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Abstract

Colloidal nanoparticles with anisotropic interactions are promising building blocks for

the fabrication of complex functional materials. A challenge in the self-assembly of

colloidal particles is the rational design of geometry and chemistry to program the for-

mation of a desired target structure. We report an inverse design procedure integrat-

ing Langevin dynamics simulations and evolutionary algorithms to engineer anisotropic

patchy colloidal clusters to spontaneously assemble into a cubic diamond lattice possess-

ing a complete photonic band gap. The combination of a tetrahedral cluster geometry

and optimized placement of a single type of anisotropic interaction patch results in a

colloidal building block predicted to assemble a cubic diamond lattice with more than

82% yield. This design represents an experimentally viable colloidal building block

capable of high fidelity assembly of a cubic diamond lattice.
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1 Introduction

Colloidal particles are promising building blocks that can self-assemble into complex func-

tional materials.1–10 Self-assembled colloidal crystals4–7,10–13 have drawn great research in-

terest, with a particular focus on open crystal lattices such as pyrochlore, diamond, and

inverse opal that possess complete photonic band gaps 14–18 and are of interest as 3D pho-

tonic crystals with applications as optical wave guides and in optical computing. 14,17–21 In

experimental studies, triblock patchy colloids equipped with hydrophobic and electrostatic

interactions have been used to form two-dimensional Kagome lattices 4 and colloids deco-

rated with DNA strands have been utilized to form MgCu2 and diamond lattices.10,22 Very

recently, compressed tetrahedral colloidal clusters employing a combination of adhesive in-

teractions and steric interlocking have been used to realize a high-density cubic diamond

lattice with a complete photonic bandgap.23 In computer simulations, colloids with various

forms of interactions have been simulated and predicted to give rise to pyrochlore lattice, 5

diamond lattice,6,7,13,24 hexagonal tetrastack lattice11 and binary nanoparticle crystals.25

A key aspect of the study of self-assembling colloidal lattices is the design of experimentally-

realizable building blocks programmed to assemble desired target structures. Many inverse

design techniques have been proposed for colloidal particles. 9,26–34 For example, Lindquist

et al.28 have used a machine-learning approach based on relative entropy coarse graining

to design the isotropic interactions between colloids that can favor the formation of vari-

ous lattices. Marcotte et al.33 have used statistical-mechanical method to design isotropic

interactions whose ground states are the target structures. Romano and Sciortino 26 have

proposed incorporating patterning asymmetry into patchy colloid design to favor pyrochlore

lattice. Morphew et al.7 have used a basin-hopping optimization algorithm to find optimal

triblock patchy colloids that favor the formation of cubic diamond and body centered cubic

lattices composed of colloidal clusters. A primary challenge in the inverse design problem

is the coexistence of crystal structures with similar thermodynamic stabilities. This typi-

cally results in the formation of polymorphic or hybrid crystal structures instead of the pure
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target lattice. For example, the pyrochlore lattice has a closely-related analogue known as

the hexagonal tetrastack lattice which differs in the orientation of adjacent layers but has

similar free energy26 and the cubic diamond lattice has a nearly equally stable analogue

in the hexagonal diamond lattice.6 Simulations by Rao et al.35 demonstrated that triblock

patchy colloids form a stacking hybrid of pyrochlore and hexagonal tetrastack lattices during

two-stage temperature cooling. Similarly, Romano et al. 6 show that Kern-Frenkel patchy

colloids may form a mixture of cubic diamond and hexagonal diamond lattices.

We have previously developed an inverse design protocol termed landscape engineer-

ing that sculpts the free energy surface governing the self-assembly of patchy colloids 9 and

used this approach to find optimal design parameters that favor the formation of pyrochlore

and cubic diamond lattices.36 This design strategy relied on relatively intricate placement

of patches on the surface of spherical patchy colloids requiring multiple specific patch types

and a two-stage hierarchical assembly mechanism. Using this approach, we discovered patchy

colloid designs capable of assembling defect-free pyrochlore and cubic diamond lattices, but

the relatively complex design of the particles placed them at the very edge of what is exper-

imentally achievable even with state-of-the-art fabrication techniques.

In this paper, we follow up on this work employing a simpler inverse-design protocol and a

simplified design space more amenable to experimental realization. We target an open cubic

diamond lattice and restrict our designs to a single patch type placed upon pre-assembled

clusters of spherical patchy colloids within a rigid tetrahedral tetramer. Many surface-

patterning techniques have been developed recently to decorate the surfaces of colloids with

functional materials37–39 and recent experimental advances have realized the fabrication of

colloidal clusters.40–43 The geometry of the tetrahedral colloidal cluster compensates for the

loss of design flexibility associated with restricting ourselves to a single patch type. Using

this strategy we report a design for an experimentally-realizable anisotropic patchy colloidal

cluster that exhibits in excess of 82% yield of the open cubic diamond lattice.

The remainder of this paper is structured as follows. In the next section we describe
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our computational model for the colloidal particles, Langevin dynamics simulations, and our

inverse design strategy based on evolutionary algorithm. In the following section we describe

the results of our inverse design approach and the validation that tetrahedral tetramers

composed of patchy colloids with optimal patch design can self-assemble into the target

cubic diamond lattice with high fidelity. Finally, we present our conclusions and outlook for

future work.

2 Methods

2.1 Cubic diamond lattice

He et al. recently demonstrated the experimental realization of a cubic diamond lattice

composed of compressed tetrahedral tetramers in which the triangular faces of neighboring

tetramers are induced to adopt the requisite crystal structure through a combination of com-

plementary DNA attractions and steric excluded volume interactions. 23 The close packing

between the faces of adjacent tetramers results in a particle volume fraction of 68% and,

for sufficiently high refractive index contrasts, is expected to possess a complete photonic

bandgap. It is the goal of the present work to engineer tetrahedral colloids to instead as-

semble a closely related cubic diamond lattice in which neighboring tetramers interact via

their vertices rather than their faces to produce an open crystal with a 12% particle volume

fraction. This crystal lattice – in which the geometric centers of tetrahedral tetramers sit

on the lattice sites of an ordinary cubic diamond lattice, and hereafter simply referred as

cubic diamond lattice for brevity – possesses a complete photonic band gap at relatively

low relative permittivity and low band indices. 7,17–20,36 Lattice constants on micron length

scales place the band gap within the visible or near-infrared regime of the electromagnetic

spectrum.17,36,44 This has made this open cubic diamond lattice formed from colloids of par-

ticular technological interest in optical applications such as optical wave guiding and optical

computing,17,19,20 but its robust fabrication by bottom-up assembly remains an enduring
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challenge.6,7,36

The basic motif of cubic diamond lattice is the chair-like ring (Figure 1a) composed of six

staggered dimers.7 Each staggered dimer (Figure 1b) comprises two tetrahedral tetramers

whose bases are rotated by 60◦ with respect to each other.

(a) (b) (c) (d)

Figure 1: Structure of cubic and hexagonal diamond lattices. (a) Chair-like ring. The chair-like
ring is the fundamental motif of the cubic diamond lattice. (b) Staggered dimer of tetrahedral
tetramers. Each contiguous pair of tetrahedral tetramers in the cubic diamond lattice exists as a
staggered dimer in which the base of one tetramer is azimuthally rotated through 60◦ relative to
the other along the axis joining their centers of mass. (c) Boat-like ring. The hexagonal diamond
lattice comprises 25% chair-like rings and 75% boat-like rings. (d) Eclipsed dimer of tetrahedral
tetramers. Of the six tetrahedral tetramer dimers in the boat-like ring, two are eclipsed and four
are staggered.

A polymorphic analogue of cubic diamond lattice is the hexagonal diamond lattice in

which 25% of the rings are chair-like (Figure 1a) and 75% of the rings are boat-like 6 (Figure

1c). In a boat-like ring, two out of six dimers are eclipsed (Figure 1d) wherein the bases

of two constituent tetrahedral tetramers are aligned with each other. Compared to the

cubic diamond lattice, the hexagonal diamond lattice possesses smaller photonic band gap

occurring at higher band indices,44 making it less desirable for optical applications than cubic

diamond lattice. The hexagonal diamond lattice possesses a very similar free energy to the

cubic diamond lattice, making it hard to thermodynamically favor the cubic diamond lattice

over the hexagonal diamond lattice.6 Similar concerns apply to the pyrochlore lattice versus

hexagonal tetrastack lattice (a hexagonal polymorphic analogue of pyrochlore lattice), in

which the hexagonal tetrastack lattice possesses smaller photonic band gap at higher band

indices but has similar free energy as the pyrochlore lattice. 35 The similar stabilities of

competing polymorphs of open lattices has been a principal challenge in the bottom-up
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assembly of defect-free crystals with desirable band structures.

2.2 Anisotropic patchy colloid building blocks

Advanced experimental techniques have enabled fabrication of colloidal clusters with high

yield and fidelity10,40–43 and the surfaces of the constituent colloids forming these colloidal

clusters can also be anisotropically functionalized to program the hierarchical assembly into

more complex structures.10,45 In our prior work,36 we used an inverse design strategy known

as landscape engineering to discover a design for spherical patchy colloids to assemble a cubic

diamond lattice by a two-stage hierarchical process: (i) the high-temperature assembly of

groups of four patchy colloids into tetrahedral tetramers followed by (ii) the low-temperature

assembly of these tetrahedral tetramers into a cubic diamond lattice. The two-stage hierar-

chical assembly mechanism and required rigidity of the tetrahedral tetramers necessitated a

relatively complex colloid design possessing nine patches of three different types with different

interaction potentials and patch-patch specificities. In the present work, we greatly simplify

the design problem in two ways. First, we adopt as the fundamental building block a patchy

tetrahedral tetramer as opposed to a spherical colloid and optimize the single-step assembly

of tetrahedral tetramers into the cubic diamond lattice. Second, we functionalize the colloids

using only a single patch type. We previously used three patch types and employed comple-

mentarity between patch types to stabilize the staggered (Figure 1a) over the eclipsed (Figure

1c) dimer configurations to favor the cubic diamond lattice over the hexagonal. In the present

work, we show that by adjusting the protrusion of the interaction patches above the surface

of the colloid we may exploit excluded volume interactions to preferentially stabilize the

staggered dimer configuration using only a single patch type. These two simplifications are

motivated by experimental advances in the fabrication of rigid colloidal clusters (“colloidal

molecules”) with quite complex geometries, including the tetrahedral tetramer, 40–43,46,47 and

sophisticated surface-patterning techniques to precisely functionalize the surfaces of colloids

with anisotropic interaction patches composed of organic, inorganic, or biological materi-
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als.37–39,48 Conceptually, we reduce the complexity in the anisotropic interaction patches

(i.e., going from three patch types to one) at the expense of increased complexity in the

colloid shape (i.e., tetrahedral colloidal building blocks rather than spherical ones) to design

a building block that is more readily accessible to existing experimental techniques.

We model the patchy colloidal particles using a similar approach to that detailed in

Ref.36 Each tetramer is treated as a tetrahedral assembly of four spherical colloids (type “A”

particles) that move as a rigid body. Figure 2a illustrates a tetrahedral tetramer dimer in a

staggered configuration wherein the base of one tetrahedral tetramer is azimuthally rotated

through 60◦ with respect to the other along the axis connecting their centers of mass. The

surface of each spherical colloid is functionalized with three anisotropic interaction patches

(type “B” particles) in an equilateral triangle arrangement as illustrated in Figure 2b. The

“B” patches are located at a polar angle φB from the pole of each “A” colloid. The placement

of each patch on each colloid in the tetrahedral cluster is identical such that the tetrahedral

tetramer is tetrahedrally symmetric. The “B” interaction patches are represented as Lennard-

Jones spheres on the surface of the “A” colloid. The degree of protrusion of the “B” patches

is quantified by the protrusion ratio αB = dAB/RA, where dAB is the distance between the

center of the “B” patch and the center of the “A” colloid and RA is the radius of the “A”

colloid. A protrusion ratio of αB = 1 indicates that the center of the “B” sphere is coincident

with the surface of the “A” colloid, a value of αB = (1 + RB/RA) indicates that the “B”

sphere lies tangent upon (i.e., “kisses”) the “A” colloid, and a value of αB = (1 − RB/RA)

indicates that the “B” patch is buried just below the surface of the “A” colloid. Controlling

the protrusion ratio of the patch enables us to stabilize the staggered dimer of tetrahedral

tetramers using a single patch type by favoring interlocking configurations of the patches at

the interface as shown in Figure 2c. Figure 2d presents a schematic drawing of the colloidal

particle architecture illustrating φB and αB.

We model the patch-patch (“B”-“B”) interactions between the spherical patches with a
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Figure 2: Computational model of the patchy colloid tetrahedral tetramers. (a) A staggered dimer
of tetrahedral tetramers showing the colloids (“A” particles, grey) functionalized with anisotropic
surface patches (“B” particles, blue). (b) A zoomed-in view of a single spherical patchy colloid
belonging to one of the tetrahedral tetramers. The interaction patches are modeled as Lennard-
Jones spheres placed in an equilateral triangle configuration at a tunable surface depth. (c) A
zoomed-in view of the staggered dimer interface between the two tetrahedral tetramers along the
axis connecting their centers of mass. The dark blue spheres represent the surface patches in
one of the tetrahedral tetramers and the light blue spheres to those in the other. An interlocked
configuration of the surface patches favors the staggered dimer configuration. (d) A schematic
diagram of a patchy colloid illustrating the polar angle φB and protrusion ratio αB of the surface
patches. The transparent blue circles represent the patches and the dark blue dots represent the
centers of patches. dAB is the distance between the center of colloid and the center of patch and
RA is the radius of colloid. The protrusion ratio αB is defined as αB = dAB/RA. All molecular
renderings in this figure and throughout the paper are constructed using Visual Molecular Dynamics
(VMD).49
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Lennard-Jones potential,

UBB
LJ (r) = 4εB

[(σB
r

)12

−
(σB
r

)6
]
, (1)

where r is the center of mass distance between the “B” spheres, εB is the well depth controlling

the interaction strength, and σB is the patch diameter. Following our previous work we

choose the colloid to be five times larger than the surface patches such that σA = 5σ and

σB = σ. The colloid-colloid (“A”-“A”) and colloid-patch (“A”-“B”) interactions are treated by

a surface-shifted Weeks-Chandler-Andersen (WCA) potential 50 to model excluded-volume

interactions,

U ij
WCA(r) =


4εij

[(
σ

r−∆ij

)12

−
(

σ
r−∆ij

)6
]

+ εij if r < 2
1
6σ + ∆ij,

0 if r ≥ 2
1
6σ + ∆ij,

(2)

where εA is the well depth controlling the interaction strength for the “A”-“A” interaction,

εij =
√
εiεj is given by the Lorentz-Berthelot mixing rule, and ∆ij = (σi + σj)/2 − σ shifts

the potential to act between the surfaces of particles i and j. The assembly of four “A”

colloids and 12 “B” patches comprising the tetrahedral tetramer is treated as a rigid body

and interactions between particles in the same rigid body are neglected.

Our patchy colloid model is inspired by the anisotropic patterning symmetry model

introduced by Romano and Sciortino26 and shares similarities with this model in that it

introduces anisotropy into the colloid-colloid interaction interface to preferentially stabilize

the staggered dimer conformation. This prior work treated the anisotropic interactions

through a triangular patch flush to the surface of the colloid and modeled by an extension of

the Kern-Frenkel potential that places anisotropic interaction sites at the three vertices of the

patch.26,51 A staggered interface was preferentially stabilized by maximizing the overlap of

two contacting patches in order to achieve the most favorable interaction energy. Our model

also employs a triangular patch geometry but differs from the patterning symmetry model
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in that the patch comprises three spherical and isotropic interaction sites that are raised

above the surface of the colloidal sphere. The desired staggered dimer interface exploits the

topography of the patch to stabilize the desired staggered dimer conformation through a

combination of both steric interlocking and favorable interaction energies (Figure 2c) and

in this respect shares similarities with the mechanism exploited in the recent experimental

work of He et al.23 Physically, one may conceive of the raised interaction sites to correspond

to polymeric48 or metallic37–39 deposits on spherical colloids functionalized by glancing angle

deposition4,52,53 or contact area lithography.38

The geometry and interaction potential of the system is fully defined by the six parameters

{εA, εB, σA, σB, αB, φB} defining the interaction strength, size and relative arrangement of

the “A” and “B” particles. Since only the relative strength of the “A” and “B” interactions

is meaningful – the absolute values can be scaled by modulating temperature – we reduce

the parameter space by eliminating εA from consideration and considering only the relative

value of εB. Similarly, only the relative values of σA and σB are meaningful, with the

absolute values corresponding to a global rescaling in the size of the particles. In this work,

we follow our previous work and fix the relative ratio of the particle size as σA = 5σB =

5σ. We achieve good results under this choice, but, in principle, we could also consider

changing the size and/or shape of the patch. As such, the inverse design problem is defined

over the three-dimensional design space defining the interaction strength, polar angle, and

protrusion ratio of the “B” patch {εB, φB, αB}. The design strategy seeks to optimize both

the chemistry (i.e., interaction strength) and geometry (i.e., polar angle and protrusion ratio)

of the anisotropic surface patches to favor the staggered dimer configuration and promote

spontaneous defect-free assembly of a cubic diamond lattice.

2.3 Optimization objective function

A direct computational approach to optimizing {εB, φB, αB} would randomly place tetrahe-

dral tetramers within a simulation box, gently anneal the system to induce nucleation and
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growth of a crystal, and then modify {εB, φB, αB} to maximize yield of the cubic diamond

lattice at the termination of the annealing procedure. This direct optimization is inefficient,

however, due to the need for very slow cooling rates in order to avoid kinetic traps and reli-

ably estimate the thermodynamic yield of cubic diamond crystals. 13,35,36 Instead, we define

a proxy optimization problem in which {εB, φB, αB} are optimized to favor the formation

of staggered dimers between colloidal monomers (i.e., isolated “A” spheres functionalized

with “B” patches) at a fixed temperature. This problem is simpler and faster since we do

not perform explicit slow temperature ramping during the optimization and directly focus

on optimizing the colloid-colloid interface to favor an interlocking patch conformation. We

show later during temperature ramping simulation for pre-assembled tetramers that trans-

ferring the optimal design found for monomeric patchy colloid to the tetrahedral tetramer

does indeed result in quite high-yield cubic diamond crystals and provides post hoc validation

of our more efficient proxy optimization.

We evaluate the quality of a particular {εB, φB, αB} triplet by conducting Langevin

dynamics simulations of the assembly of colloidal monomers (Section 2.4) and computing the

fraction of aggregates that exist as staggered dimers at equilibrium. We define a geometric

criterion under which a dimer between colloidal monomers i and j should be classified as

staggered based on the planar angle θij and the dihedral angle Ψij between the constituent

colloids (Figure 3). The angle θij is defined as,

cos(θi) = ξ̂i · r̂ij

cos(θj) = ξ̂j · r̂ji

θij = max(θi, θj),

(3)

where ξ̂i and ξ̂j denote the unit orientation vectors of each particle pointing from the center

of mass of the “A” colloid to the centroid of the three “B” patches and r̂ij denotes the unit

displacement vector from i to j (Figure 3a). The planar angle θi measures the angle between
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ξ̂i and r̂ij and θj measures the angle between ξ̂j and r̂ji. Defining θij as maximum of these

returns the larger deviation of either partner in the dimer from a face-to-face alignment in

which ξ̂i and ξ̂j are antiparallel.

The dihedral angle Ψij is defined as,

Ψij = min
m∈patchi,n∈patchj

(ψmnij ), (4)

where ψmnij defines the relative rotation between each of the three patches m on colloid i

and the three patches n on colloid j. We compute ψmnij by finding the centroid of three

patches on colloid i denoted by ci and the centroid of three patches on colloid j denoted

by cj, then calculate ψmnij as the angle between the plane through {m, ci, cj} and the plane

through {ci, cj, n}. Denoting the vector from m to ci as ~b1, the vector from ci to cj as ~b2,

and the vector from cj to n as ~b3, the dihedral angle ψmnij is computed as,

~n1 =
~b1 ×~b2∥∥∥~b1 ×~b2

∥∥∥ ,
~n2 =

~b2 ×~b3∥∥∥~b1 ×~b2

∥∥∥ ,
cos
(
ψmnij

)
= ~n1 · ~n2.

(5)

The dihedral angle Ψij is defined as the minimum over the nine ψmnij , which – assuming a

small value of θij and therefore relatively cofacial dimer alignment – quantifies the minimum

rotational dihedreal between the colloids in the dimer pair required to align the patches on

each colloid into an eclipsed configuration. Figure 3c provides a schematic illustration for

the case in which Ψij = ψ11′
ij = ψ22′

ij = ψ33′
ij .

We classify a dimer as staggered if (0◦ ≤ θij ≤ 5◦) and (55◦ ≤ Ψij ≤ 60◦). Enforcing a

low threshold on θij ensures that the patches are approximately face-to-face aligned (i.e. ξ̂i

and ξ̂j are nearly antiparallel) and that the value of Ψij is meaningful. An ideal staggered
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Figure 3: Geometry of self-assembled dimers of colloid monomers. (a) The angle θij = max(θi, θj)
measures the larger deviation of either partner dimer i or j from a face-to-face alignment in which
the unit orientation vectors ξ̂i and ξ̂j linking the center of the colloid to the pole containing the patch
are antiparallel and collinear with the unit vector r̂ij linking the colloidal centers. (b) The dihedral
angle Ψij measures the minimum dihedral rotation required within a cofacial dimer pair to align the
patches on each colloid into an eclipsed configuration. The value of Ψij is taken as the minimum
over all nine ψmnij defining the dihedral angles between the three patches m on colloid i and the
three patches n on colloid j. The ψmnij are computed by first finding the centroid ci of patches on
colloid i and the centroid cj of patches on colloid j and then computing the angle between the plane
through {m, ci, cj} (spanned by ~b1 and ~b2) and the plane through {ci, cj , n} (spanned by ~b2 and
~b3). (c) Schematic diagram of Ψij = minm∈patchi,n∈patchj (ψ

mn
ij ) considering a particular interfacial

arrangement of the three light blue “B” patches on colloid i and three dark blue “B” patches on
colloid j. Assuming θij is small such that the colloids are approximately cofacial Ψij = ψ11′

ij = ψ22′
ij

= ψ33′
ij defines the minimum azimuthal rotation required to achieve an eclipsed configuration.

dimer would possess (θij = 0◦, Ψij = 60◦). The 5◦ threshold in both θij and Ψij is motivated

by the range of the observed distribution of these angles in the ensemble of stable staggered

dimers resulting from favorable {εB, φB, αB} choices.

Having defined a criterion by which counts the number of staggered dimers, we define the

objective function to be maximized as the equilibrium fraction of staggered dimers among

all self-assembled aggregates,

f(εB, φB, αB) =

〈
Nstaggered dimer

Naggregates

〉
=

1

Z

∫
e−βU(rN ,ΩN ;εB ,φB ,αB)Nstaggered dimer(r

N ,ΩN ; εB, φB, αB)

Naggregates(rN ,ΩN ; εB, φB, αB)
dΩNdrN

≈ 1

n

n∑
i=1

Nstaggered dimer(r
N
i ,Ω

N
i ; εB, φB, αB)

Naggregates(rNi ,Ω
N
i ; εB, φB, αB)

(6)

where rN and ΩN denote the positions and orientations of the N patchy colloidal monomers

in the simulation, rNi and ΩN
i denote their positions and orientations in frame i of simulation
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trajectory, U(rN ,ΩN ; εB, φB, αB) is the potential energy of the system, β = 1/kBT is the

reciprocal temperature, Nstaggered dimer is a function returning a count of staggered dimers

according to the criterion defined above for a particular system configuration, and Naggregates

is a function returning a count of aggregates of all sizes (monomers, staggered and non-

staggered dimers, trimers, tetramers, pentamers, etc.). The ensemble average in the second

line is approximated by a time-average in the third line that is evaluated over n frames from

the equilibrated production portion of the Langevin dynamics simulation.

We note that the objective function defined in Equation 6 seeks to optimize the fraction

of staggered dimer at equilibrium and is therefore purely thermodynamic in nature. This

objective function is appropriate for self-assembling systems under thermodynamic control

where the system is expected to approach its thermodynamic ground state. This can be

achieved by, for example, slow temperature annealing in which case the details of the kinetic

pathways and mechanisms by which self-assembly proceeds do not dictate the terminal mor-

phologies. In systems where assembly is driven out of equilibrium such as in evaporation,

sedimentation, or under the influence of external fields, an objective function accounting for

the specific processing conditions must be adopted. The most straightforward choice would

be to directly simulate assembly under the conditions of interest and adopt as our objective

function the observed yield of the desired lattice. Direct simulation can, however, become

quite expensive and requires good models for the specific details of the assembly process.

2.4 Langevin dynamics simulations

We evaluate the objective function in Equation 6 by conducting Langevin dynamics simu-

lations of the self-assembly of patchy colloidal monomers in HOOMD-blue v2.6.0. 54,55 We

initialize each simulation from a random dispersion of N = 64 monomeric patchy colloids

with a particular combination of {εB, φB, αB} design parameters and observe the distribution

of self-assembled aggregates that spontaneously form. Importantly, by running many-body

simulations of assembly we seek to both maximize the thermodynamic yield of the desired

15



staggered dimers relative to all competing aggregates and also assure their kinetic accessi-

bility. We perform our simulation in reduced units, where σ = 1, ε = εA = 1, and m = 1.

Using these units, we specify σA = 5, σB = σ = 1, mA = 125 and mB = m = 1. The relative

mass of the colloid and patch is scaled in proportion to size but these choices could be tuned

based on the relative densities of the colloidal “A” particle (e.g., silica, silicon, polystyrene)

and “B” patches (e.g., metal, polymer). We perform simulations in a cubic simulation box

of side length L = 52σ, corresponding to a ϕ = 0.05 volume fraction of colloidal monomers.

The equations of motion are numerically propagated for 1× 108 steps using a Langevin dy-

namics integrator with a step size of dt∗ = 0.005 and temperature of T ∗ = 0.8. The first

5 × 107 steps are discarded for equilibration and frames are saved every 1 × 104 steps over

the remaining 5 × 107 step production period to evaluate f(εB, φB, αB) using Equation 6.

We verify that the equilibration period is sufficiently long such that the system energy and

aggregation numbers of various aggregates (monomers, staggered dimers, eclipsed dimers,

trimers, etc.) fluctuate around stable mean values over the production period. We perform

three independent simulations for each candidate and pass the mean value of the objective

function to the evolutionary optimization routine (Section 2.5).

By performing the evaluation of the objective function at a single temperature of T ∗

= 0.8, we optimize assembly of staggered dimers at this temperature. Once the optimal

design is determined, we transfer the patch design to the tetrahedral tetramers and perform

slow temperature annealing from a high temperature state point at which the tetrahedral

tetramers are fully dispersed to a low temperature state at which the system is fully assem-

bled. Since εB is the only tunable energy scale in our reduced unit calculations, the optimal

εB discovered at T ∗ = 0.8 may be arbitrarily rescaled to modulate the assembly temperature.

A mapping between reduced units and real units can be made by specifying the size σA

and density ρA of the “A” colloid and the energy scale ε. The temperature and time in

real units (T , t) are then related to corresponding quantities in reduced units (T ∗, t∗) as

T = T ∗ ε
kB

and t = t∗σ
√

m
ε
. For example, adopting σA = 5σ = 1 µm, ρA = 1 g/cm3, and ε
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= 0.4 kBT at T = 298 K means that the reduced temperature of T ∗ = 0.8 corresponds to

T = 95 K, the reduced time step of dt∗ = 0.005 to dt = 0.05 µs, and the total length of our

simulations to t = 5 s.

2.5 Evolutionary optimization strategy

To minimize the simulation burden and efficiently identify optimal patch design, we nu-

merically optimize f(εB, φB, αB) using a derivative-free evolutionary algorithm known as

Covariance Matrix Adaptation Evolution Strategy (CMA-ES). 56 We favor CMA-ES because

it is robust on a large number of test functions57 and has demonstrated previous successes

in inverse materials design.9,36,58,59 Conceptually, CMA-ES updates the design parameters

from one generation to the next by evaluating the fitness and distribution of a swarm of

designs to form a surrogate model of the unknown objective function landscape and propose

new designs that are expected to move closer to the objective function optimum. CMA-ES

updates candidates from generation g to (g + 1) as,

xg+1 = 〈xg〉µ + σgηg, (7)

where x = (εB, φB, αB)T is a column vector of design parameters, ηg is a n-dimensional

random vector sampled from a multivariate Gaussian distribution with zero mean and co-

variance matrix Cg, σg is the step size and 〈xg〉µ is the mean design vector of the top µ of

the M candidates in generation g. The covariance matrix Cg and step size σg are updated

based on the past evolution path of the top µ candidates. The covariance matrix guides the

optimization towards an objective function peak and the step size modulates between broad

exploration during the early generations and convergence to a point when a (local) optimum

is discovered. The number of candidates per generation M and the number of top candidates

µ to consider to propose the next generation are hyperparameters of the algorithm. In this

work, we find M = 12 and µ = 3 to provide a good balance between computational cost per
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generation and efficient exploration of design space. We terminate the optimization when

when the standard deviations in {εB, φB, αB} simultaneously fall below {0.33 ε, 1.0◦, 0.01}.

These thresholds are selected to ensure a tight optimum in the terminal design and may be

tuned based on the experimental precision with which these parameters may be controlled.

A flow diagram of the optimization procedure is shown in Figure 4.

Initial generation of 
building block designs 

Conduct Langevin 
dynamics simulations 
for CMA-ES candidates

Evaluate objective 
function for each 
candidate (Eqn. 6)

Check for 
convergence

No

Update candidates by 
CMA-ES

Final building 
block design

Yes

Figure 4: Flow diagram of the optimization procedure combining Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) and Langevin dynamics simulations.

3 Results and discussion

We first report the determination of the optimal patch parameters determined using our

CMA-ES optimization and Langevin dynamics protocol to maximally favor the assembly of

staggered dimers of colloidal monomers. We then transfer this patch design to tetrahedral

tetramers and report our validation of their capacity to assemble into a cubic diamond lattice

in slow temperature annealing simulations.

18



3.1 Determination of optimal patch design

We commenced the optimization loop in Figure 4 by seeding it with M = 12 initial building

block designs with parameters {εB, φB, αB} sampled from a multivariate Gaussian distribu-

tion with mean 〈x0〉 = (3.33ε, 20.00◦, 0.85)T and covariance C0 = diag(1.11, 10.00, 0.01).

Hereafter, we call each particular set of parameters {εB, φB, αB} a “candidate” in the param-

eter space. The initial step size was set to σ0 = 1.0 to favor early exploration of the design

space and mitigate possible trapping in a local optimum. It is our experience that the CMA-

ES optimization can robustly converge to optimal solutions even for poor initial building

block designs and sub-optimal hyperparameter choices. 9,36 For each candidate, we ran three

independent Langevin dynamics simulations and passed the average of the objective function

value (Equation 6) obtained from each simulation to the optimizer. Subsequent CMA-ES

generations were seeded based on the top µ = 3 of the M = 12 candidates (Equation 7).

The evolution of {εB, φB, αB} over the course of CMA-ES generations are presented in

Figure 5a-c and the evolution of the mean value of objective function over the top µ = 3

candidates for each generation is shown in Figure 5d. In conducting the optimization we

constrained the protrusion ratio to lie in the range αB = [0.8,1.0] by penalizing the objective

function to f = (−∞) for candidates outside of this range. This prevented the aphysical

situations of the patch detaching from the colloid (αB > 1.0) or completely sinking below

the surface (αB < (1 − σB/σA) = 0.8). The optimizer converges to a value of αB inside

this range and these constraints are inactive in the later generations of the optimization.

The optimization is terminated at generation g = 28 at which point the standard deviations

{0.239ε, 0.300◦, 0.005} in the three design variables proposed for generation g = 29 fall below

the prescribed convergence thresholds of {0.33 ε, 1.0◦, 0.01} and the mean design is declared

the converged solution {εopt
B , φopt

B , αopt
B } = {8.18ε, 19.6◦, 0.907}. Under the reduced to real

unit mapping defined in Section 2.4, the optimal interaction strength corresponds in real

units to εopt
B = 3.3 kBT at T = 298 K.

Inspection of the optimization time courses show that the interaction strength εB climbs
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(a) (b)

(c) (d)

Figure 5: Evolution of design parameters and objective function over the CMA-ES optimization
course. Evolution of the (a) interaction strength εB, (b) polar angle φB, and (c) protrusion ratio αB
over the 28-generation optimization. The lines and error bars correspond, respectively, to the mean
and standard deviation of each parameter over theM = 12 candidates in each generation. The opti-
mization converges at generation g = 28 to an optimum of {εopt

B , φopt
B , αopt

B } = {8.18ε, 19.6◦, 0.907}.
(d) The mean value of objective function (Equation 6) evaluated over the top µ = 3 candidates in
each generation reporting the fraction of staggered dimers among self-assembled aggregates. The
terminal value of the mean objective function value reaches 〈f28〉µ = 0.83 corresponding to 83%
staggered dimers.
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from its initial starting point of 3.33ε to more than double and reach its terminal plateau

at 8.18ε by around generation g = 20 (Figure 5a). The protrusion ratio αB undergoes some

exploratory fluctuations before increasing slightly from it starting point of 0.85 to settle

down to its terminal optimum of 0.907 (Figure 5c). The polar angle φB reaches an optimum

of 19.6◦ that is changed very little from the initial guess of 20.0◦, but the large fluctuations

in the early generations show that the algorithm does broadly explore a variety of angles

before converging (Figure 5b). The mean value of objective function evaluated over the top

µ = 3 candidates undergoes large fluctuations in the early generations but by generation g

= 15 approaches and then asymptotes to a high plateau that nearly quintuples the fraction

staggered dimers among aggregates from 〈f 0〉µ = 0.17 to 〈f 28〉µ = 0.83.

Analysis of the assembly trajectories allow us to rationalize the behavior of the optimizer

from a structural perspective. The polar angle φB is constrained to lie in the vicinity of 20◦

in order to admit interlocked colloidal interfaces between the tetrahedral tetramers (Figure

2). At this angle, the patches can maximize favorable contacts via short range attractive

Lennard-Jones interactions (Equation 1) in an interlocked configuration wherein each patch

interacts with two nearest neighbors. Smaller angles prevent a tight interlocking due to

insufficient free volume between the patches and lager angles spread the patches too far apart

to admit two nearest neighbor contacts. Larger protrusion ratios αB and stronger interaction

strengths εB would appear to offer increasing energetic stabilization of the staggered dimer

but this process must be viewed in the context of alternative accessible assembly pathways

and states. This process is limited by the fact that too large protrusion ratios and interaction

strengths make the triplet of “B” patches too accessible and strongly bound to multiple

interaction partners, thereby favoring the formation of large aggregates that can outcompete

the staggered dimer. Furthermore, the interaction strength cannot be so strong as to prevent

mutual rearrangements and relaxations of bound particles thereby preventing irreversible

aggregation and kinetic trapping into a glass. 60
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3.2 Validation of optimal patch design

The optimal patch design programs 83% of colloidal monomers to assemble into staggered

dimers. We now proceed to validate that this same patch design can also induce the robust

assembly of tetrahedral tetramers into a cubic diamond lattice.

3.2.1 Slow temperature annealing assembly of optimal tetrahedral tetramers

We conduct Langevin dynamics simulations of N = 512 initially randomly placed tetrahedral

tetramers decorated with the optimal patch design {εopt
B , φopt

B , αopt
B } = {8.18ε, 19.6◦, 0.907}.

We recall that these tetrahedral tetramers comprise a rigid cluster of four “A” colloids each

decorated with three “B” patches as a simplified model of an experimentally-realizable “col-

loidal molecule” 40–43,46,47 functionalized by surface patterning techniques to induce anisotropic

patchy interactions.37–39,48 Simulations were conducted in a cubic box with side length

L = 204.08σ, corresponding to a tetrahedral tetramer volume fraction of ϕ = 0.05. We

perform a high-temperature equilibration of the system at T ∗high = 4.0 (Thigh = 476.8 K,

under the real unit mapping defined in Section 2.4) for 1 × 108 steps with a step size of

dt∗ = 0.005 (t∗ = 5×105; t = 5.0 s). Under these high temperature conditions the attractive

“B” patch interactions are insufficient to promote aggregation and the tetrahedral tetramers

behave effectively as an ideal gas. We then perform slow temperature annealing of the sys-

tem under a linear ramp down to T ∗low = 2.0 (Tlow = 238.4 K) over the course of 2 × 109

steps (t∗ = 1 × 107; t = 101 s; ∆T/t = 2.36 K/s). Finally, we conduct a 1 × 107 step (t∗

= 5 × 104; t = 0.5 s) hold at T ∗low = 2.0 (Tlow = 238.4 K) over which we collect data on

the self-assembled structure. The complete 2.11× 109 step simulation protocol is conducted

using HOOMD-blue54,55 and executes in 4 GPU-days on a NVIDIA TITAN V GPU card.

The plots of temperature and potential energy over the course of the annealing run

are presented in Figure 6. The system undergoes an assembly transition from the initial

dispersion of isolated tetrahedral tetramers marked by the precipitous drop in potential

energy at t∗ ≈ 0.7 × 107 (Figure 6b) corresponding to a temperature of T ∗ ≈ 2.75 (Figure
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6a). The small temperature peak in Figure 6a at t∗ ≈ 0.7 × 107 can be attributed to the

latent heat of fusion released upon assembly. A slow cooling schedule was adopted to favor a

single nucleation event of the most thermodynamically favored polymorph and avoid kinetic

traps. Assembly commences at a higher temperature (T ∗ ≈ 2.75) than that at which the

patch design was optimized (T ∗ = 0.8), indicating that the optimization of the patches was

conducted well below the phase boundary for assembly. As detailed above, regardless of the

temperature at which the optimization was conducted, the transition temperature may be

tuned by rescaling εopt
B .

(a) (b)

Figure 6: Slow temperature annealing induction of tetrahedral tetramer self-assembly. (a) Com-
mencing from an equilibrated high-temperature effective ideal gas of tetrahedral tetramers at
T ∗high = 4.0, a linear temperature ramp down to T ∗low = 2.0 is executed over the course of 2 × 109

integration steps of dt∗ = 0.005. (b) The potential energy over the course of the cooling run under-
goes a precipitous drop at t∗ ≈ 0.7× 107 corresponding to a temperature of T ∗ ≈ 2.75 that marks
the assembly transition. The small temperature spike at t∗ ≈ 0.7× 107 is attributable to the latent
heat of fusion released by the self-assembly process.

3.2.2 Characterization of the self-assembled lattice

We now analyze the structure of the self-assembled lattice produced in the slow temperature

annealing to assess the yield of the desired cubic diamond lattice. The self-assembled crystal

produced at the end of the low temperature hold is presented in Figure 7a. We character-

ize the structure by computing the radial distribution function of the geometric centers of

tetramers (Figure 7b) and the inner product of the Steinhardt bond-order parameters 61,62
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~q3(i)∗ · ~q3(j) between nearest-neighbor pairs of geometric centers of tetramers, where the

asterisk denotes the complex-conjugate (Figure 7c). The (non-normalized) vector ~ql(i) is a

(2l + 1)-dimensional vector with components,

qlm(i) =
1

Nb(i)

Nb(i)∑
k=1

Ylm(r̂ik) =
1

Nb(i)

Nb(i)∑
k=1

Ylm(θik, φik), (8)

where k loops over the Nb(i) nearest neighbors of particle i, r̂ik is the unit displacement

vector from particle i to k, {θik, φik} are the polar and azimuthal angles defined by r̂ik with

respect to a pre-defined coordinate system, and Ylm are spherical harmonics with order l and

degree m where |m| ≤ l. It can be shown that the inner product between any two vectors

~ql(i)
∗ · ~ql(j) is real and independent of coordinate system.61,62 Nearest-neighbors are defined

according to a cut-off distance dcut = 12.0σ covering the first peak in the radial distribution

function.

The radial distribution function shows sharp peaks at r∗ = 11.25σ, 18.45σ, 21.55σ, 26.05σ

and 28.35σ corresponding to the locations of the first five characteristic peaks expected for

a cubic diamond lattice (Figure 7b). The hexagonal diamond lattice, however, possesses a

nearly indistinguishable peak fingerprint that differs only in a weak splitting of the second

and fourth peaks. Instead we turn to the ~q3(i)∗ · ~q3(j) Steinhardt bond-order parameter

analysis that is better able to distinguish these two polymorphs by also incorporating an-

gular information.6,36 The distribution of ~q3(i)∗ · ~q3(j) computed over all nearest-neighbor

pairs (Figure 7c) exhibits a strong primary peak at (-1) and a smaller peak at (-0.115). The

additional peaks between (-1) and (-0.115) are attributable to finite-size effects due to com-

puting ~q3(i)∗ · ~q3(j) over tetramers on the boundary of the final structure that do not possess

exactly four nearest-neighbors. Excluding these boundary particles by restricting the calcu-

lation to nearest-neighbor pairs possessing exactly four nearest-neighbors eliminates these

ancillary peaks (Figure 7d). An ideal cubic diamond lattice should possess a single peak

in ~q3(i)∗ · ~q3(j) at (-1). A hexagonal diamond lattice should possess an additional peak at
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(a) (b)

(c) (d)

Figure 7: Characterization of the self-assembled crystal lattice. (a) A snapshot of the terminal
self-assembled lattice. (b) Radial distribution function of the geometric centers of tetramers in the
terminal lattice. The orange dashed lines correspond to characteristic peak positions of an ideal
cubic diamond lattice. (c) Distribution of the inner product of Steinhardt bond-order parameters
~q3(i)∗ · ~q3(j) between nearest-neighbor pairs of geometric centers of tetramers. The orange dashed
line corresponds to the characteristic peak of cubic diamond lattice and the green dashed line
corresponds to the extra peak in hexagonal diamond lattice. (d) Reproduction of panel c considering
only tetramers possessing four nearest neighbors to exclude tetramers at the boundary of the finite-
sized crystal.

(-0.115) with a magnitude one third of that of the (-1) peak. 6

We quantify the proportions of tetrahedral tetramers within cubic and hexagonal diamond

environments following an approach suggested by Romano et al. 6 First, we classify a tetramer

i as solid-like if it has four nearest neighbors with ~q3(i)∗ · ~q3(j) ∈ [−1,−0.87) ∪ [−0.3, 0.1) –

where the former range identifies cubic diamond neighbors and the latter range hexagonal

diamond neighbors – and each of its nearest neighbors also has four nearest neighbors.

Second, we classify a solid-like tetramer i as living in a cubic diamond environment if ~q3(i)∗ ·

~q3(j) ∈ [−1,−0.87) for all four neighbors j. To provide a statistical estimate of these

fractions, we performed 10 independent temperature annealing simulations using the method

described at the beginning of this section and measured the fraction of solid-like tetramers
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living in a cubic diamond environment in self-assembled crystal at the termination of the

low-temperature hold. We compute a mean cubic diamond fraction of 58% with a 95%

confidence interval of (53%, 63%).

The root of the mixed cubic/hexagonal character of the self-assembled lattice is the

small free energy difference between the two polymorphs. A short-ranged attractive model

of tetramers developed by Romano et al. calculated the cubic phase to be only marginally

more stable than the hexagonal phase by only 0.02 kBT in a short-range patchy particle

model.6 In analogous work, triblock patchy colloids designed by Rao et al. were observed to

form a mixed pyrochlore/hexagonal tetrastack lattice upon slow temperature annealing as a

result of a similarly marginal stability of the pyrochlore polymorph. 35 In the present work,

we sought to break the degeneracy between the desired cubic diamond polymorph relative to

the undesired hexagonal diamond by engineering the geometry and interactions of the three

“B” patches to favor a staggered interface between tetrahedral tetramers over the eclipsed.

Although we were able to achieve 83% selectivity for the formation of staggered dimers

over all competing aggregates in our simulations of colloidal monomer aggregation, this

only translated to a 58% selectivity for the cubic diamond under our temperature annealing

protocol.

3.2.3 Boosting the cubic diamond fraction

We experimented with a number of ways to boost the cubic diamond fraction of the self-

assembled lattice. First, we explored the sensitivity of the observed cubic diamond fraction

to modifications of the patch size σB. In prior work, we observed good assembly behaviors at

a particle to patch ratio of σA = 5σB = 5σ, motivating us to fix σB = 1.0σ and not include

it within our patch optimization protocol. 36 It is, however, valuable to assess the robustness

of our optimal design to variations in patch size and we also reasoned that small changes

could potentially elevate the cubic diamond fraction. Following the same cooling schedule

described in Section 3.2.1, we measured the fraction of solid-like tetramers in a cubic diamond
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environment for self-assembled crystals produced by our optimal particle design but now with

patch sizes of σB = 0.90σ, 0.95σ, 1.05σ, 1.10σ, 1.20σ, 1.30σ and 1.40σ. For each σB, we

performed three independent cooling simulations. The resulting cubic diamond fractions with

95% confidence intervals for those patch sizes are illustrated in Figure 8. Within the error

bars of our calculations, the observed selectivity for cubic diamond is robust to variations

in the patch size over the range σB = 0.95-1.20σ. A degradation in the observed fraction is

observed outside this range at σB = 0.90σ, 1.30σ, and 1.40σ. This result indicates that our

optimal design lies within a relatively flat-topped optimum with respect to perturbations in

σB and provides post hoc validation that fixing σB = 1.0σ produces good assembly behaviors.

It is conceivable that augmenting our design space to explicitly include σB could potentially

open up directions in the 4D space of {εB, φB, αB, σB} along which significant improvements

in the cubic diamond fraction might be observed, but the present result indicates that this

cannot be achieved by modulating σB alone.
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Figure 8: Sensitivity to patch size σB of the observed cubic diamond fraction produced by the
optimal particle design {εopt

B , φopt
B , αopt

B } = {8.18ε, 19.6◦, 0.907} after slow temperature annealing.
The selectivity for cubic diamond within the self-assembled crystal is robust to perturbations in the
patch size over the range σB = 0.95-1.20σ. Error bars represent 95% confidence intervals.
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Second, we explored the use of cubic diamond seeds to promote nucleation of the desired

polymorph. Specifically, we introduced a small rigid seed of cubic diamond lattice composed

of 18 tetrahedral tetramers, performed 10 independent cooling simulations for the seeded

system using the same cooling schedule. This proved to be a quite successful strategy, with

the cubic diamond fraction of the terminal crystal in the seeded system achieving 82% with

a 95% confidence interval of (74%, 89%). Third, we explored changing the temperature

annealing rate in the absence of a cubic diamond seed. There exist multiple examples in the

literature demonstrating that slow cooling rates can improve the quality of self-assembled

colloidal crystals.7,13,35 By doubling the length of the annealing schedule (i.e., halving the

cooling rate) to anneal the system from T ∗high = 4.0 to T ∗low = 2.0 over 4 × 109 steps (t∗

= 2 × 107; t = 202 s; ∆T/t = 1.18 K/s), we achieved a fraction of solid-like tetramers

in cubic diamond environment of 72%. (Due to the excessive computational cost, we only

performed one such simulation.) Further extending the annealing period quickly becomes

computationally prohibitive, but we performed cooling simulations at three additional shorter

annealing periods: 5× 108 steps (t∗ = 2.5× 106; t = 25.2s; ∆T/t = 9.45 K/s), 1× 109 steps

(t∗ = 5 × 106; t = 50.5 s; ∆T/t = 4.73 K/s) and 1.5× 109 steps (t∗ = 7.5× 106; t = 75.7s;

∆T/t = 3.15 K/s). A least squares linear regression on the observed cubic diamond fractions

at each of these five cooling schedules as a function of t∗ admits a robust linear fit (R2 =

0.99), and a subsequent linear extrapolation estimates that a perfect cubic diamond lattice

may be achieved by annealing over 8.4× 109 steps (t∗ = 4.2× 107; t = 423.8s; ∆T/t = 0.56

K/s).

The observations from our seeding and cooling runs are very promising in suggesting

that a combination of slow annealing and initial seeding may be combined to exploit the

small separation in the stability of the cubic over hexagonal polymorphs introduced by

our patch design to induce the assembly of defect-free cubic diamond lattices. We note

that we also experimented with the addition of screened dipole-dipole interactions between

colloids to enhance the energy gap between the staggered and eclipsed configurations using
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electrostatic interactions as suggested by Zhang et al. 13 We found, however, that this strategy

– at least for the present design – does not work because the strength of the dipole-dipole

interaction required to break the degeneracy between the two configurations was so strong

as to completely destabilize the formation of dimers in the first place.

3.2.4 Band structure calculation

Finally, we compute the band structure of an ideal cubic diamond lattice formed by our

designed tetrahedral tetramers. This calculation verifies that the patches do not disrupt the

band structure of the underlying cubic diamond lattice of tetrahedral tetramers and that if

a defect-free crystal lattice of these particles can be achieved, it will possess a complete band

gap. We used the MIT Photonic Bands (MPB) package63 to compute the band diagram

along the corners of the irreducible region of the first Brillouin zone employing a 16× 16×

16 grid to discretize the unit cell. For the cubic diamond lattice composed of tetramers,

the lattice constant a is related to the nearest neighbor distance between colloids rnn by

a = (2
√

2 + 4
3

√
3)rnn. We set rnn = 5.05σ, corresponding to the the first peak of the

radial distribution function between patchy colloids (“A” particles) in the final structure.

Assuming a relative permittivity between the colloidal particles and the medium of εr =

12.0 corresponding to that between silicon and air, we compute the band structure in Figure

9a. The cubic diamond lattice does indeed possess a complete photonic band gap between

the second and third bands with a ratio between gap size and midgap frequency of ∆ω/ωm

= 13.8%. Under the real unit mapping described in Section 2.4 with σA = 5σ = 1 µm, the

corresponding lattice constant of a = 5.2 µm places the band gap in the frequency range

39 < ν < 45 THz and wavelength range of 6.7 µm < λ < 7.7 µm, situating the band gap

around the near-infrared regime of the electromagnetic spectrum.

We performed a corresponding calculation for the ideal hexagonal diamond lattice in

which the lattice constant a is related to rnn as a = (2 + 2
3

√
6)rnn. The resulting band

structure assuming the same silicon/air relative permittivity of εr = 12.0 is presented in
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Figure 9b. At this relative permittivity, the hexagonal diamond lattice does not possess

a complete photonic band gap. By examining the band structure as a function of relative

permittivity, the hexagonal diamond lattice does support a complete band gap between the

fourth and fifth bands, but the band only opens for relative permittivity in excess of εr

= 14.0, corresponding to the approximate relative permittivity between silicon-germanium

alloy and air (Figure 9c). The cubic diamond lattice possesses a substantially larger ratio

between gap size and midgap frequency ∆ω/ωm at all values of εr, making the cubic diamond

a more attractive photonic crystal than the hexagonal analogue.

(a) (b)

(c)

Figure 9: Photonic band structure of diamond lattices of the designed tetrahedral tetramers. (a)
Computed photonic band diagram for the cubic diamond lattice of tetrahedral tetramers at a relative
permittivity between the colloidal particles and the medium of εr = 12.0. The x-axis traverses
the corners of irreducible region in the first Brillouin zone. The y-axis reports the dimensionless
frequency ωa/2πc, where ω is the angular frequency, a is the lattice constant, and c is the speed
of light in vacuum. The shaded bar denotes the complete band gap between the second and the
third bands. (b) Computed photonic band diagram for the hexagonal diamond lattice of tetrahedral
tetramers at εr = 12.0. (c) Dependence of the ratio between gap size ∆ω and midgap frequency ωm
as a function of relative permittivity εr for the cubic and hexagonal diamond lattices.
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4 Conclusions

We have performed inverse design of a patchy tetrahedral colloidal cluster that spontaneously

assembles into a cubic diamond lattice with high fidelity. We stabilize the open lattice struc-

ture through the geometry and anisotropic interaction potentials of the colloidal cluster

building blocks and promote the cubic diamond polymorph over the competing hexagonal

diamond by rational engineering of the strength, positioning, and protrusion of the inter-

action patches through an iterative optimization strategy. We have previously reported a

patchy spherical colloidal building block comprising nine patches of three different types and

interaction complementarities that was capable of defect-free assembly into a cubic diamond

lattice in slow cooling simulations.36 In this work, we greatly simplified the design space to

a single interaction patch type upon a tetrahedral colloidal cluster that is more representa-

tive of experimentally realizable designs and amenable to existing experimental fabrication

techniques. Colloidal clusters, including the tetrahedral tetramer, have been produced by

a variety of experimental techniques,43 including controlled surface-nucleation of colloids

onto seeds,64 advanced encapsulation emulsion techniques,10,42,65 depletion interactions40

and crystal-templated fabrication.41 Anisotropic interaction patches can be functionalized

onto colloids using techniques such as contact area lithography, 37–39 glancing angle depo-

sition,4,52,53 grafting of DNA oligomers10,22,66–68 and surface-patterning with polymeric or

metallic patches.48 We demonstrated the assembly of a cubic diamond lattice with 82%

yield using seeded slow temperature annealing simulations of our optimal design, and our

calculations suggest that even slower cooling rates can achieve defect-free assembly. The

ideal cubic diamond lattice composed of these colloidal particles was computationally veri-

fied to possess a complete photonic band gap. It is hoped that this computational work may

guide the experimental fabrication of self-assembling building blocks to realize this material

in the laboratory.

We see multiple avenues for potential future work. First, we would like to expand the

design space to incorporate additional design variables within the optimization that may
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further promote robust assembly of the target cubic diamond lattice. The present work de-

fined a three-dimensional optimization problem in the interaction strength, polar angle, and

protrusion ratio of the surface patches, but the design strategy could be straightforwardly

extended to include, for example, the size and shape of the patches to explore larger, smaller,

and potentially non-spherical geometries. One might also allow for more elaborate expan-

sions of the design space such as allowing for potentially non-isotropic patch interactions, 26

deviations from the idealized tetrahedral tetramer geometry to a compressed or other imper-

fect geometries,23 or changes in the surface chemistry and interaction of the colloids to mimic,

for example, polymer adsorption and depletion effects. 69 Second, the present study can be

conceived as defining the single optimal patch design within the defined design space. Deter-

mining the influence of polydispersity in the design of the colloidal particles is important in

understanding its impact on assembly fidelity and placing bounds on acceptable variabilities

and imperfections in particle synthesis. We envisage a comprehensive follow-on study on the

influence of polydispersity in the optimizable (i.e., patch interaction strength, polar angle,

and protrusion ratio) and fixed (e.g., patch size, shape, and interaction strength; size, shape,

and relative arrangement of the colloids comprising the tetrahedral tetramer) design variables

in which we conduct ensembles of additional simulated annealing calculations to sample this

multidimensional parameter space and explore these effects. One could also conceive of a

more sophisticated design strategy where the optimization is performed such that the particle

design parameters are random variables drawn from pre-defined distributions representing

the anticipated polydispersity.70 The terminal designs discovered by this strategy are likely

to be inferior in assembly performance relative to the single best design discovered in the

absence of polydispersity, but superior in terms of robustness to imperfections in the particle

designs. Third, the interaction potentials adopted in this work represent simplified and ide-

alized models that distill the essential physics of the colloid-colloid interactions. Reducing

these designs to experimental practice would be well served by considering more realistic

interaction potentials appropriate to particular surface functionalizations by, for example,

32



polymers,69 metals,71 or complementary DNA oligomers.10,12 Finally, we see broad applica-

tions for our simple and generic design strategy for the design of colloidal, nanoparticle, and

peptide building blocks for the assembly of diverse self-assembling aggregates and materials.
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