
1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 1

Video Aficionado: We Know What You Are
Watching

Jialing He, Zijian Zhang∗, Member, IEEE, Jian Mao, Member, IEEE, Liran Ma, Member, IEEE,
Bakh Khoussainov, Rui Jin, and Liehuang Zhu∗, Member, IEEE

Abstract—Users enjoy the convenience of watching videos on smart devices. However, video watching records can be exposed
without users’ knowledge and be exploited to infer private information. In this paper, we design and implement a new side-channel
attack system, named video aficionado, which can identify video watching information without violating any access control policies on
Android. Our system only needs to collect power consumption data of a video playing app, which does not require explicit user
permission. The collected data is sent to a remote server, where noise is cleaned and identified by a Multi-Layer Perceptron (MLP)
trained classifier. We evaluate our proposed system through a set of carefully designed experiments. Experimental results demonstrate
that our system can make an identification with 74.5% accuracy on average for each 20-second power measurement segment out of
3918 segments collected from 20 videos. To the best of our knowledge, video aficionado is the first real-time power consumption-based
video identification system on smart devices.

Index Terms—Power consumption, Privacy analysis, Video identification, Deep learning.

F

1 INTRODUCTION

W ITH recent advances in wireless communication tech-
nology, there has been an upward trend towards

streaming videos on mobile devices (e.g., smartphones and
tablets). For instance, eMarketer [1] reports that more than
75% of video viewing worldwide was on mobile in 2018.
Users shift to mobile video viewing for reasons such as
convenience, i.e., without being limited by geographic lo-
cation or show schedule. Video viewing record (e.g., time,
duration, and genres) has been exploited to infer user per-
sonalities, preferences, and habits [2]. Furthermore, sensi-
tive private information like emotional status, depression,
and violence tendency can be deduced from a number of
video watching records. For example, Honorato et al. [3]
develop an antisocial personality disorder criteria based
on movie watch history, and Romer et al. [4] demonstrate
various types of movie effects on children. These works
and other similar studies show that mobile video viewing
identification can be utilized to extract user privacy, or
more precisely, can serve as a fundamental step for in-depth
privacy mining.

Typically, mobile devices such as smartphones have a
set of rigorous access control mechanisms (e.g., formal per-

• Jialing He, Rui Jin, Liehuang Zhu are with the School of Computer Science
and Technology, Beijing Institute of Technology, Beijing 100081 P. R.
China.

• Zijian Zhang is with the School of Computer Science and Technology,
Beijing Institute of Technology, China and with the Department of
Computer Science, University of Auckland, New Zealand.

• Jian Mao is with the School of Cyber Science and Technology at Beihang
University, China.

• Liran Ma is with the Department of Computer Science at Texas Christian
University.

• Bakh Khoussainov is with the Department of Computer Science, Univer-
sity of Auckland, New Zealand.

• Zijian Zhang (zhangzijian@bit.edu.cn) and Liehuang Zhu
(liehuangz@bit.edu.cn) are corresponding authors.

mission requests to access personal information) to protect
private or otherwise sensitive user data. As a result, these
control mechanisms prohibit a third party (e.g., an app)
from directly identifying video viewing information. In this
paper, our goal is to design a system that indirectly infers
videos displayed on a mobile device without violating the
control mechanisms. We name our system video aficionado.
In the design and implementation of the proposed system,
we need to go through a number of steps and address
challenges presented in each step. Next, we will informally
describe those steps and challenges.

Firstly, we need to find appropriate and accessible in-
formation that can be used for video identification. Our
approach is inspired by the following observation. The
power consumption of a video stream is closely correlated
to its contents. For example, a dramatic scene (e.g., high-
speed car-chasing) likely contain more data bits than a slow-
motion scene, which leads to more power consumption in
transmission and play. In the literature, power consump-
tion has been used for location tracking (e.g., PowerSpy
[5]), browsing activity inference (e.g., USB power analy-
sis [6]), and application identification (e.g., Powerful [7]).
Our proposed scheme exploits distinguishable differences
in power consumption to identify videos. To the best of our
knowledge, we are the first to employ power consumption
analysis in video identification.

Secondly, we need to be able to acquire, in real-time, the
power consumption of a running application. Accordingly,
we design and implement an application named PowerShot
that utilizes Android internal APIs and Android Debug
Bridge (ADB) to fetch power consumption data during
video viewing. Note that PowerShot does not violate any
access control policies on Android.

Thirdly, we need to filter out noise from power consump-
tion data by collected PowerShot. The noise arises due to
factors such as temperature changes, background services

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 2

in the operating system, and battery non-linearity. To ad-
dress this challenge, we develop a two-step data cleansing
procedure. The procedure includes two processes: (1) a
Cumulative Distribution Function (CDF)-based process and
(2) an Exponential Moving Average (EMA)-based process.

Fourthly, the challenge is to extract unique features with
distinguishing power from cleaned power consumption da-
ta. After a thorough investigation, we choose 22 features
from the time domain (e.g., energy and time difference
between two power consumption spikes) and 7 features
from the frequency domain (e.g., spectral centroid and en-
tropy). The features are extracted from power consumption
measurements divided by sliding windows.

Lastly, we need a suitable classification algorithm that
can recognize complex patterns because of subtle differences
among power consumption segments. The algorithm also
needs to be able to work with complex and imprecise
data without underlying assumptions on its probabilistic
features. Furthermore, the algorithm shall be capable of
performing inference on unseen data, which can help to
address unseen videos in open-world scenarios. We choose
a Multi-Layer Perceptron (MLP) as the base algorithm.

We conduct a set of comprehensive experiments (us-
ing different apps, encoding formats, resolutions, genres,
viewers, and classification algorithms) to evaluate the per-
formance of our proposed scheme. The evaluation results
demonstrate that our scheme can make an identification
with an accuracy of 74.5% on average based on a video
segment as short as 20 seconds.

The rest of the paper is organized as follows. Section 2
lays out the background information. Section 3 details the
design of our proposed scheme. Evaluation of our proposed
scheme is shown in Section 4. Some remarks including de-
fense measures and some discussions about the experiments
are presented in Section 5. The related work is shown in
Section 6, and then the conclusion of the paper in Section 7.

2 BACKGROUND

This section provides technical background information on
the feasibility of video identification through power con-
sumption profiling. This involves answering two questions:
1) How to accurately capture power consumption of a run-
ning app in real-time? 2) What is the relationship between a
video and its power consumption?

2.1 Real-time power data acquisition

Power measuring tools (and building them) are of interest
since they can provide power consumption information to
video service providers (such as iQIYI and Youku) in real
time. Many smart devices are also shipped with power
measuring mechanisms. For example, Android has included
built-in power consumption statistic tools for apps since
version 2.0.1. An example of statistics showing app power
consumption on a smartphone (OPPO R17) is shown in
Fig. 1.

The power consumption of an app on a smartphone is
calculated by eq.(1) below

PA =
∑n
i (p

i
m),

pm(t) = I ∗ t, (1)

Fig. 1: App power consumption on Android systems.

where PA denotes the power consumption of an installed
app, pim stands for the i-th module’s (such as CPU, Blue-
tooth, sensor and so on) power consumption, I means the
real-time current, t is the time variable, and the index m
indicates the module under consideration.

The duration time t is typically recorded in the system
file (/data/system/batterystats.bin) and the current I is
in the battery profile (power profile.xml). Using eq.(1),
we devise an app named PowerShot to record real-time
power consumption of apps and output a log file (which is
not stored by Android built-in measuring tools) containing
the specific power consumption data. PowerShot captures
the real-time power consumption through Android internal
APIs using an ADB and a compliation tool.

2.2 Why can power consumption work?
A video stream consists of frames of images, which can
be quite large if not compressed [8]. For example, under a
resolution of 1280×720 and a frame rate of 30 (i.e., 30 frames
are transmitted and displayed per second), data volume per
second is 1280×720×30× 3

2 (Byte)/1024/1024 = 39.5MB
(32 is used because the YUV format is adopted; 3 will be
used if the RGB format is adopted). Therefore, an 90-minute
movie would entail 208.6GB data to be transmitted and
processed, which is prohibitively highly for mobile devices.
Hence, videos need to be compressed before streaming, and
decompressed at the receiving devices.

Video compression is based on the strong correlation
between image pixels, eliminating some redundant data
will not lead to information loss. Specifically, for a short
period video that consists of a series of images with little
difference in pixel, brightness, and chrominance, we need
only preserve the complete information of the first image
along with the difference information existing in the other
images. Therefore, the more dynamic is a video (e.g., more
moves and changes), the larger volume data is generated
when compressing the video. In contrast, less computing
power would be needed for decompressing. In a commonly
used video decoding format H.264, a video is compressed as
a series of Group of Pictures (GoP), each GoP is built from a
fixed number of I, P and B frames, where I is normally the
first frame of GoP, containing the most information, and P
and B have much smaller size frames than I frame but they
need more computing power to decode (often this means
more power consumption). Subsequently, playing different
videos can cause different power consumption since the dif-
ferent computing power is needed to decompress different I,
P, and B frames. In addition, one compressed video may pro-

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 3

(a) Power consumption of three movies on one smartphone. (b) Power consumption of one movie on two smartphones.

Fig. 2: Power consumption of movies (only part of each is shown for clear demonstration).

duce similar power consumption across different devices.
Based on this observation, we postulate that every video has
its own signature determined by its power consumption.

To verify our postulation, we employ our power measur-
ing tool PowerShot to obtain several videos’ power consump-
tion data. The original power consumption information of
each video is kept in a log file stored in the smartphone.
We capture the power data in the log file and draw a graph
for each video’s power consumption. This is presented in
Fig. 2. Fig. 2(a) contains the power consumption profiles of
3 different movies (Movie A, B, and C) which are played
by the same device. Two curves in Fig. 2(b) represent the
power consumption of the same movie watched by two
people whose devices are both Huawei Honor 7X. Fig. 2(b)
indicates that the power consumption data acquired from
two devices about one the same movie are similar. These
experiments confirm our postulation that the power con-
sumption data can uniquely determine the video. Moreover,
the power consumption of any video is, in some respect,
device independent; the power consumption data of the
same video played on different devices should be identical.

3 THE DESIGN OF VIDEO AFICIONADO

3.1 Threat model
We assume a covert app is installed on a victim’s Android
smartphone and runs in the background. The covert app
cannot violate any access control mechanisms on the smart-
phone, particularly that of video playing apps.

We assume the covert app can only access power mea-
surements on the smartphone, which requires no explicit
user permission. In addition, a network connection is re-
quired to communicate with a remote server where the
video inference process is performed.

We assume the attacker has a prior knowledge of the
video collection containing all possible videos the victim
may choose. Accordingly, the attacker can measure the pow-
er consumption of each video in this collection in advance.
The attacker can associate the collected data to the video
playing app’s power consumption measured by the covert
app. On the one hand, the attacker needs to cleanse the noise

contained in power measurements, which makes videos
identifiable. On the other hand, it quires the attacker to
identify the video as soon as possible within tens of seconds
rather than after watching the entire video.

3.2 System design

The covert app in our system can be disguised as any
apps running on the smartphone. We utilize PowerShot to
collect the power measurements, which is available for the
Android versions ranging from 5.1 to 8.1. Fig. 3 illustrates
the work flow of video aficionado. The flow contains five
steps: power acquisition, data processing, feature extraction,
model training, and video inference.

• Power acquisition. We need to acquire power con-
sumption data in real-time when a video is being
played on a mobile device. In this paper, we develop
an app named PowerShot to perform this task.

• Data processing. The collected raw power consump-
tion data contains noises (e.g., abnormal peaks of
power consumption caused by the battery’s tem-
perature) that can negatively impact the subsequent
steps. We filter out the nosies from the collected raw
data in this step.

• Feature extraction. We extract a number features from
time and frequency domains based on the cleansed
power consumption data. Examples of features in-
clude spectral entropy and spectral centroid.

• Model training. We train our classification model
based on the extracted features. A number of rec-
ommended movies and TV shows from doban.com 1

are used in this step.
• Video inference. Given a piece of power consumption

data of a video being watched, the trained classifica-
tion model can identify what the video is.

We now explain each of these in more details.

1. https://movie.douban.com/top250

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 4

Fig. 3: The framework of Video Aficionado.

3.2.1 Power acquisition
The real-time power consumption data of a video is the basis
of the our analysis. So, a power measuring tool is needed to
meet the following requirements:

1) The tool should be able to record the video’s power
consumption in real time.

2) The tool should be able to preserve digital data that
can further be used in later operations and analysis
of data such as data processing, feature extraction,
model training, etc.

3) The tool should be device independent in the sense
that it should run on different models of smart-
phones with various Android versions.

We note that there are several power consumption tools,
however, they cannot meet all the above requirements.
For example, PowerBooter is a power profiling tool that
can record the power consumption of an running app in
real-time, but only aiming at ADP1 phones. PowerTutor is
an open source tool based on PowerBooter which targets
at HTC G1, G2, and Nexus 1 phones with low Android
versions. None of these tools can preserve the power con-
sumption data in a file, like a log file. In general, as far as
we know, no power consumption tool preserves the digital
power data and satisfies all the three requirements.

To satisfy all the requirements above, we devise a power
measuring app PowerShot. The PowerShot tool fetches power
consumption data of each running app in real-time and
output the measurement data to a corresponding log file.
In addition, the PowerShot app is compatible with almost
all mobile devices running on Android versions from 5.1 to
8.1. Specifically, PowerShot can measure power consumption
data up to 8 modules (e.g., CPU and sensor) inside a
mobile device. In the PowerShot app there are also sever-
al sampling rates available. The tool measures the power
consumption data by invoking /power profile.xml and
/data/system/batterystats.bin at each sampling moment
and outputs the measurements to a log file. The log file
mainly contains 5 fields: ‘Uid’, ‘Interval’, ‘CPU’, ‘Sensor’,
and ‘All’. ‘Uid’ refers to the id of the running app, ‘Interval’
denotes the sampling rate, ‘CPU’ and ‘Sensor’ represent the
power consumption data of each module, respectively, and
‘All’ means the total power consumption up to the current
time.

3.2.2 Data processing
The captured raw power consumption data contains noises
which can be caused by measuring errors generated from

the battery of a mobile device (e.g., the temperature of the
battery may increase because of its continuous use and this
can impact the power consumptions). Therefore, we first
perform cleansing operations on the raw power consump-
tion data. Our cleansing operation consists of two common
methods used in the signal processing: the first method is
based on the CDF and the second method is based on EMA
function. The CDF-based method copes with some obvious
abnormal peaks and a EMA-based method handles small
abnormal fluctuations.

The CDF is the integral of Probability Density Function
(PDF) describing the probability distribution of a random
variable X . The definition of CDF is given by the equation:

FX(x) = P (X ≤ x), (2)

where the right-hand part of (2) denotes the probability the
value of the random variable X is equal to or less than x.

In this paper, we remove the power consumption data
points whose CDF do not lie between 4.5% to 95.5% (4.2.4
demonstrates the analysis of the parameter). Fig. 4(a) depicts
the original power measurements and the denoised power
data after the removing process. It shows that some obvious
abnormal peaks are eliminated. Note that the denoised data
does not need to follow the original since some data points
of the original data might be removed.

Although the CDF-based denoising process can remove
obvious abnormal peaks. However, small fluctuations also
need to be eliminated. We exploit an EMA-based filtering
process to cut off these small fluctuations. Moving Aver-
age (MA) is an approach to evaluate data points through
generating a series of averages for various subsets inside
the full data set. There are several types of MA including
Simple Moving Average (SMA), Weighted Moving Average
(WMA), Exponential Moving Average (EMA) and etc. Here,
we utilize EMA that is primarily based on (3):

St =

{
Y1, t = 1

a · Yt + (1− a) · St−1, t > 1
(3)

where Yt denotes the original data point, St represents the
data point after the EMA-based filtering process, and a is
a parameter whose value lies between 0 to 1. In this paper,
we set it as 0.8 (4.2.4 demonstrates the analysis of the pa-
rameter). Fig. 5(b) shows the original power measurements
and the filtered power data processed by the EMA-based
filtering step. We can see that small fluctuations have been
removed after this filtering step.

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 5

(a) CDF-based noise removal. (b) EMA-based noise removal. (c) Raw data vs. processed data.

Fig. 4: Data processing results.

In summary, with a set of raw power measurements
P (p1, p2, ..., pn). Note that these values are from formula
(1); so, P (p1, p2, ..., pn) stands for the power consumption
of a video, where n means the number of the data points.
We first employ a CDF-based denoising step to eliminate
the obvious abnormal peaks, and then utilize an EMA-
based filtering step to remove small abnormal fluctuation-
s. After these two steps, we obtain the processed data
S(s1, s2, ..., sm). The whole denoising process is explained
in Algorithm 1.

3.2.3 Feature extraction
Video aficionado is required to infer video information regard-
less which part of the video is being watched. Therefore,
we process the cleansed data in units of sliding windows.
In addition, the size of the sliding window needs to be
as short as possible, which enables video identification in
tens of seconds but rather after watching the entire video.
The length of a sliding window is Z and an offset factor
is denoted by f . So, the cleansed data S(s1, s2, ..., sm) is
proceeded as a sequence of sliding window-based samples:

Ri = (r(i−1)fZ+1, r(i−1)fZ+2, ..., r(i−1)fZ+Z),

where i ∈ {1, 2, ..., bm−ZfZ c}. For each sample Ri, we first
perform a max-min peak search in order to capture the
skeleton of power consumption fluctuations. Specifically,
assuming the sample R(ri, r2, ..., rZ), we will process each
measurement ri, where i ∈ {1, 2, ..., Z}) in the sample as
follows. The measurement will be selected as a local max
(min) peak if it meets the following requirements:

• Its value is larger (smaller) than the previous and
the next measurements, which implies that ri ≥ ri+1

and ri ≥ ri−1 (ri ≤ ri+1 and ri ≤ ri−1)
• Its value is at least α larger (smaller) than that of the

prior local max (min) peak, i.e., pmaxi ≥ α·pmaxi−1
(pmini ≤ α · pmini−1).

Thus, the two steps above select the measurements repre-
senting the local max (min) peaks in each sample Ri.

Parameter α is critical in the max-min peak searching
process, which is the basis for feature extraction. If the value
of α is too large, many valuable local max and min peaks
that contain significant features may be overlooked. On the
other hand, if α is too small, too many local peaks would

Algorithm 1 Data denoising
Input: Raw power measurements P
Output: Denoised data S
1: Remove all zero elements:
2: n = size(P),m = 0, Q = [];
3: for i = 1 : N do
4: if pi 6= 0 then
5: m = m+ 1;
6: qm = pi;
7: end if
8: end for
9: for j = 1 : size(y) do

10: if f(j) == qi then
11: break;
12: end if
13: end for
14: CDF-based denoising:
15: [y, f] = ecdf(Q);
16: g = 0, O = [];
17: for i = 1 : m do
18: for j = 1 : size(y) do
19: if f(j) == qi then
20: break;
21: end if
22: end for
23: if y(j) < 1− h&&y(j) > h then
24: g = g + 1;
25: og = qi;
26: end if
27: end for
28: EMA-based denoising:
29: s1 = o1
30: for i = 2 : g do
31: si = floor(a ∗ oi + (1− a) ∗ oi−1);
32: end for
33: return S

be obtained, which in turn may obscure the real features
of a video’s power consumption. Based on [7], we set α =
σ in this paper, where σ is the standard deviation of the
power consumption data of a given video. Fig. 5(a) depicts
an example of the max-min search process, from which we
can see that a series of local max and min peaks are chosen

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 6

(a) Marked local maximums and minimums. (b) The skeleton constructed by the marked maximums and mini-
mums.

Fig. 5: Selection of local max and min peaks.

through our searching process.
The skeleton of a movie’s power consumption is deemed

attained when all the local max and min peaks are captured.
The information about the location, value, and transfor-
mation between the max and min peaks are vital features
that are needed to be recorded. We use several vectors
to enclose this information. Specifically, the vector W =
((r1, t1), ..., (rc, tc)) contains the information about all local
max and min peaks, where ri is the power measurement
of the i − th local max/min peak, ti is the relevant time
stamp, and c is the total number of local max/min peaks.
The vector U = (u1, ..., uc) is derived from W such that
uj = 1 when rj is a local max peak anduj = −1 when rj is
a local minimum.

We further calculate 4W , 4T , and Re vectors to
describe the variation of local max and min peaks. For
i ∈ {1, ..., c}, if uiui+1 = −1 then the value of | ri− ri+1 | is
recorded as an element of 4W , while the value of ti+1 − ti
is recorded as an element of 4T . Moreover, the vector Re
can be computed as Re = 4W

4T , where L denotes the total
number of Re.

Once we have the skeleton of the power consumption of
a video, the video features can be calculated in the given
time. We use a simple library LibXtract [9] that contains
a series of audio feature extraction functions and captures
several features for the video power consumption data.

For each sliding window-based power sample R =
(r1, r2, ..., rZ), a feature vector feature = (f1, f2, ..., fK)
representing the features of a video piece is calculated,
where K denotes the total number of features. In our case
K = 29. Below we describe those features in more detail.

Time-domain features:
Below we list 22 features related to time domain.

• Average power consumption in a sliding window.

f1 =

∑Z
i=1 ri
Z

(4)

• The standard deviation of power consumption in a
sliding window.

f2 =

√√√√ 1

Z − 1

Z∑
i=1

(ri − f1)2 (5)

• The maximum and minimum values of power con-
sumption in a sliding window.

f3 = max(R) f4 = min(R) (6)

• The 30%-th, 60%-th, 90%-th power measurements in
a sliding window.

f5 = rbZ∗0.3c f6 = rbZ∗0.6c f7 = rbZ∗0.9c
(7)

• Features related to 4W

f8 =

∑L
i=14W (i)

L
(8)

f9 =

√√√√ 1

L− 1

L∑
i=1

(4W (i)− f8)2 (9)

f10 = 4W (bL ∗ 0.3c)
f11 = 4W (bL ∗ 0.6c)
f12 = 4W (bL ∗ 0.9c)

(10)

• Features related to 4T

f13 =

∑L
i=14T (i)
L

(11)

f14 =

√√√√ 1

L− 1

L∑
i=1

(4T (i)− f13)2 (12)

f15 = 4T (bL ∗ 0.3c)
f16 = 4T (bL ∗ 0.6c)
f17 = 4T (bL ∗ 0.9c)

(13)

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 7

• Features related to Re

f18 =

∑L
i=1Re(i)

L
(14)

f19 =

√√√√ 1

L− 1

L∑
i=1

(Re(i)− f18)2 (15)

f20 = Re(bL ∗ 0.3c)
f21 = Re(bL ∗ 0.6c)
f22 = Re(bL ∗ 0.9c)

(16)

Frequency-domain features:
Features from the frequency sphere are also vital for

video identification. We adopt seven features in the frequen-
cy domain for each sliding window-based power sample.
Considering a sliding window R = (r1, r2, ..., rZ), we first
apply Fast Fourier Transform (FFT) to the sliding window
and obtain the vector D = (d1, d2, ..., dZ). We then calculate
the seven features, which are root mean square (RMS)
(f23), spectral centroid (f24), spectral entropy (f25), spectral
spread (f26), spectral skewness (f27), spectral kurtosis (f28)
and spectral flatness (f29). The detailed calculation formulas
are given as follows.

• Root Mean Square (RMS)

f23 =

√√√√ 1

Z

Z∑
i=1

d2i (17)

• Spectral centroid

f24 =

∑Z
i=1 di

i
2∑Z

i=1 dis
(18)

• Spectral entropy

f25 =

∑Z
i=1 di

i
2∑Z

i=1 dis
(19)

• Spectral spread

f26 =
Z∑
i=1

βilog
βi

2 where βi =
di∑Z
j=1 dj

(20)

• Spectral skewness

f27 =

√√√√ Z∑
i=1

[βi(
i

2
− f25)2] (21)

• Spectral kurtosis

f28 =

∑Z
i=1 βi(

i
2 − f25)

3

f327
(22)

• Spectral flatness

f29 =
(
∏Z
i=1 di)

1
Z

1
Z

∑Z
i=1 di

(23)

3.2.4 Model training
We use MLP to train a classifier based on the features
generated from the previous step. We choose MLP for the
following reasons. Firstly, MLP is capable of extracting
patterns that are too complex to be picked up by tradition-
al classification algorithms [10]–[12], which helps capture
subtle differences among short (i.e., 20 seconds) power
consumption measurement segments of videos. Secondly,
MLP can work with complex and imprecise data without
underlying assumptions on its probabilistic features such as
PDF. Last, MLP can perform inference on unseen data after
learning from the initial inputs, which can deliver consistent
performance when encountering an extended video set or
unseen videos in open-world scenarios.

To balance the efficiency and accuracy, we construct a
simple MLP network with one hidden layer. The network
contains 20 neurons based on the number of features and
classification labels. The sigmoid function is utilized as the
activation function of the network.

3.2.5 Video inference
Once a test video segment is obtained, we perform data
preprocessing and feature extraction steps for this power
consumption segment. After that, several feature instances
are obtained. We then test each instance with the trained
classifier and finally output the video label of the instance.

4 EVALUATION
4.1 Settings
The smartphone model used in our evaluation is Huawei
Honor 7X. Specifically, this model hosts a Kirin 659 chipset
(16 nm) with an Octa-core ARM CPU (4×2.36 GHz Cortex-
A53 and 4 × 1.7 GHz Cortex-A53), and runs on Android
7.0 with EMUI 5.1. Note that more than 95 percent of the
world’s smartphones are built on the ARM architecture.
More importantly, the power consumption patterns used by
our proposed system are identical under different genera-
tions of ARM CPUs. That is, we do not measure the absolute
power consumption values, rather the changes in time and
frequency domains (e.g., number of peaks in a given time).
Thus, it is reasonable to expect our proposed system would
be able to deliver replicable performance on different smart-
phones with different chipsets. We recruit 10 volunteers to
watch the 20 videos including 10 movies and 10 TV shows.
Each volunteer is required to watch all the movies and
TV shows once through video players such as iQIYI2 or
Baofeng3. In this work, all the videos are watched offline.
The power consumption of the video player measured by
our app PowerShot is regarded as the power consumption of
the video being watched. More specifically, only the power
consumption of CPU is recorded. We choose the CPU mod-
ule’s power consumption as the video playing app’s power
measurements for two-fold reasons: when a user watches
videos off-line, CPU and screen consume the most energy
compared to other modules such as sensors and Bluetooth;
screen power consumption varies significantly from user to
user (e.g., preference setting for screen brightness), which

2. https://www.iqiyi.com/
3. http://www.baofeng.com/

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 8

can degrade identification accuracy across different users. In
contrast, CPU power consumption is consistent regardless
of users. Following experimental results demonstrate the
effectiveness of using the CPU module as well. A sound
system should be agnostic to video resolutions. That is,
regardless of the resolution of a video, the system should
be able to correctly identify the video. Therefore, we utilize
different resolution videos ranging from 360P to 1080P for
evaluating our system.

The collected power consumption data of these 20 videos
are divided into a training set and a test set. Specifically, we
firstly record the videos’ power consumption on 9 different
devices as the training data set. Then, the videos’ power
consumption on another different device is collected into
the test data set. Segments (for instance 20-second segment)
of each video from the test data set are tested by the trained
classifier.

4.2 Results

4.2.1 Overview

We run each experiment for 20 times and record the average
identification accuracy, precision, and recall, which is shown
in Table 1. Specifically, our proposed system achieves an
average identification accuracy of 74.5% over 3918 power
measurement segments. These segments include diverse
video configurations across different resolutions, encoding,
and genres. The experiment results prove that the selected
features are able to capture the skeleton of power measure-
ments of each video. Furthermore, the results demonstrate
that our MLP based classifier can deliver consistent perfor-
mance under a wide range of video configurations.

TABLE 1: Average identification accuracy

Number of instances Accuracy Precision Recall
3918 74.5% 0.748 0.746

In our experiments, we also discover some real-world
factors that negatively affect the identification accuracy. For
example, our volunteers use different devices of the maker
and model. Nonetheless, they have different apps running
on each device during video watching. Subsequently, the
app difference adds additional random variations to the
power measurements, which in turn degrades the identi-
fication accuracy.

Next, we conduct comprehensive experiments to show
the impacts of different parameters on the performance of
our proposed system.

4.2.2 Impacts of the number of sample per video

As we mentioned before, the training data set is composed
of power measurements recorded by another 9 devices. The
test dataset is the power data from the victim’s smartphone.
In this experiment, we compare 9 different sets of the
training dataset, from 1 sample to 9 samples per video. Fig. 6
demonstrates that the identification accuracy increases with
the increase of sample number per video in the training data
set. It is worth noting that Fig. 6 shows that the identification
accuracy can reach above 50% when 5 samples per video are
utilized to collect the training data.

Fig. 6: Accuracy vs. number of samples per video.

4.2.3 Impacts of sliding window size

Fig. 7 demonstrates the impacts of different sliding window
sizes on identification accuracy. The sample rate here is set
as 1 Hz, i.e., PowerShot fetches the power consumption of the
video at each second. The identification accuracy increases
first as the size of the sliding window grows. Then, it reaches
the highest when the size is set as 20. After that, the accuracy
decreases as the sliding window size becomes larger.

Identifying a 20-second video piece is differentiating
hundreds of I, P, B frames in fact. The likelihood of changes
between hundreds of frames is high, which makes the video
unique and identifiable. However, it is still possible that
there are very little changes for two “stationary” video
pieces, which is a factor that degrades the identification
accuracy.

Fig. 7: Accuracy vs. sliding window size.

4.2.4 Impacts of data processing

As mentioned in Section 3.B, the data processing operations
of our scheme contain a CDF-based step and an EMA-
based step. Fig. 8 demonstrates the impacts of these two
processing steps on the identification accuracy. Fig. 8(a) in-
dicates when the CDF probability is set as 0.05, the average
identification accuracy achieves the highest. Fig. 8(b) shows

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 9

(a) CDF-based denoising results. (b) EMA-based denoising results.

Fig. 8: Impacts of data processing.

the identification accuracy can reach to the highest when the
parameter a of EMA is set as 0.8.

4.2.5 Impacts of different features and their settings
We take 29 features in total involving both time and fre-
quency domains. Fig. 9 demonstrates the impacts of these 29
features, where the higher the information gain is, the more
effective of the corresponding feature for the identification
accuracy. From Fig. 9, we can see that several features that
have the greatest impacts on identification accuracy are
f3, f10, f15, and f20. These features are calculated from
the local maximums and minimums, indicating the drastic
fluctuations of the video’s power data are the most effective
factor for video identification. These unique fluctuations of
each different video often caused by shot switching and
editing tempo. In this paper, some features like (f5, f6, f7),
(f10, f11, f12), (f15, f16, f17), and (f20, f21, f22) are all set as
the 30% − th, 60% − th, and 90% − th. These percentages
are selected in accordance with library LibXtract [9]. Fur-
thermore, experimental results depicted in Fig. 10 indicates
that 30%, 60%, and 90% are the optimal ones compared to
other percentage settings.

5 REMARKS

5.1 Defence
One way to defend the attack described in this paper is
to restrict access to the power consumption statistics on
Android. However, power profiles can be useful in various
domains such as assisting developers to optimize hard-
ware design or software implementation, which is beneficial
and legitimate. Therefore, completely banning the access
to power measurements is not ideal. One possible defense
measure is to add random redundant P , or B frames in the
compressed data of videos as mentioned in 2.2. Thus, the
power consumption patterns can be changed while it does
not impact the video viewing experience.

5.2 Discussion
First of all, one could argue that only 20 videos have been
used in our evaluation, which is a small number. It is worth

Fig. 9: The impacts of different features.

Fig. 10: The impacts of differen percentages for (f5, f6, f7),
(f10, f11, f12), (f15, f16, f17), and (f20, f21, f22).

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 10

noting that there are 3918 20-second video power consump-
tion instances out of these 20 videos, which is a reasonable
large data set. We think it would be beneficial to expand the
video selection in future work, and the identification accura-
cy may be degraded with more videos. We argue that due to
the advance features of an MLP based classifier on large data
sets, the performance degradation could be insignificant.
Otherwise, it would be an interesting research direction on
how to maintain desirable identification accuracy under a
large amount of videos.

Secondly, another concern is the “open-world” issue,
namely, how to deal with the videos that do not belong
to our data set. We can address this issue by adding a
confidence threshold. Specifically, if the confidence of a
prediction is below a certain threshold, it will be labeled
as “other”, which refers to a video that is not among the
training set of videos. As to how to tune the threshold on
our classifier to better fit the “open-world” situation, it can
be another future work.

Thirdly, we only consider off-line video watching in this
paper. It is true that power consumption can be fluctuated
by the dynamics of network connections. However, our
scheme only uses the CPU power consumed by the video
playing app. As a result, the generated power profile for
each video shall be independent of network dynamics. We
argue that our results are also applicable to online video
watching.

Lastly, when we did our experiment, our power con-
sumption measuring app PowerShot was able to run suc-
cessfully on the latest version of Android OS to capture
the power consumption of videos being played. However,
Android has been constantly updated to prevent newly dis-
covered security threats by restricting access to certain APIs
of the system. Therefore, it is possible that our app would
need to be modified to be compatible with newer Android
versions in the future. However, power consumption data is
generally considered as insensitive, which makes restricting
access to power data a lesser priority in Android. Last but
not least, our proposed system could play a positive role in
helping Android to improve its security due to its potential
in spurring other security-related works.

6 RELATED WORK
In this section, we briefly introduce the related work in the
domain of video streams identification by network traffic
analysis, measuring the power consumption of phones, and
data analyzing by mobile devices’ sensor or power data.

6.1 Video fingerprinting by traffic analysis

Inspired by the technique that attacking or fingerprinting
websites by traffic analysis, some works that utilize traf-
fic analysis to infer videos have emerged. Saponas et al.
[13] found that video contents have correlations with their
traffic traces. They captured the signature of traffic trace,
which further being utilized to identify the video. Some
similar mechanisms improved the identification accuracy of
video inference by adding some other features like frame
sizes [14], aggregated traffic throughput [15], etc. Later
some advanced schemes exploited some other parameters

like Pearson correlation to implement video fingerprinting
frameworks for Netflix streams [16], [17]. Schuster et al.
[18] scaled the scheme for “open-world” videos, namely the
videos do not belong to the collected data set.

Most of the work collected traffic data of video streams
by directly or remotely attack victims devices by Wi-Fi
sniffing or JavaScript etc. All the schemes could only apply
for PC devices and oft worked based on strong assumptions
that victims devices can be attacked with relatively low user
permissions.

6.2 Power data acquisition
All the works can be roughly divided into three cate-
gories: hardware-based [20], [21], model-based [19], [22] and
software-based power profiling [23], [24].

Hardware-based power profiling methods mainly re-
ly on several peripheral devices that directly measure a
phone’s battery and compute the power consumption ac-
cordingly. Trestian et al. [20] utilize the Arduino Duemi-
lanove to measure the voltage of a smartphone’s battery and
then compute the current by measuring the voltage drop
generated by a resistance. The power consumption of this
tested smartphone can eventually be calculated. Similarly,
Hindle et al. [21] capture a smartphone’s power consump-
tion through the Arduino Duemilanove and an INA219
current meter. All of these methods can only measure the
aggregated power consumption of the phone.

Model-based power profiling approaches estimate the
power consumption of specific applications on smartphones
by constructing a mathematical model consisting of a series
of functions that represent relations between system param-
eters (states) and power consumptions. Zhang et al. [22]
propose a power profiling model referred as PowerBooter,
which involves six modules containing CPU, Wi-Fi, GPS,
cellular, LCD screen and audio. This just aims at ADP1
phones. PowerTutor [19] is an open source tool based on
PowerBooter which targets at HTC G1, HTC G2, and Nexus
one phones on low Android versions.

Software-based power profiling methods capture the
power consumption through Android system API without
peripheral devices or mathematical models. Invoking An-
droid API makes these methods amenable to almost all
kinds of smartphones. PETrA [23] is a power measuring
tool utilizing Android system power consumption statistics,
which can obtain the power consumptions of all smart-
phones with Android version 5.0 or over. However, it can
only run on PC and is relies on USB to collect tested
devices, which is not very practical. Battery Historian [24]
is another power measuring tool constructed by Google,
which exploits Docker and ADB toolkits to visualize power
consumptions of tested smartphones, however, can only run
on PC like PETrA.

6.3 Data analysis on mobile devices
Sensor or power data of mobile devices can be utilized to
execute the location inference, human activity recognition,
continuous authentication, and mobile app fingerprinting.
One way of collecting personal sensitive data is through sen-
sors on the mobile devices like accelerometers, gyroscopes,
microphones, cameras, etc. Several schemes [25]–[33] utilize

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 11

the motion sensors’ (accelerometers, gyroscopes, and mag-
netometers) data to track the users, infer the running app,
and authenticate the users; Another common approach of
amassing personal sensitive data is analyzing power con-
sumption profiles of mobile devices: Chen et al. [7] propose
a system which can perform mobile app fingerprinting via
apps’ power profiles; Michalevsky et al. [5] exploit machine
learning algorithms and the phone’s power consumption
profiles to infer the phone’s location.

7 CONCLUSION

We propose a video identification system named video afi-
cionado to infer video viewing information on a mobile
device withour violating access control policies on Android.
To the best of our knowledge, it is the first system that
can accurately identify the videos being watched on mobile
devices in near real time with only power consumption
data. Our proposed system combines effective signal pro-
cessing techniques and powerful classification algorithms,
and strikes a balance between accuracy and complexity.
Our experiment results demonstrate the effectiveness of our
proposed system under various settings.

ACKNOWLEDGMENTS
This paper is partially supported by National Natural Sci-
ence Foundation of China No. 61872041, and the National
Natural Science Foundation of China under Grant 61772070.

REFERENCES

[1] https://www.emarketer.com/newsroom/index.php/threequarters-
video-viewing-mobile/

[2] I. Cantador, I. Ferńndez-Tob́as, A. Belloǵn. Relating personality
types with user preferences in multiple entertainment domain-
s[C]//CEUR workshop proceedings. Shlomo Berkovsky, 2013.

[3] T.G. Honorato, V.H.S. Oliva, et al. The antisocial personality dis-
order in the Brazilian movies[J]. Jornal Brasileiro de Psiquiatria,
2018, 67(3): 143–150.

[4] D. Romer, P.E. Jamieson, K.H. Jamieson, et al. Parental desensiti-
zation to gun violence in PG-13 movies[J]. Pediatrics, 2018, 141(6):
e20173491.

[5] Y. Michalevsky, A. Schulman, G.A. Veerapandian, et al. Powerspy:
Location tracking using mobile device power analysis[C]//24th
USENIX Security Symposium (USENIX Security 17). 2015: 785–
800.

[6] Q. Yang, P. Gasti, G. Zhou, et al. On inferring browsing activity
on smartphones via USB power analysis side-channel[J]. IEEE
Transactions on Information Forensics and Security, 2016, 12(5):
1056–1066.

[7] Y. Chen, X. Jin, J. Sun, et al. POWERFUL: Mobile app fingerprint-
ing via power analysis[C]//IEEE INFOCOM 2017-IEEE Confer-
ence on Computer Communications. IEEE, 2017: 1–9.

[8] W. Hu, G. Cao. Energy-aware video streaming on smart-
phones[C]//2015 IEEE Conference on Computer Communication-
s (INFOCOM). IEEE, 2015: 1185–1193.

[9] https://www.jamiebullock.com/LibXtract/documentation/index.html
[10] L. Breiman: Random forests[J]. Machine learning, 2001, 45(1): 5–32.
[11] Vapnik, V. and Chervonenkis, A., 1964. A note on class of percep-

tron. Automation and Remote Control, 24.
[12] Murphy K P. Naive bayes classifiers[J]. University of British

Columbia, 2006, 18: 60.
[13] T Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal,

and Tadayoshi Kohno. Devices that tell on you: Privacy trends in
consumer ubiquitous computing. In USENIX Security 2007.

[14] Yali Liu, Canhui Ou, Zhi Li, Cherita Corbett, Biswanath Mukher-
jee, and Dipak Ghosal. Waveletbased traffic analysis for identi-
fying video streams over broadband networks. In GLOBECOM
2008.

[15] Yali Liu, Ahmad-Reza Sadeghi, Dipak Ghosal, and Biswanath
Mukherjee. Video streaming forensicCcontent identification with
traffic snooping. In ISC 2010.

[16] Andrew Reed and Benjamin Klimkowski. Leaky streams: Iden-
tifying variable bitrate DASH videos streamed over encrypted
802.11n connections. In CCNC 2016.

[17] Andrew Reed, and Michael Kranch. Identifying HTTPS-protected
Netflix videos in real-time. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy, pp.
361–368. 2017.

[18] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the
burst: Remote identification of encrypted video streams. In 26th
USENIX Security Symposium pp. 1357–1374. 2017.

[19] http://ziyang.eecs.umich.edu/projects/powertutor/index.html
[20] R. Trestian, A.N. Moldovan, O. Ormond, et al. Energy Con-

sumption Analysis of Video Streaming to Android Mobile De-
vices[C]//2012 IEEE Network Operations and Management Sym-
posium. IEEE, 2012: 444–452.

[21] A. Hindle, A. Wilson, K. Rasmussen, et al. Greenminer: A Hard-
ware Based Mining Software Repositories Roftware Energy Con-
sumption Framework[C]//Proceedings of the 11th Working Con-
ference on Mining Software Repositories. ACM, 2014: 12–21.

[22] L. Zhang, B. Tiwana, Z. Qian, et al. Accurate Online Power
Estimation and Automatic Battery Behavior Based Power Mod-
el Generation for Smartphones[C]//Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM, 2010: 105–114.

[23] D. Di Nucci, F. Palomba, A. Prota, et al. Petra: A Software-based
Tool For Estimating the Energy Profile of Android Application-
s[C]//2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 2017: 3–6.

[24] “Battery Historian 2.0,” https://github.com/google/battery-
historian, 2016.

[25] Y. Liang, Z. Cai, Q. Han, et al. Location privacy leakage through
sensory data[J]. Security and Communication Networks, 2017.

[26] J. Han, E. Owusu, L.T. Nguyen, et al. Accomplice: Location infer-
ence using accelerometers on smartphones[C]//2012 Fourth In-
ternational Conference on Communication Systems and Networks
(COMSNETS 2012). IEEE, 2012: 1–9.

[27] W. Xu, G. Lan, Q. Lin, et al. KEH-Gait: Towards a Mobile
Healthcare User Authentication System by Kinetic Energy Har-
vesting[C]//NDSS. 2017.

[28] S. Eberz, N. Paoletti, M. Roeschlin, et al. Broken hearted: How to
Attack ECG Biometrics[C]//NDSS. 2017.

[29] A.M. Khan, Y.K. Lee, S.Y. Lee, et al. Human Activity Recognition
Via An Accelerometer-enabled-smartphone Using Kernel Discrim-
inant Analysis[C]//2010 5th international conference on future
information technology. IEEE, 2010: 1–6.

[30] H. Saevanee, N. Clarke, S. Furnell, et al. Continuous User Authen-
tication Using Multi-modal Biometrics[J]. Computers & Security,
2015, 53: 234–246.

[31] H. Xu, Y. Zhou, M.R. Lyu. Towards Continuous and Passive
Authentication Via Touch Biometrics: An experimental Study on
Smartphones[C]//10th Symposium On Usable Privacy and Secu-
rity (SOUPS 2014). 2014: 187–198.

[32] Z. Sitová, J. Šeděnka, Q. Yang, et al. HMOG: New Behavioral
Biometric Features For Continuous Authentication of Smartphone
Users[J]. IEEE Transactions on Information Forensics and Security,
2016, 11(5): 877–892.

[33] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, Net-
workprofiler: Towards Automatic Fingerprinting of Android App-
s, in IEEE INFOCOM’ 13, Turin, Italy, Apr. 2013.

Jialing He (hejialing@bit.edu.cn) received the
B.Eng. and M.S. degrees from the Beijing In-
stitute of Technology, Beijing, China, in 2016
and 2018, respectively, where she is currently
pursuing the Ph.D. degree with the School of
Computer Science and Technology. Her curren-
t research interests include NILM, Internet of
Things security, and analysis of entity behavior
and preference.

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045730, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, MARCH 2020 12

Zijian Zhang (zhangzijian@bit.edu.cn) received
his Ph.D. degree in Beijing Institute of Technolo-
gy. He is an Associate Professor with the School
of Computer Science and Technology, Beijing
Institute of Technology. His research interests
include authentication and key agreement, be-
havior recognition, and privacy preserving.

Jian Mao (maojian@buaa.edu.cn) is an Asso-
ciate Professor in the School of Cyber Science
and Technology at Beihang University, China.
Her interests include applied cryptography and
cloud security, web security, and mobile security.
She received her Ph.D. degree from Xidian Uni-
versity, China.

Liran Ma (l.ma@tcu.edu) is an Associate Pro-
fessor in the Department of Computer Science at
Texas Christian University. His current research
interests include wireless, mobile, and embed-
ded systems, including security and privacy, s-
martphones, smart health, mobile computing, In-
ternet of Things, and cloud computing. It involves
building prototype systems, and conducting real
experiments and measurements. He received
his D.Sc. degree in Computer Science from The
George Washington University.

Bakh Khoussainov (bmk@cs.auckland.ac.nz)
received the Ph.D. degree in Mathematics from
the Algebra and Logic Department, Novosibirsk
University, USSR. He is currently a professor
in the Computer Science Department, the Uni-
versity of Auckland, New Zealand. His research
interests include computable algebraic system-
s and model theory, automata and automatic
structures, games on finite graphs and complex-
ity, abstract data types and algebraic specifi-
cations, computably enumerable reals and ran-

domness. He is also an editor of the JSL, and consider quality papers in
effective algebra and model theory, automatic structures, automata and
logic.

Rui Jin is a master student in the School of
Computer Science and Technology, Beijing Insti-
tute of Technology, China. His research interests
include NILM and Network Security.

Liehuang Zhu (liehuangz@bit.edu.cn) received
the B.Eng. and M.S. degrees from Wuhan U-
niversity, Wuhan, China, in 1998 and 2001, re-
spectively, and the Ph.D. degree from the School
of Computer Science and Technology, Beijing
Institute of Technology, Beijing, China, in 2004.
He is a Professor with the School of Comput-
er Science and Technology, Beijing Institute of
Technology. He is selected into the Program for
New Century Excellent Talents in University from
the Ministry of Education, Beijing. His current

research interests include Internet of Things, cloud computing security,
and blockchain.

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on March 01,2021 at 22:40:02 UTC from IEEE Xplore. Restrictions apply.

