not. This formulation
corresponds to an optimal stopping time problem on a semi-
Markov process.

Under the assumptions listed in the previous section, the
temporal evolution of the system can be represented as a
semi-Markov process. Let’s define as t+j , j=0, 1, 2, . . . the
time instants right after the occurrence of an event, defined
as the establishment of the connection with the network, the
delivery of the data to the edge server, or the completion of
a computation task at the UAV or edge server. We denote the
state of the system at time t+j as the random variable S(t+j).
The state space S of S(t+j) consists of an initial state s0,
two termination states sUAV and sES, and a number of states
describing data transmission and task queueing process. The
termination states correspond to the computation task being
completed locally at the UAV (sUAV) and offloaded to the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 4

Figure 2: Representation of state transitions with non-zero probability in the Markov Chains associated with decision u = 0
(left) and u = 1 (right).

edge server (sES). Specifically, we include (i) a set of K+1
states R0, R1, . . . , RK associated with a transmission rate,
that is, a channel state in the ranges defined in the previous
section; and (ii) a set of C+1 states B1, . . . , BC+1 associated
with the position of the UAV task in the task buffer at the
edge server. Note that BC+1 corresponds to a full buffer at
arrival, that is, the UAV task is rejected. It can be shown that
the process S=(S(t+j))j=0,1,... is a Markov process.

At each time instant t+j , the UAV is notified of the state
S(t+j) from the network access point or the edge server,
and makes a binary decision u∈{0, 1}, where 0 and 1 cor-
respond to local computing and continuing on the edge-
assisted pipeline – that is, further deferring local computing,
respectively.

A. Transition Probabilities

We now describe the transition probabilities governing the
dynamics of the stochastic process S. For the sake of notation
clearness, we denote the time t+j with its index j. We define,
then

P (s′|s, u)= Pr(S(j+1)=s′|S(j)=s, U(j)=u). (5)

If the decision is equal to 0, the transition probabilities from
any state s are

P (s′|s, 0)=

{
1 if s′=sUAV;

0 otherwise.
(6)

That is, if the decision is to compute locally, the process moves
to state sUAV deterministically from any state.

We, then, analyze the transition probabilities if the decision
is 1, that is, the UAV further defers the initiation of local
computation. In such case, from the initial state s0, the channel

distribution is sampled, and the state moves to one of the pre-
transmission states Ri with probability equal to that of the
associated interval. Thus,

P (s′|s0, 1)=

{
πi if s′=Ri, i=0, 1, . . . ,K;

0 otherwise,
(7)

where π(i)=Θg(gi+1)−Θg(gi).

In any state Ri, the UAV is reported the transmission
rate, that is, the index i, from the wireless access point.
If the decision is to defer local processing, the transition
probabilities from Ri, i=1,. . . ,K, are

P (s′|Ri, 1)=

{
σc−1 if s′=Bc

0 otherwise.
(8)

σc is the probability that the UAV task will find c tasks stored
in the edge server buffer at arrival. It is known that

σc=
(1− λ/µ)(λ/µ)c

1− (λ/µ)C+1
. (9)

The state R0, corresponding to disconnection from the net-
work, deterministically leads to sUAV.

At the beginning of any state Bc, the UAV is notified of the
index c. For states Bc, c=2, . . . , C, the transition probabilities
are

P (s′|Bc, 1)=

{
1 if s′=Bc−1

0 otherwise.
(10)

State BC+1 corresponds to a full task queue and, thus,
rejection of the UAV task. Therefore, from BC+1 the system
deterministically moves to sUAV. State B1 corresponds to the
UAV task being in the first position, and deterministically
leads to sES.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 5

Figure 3: Probability of offloading to the edge server (lighter
shades corresponds to higher probability) with ω = 0.

B. Cost Functions and Optimal Policy

With the transition probabilities conditioned on the state
and action, we can now build the optimization process. We
consider a formulation where the objective of the UAV is to
minimize E (V), with

V = ωE + (1−ω)T, (11)

where ω is a positive weight in [0, 1].

To this aim, define the time and energy spent in state s∈S
as Φ(s, u) and Ψ(s, u) conditioned on the action u, respec-
tively. Note that both the latter and the former are random
variables. We denote their average as φ(s, u)=E (Φ(s, u)) and
ψ(s, u)=E (Ψ(s, u)). We further define C(s, u)=ωΦ(s, u) +
(1−ω)Ψ(s, u), with average c(s, u).

The average time and energy cost associated with the initial
state are equal to 0. In the termination states sUAV and sES,
we have

φ(sUAV) = 1/µ′, (12)
ψ(sUAV) = (PP + PH)/µ′, (13)

and

φ(sES) = 1/µ, (14)
ψ(sES) = PH/µ. (15)

Herein, based on actual value obtained by means of experi-
mental evaluations, we assume that the transmission energy
expense PL/Ri is negligible compared to the processing and
hovering energy expense. Note that in the termination states
the action is pre-determined and does not need to be formally
included in the cost. From any transmission and queueing state
R0, . . . , RK and B1, . . . , BC+1, if the decision is to initiate
local processing at the UAV (u=0), the process immediately
moves to sUAV and the energy and time cost are both equal
to 0. Note that such decision is forced in states R0 and BC+1.

If the decision is to defer local processing (u=1), the costs

Figure 4: Probability of offloading to the edge server for
different values of ω, as a function of channel quality (SNR)
with ρ = 0.5. We use µ = 1/0.461/s to emphasize the
observed effects.

are

φ(Ri, 1) = L/Ri, (16)
ψ(Ri, 1) = (PH + P)L/Ri. (17)

with i=, 1, . . . ,K, and

φ(Bi, 1) = 1/µ, (18)
ψ(Bi, 1) = PH/µ. (19)

Herein, based on measurements obtained by means of exper-
imental evaluations, we assume that the transmission energy
PL/Ri is negligible compared to the computing and hovering
energy expense.

The problem of minimizing the expected total cost can be
rephrased as a Markov Decision Process over a finite temporal
horizon. We aim at finding, then, the (deterministic) optimal
policy u∗(s), where

u∗(s) = arg min
u={0,1}

E
(
Vres(s, u)

)
, (20)

where E (Vres(s, u)) is the expected minimum cumulative
residual cost to a termination state s† from state s given that
decision u is selected, that is,

min
U1

j†
E

 j†∑
j=0

c(S(j), U(j)|U(0)=u, S(0)=s)

 , (21)

where
j† = min(j : S(j)∈{sUAV, sES}), (22)

and Uj†

1 = (U(0), . . . , U(j†)).
We compute the optimal policy using the Value Iteration

method [8], which focuses on iterations producing policies
achieving performance increasingly close to the optimal point.
In our case, the optimal value form the starting state yields the
experienced delay and energy consumption for each image,
when ω = 0 or ω = 1 respectively. Values at other states,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 6

at convergence, represent the expected future cost from that
state obtained using the optimal policy. Let Vt be the vector
whose elements are the value function for each state in the
state space, where t is the number of steps taken in the
recursion. Then Vt ∈ R5+K+C , where the size of the vector
derives directly from the states definition in Figure 2. The
arbitrarily initialized vector V0, is then updated using the
Bellman equation as follows:

Qk+1(s, a) =
∑
s′

P (s′|s, a)(R(s, a, s′) + γVk(s′)

Vk(s) = min
a
Qk(s, a), (23)

where Qt(s, a) represents the expected cost taking action a.
Note that, to reduce the time to convergence, the updates are
usually computed backwards, from the end nodes (in our case
SES , SUAV) to the input node S0.

V. NUMERICAL RESULTS

This section presents and discusses results obtained using
the model and optimization technique proposed in this paper.
First, we analyze performance metrics and offloading prob-
abilities exploring parameters describing channel quality and
server load. We, then, characterize the performance of the
proposed scheme in a realistic environment, where channel
parameters (that is, SNR) is obtained based on trajectory of
the UAV. Note that in this latter section of the results, we
can analyze the temporal behavior of the system during the
mission.

To make our observations more meaningful, we derive the
optimal policies under different channel and load conditions
using parameters obtained from real-word experimentation.
These values are used unless otherwise stated. Specifically, we
used a 3DR Solo Drone mounting a Pixhawk flight controller
running ArduCopter connected to a Raspberry Pi model 3B
as companion computer. We use as edge server a Laptop with
16GB RAM and Intel Core i7-6700HQ processor with Nvidia
GM204M GPU. We set the number of pictures collected in
each location to 1, where each picture has resolution equal to
720× 480. The average size of each picture after encoding is
80 KB. The pictures are processed implementing a face recog-
nition algorithm using a multi-scale Haar Cascade, which
takes on average 1/µ′=0.56s at the UAV and 1/µ=0.046s
at the edge server. We consider SNR values in the range
[−10, 20] dB and transmission rates in the range from 1 Mbps
to 11 Mbps (matching a system using Wi-Fi IEEE 802.11).
Power consumption rates are based on battery level readings
in the same set up: in particular, we set Ph = 0.1 levels/s,
Pp = 10% · Ph levels/s. The optimal deterministic policy
Uj†

1 given the parameters is computed using Equation (21).
We note here that our performance analysis will be impacted
by an error due to the resolution chosen on the set of
available rates and positions. As a result of the position error,
a different expected SNR will be used, causing a difference
in the probability distribution over the rates. These will be
averaged out on multiple runs and so our results still hold.
We consider on the other hand the rate resolution error in this
case acceptable: the difference in Mbps in the Wifi protocol

Figure 5: Probability of offloading the computation to the edge
server as a function of the server load ρ.

is much higher than the one considered. Our investigation
takes into consideration several aspects of the system, and
even though the error margin at small rates might is large
(100ms), it is worth noting that in all other scenarios it
reduces to a few milliseconds. Furthermore the overall policy
behaviour does not change due to these effects, and in this
respect while absolute values might differ, the statistics and
system behaviour will be consistent with our results.

A. Performance Analysis

In Figure 3, we show the probability of offloading to the
Edge Server as a function of SNR and server load ρ = λ/µ.
This probability corresponds to the probability of the process
being absorbed in SES from S0 conditioned on the control
policy, defined as

P∞S0
(Y) = lim

t→∞
P (S(t) = SY |S(0) = S0, U = Uj†

1) (24)

where Y ∈ {SUAV, SES}, and P∞S0
(SUAV) + P∞S0

(SES)=1.
In Figure 3, we plot P∞S0

(SES), using lighter pixel color for
higher probabilities. As expected, for low values of ρ and
high values of the SNR, the offloading probability is almost
equal to 1, that is, the UAV offloads computation when system
conditions are favorable. When the SNR is sufficiently low,
the UAV will likely be disconnected, or the cost of offloading
might exceed that of local computation due to the large time
needed to transport the data to the edge server. Similarly,
if the load parameter ρ is large, that is, the ES buffer has
frequent arrivals or computation tasks take a large time to be
completed, the UAV chooses to compute locally.

In Figure 4 we show the effect of ω, the parameter that
controls the tradeoff between energy and delay in the objective
function, over the optimal policy and consequently on the
offloading probability. In the plot, each line corresponds to
a different value of ω ∈ [0, 1], where the larger ω the larger
the weight of energy cost. The impact of including energy
in the optimization is apparent: the larger ω, the larger the
offloading probability, even for low SNR, where transmitting
over the channel may result in an increased overall delay. In

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 7

Figure 6: Probability of selecting local computation in the
three main decision stages or offloading to the edge server.

(a) (b)

Figure 7: Offloading probability on the considered map. The
average SNR is set to 9dB and server load set to (a) 0% and
(b) 70%.

fact, while a larger delay leads to a larger hovering time, and
thus more hovering energy expense, offloading eliminates the
energy cost associated with local processing. We observe an
interesting threshold effect, where the policy transitions from
fully local computing to partial offloading at an SNR value
which is a function of ω.

In Figure 5 we fix the SNR, and show P∞S0
(SES) as a func-

tion of ρ. As the SNR decreases, the probability of offloading
to the edge server decreases as well. Intuitively, the SNR
influences the shape of the probability curve. Interestingly,
high SNR values show a sharp transition from offloading
to local computing, whereas low SNR values have a more
progressive transition, most likely due to the distribution of
the communication time.

Finally we illustrate the value of probing compared to a
simple decision informed by the average delay pre-computed
based on a priori knowledge of the parameters. Figure 6
shows the probability that the decision of processing locally
is taken at the different stages or that offloading is selected.
Specifically, the decision stages are:

• Stage 0: the initial stage S0, where the UAV knows the
parameters, but not the channel or queue state;

• Stage 1: Ri, where the UAV has connected with the
network and is aware of the maximum transmission rate;

Figure 8: Map of the considered area, centered around a 30 m
high building. Symbols display the access point’s placement
and the drone trajectory. Different shades show Signal To
Noise ratio in dB across the area.

• Stage 2: Bj , where the UAV reached the edge server, that
is, upon transmission after transmission, and is reported
the position in the processing queue.

For small values of ρ, offloading is predominant, with a small
probability of local computing decision forced by extremely
poor channel conditions. As ρ increases, the set of rates cor-
responding to local computing decisions increases. In fact, the
delay requirement for the data transportation becomes more
stringent as the average time spent in the edge server buffer
increases. In the transition phase between offloading and local
computation, we can observe a spike in the probability that
the UAV will select local computing after the edge server is
reached, as the probability finding a number of tasks in the
buffer sufficiently large to make offloading disadvantageous
increases before a region in which probing is not even
attempted. The policies resulting from the abstraction of the
system we adopt have a simple structure. Across the phases
of the decision making, the agent will identify thresholds
within layers of the Markov process corresponding to binary
decisions. While the structure is simple, the thresholds are
function of the distributions of channel quality and incoming
load at the server.

B. Mission Trajectory

We now analyze a mission trajectory of the UAV in an urban
scenario inspired by applications such as city monitoring and
building inspection. We consider the trajectory illustrated in
Fig. 8, where the UAV flies at fixed altitude and constant
distance from the building’s external surface in a loop starting
from the lower left corner and proceeding in clockwise
direction. The map shown has delimits a 50×50 meters area,
where both the access point and the UAV are at 15m altitude,
and the building’s width, length and height are 20m, 30m,
30m.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 8

Figure 9: End-to-end delay over the described trajectory for
different values of external interference with no server load.

In the scenario, we consider a setting with one access point
and one building, and we compute the SNR – to be plugged
in our model, see Eq. (3) – using the building shadowing
model [9] (added to the attenuation caused by free-space
propagation)

L = αn+ βd0, (25)

where α is the attenuation per wall (dB), n is the number
of walls penetrated, β is the attenuation per meter (dB) and
do the distance in meters traveled through obstacles. We use
experimentally validated coefficients in [9] α = 9dBm and
β = 0.9dB/m

Using the same set of parameters as in the previous set of
results, we find the optimal policy for each position in the
considered map. In Fig. 7, we show how the probability of
offloading to the edge server evolves along the trajectory. In
Fig. 7.a, the edge server is dedicated to the UAV. The impact of
the additional attenuation effect of the building on the strategy
is apparent: the offloading probability decreases in regions
that are more affected by the additional attenuation. Overall,
the low server load leads to offloading being a predominant
strategy. Fig. 7.b shows the same map where we increase
the server load to 70%, and we can see that the adaptive
scheme reacts selecting edge computing as the best strategy
in a smaller fraction of realizations. This effect is due to the
higher chances that the task generated by the UAV will find
several other tasks in the server’s buffer.

We now consider the delay performance over the full
trajectory, and illustrate how the strategy evolves. In Fig. 9,
we plot the average capture-to-output delay achieved by the
optimal strategy. We can observe how, for different values
of SNR, low performance regions expand. This is due to the
higher probability that local computing will be chosen due
to the low data rate supported by the channel. Interestingly,
we can observe how new spikes and low performance regions
emerge as noise increases and the strategy switches to different
modalities in some regions.

The server load ρ has a much different impact, as shown
in Fig. 10. The average delay increases homogeneously along
the trajectory to reach a cap determined by the policy always
choosing local analysis. Additionally, we observe how mod-
erate server loads have relatively low impact (e.g., 25% vs

Figure 10: End-to-end delay over the trajectory for different
values of server load with average SNR of 16dB.

Figure 11: Delay average over the full trajectory for varying
average SNR for both only offloading policy and our approach.
We also plot the probability for the UAV to successfully
offload in our schema.

50%).
Considering the average over the full trajectory, we now

explore how some parameters affect performance and strate-
gies. In Fig. 11 and Fig. 12, we display the average delay
(in blue) and offloading probability (in orange), averaged over
the trajectory, for different noise levels and edge server’s load.
Interestingly, while the delay has a clear inverse relationship
with the offloading probability when varying average SNR, the
relationship between average delay and offloading probability
is less marked when varying the edge server’s load. In the
former plot (Fig. 11), we have a sharp change at ≈ 10dB,
where the probability of a successful offload sharply decreases
and the delay increases due to the more frequent selection of
local processing. In the latter plot (12), we observe a low sen-
sitivity of the delay, where in the low to moderate load region
we have an increasing average delay, but a minor change in
the offloading strategy. The delay experiences a sharp increase
when the offloading probability sharply decreases in the high
load region. This effect is due to the more gradual degradation
imposed by increasing load compared to that of a worsening
SNR.

We now characterize the impact of the computing capacity
of the devices, expressed as their service rates. We explore a

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 9

Figure 12: Delay average over the full trajectory for varying
server load, and the probability to successfully offload.

range of values of µ ∈ [1, 40] for the edge server, µ′ ∈ [1, 8]
for the UAV, to evaluate the impact of different design choices
and operational settings. We highlight the advantage of an
adaptive approach, by depicting the percent delay increase
when a fixed offloading policy is used. We remark that we
are still considering averages over the entire trajectory.

The gain is shown in Fig. 14, where we we set the load
to 0 (a) and 70% (b). Note in both graphs that higher gains
(darker regions), are focused in high local service rates and
relatively low edge server service rates areas. This conveys
the fact that adaptation can improve performance only when
the strategy is non-trivial and adaptation can bring benefit.
When local service rate is small (left portion of the graphs),
we indeed observe than the offloading policy,

Interestingly, we see how the gain granted by the adaptive
strategy is higher when the load is higher, this due to the fact
that our policy can effectively fall back to local computing
when the buffer is busy in specific realizations of the process.

In Fig 15.a we can see how the average delay using
an adaptive policy is very sensitive to the local processing
capacity, but has a weak dependency on the edge server
processing capacity. However, as shown in Fig 15.b, we can
see that the delay’s variance is higher in the areas where the
gain is small. In fact, the advantage of the adaptive technique
is to choose local processing whenever it seems advantageous,
and that is shown in the areas where lower variability maps
to local processing being the optimal policy.

C. Characterization of State in Temporally Correlated Envi-
ronment

We built on these results and created an event based simula-
tor that allows us to capture the temporal correlations between
subsequent positions along the trajectory. We use this tool in
order to study the impact of different state representations on
the performance of a decision agent.

In the state representations we include:
• phase: before offloading, at the edge server or processing

locally
• position: the (x, y) coordinates on the map
• E[SNR]: average SNR at the current position

(a) average SNR of 16dB (b) average SNR of 6dB

Figure 13: Delay improvement using adaptive schema com-
pared to constant offloading at different average SNRs.

(a) ρ = 0% (b) ρ = 70%

Figure 14: Gain percentage over a full trajectory for different
hardware configurations. Processing speeds are referenced as
serving rates µ. Both cases have average SNR at 16 dB, but
they differ in edge load ρ.

(a) (b)

Figure 15: (a) Delay and (b) standard deviation for delay
over a trajectory for different hardware configurations with
average SNR of 16dB and no server load. Processing speeds
are referenced as serving rates µ.

• num. jobs: number of jobs in the queue
• past (action, delay) tuples: we include the last 3 actions

and delays.
Although in a collaborative system we would expect to

collect all the above, if using a third-party infrastructure
or different networking protocols, it could be difficult or
impossible to collect some of this dynamic information. For
this reason we study the same system using three different
observed states:

1) full state
2) phase, position, past action-delays
3) phase, past action-delays

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 10

Figure 16: Average delay over the full trajectory for different
server loads shows the adaptability of agents that have spatial
awareness.

Due to the nature of this state, where some elements are
discrete, other continuous, we involve the use of a function
approximator, such as Deep Neural Networks (DNN), to learn
the q-function. In order to learn from experience in this new
setting, we resort to some techniques investigated in Deep
Reinforcement Learning (DRL). DRL has been successful
in environments such as Atari games [10], the game of
Go [11] and many others [12]. As shown in these works,
there are many details that help DRL converging to a stable
approximation for the q-function. In fact naive approaches
often do not work, due to the inherent difference in the way
DNNs learn with respect to the tabular approach. For example,
DNNs are subject to catastrophic forgetting [13], the tendency
of forgetting early examples seen in the training procedure.
To address this problem Schaul et al. introduced replay buffer
[14], a buffer where samples are stored after observation. We
use samples randomly extracted from the buffer, and feed
them to the DNN in batches. The model will compute the
function Q(·), and return a vector with q-values for each of
the actions. However since we can take only one action, we
will observe only one reward, and therefore we will update,
i.e. compute the loss and apply back-propagation, only relative
to one output. We use the Bellman equation based on one step
Temporal Difference to compute the estimate q-value for the
next step:

Q(s, a) = (1− α)Q(s, a) + α(R(s, a) + γ argmax
a′

Q̂(s′, a′))

(26)
where α is learning rate, γ is discounting factor, and Q̂ is
an old version of the DNN. We use to different networks
Q̂,Q, so that the q-value estimation does not vary too quickly,
causing divergent behaviour. We update Q̂ = Q periodically
to improve our approximation of the q-function.

As mentioned, we maintain the setup the same as in the
previous setting, where the agent has to decide whether to
continue offloading or not at two stages: when it arrives to
a position and when it gets in queue to the edge server.

(a) ρ = 70% (b) ρ = 90%

Figure 17: Delay over the trajectory for different state repre-
sentations at different server loads.

From the agent’s point of view all transitions are probabilistic,
since the rate might be 0 and the queue might be full. In
order to discourage fixed policy of only offloading, we have
a small network probing term that is added to the delay when
a transmission is unsuccessful.

We trained different agents using the state representation
described earlier, and obtained insights into what carries
useful information in predicting the optimal policy at each
position. In Fig. 16 we display the average delay of each
of the agents going through the trajectory. We can observe
that using all the information available gives the agent an
advantage similar to what we observed earlier, since it is able
to choose the correct policy for each given channel situation.
Interestingly, removing average SNR and position in queue
does not influence the performance for loads lesser than 70%.
There we see the two lines (blue for full state and orange for
only position and delays) diverging, with the less informative
state having higher average delay. The critical advantage of
these two policies on delays only and fixed policies, can be
observed in Fig. 17: we notice that the central part of the
trajectory, where the line of sight is obstructed by the building,
offload strategy incur in very high delays. For higher loads,
we can also see how the position in queue at the edge server
changes the ability of the user to exploit offloading only when
advantageous: in Fig. 17 we see that only the agent that has
access to the position in the server buffer is able to exploit
successfully offloading in positions 0-50 in high load regimes.

This study reveals how the position along the trajectory is a
viable proxy for the average Signal to Noise Ratio, and how
on the other hand previous delays are not as predictive of
the number of processes in queue at the server. Furthermore
this opens the opportunity for further investigation in spatial-
temporal maps that can embed this information and allow
dynamic adaptation in continuous learning settings.

VI. RELATED WORK

In the recent years, there have been many contributions
addressing task offloading for UAVs. The proposed framework
builds on the many contributions studying offloading for
mobile devices. However, as mentioned in [15] and other
works, mobile applications usually assume a sparse and
inhomogeneous generation of computing tasks. In mission-
oriented and robotic applications, it is usually assumed that

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 11

the application generates a continuous flow of homogeneous
computing tasks. Furthermore, as seen in [16], deadlines
in UAV systems, differently from mobile applications, are
hard deadlines. The framework we propose embeds these
features at its core to improve latency. The sequential decision
making controls latency at a fine grain ti meet stringent
constraints. The RL framework we propose takes advantage
of the continuous flow of tasks to learn space-time properties
of optimal offloading and improve prediction using spatio-
temporal correlation in the system. Many contributions in this
area, such as [17] and [18], focus on the problem of finding the
best edge server defined over long-term performance energy,
delay and throughput metrics.

Other contributions, such as, [19], focus, instead, on mon-
etary metrics (for instance associated with communications)
to guide the optimization process. In [19] a game theoretic
approach is proposed, with which the authors are able to
reduce the communication cost, considering not only multiple
servers, but also the possibility for some of them to offload the
computation further. Our work centers on short-term metrics,
which allow a fine degree of control when optimizing the
offloading process. We remark how this is a marked difference
with respect to most existing literature.

Very recent contributions, such as [20], focus on the opti-
mization of specific scenarios, assuming the a priori knowl-
edge of a prediction model for the channel state, which
leads to sophisticated decision making algorithms to determine
which part of the task can be offloaded. This interesting class
of approaches imposes stronger limitations on the type of
analysis task. [21] presents an approach based on fuzzy logic
to face the high uncertainty induced by these applications.

In [22], B.Liu et al. propose to offload computationally
intensive tasks from UAVs to edge and cloud servers. They
formulate a joint computation and routing optimization by
defining a three-layered computational model on which they
design a polynomial near-optimal approximation algorithm.
The authors use a Markov approximation technique described
in [23], which is useful when solving network combinatorial
optimization problems. However, they do not consider energy-
related metrics and control.

Energy expense is considered in the work by Zhu et al.
[24], where cooperative approach to computation offloading
for UAVs is presented that aims to improve the inefficiency of
naive local computing solutions. The authors explore an urban
environment for UAV operations, and use simulated annealing
to minimize the energy consumption while satisfying a delay
constraint. Our solution jointly optimizes energy and delay,
offering more flexibility to the application.

Our work can also be connected to practical contributions,
where, instead of rigorous optimal decision making, different
heuristics are used to control task offloading. In [7], a para-
metric threshold based algorithm is used to decide not only
if offloading can be beneficial, but also matching with the
right server and adaptively probe available remote computing
options.

VII. CONCLUSIONS

In this paper, we presented a framework to control pro-
cessing task offloading to edge servers in UAV systems.
The framework sequentially probes the state of the network
and of the edge server buffer to make optimal decisions
between local and edge-assisted computing. Numerical results
show the delay reduction granted by the proposed technique,
which is based on a Markov Decision Process formulation
solving an optimal stopping time problem, compared to non-
adaptive strategies. Finally we validate our results on Network
Simulator 3 in a realistic task such as building inspection.

REFERENCES

[1] K. Ro, J.-S. Oh, and L. Dong, “Lessons learned: Application of small
uav for urban highway traffic monitoring,” in 45th AIAA aerospace
sciences meeting and exhibit, 2007, pp. 2007–596.

[2] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and
R. Siegwart, “A UAV system for inspection of industrial facilities,” in
IEEE Aerospace Conference, 2013, pp. 1–8.

[3] C. Zhang and J. M. Kovacs, “The application of small unmanned
aerial systems for precision agriculture: a review,” Precision agriculture,
vol. 13, no. 6, pp. 693–712, 2012.

[4] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help from
the sky: Leveraging uavs for disaster management,” IEEE Pervasive
Computing, vol. 16, no. 1, pp. 24–32, 2017.

[5] S. ur Rahman, G.-H. Kim, Y.-Z. Cho, and A. Khan, “Deployment of an
SDN-based UAV network: Controller placement and tradeoff between
control overhead and delay,” in International Conference on Information
and Communication Technology Convergence (ICTC). IEEE, 2017, pp.
1290–1292.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[7] D. Callegaro, S. Baidya, and M. Levorato, “Dynamic distributed com-
puting for Infrastructure-Assisted autonomous uavs,” in 2020 IEEE In-
ternational Conference on Communications (ICC): SAC Tactile Internet
Track (IEEE ICC’20 - SAC-10 TI Track), Dublin, Ireland, Jun. 2020.

[8] R. Bellman, “Dynamic programming and lagrange multipliers,” Pro-
ceedings of the National Academy of Sciences of the United States of
America, vol. 42, no. 10, p. 767, 1956.

[9] S. E. Carpenter and M. L. Sichitiu, “An obstacle model implementation
for evaluating radio shadowing with ns-3,” in Proceedings of the
2015 Workshop on Ns-3, ser. WNS3 15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1724. [Online].
Available: https://doi.org/10.1145/2756509.2756512

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep
reinforcement learning,” arXiv, 2013, cite arxiv:1312.5602Comment:
NIPS Deep Learning Workshop 2013. [Online]. Available:
http://arxiv.org/abs/1312.5602

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[12] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” arXiv preprint arXiv:1509.06461, 2015.

[13] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[14] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[15] C. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Transactions on Communications, vol. 67, no. 6, pp.
4132–4150, 2019.

[16] M. Samir, S. Sharafeddine, C. M. Assi, T. M. Nguyen, and A. Ghrayeb,
“Uav trajectory planning for data collection from time-constrained iot
devices,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 34–46, 2020.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3051378, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 12

[17] K. Kim and C. S. Hong, “Optimal task-uav-edge matching for com-
putation offloading in uav assisted mobile edge computing,” in 2019
20th Asia-Pacific Network Operations and Management Symposium
(APNOMS), 2019, pp. 1–4.

[18] K. Kim, Y. M. Park, and C. Seon Hong, “Machine learning based
edge-assisted uav computation offloading for data analyzing,” in 2020
International Conference on Information Networking (ICOIN), 2020,
pp. 117–120.

[19] A. Alioua, H. eddine Djeghri, M. E. T. Cherif, S.-M. Senouci,
and H. Sedjelmaci, “Uavs for traffic monitoring: A sequential
game-based computation offloading/sharing approach,” Computer
Networks, vol. 177, p. 107273, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128619315798

[20] J. Chen, S. Chen, S. Luo, Q. Wang, B. Cao, and X. Li, “An intelligent
task offloading algorithm (itoa) for uav edge computing network,”
Digital Communications and Networks, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352864819303037

[21] A. Karanika, P. Oikonomou, K. Kolomvatsos, and T. Loukopoulos, “A
demand-driven, proactive tasks management model at the edge,” in 2020
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020,
pp. 1–8.

[22] B. Liu, H. Huang, S. Guo, W. Chen, and Z. Zheng, “Joint computa-
tion offloading and routing optimization for uav-edge-cloud comput-
ing environments,” in 2018 IEEE SmartWorld, Ubiquitous Intelligence
Computing, Advanced Trusted Computing, Scalable Computing Com-
munications, Cloud Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
2018, pp. 1745–1752.

[23] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation
for combinatorial network optimization,” in 2010 Proceedings IEEE
INFOCOM, 2010, pp. 1–9.

[24] S. Zhu, L. Gui, J. Chen, Q. Zhang, and N. Zhang, “Cooperative
computation offloading for uavs: A joint radio and computing resource
allocation approach,” in 2018 IEEE International Conference on Edge
Computing (EDGE), 2018, pp. 74–79.

Davide Callegaro obtained both his B.S. (Infor-
mation Engineering) and M.S. (Computer Engineer-
ing) from University of Padova, Italy, in 2013 and
2016, respectively. In 2015 he visited Polytechnic
University of Catalonia for a semester as part of
his Master. In Fall 2016 he started his Ph.D in
Computer Science, where he currently works as
a Ph.D Candidate, under the supervision of Prof.
Marco Levorato. He is a member of IEEE and IEEE
ComSoc society. He is interested in optimization
and control in real world embedded systems. He

interned in Bosch and Nutanix as a Research Intern, investigating how to
optimize performance and reliability of existing platforms. In his doctorate
he is focusing on task allocation in real-time heterogeneous distributed
systems, investigating trade-offs in robotic systems relying on edge computing
infrastructure.

Marco Levorato joined the Computer Science
department at University of California, Irvine in
August 2013. Between 2010 and 2012, He was a
post-doctoral researcher with a joint affiliation at
Stanford and the University of Southern California.
From January to August 2013, he was an Access
post-doctoral affiliate at the Access center, Royal
Institute of Technology, Stockholm. He is a member
of the ACM, IEEE and IEEE Comsoc society. His
research interests are focused on next-generation
wireless networks, autonomous systems, Internet of

Things, and e-health. He has co-authored over 100 technical articles on these
topics, including the paper that has received the best paper award at IEEE
GLOBECOM (2012). He completed the PhD in Electrical Engineering at
the University of Padova, Italy, in 2009. He obtained the B.S. and M.S.
in Electrical Engineering summa cum laude at the University of Ferrara,
Italy in 2005 and 2003, respectively. In 2016, he received the UC Hellman
Foundation Award for his research on Smart City IoT infrastructures and the
Dean Research award in 2019.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on March 01,2021 at 22:15:11 UTC from IEEE Xplore. Restrictions apply.

