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Abstract— In this paper, the privacy issue of the recently
proposed transactive energy system for electric power system
is investigated for the first time. It is identified that the private
information of individual market participants will be subject to
the risk of leakage during the market interactions. In order to
enable the feature of privacy preservance for market partici-
pants, a homomorphic encryption-based approach is developed
to augment the existing design of transactive energy system.
The proposed privacy-preserving design based on the Paillier
encryption scheme is then demonstrated on a transactive energy
system that coordinates and controls residential air conditioners
under the same feeder to manage the feeder congestion. The
simulation results confirm the effectiveness of the proposed de-
sign in protecting the privacy of individual market participants
without affecting the overall system performance.

I. INTRODUCTION

Over the past decade, a new class of engineering systems
that is referred to as the cyber-physical system (CPS) has
rapidly emerged. Typical examples of CPS include smart
buildings, smart grids, process control systems, intelligent
transportation systems, autonomous vehicles, robotic systems
and so on. For any CPS, a large number of geographically
dispersed entities are coordinated to achieve network-wide
objectives. Distributed data sharing, which is necessary to
enable the required coordination, actually raises the signif-
icant concern that private information of legitimate entities
could be leaked to adversarial ones.

In the literature, there have been many techniques pro-
posed to protect the CPS privacy [1]. Mutual information
has been used to define data privacy in smart grids [2].
Given specific statistical models of source data and auxiliary
information, the posterior information entropy of private data
is quantified and minimized so as to minimize information
leakage. Obfuscation has been used to protect coefficient
privacy in cloud computing in centralized optimal power
flow problems [3]. The legitimate problem holder obfuscates
the optimization problem by an invertible transformation
and sends the obfuscated problem to the cloud. The cloud
solves the obfuscated problem and sends the solution back to
the legitimate problem holder, who can retrieve an optimal
solution of the original optimization problem by inverting
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the obfuscation transformation. Differential privacy has been
applied to distributed optimization [4]–[6], consensus [7],
and filtering [8]. Differentially private schemes add random
noises into individuals’ data such that an adversary with
arbitrary auxiliary information cannot infer an individual’s
participation. However, there is a fundamental utility-privacy
trade-off for differentially private schemes due to the intro-
duction of random noises [9].

For electric power system, transactive control is emerging
as a new type of approaches for integrating many distributed
energy resources into grid operations. It engages individual
resources as market participants (energy suppliers or cus-
tomers) through market interactions, and uses the market
clearing prices to achieve their optimal coordination for
both local and global objectives. Various transactive energy
systems (TESs) have been proposed (see, for example, [10]–
[12]). TES is actually a typical CPS, where the cyber space
determines market clearing prices and the physical world
performs control tasks. Hence, TESs share the typical privacy
issues of general CPSs. Based on the way of information
exchange, there are two types of market clearing: hierarchical
and distributed. For the hierarchical clearing, also known as
auction-based clearing, each resource submits to the coordi-
nator its entire supply or demand curve (the relation between
energy price and supply or demand). The coordinator can
then use the received curves to infer individual resources’
private information, e.g., business secrets and personal pref-
erences. The distributed clearing is more privacy-aware as
each resource only reports those points of its supply or
demand curve required by the coordinator, rather than the
entire curve. However, the coordinator could intentionally
require a large number of points such that it can essentially
recover the entire curve. The above privacy issue necessitates
novel TESs that can realize market-based coordination and
simultaneously protect privacy of individual agents.

In this paper, homomorphic encryption (HE) is applied to
address the privacy issue of TESs. HE is a cryptographic
technique allowing certain algebraic operations to be carried
out on ciphertexts, thus generating an encrypted result which,
when decrypted, matches the result of operations performed
on plaintexts. A significant advantage of HE is that it can
achieve perfect correctness in secure multiparty computation,
i.e., after the multiparty computation, each party can obtain
the correct result of its target computation, and meanwhile no
information of its private data is disclosed to any other party.
HE has been increasingly adopted to ensure data privacy in
multiparty computation in various control and CPS problems,
e.g., potential games [13], distributed optimization [14],
quadratic programs [15], and consensus [16]. Because TESs
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involve multiparty computation related to the coordination,
HE is a good candidate to address its privacy issue.

To cope with the computation (addition) involved in
market-based coordination, this paper adopts the Paillier
encryption scheme [17], which is an additive HE scheme.
Each agent encrypts each sampling point of its supply or
demand curve using the coordinator’s public key and then
sends the encrypted data to a third party. The third party
performs certain aggregation operations over the encrypted
data and sends the aggregated encrypted data to the coordi-
nator, who then uses its private key to perform decryption.
By the homomorphic property of the Paillier encryption
scheme, the decrypted data is just the original aggregated
sampling point, by which the coordinator can determine
the correct market clearing price. In the above process, the
coordinator only learns the aggregated sampling point, but
does not know individual sampling points. Moreover, with-
out knowing the coordinator’s private key, any other entity
cannot learn anything about an agent’s individual sampling
points by observing the ciphertext. The effectiveness of the
proposed design is verified via simulation on a residential
air conditioners (ACs) coordination problem.

Notations. Denote by R and N the sets of real and natural
numbers, respectively. Given a positive integer n, let Zn ,
{0, 1, · · · , n−1} and let Z∗n be the set of positive integers that
are smaller than and co-prime to n. Given positive integers
x and y, denote by gcd(x, y) and lcm(x, y) the greatest
common divisor and the least common multiple of x and
y, respectively. Given a set S, denote by |S| its cardinality.

II. PRELIMINARIES ON ENCRYPTION

In this section, we first introduce the structure of public-
key encryption and some standard privacy definitions, and
then illustrate the Paillier encryption scheme. More detailed
discussions of this section can be found in [17], [18].

A public-key encryption scheme is a triple, (G,E,D), of
probabilistic polynomial-time (PPT) algorithms, such that:
(1) on an input of security parameter n (the key length),
algorithm G (key-generator) outputs a pair of keys, and
(2) for every pair (e, d) in the range of G(n) and every
admissible message m, algorithms E (encryption) and D
(decryption) satisfy Pr[D(d,E(e,m)) = m] = 1. In the
above, e is called the public key and d is called the
private key. In the following, we denote the first and second
elements of G(n) by G1(n) and G2(n), respectively, i.e.,
G(n) = (G1(n), G2(n)). In order to define the privacy of a
public-key encryption scheme, the notion of computational
indistinguishability is first introduced.

Definition 2.1 ([18]): Let X = {Xn}n∈N and Y =
{Yn}n∈N be two probability ensembles, where Xn and Yn
are random variables for each n ∈ N. We say that X and Y
are computationally indistinguishable, denoted by X

c≡Y , if
for every non-uniform PPT distinguisher D, every positive
polynomial p, and all sufficiently large n, it holds that
|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < 1/p(n).

The privacy of a public-key encryption scheme is defined
by the following notion of semantic security.

Algorithm 1: Key generation algorithm
Syntax: (α, β, ν, π) = Algkey(n).
The executor randomly chooses prime numbers p and q
such that gcd(pq, (p− 1)(q − 1)) = 1 and |α| = n
with α = pq; computes ν = lcm(p− 1, q − 1);
randomly selects an integer β ∈ Z∗α2 such that the
following modular multiplicative inverse π exists:
π = ( (βν mod α2)−1

α )−1 mod α.

Definition 2.2 ([18]): A public-key encryption scheme
(G,E,D) is semantically secure if for every e in the
range of G1, every admissible plaintexts x, y, it holds that
{e, E(e, x)} c≡{e, E(e, y)}.

Definition 2.2 states that, even with the public key, it is
infeasible to distinguish the encryptions of any two plain-
texts. This definition is dedicated to public-key encryption
schemes. We still need a privacy notion for general problem
settings to enable privacy analysis when applying public-key
encryption schemes to different applications. Such a privacy
notion is defined for the general setting of secure multiparty
computation (SMC), which is illustrated in the following.

Consider a set of M parties. Each party i has a private
input xi and aims to compute a function fi(x) with x =
(x1, · · · , xM ). If a party does not have a private input or a
function to compute, then we say that its input or output is
null. Let Π be an algorithm to compute f = (f1, · · · , fM ).
The view of a party i during an execution of Π on a joint
input x, denoted by VIEWΠ

i (x), is defined as VIEWΠ
i (x) ,

{xi, ri,mi
1, · · · ,mi

ti}, where ri is the vector consisting of
its internal random choices, ti is the number of messages
it receives during the execution of Π, and mi

` is the `-
th message it receives. The privacy of an algorithm in the
general setting of SMC is defined next.

Definition 2.3 ([18]): Let Π be an algorithm for comput-
ing f(x). We say that Π is privacy-preserving if there exists a
PPT algorithm S such that for each i ∈ {1, · · · ,M} and ev-
ery admissible x, it holds that S(i, xi, fi(x))

c≡VIEWΠ
i (x),

where S(i, ·) denotes the set of messages party i can see
after the execution of S.

Definition 2.3 states that each party i’s view during the
execution of Π can be efficiently simulated by only using its
own input xi and output fi(x).

Paillier encryption. The Paillier encryption scheme is a
public-key encryption scheme which, in addition, has an
additive homomorphic property. It consists of key generation,
encryption and decryption operations, detailed next.
• Key generation: A set of keys (α, β, ν, π) is generated

by Algorithm 1, where n is the parameter to set the key
length, (α, β) are public keys, and (ν, π) are private keys.
• Encryption: A plaintext pt ∈ Zα is encrypted as ct with

the public keys (α, β) by Algorithm 2.
• Decryption: A ciphertext ct ∈ Zα2 is decrypted as pt

with the private keys (ν, π) by Algorithm 3.
The correctness, privacy and homomorphic property of the

Paillier encryption scheme are summarized as follows:
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Algorithm 2: Encryption algorithm
Syntax: ct = Algenc(α, β, pt).
The executor selects a random integer r ∈ Z∗α and
computes ct = βpt · rα mod α2.

Algorithm 3: Decryption algorithm
Syntax: pt = Algdec(α, ν, π, ct).
The executor computes pt = (ctν mod α2)−1

α π mod α.

(1) Correctness: Algdec(α, ν, π,Algenc(α, β, pt)) = pt.
(2) Privacy: If the decisional composite residuosity as-

sumption (DCRA)1 holds, then the Paillier encryption
scheme is semantically secure.

(3) Homomorphic property: Given any
pt1, · · · , ptm ∈ Zα. If

∑m
`=1 pt` ∈ Zα, then

Algdec (α, ν, π,
∏m
`=1 Algenc(α, β, pt`)) =

∑m
`=1 pt`.

III. TRANSACTIVE ENERGY SYSTEM

In this section, the basic concept of TES will be briefly
reviewed. Two widely used market clearing approaches
adopted by the TES will also be illustrated.

The TES can be modeled as a multi-agent system, where a
group of resources are coordinated and controlled to achieve
certain social objectives while respecting local preferences
and constraints. Three different types of agents including
coordinator (CO), supplier, and customer are involved in
the TES. The coordinator represents the market operator,
the supplier is the electricity seller, and the customer is the
electricity buyer. The underlying coordination and control
usually have a hierarchical structure as shown by Fig. 1.
The TES is usually applied to solve the resource allocation
problem, where the market operator achieves the optimal
resource allocation by properly setting the resource price,
referred to as the market clearing price. In the following, the
mathematical formulation of a typical TES in electric power
systems is given for the illustration purpose.

Denote by Vs and Vd the set of suppliers and the set of
customers, respectively. The subscripts “s” and “d” indicate
“supply” and “demand”, respectively. Let Ns = |Vs|, Nd =
|Vd|, and V , Vs ∪ Vd. Each supplier i ∈ Vs aims to
find an optimal supply that maximizes its profit, defined
as the earnings in energy selling minus the costs in energy
purchasing. The profit optimization problem of supplier i ∈
Vs is formulated as maxpsi∈Lsi λp

s
i −Ci(psi ), where psi is its

supply, Ci : R→ R is its cost function, λ is the energy price,
and Lsi is the feasible set of psi . Each customer i ∈ Vd aims to
find an optimal demand that maximizes its utility, defined as
the benefit in energy usage minus the energy cost. The utility
optimization problem of customer i ∈ Vd is formulated as
maxpdi∈Ldi Ui(p

d
i )−λpdi , where pdi is its demand, Ui : R→ R

is its benefit function, and Ldi is the feasible set of pdi .

1DCRA: Given a composite C and an integer z, it is computationally
intractable to decide whether z is a C-residue modulo C2 or not, i.e.,
whether there exists y such that z = yC mod C2. It is widely believed
that the DCRA is true.

Fig. 1. Hierarchical structure of TES for coordination and control.

The coordinator aims to obtain an aggregated optimal
allocation that maximizes the social welfare. The bi-level
optimization problem of the coordinator is formulated as

maxλ∈R
∑

i∈Vd
Ui(p

d∗
i (λ))−

∑
i∈Vs

Ci(p
s∗
i (λ))

s.t. ps∗i (λ) = argmaxpsi∈Lsi λp
s
i − Ci(psi ), ∀i ∈ Vs,

pd∗i (λ) = argmaxpdi∈Ldi Ui(p
d
i )− λpdi , ∀i ∈ Vd,∑

i∈Vs
ps∗i (λ) =

∑
i∈Vd

pd∗i (λ). (1)

In problem (1), the function ps∗i (·) (resp. pd∗i (·)) is called
the supply (resp. demand) curve. Both hierarchical and
distributed market clearing approaches have been widely
used to determine the optimal solution λ∗ of problem (1).

Hierarchical market clearing. Hierarchical clearing is also
referred to as the auction-based clearing. Each agent i ∈ V
submits its entire supply or demand curve to the coordi-
nator, who determines the clearing price as λ∗ such that∑
i∈Vs p

s∗
i (λ∗) =

∑
i∈Vd p

d∗
i (λ∗).

Distributed market clearing. Distributed clearing works
in an iterative manner. At each iteration k, the coordinator
broadcasts the current clearing price estimate λ(k) to all
the agents. Each supplier i ∈ Vs (resp. customer i ∈ Vd)
reports psi (k) = ps∗i (λ(k)) (resp. pdi (k) = pd∗i (λ(k))) to the
coordinator, who then updates the clearing price estimate for
the next iteration until convergence is reached.

IV. PROBLEM STATEMENT

In this section, we identify the privacy issue of TES and
clarify our objective.

In the hierarchical approach, the agents submit their entire
supply or demand curves to the coordinator. With this
information, the coordinator or an eavesdropper can infer
individual cost or benefit functions. In fact, the inverse supply
or demand function is just the derivative of the corresponding
cost or benefit function [19]. Hence, individual cost or benefit
functions can be recovered by integrating the inverse of the
corresponding supply or demand functions. This could ex-
pose much about individuals’ business secrets (for suppliers)
or personal preferences (for customers).

The distributed approach can to some extent mitigate the
privacy issue as the agents do not submit to the coordinator
their entire supply or demand curves, but only those required
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Fig. 2. Proposed practical deployment for TES.

points. However, the coordinator could make use of the
iterative nature of the distributed approach to intentionally
broadcast a large number of prices covering the whole
admissible range and obtains the agents’ responses. In this
way, the coordinator or an eavesdropper could recover the
agents’ supply or demand curves arbitrarily well.

Objective. We aim to develop a privacy-preserving algo-
rithm that simultaneously satisfies the following properties:

(1) Correctness: The coordinator can determine the
correct clearing price λ∗ such that

∑
i∈Vs p

s∗
i (λ∗) =∑

i∈Vd p
d∗
i (λ∗);

(2) Privacy preservation: After the execution of the algo-
rithm, for each supplier i ∈ Vs (resp. customer i ∈ Vd), no
other entity can infer ps∗i (λ) (resp. pd∗i (λ)) for any λ.

In the next section, we will propose a practical deployment
for TES under which HE can be applied to simultaneously
achieve the above two objectives. For the purpose of il-
lustration, we will only consider the hierarchical clearing.
However, it is straightforward to extend the proposed design
to the distributed clearing.

V. PRIACY-PRESERVING DESIGN

In this section, an HE-based privacy-preserving TES de-
sign is developed. We first propose a practical deployment
of TES to enable the usage of HE and illustrate the attacker
model. After that, we present the privacy-preserving design
for the auction-based approach.

A. Practical Deployment

The privacy concern requires that the coordinator should
obtain aggregated curves without knowing individual ones.
Homomorpihc encryption is a promising technique to fulfill
this requirement. For the privacy concern, this technique
requires that the entity who receives individual ciphertexts
and carries out algebraic operations to be different from the
entity who performs decryptions. Hence, to enable the usage
of HE, we introduce an additional independent third party
(TP) as the entity who receives individual ciphertexts from
market participants and performs encrypted aggregations for
the coordinator. The proposed practical deployment is shown
in Fig. 2, in which we assume that there is a communication
link (i,TP) between each agent i ∈ V and the third party,
and a communication link (TP,CO) between the third party
and the coordinator.

Attacker model. We assume that any market participant
i ∈ V∪{CO,TP} is semi-honest, i.e., it correctly follows the
designed algorithm but attempts to use its received messages
throughout the execution of the algorithm to infer other
participants’ private data ([20], pp-20). The communica-
tion links are non-confidential and could be eavesdropped.
An eavesdropper could be the third party, any supplier
or customer, or an extraneous entity. We assume that the
coordinator is not an eavesdropper and does not collaborate
with any other entity.

B. Algorithm design

This subsection presents the proposed privacy-preserving
auction-based algorithm. Denote by λmin and λmax the lower
and upper bounds of energy price, respectively. Denote by τ
the sampling length and Np the number of sampling points.
For each supplier i ∈ Vs (resp. customer i ∈ Vd), denote by
ps∗i` (resp. pd∗i` ) its `-th sampling point, i.e., ps∗i` = ps∗i (λmin+
`τ) (resp. pd∗i` = pd∗i (λmin + `τ)). Denote by σ ∈ N the
precision level of the sampling points, that is, for any ps∗i`
and pd∗i` , only σ decimal fraction digits are kept. Assume that
the coordinator and all the suppliers (resp. customers) know
a strict upper bound δs (resp. δd) of individual supply (resp.
demand), i.e., δs > psi for all i ∈ Vs and all psi ∈ Lsi (resp.
δd > pdi for all i ∈ Vd and all pdi ∈ Ldi ).

Our privacy-preserving auction-based algorithm, Algo-
rithm 4, is based on the Paillier encryption scheme (please
refer to Section II), and informally stated next.

Algorithm 4: Privacy-preserving auction
1 Key generation

The CO runs (α, β, ν, π) = Algkey(n) such that
α > max{10σNsδs, 10σNdδd}, broadcasts (α, β) and
keeps (ν, π) private to itself;

for ` = 1; ` ≤ Np; ` = `+ 1 do
2 Encryption

Each supplier i ∈ Vs runs ysi` = Algenc

(α, β, 10σps∗i` ) and sends ysi` to the TP;
Each customer i ∈ Vd runs ydi` = Algenc

(α, β, 10σpd∗i` ) and sends ydi` to the TP;
3 Computation over ciphertexts

TP computes ys` =
∏
i∈Vs y

s
i` mod α2 and

yd` =
∏
i∈Vd y

d
i` mod α2, sends (ys` , y

d
` ) to CO;

4 Decryption
CO runs ŷs` = Algdec(α, ν, π, ys` ) /10σ and
ŷd` = Algdec(α, ν, π, yd` )/10σ;

5 Setting clearing price
CO sets λ∗ = λmin + `τ such that ŷs` = ŷd` , and sends
λ∗ to each agent i ∈ V .

At step 1, the coordinator generates a set of keys by
the Paillier key-generation algorithm. The public keys are
broadcasted while the private keys are kept private to itself.
The bound on α is to guarantee decryption correctness.
Roughly speaking, to ensure decryption correctness, α must
be larger than the computing result. At step 2, each supplier
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i ∈ Vs (resp. customer i ∈ Vd) encrypts its sampling point
10σps∗i` (resp. 10σpd∗i` ) by the Paillier encryption algorithm
with the public keys (α, β), and sends the ciphertext ysi`
(resp. ydi`) to the third party. Notice that 10σps∗i` and 10σpd∗i`
are non-negative integers. At step 3, the third party performs
computations over received ciphertexts according to the
homomorphic property of the Paillier encryption scheme,
that is, multiplication of ciphertexts provides an encryption
of sum of plaintexts. Hence, ys` and yd` are encryptions of the
`-th sampling points of the aggregated supply and demand
curves, respectively. The third party then sends ys` and yd` to
the coordinator. At step 4, the coordinator decrypts ys` and
yd` by the Paillier decryption algorithm with its public key α
and private keys (ν, π), and transforms the decrypted results
back to real numbers via dividing them by 10σ . At step 5,
the coordinator sets and broadcasts the clearing price λ∗.

Algorithm 4 has the following properties:
(1) Correctness: For each ` ∈ {1, · · · , Np}, it holds that

ŷs` =
∑
i∈Vs p

s∗
i (λmin+`τ) and ŷd` =

∑
i∈Vd p

d∗
i (λmin+`τ).

The correctness property states that ŷs` and ŷd` are just the
`-th sampling points of the original aggregated supply and
demand curves, respectively. This property directly follows
the homomorphic property of the Paillier encryption scheme.
Since λ∗ is set as λ∗ = λmin +`τ such that ŷs` = ŷd` , the cor-
rectness property leads to

∑
i∈Vs p

s∗
i (λ∗) =

∑
i∈Vd p

d∗
i (λ∗).

Hence, optimal market-based coordination is achieved.
(2) Privacy preservation: If the DCRA holds, then Algo-

rithm 4 is privacy-preserving in the sense of Definition 2.3.
The privacy preservation property directly follows the

semantic security of the Paillier encryption scheme. In our
problem setting, since the clearing price λ∗ is public in-
formation, it is included in every entity’s output. For each
supplier i ∈ Vs, its input is (ps∗i` )`∈{1,··· ,Np} and output is
λ∗. For each customer i ∈ Vd, its input is (pd∗i` )`∈{1,··· ,Np}
and output is λ∗. The coordinator’s input is null and output is
((
∑
i∈Vs p

s∗
i` ,

∑
i∈Vd p

d∗
i` )`∈{1,··· ,Np}, λ

∗). For the third party
or an extraneous eavesdropper, its input is null and output
is λ∗. By Definition 2.3, after the execution of Algorithm 4,
each entity only knows its own input and output. Hence, each
agent i ∈ V only knows its own supply or demand curve
and the market clearing price; the coordinator only knows
the aggregated supply and demand curves and the market
clearing price; the third party or an extraneous eavesdropper
only knows the market clearing price. Therefore, any agent’s
individual supply or demand curve is not known to any other
entity and privacy preservation is achieved.

VI. CASE STUDIES

In this section, the proposed privacy-preserving design is
tested on a TES that coordinates and controls residential air
conditioners to manage the feeder congestion.

We consider the real-time electricity allocation of a dis-
tribution feeder on a hot summer day (August 16, 2009) for
Columbus, Ohio, USA. The weather data and the Typical
Meteorological Year (TMY2) data are adopted from [21]
and [22]. The wholesale energy price is adopted from the
PJM market [23] and it is modified to a retail rate in $/kWh

plus a retail modifier as defined by American Electric Power
(AEP)’s tariff [24]. We define this retail price as the base
price. The distribution feeder capacity limit is 3.5 MW. There
are 1000 residential ACs under the feeder. The feeder is both
the coordinator and the (only) supplier, and each residential
AC is a customer. In each market cycle, the feeder aims to
obtain the aggregated demand curve and compares it with the
feeder capacity limit to determine the market clearing price.
If there is no congestion, then the clearing price is set to the
base price. If there is congestion, the clearing price is set as
the price corresponding to the feeder capacity limit on the
aggregated demand curve. In the simulation, the price range
is between λmin = $0 to λmax = $1 and the sampling length
is τ = $0.01. The length of a market cycle is 5 minutes and
there is 288 market cycles in total for one day.

We simulate the above problem for a whole day. A second-
order equivalent thermal parameter (ETP) model is used to
capture the load dynamics of the ACs. Deteailed description
of the ETP model parameters can be found in [25]. Fig 3
shows the evolution of feeder power within 24 hours. The
trajectory of feeder power with control (the solid blue line)
is derived under the proposed privacy-preserving algorithm.
Fig 3 verifies that our algorithm maintains optimal market-
based coordination. Fig. 4 shows the aggregated demand
curve at the 220-th market cycle. Denote by pd∗(λ) the
aggregated demand function, i.e., pd∗(λ) ,

∑
i∈Vd p

d∗
i (λ).

We simulate the auction-based scheme both with and without
our privacy-preserving design and denote the aggregated
demand functions derived in the two cases by pd∗privacy(λ) and
pd∗plain(λ), respectively. In Fig. 4, the image of pd∗privacy(λ)
(the solid blue line) shows the shape of the aggregated
demand curve, and the image of |pd∗privacy(λ)−pd∗plain(λ)| (the
dot red line), which is constant at 0, shows that pd∗privacy(λ)

is exactly equal to pd∗plain(λ) at all values of λ, which verifies
the correctness of Algorithm 4. In Fig. 5, the left subfigure
shows agent 100’s demand curve at the 200-th market cycle,
and the right subfigure shows its encryption under 500 bits of
key length. Fig. 5 visually illustrates the privacy preservation
of Algorithm 4, as the points of the encrypted demand curve
look like pure random numbers within a large interval. Table
I lists the running time under different key lengths. The time
in the second column is the average time per agent per market
cycle, and the time in the second and third columns is the
average time per market cycle. We can see that even for the
case where the key length has 4000 bits, each participant’s
running time per market cycle is still much less than 5
minutes. This verifies that our privacy-preserving algorithm
is efficient enough for TESs.

VII. CONCLUSION

This paper studies privacy issue of TESs. An HE-based
algorithm is developed to simultaneously achieve optimal
market-based coordination and privacy preservation. The
effectiveness of the proposed algorithm is verified by a
residential ACs coordination problem.

3009

Authorized licensed use limited to: Penn State University. Downloaded on March 01,2021 at 18:05:10 UTC from IEEE Xplore.  Restrictions apply. 



00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
Time (hr)

0

1

2

3

4

5

6
F

ee
d

er
 P

o
w

er
 (

M
W

)
Without control
With control
Capacity limit
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Fig. 4. Aggregated demand curve at market cycle 220

TABLE I
COMPUTATIONAL EFFICIENCY

Key length (bit) Agent (s) TP (s) CO (s)
500 0.57 11.99 0.54

1000 2.52 16.50 3.29
1500 7.56 26.44 9.85
2000 16.78 42.06 21.92
2500 32.45 69.59 42.42
3000 55.04 106.43 75.82
3500 86.12 157.02 112.95
4000 127.76 221.99 169.42
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