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Abstract

Using flat-histogram simulations, we calculate the entropy of molecular fluids along the

vapor-liquid phase boundary. Our simulation approach is based on the evaluation of the canon-

ical and grand-canonical partition functions, which, in turn, provide access to entropy through

the statistical mechanics formalism. The results allow us to determine the critical entropy

of molecular fluids and to uncover that the transition occurs symmetrically from an entropic

standpoint. This can best be seen through the patterns exhibited by the thermodynamic vari-

ables temperature and pressure when plotted against the entropy of the coexisting phases. This

behavior is found to hold for apolar, quadrupolar and dipolar fluids. Finally, we identify func-

tional forms that characterize the relation between thermodynamic variables and entropy along

the coexistence curve up to the critical point.

Introduction

Entropy is notoriously challenging to calculate.1 This property, however, is essential to detect the

onset of order↔disorder transitions. Furthermore, since entropy is one of the partial derivatives

of the Gibbs free energy, it can be used to characterize a phase transition in the Ehrenfest clas-

sification2 through either its non-continuous (first order) or continuous (second order) behavior.

This has prompted the development of several different strategies to determine entropy. A possible

route to its calculation is through a thermodynamic approach and the use of the well-known ther-

modynamic relation S = H−G
T . However, obtaining an accurate value for the Gibbs free energy G

can present significant challenges. A way to achieve this is by carrying out molecular simulations

in the grand-canonical ensemble,3–7 in which µ is fixed and N is allowed to fluctuate. Another

approach consists in computing µ via the method designed by Widom,8 i.e. by inserting a test

particle in the system during the simulations.9–16 This second method is applicable to simulations

in the canonical or isothermal-isobaric ensemble, for which the total number of molecules N is

fixed. Both techniques then allow to calculate S as 〈S〉 = 〈H〉−µ〈N〉
T in the (µ,V,T ) ensemble, or

〈S〉= 〈H〉−〈µ〉N
T in the (N,V,T ) or (N,P,T ) ensembles, with 〈.〉 denoting ensemble averages. How-
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ever, such approaches become less accurate as the density increases or as the molecular geometry

becomes more complex, given the low acceptance rates for random insertions. In such cases, the

determination of the Gibbs free energy, and thus of the entropy, requires more elaborate strategies,

for instance, by starting from a reference state of known G and connecting it to the system of inter-

est along a thermodynamic path via thermodynamic integration17–20 or using Bennett acceptance

ratio.21 Another alternative consists in leveraging configurational bias Monte Carlo (MC) moves22

or Expanded Ensemble methods23,24 to gradually insert/delete molecules in the system and bolster

the acceptance rates for such MC moves.

Another possible route to calculate S is through the use of structural information. Entropy can

be cast into a sum of one-body, two-body, three-body... contributions25,26 S/Nk = s(0)+ s(2)+

s(3)+ ... and calculated through the Green-Wallace10,27–29 expansion in terms of the multiparti-

cle correlation functions. This approach has been successfully applied to determine the entropy

of atomic fluids.30–33 Furthermore, through the two-body approximation, it has also been used

to study water and waterlike anomalies,34–37 to examine ordering in liquids,38–42 to calculate the

entropy of hydrophobic hydration43–45 and to model molecular recognition in protein-ligand bind-

ing.46,47 However, this approach remains challenging to apply to complex molecules and at high

densities, since, in this case, the three-body, and more generally the many-body contributions,

become non-negligible.25,48 Alternatively, dynamical information can be used to calculate the en-

tropy of a molecular fluid through a Fourier transform of the velocity autocorrelation function.49,50

Here, we focus on a statistical mechanical approach to calculate the entropy and to shed light

on the behavior of entropy along a phase boundary, as recent observations on atomic fluids51

have suggested that, unlike other thermodynamic properties, entropy could exhibit a symmetric

behavior along a coexistence curve. Our approach is based on the determination of the partition

function Θ(µ,V,T ) via the extensive sampling of the configurational space using the Expanded

Wang-Landau (EWL) simulation method.52–56 This relies on a flat histogram sampling method,

known as the Wang-Landau sampling,57–62 combined with an expanded ensemble approach63–69

to bolster the acceptance rate of random insertion/deletion and handle large molecules, and high
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density states. Once an accurate estimate for the partition function has been obtained, S can then

be evaluated through

S =
kB lnΘ(µ,V,T )

< N >
+

<U >−µ

T
(1)

in which < N > and < U > are collected during the simulations, and S and U denote intensive

properties.

The goal of this work is to use this statistical mechanical approach to calculate the entropy of

molecular fluids along the vapor-liquid phase boundary for molecular fluids. The questions we

aim to address here are the following: (i) can we determine an estimate for the critical entropy

Sc of molecular fluids? (ii) does the symmetry observed in prior work on atomic systems also

apply to molecular fluids? (iii) what is the impact of the increase in the complexity and range of

the intermolecular interactions, e.g., by taking into account the effect of permanent electrostatic

moments such as quadrupoles (as in N2 and CO2) or dipoles (as in H2O)? and (iv) can we identify

a pattern for the entropy at coexistence that remains valid for apolar, quadrupolar and dipolar

molecular fluids? To address these issues, we carry out EWL simulations to calculate the entropy

along the vapor-liquid coexistence curves for a series of molecular fluids, starting from apolar (SF6)

to quadrupolar (N2 and CO2) and finally to dipolar (H2O) molecules. We compare the simulation

results to the available experimental data and determine the location of the critical point, including

the critical entropy Sc. We then scale the thermodynamic properties with respect to the coordinates

of the critical point to identify a behavior common to these systems and to provide a full picture of

the phase transition from an entropic standpoint.

The paper is organized as follows. We first provide an account of the force fields used to model

the different molecules studied in this work. We briefly discuss the EWL algorithm used in this

work to calculate the entropy of molecules. We then present results for the vapor-liquid equilibria,

compare them to the available data and examine the dependence of entropy upon the interaction

complexity through scaled temperature-entropy and pressure-entropy. We finally draw the main

conclusions from this work in the last section.
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Simulation method and models

Force Fields

We use different force fields to model the molecules studied in this work. These force fields were

chosen for their ability to provide simulation results in very good agreement with the experimental

data for the densities of the two coexisting phases, for the temperature dependence of the saturation

pressure and for the location of the critical point (Tc,ρc,Pc).

We model the non-polar SF6 molecule with 6 interaction sites placed on each of the F atoms

of the molecule. Interaction sites located on two different molecules interact through the Lennard-

Jones (LJ) potential form as follows

U(ri j) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

(2)

with ri j, σi j and εi j the LJ parameters between two interactions sites. The distance between the

center of mass (S atom) and each of the F atoms is set to 1.62 Å and the LJ parameters70 are set to

σ = 2.75 Å and ε

kB = 78 K.

For the quadrupolar nitrogen N2 molecule, we use a force field consisting of a distribution of

point charges and of two LJ sites on the two N atoms. The overall interaction can be written as

U(ri j) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
+

qiq j

4πε0ri j
(3)

with the following LJ parameters for the N atoms σ = 3.3 Å and ε

kB = 36 K. In this force field, the

bondlength N−N is equal to 1.098 Å. The three point charges are fitted to model the quadrupole

of N2. A single positive charge (0.966 e) is placed at the center of N−N bond, while the two

negative charges (−0.483 e) are located on the two N atoms.71 The quadrupolar carbon dioxide

CO2 molecule is modeled with the TraPPE force field.72 It consists of three LJ sites and three point

charges located on each of the atoms. The molecule is taken as rigid with a bondlength for C-O

of 1.16 Å and a bond angle for 6 OCO of 1800. The parameters are σC = 2.8 Å and εC
kB = 27 K,
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σO = 3.05 Å and εO
kB = 79 K, qC = 0.7 e and qO =−0.35 e. The interactions between unlike atoms

are obtained via the Lorentz-Berthelot combining rules.73

We use the SPC/E force field to model the dipolar water molecule.74 This force field provides

a very good account of the vapor-liquid equilibria properties of water.15,75,76 It includes three

interaction sites, with a single LJ site on the O atom and point charges on each of the atoms. The

model assumes the molecule to be rigid with a O-H bondlength of 1 Å and an angle for 6 HOH of

109.470. For the LJ site, we have σO = 3.166 Å and εO
kB = 0.65 kJ/mol. The point charge on O is

equal to qO =−0.8476 e, while for the two H atoms qH = 0.4238 e.

Simulation framework

To compute entropy, we calculate the canonical and grand-canonical partition functions. A ver-

satile and highly accurate method to determine partition functions in isothermal ensembles is the

Wang-Landau sampling method.57–62 Since we focus here on vapor liquid equilibria, we use the

expanded Wang-Landau (EWL) method.52–56 In this approach, the insertion/deletion of molecules

is split into a finite number of stages according to the expanded ensemble method.63–69 This means

that the Monte Carlo (MC) steps corresponding to random insertions and deletions are replaced

by MC steps in which a fractional molecule is grown/shrunk until a new molecule has formed

in/disappeared from the system. This bolsters the acceptance rate for the MC moves and leads to

accurate partition functions for atomic and molecular systems, including for high density liquids.52

This method is a flat histogram simulation approach, meaning that an extensive sampling of N, the

number of molecules, that can fit within a volume V and at a temperature T is carried out (flat

histogram for the number of visits), and that the partition function is dynamically updated during

the EWL simulations until convergence has been reached. The output of EWL simulations are

the grand-canonical partition function Θ(µ,V,T ) and the canonical partition function Q(µ,V,T ),

which are related through

Θ(µ,V,T ) =
∞

∑
N=0

Q(N,V,T )exp(β µN) (4)
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Entropy can then be obtained using Eq. 1 as discussed in the Introduction. We detail below

how < N > and < U > are obtained from the EWL simulations. Starting from the probability

distribution p(N) defined as

p(N) =
Q(N,V,T )exp(β µN)

Θ(µ,V,T )
(5)

the average number of molecules can be obtained through

〈N〉= ∑ p(N)N (6)

The average internal energy then follows from

<U >= ∑
N
(Epot(N)+Ekin)p(N) (7)

in which Epot and Ekin are the average potential energy and kinetic energy, respectively, calculated

for a given (N,V,T ) set. Epot is calculated during the simulations as the total interaction energy

between molecules and Ekin =
N f
2 kBT is a function of the number of degrees of freedom N f in the

model, e.g. N f = 5 for a linear molecule like N2 or CO2 and N f = 6 for a non-linear molecule like

SF6.

Technical details

The EWL simulations rely on an iterative process, that collects histograms for the number of visits

for each N sampled and for the value of Q(N,V,T ) every time a configuration for a specific value

of N is visited. From a practical standpoint, given the large values taken by Q(N,V,T ), we store an

histogram for lnQ(N,V,T ) rather than of Q(N,V,T ). Every time a value of N is visited, the number

of visits for N is incremented by 1 and the histogram for lnQ(N,V,T ) is incremented by ln f , in

which f denotes the convergence factor. The criterium for the minimum number of visits is set to

1000 for all N. Every time this criterion is satisfied, the histogram for the number of visits is reset

to 0 and the convergence factor is reduced to
√

f until it becomes less than 10−8 (its initial value is
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set to ln f = 1 as in previous work52,54). The number of stages, in which the insertion/deletion of a

molecule is split, is set to 100 for all systems. For all systems, MC steps are attempted according to

the following probabilities: 37.5% for translations of a molecules, 37.5% for rotations and 25 % for

growth/shrinkage. Finally, we use a spherical cutoff, set to half the boxlength, for the calculations

of LJ interactions, and apply tail corrections73 beyond. Ewald sums are used to calculate the long-

range Coulombic interactions, with a screening parameter for the charge Gaussian distribution of

5.6/L and a reciprocal cutoff vector of kmax = 6(2π)/L.

Results and discussions

We first present the results for the grand-canonical partition function for N2, and show on this

example how the evaluation of Θ(µ,V,T ) allows us to carry out the calculation of the entropy. We

start by showing in Fig. 1(a) the canonical partition function Q(N,V,T ) for T = 110 K and for

N = 0 to N = 460, i.e. for numbers of molecules encompassing densities ranging from the vapor

to the liquid phase. The shape of the plot obtained here is consistent with that found for subcritical

fluids,69 with an increase in Q(N,V,T ) from its initial value of 1 for a system containing 0 molecule

to the very values obtained close to the upper bound for N. The simulation results can then be

used to compute the grand-canonical partition function Θ(µ,V,T ) for any value of the chemical

potential µ through Eq. 4. The results are also shown in Fig. 1(a) and indicate that there is a sharp

change in lnΘ(µ,V,T ) characteristic of the onset of a phase transition, and specifically here of the

vapor-liquid transition for a chemical potential µ = −440.39 kJ/kg, in very good agreement with

the experimental data77 of −444.65 kJ/kg. The value of lnΘ(µ,V,T ) at this juncture can also be

used to calculate the pressure at coexistence through the relation

P =
kBT lnΘ(µ,V,T )

V
(8)

We find a value of P = 16.75 bar from the EWL simulation results, in very good agreement with

the experimental value77 of P = 14.67 bar. This establishes the accuracy of the partition functions,
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and of the thermodynamic pressure, obtained from the EWL simulations.

(a)

(b)

Figure 1: N2 at T = 110 K. (a) Logarithm of the canonical partition function lnQ(N,V,T ) as
a function of the number of molecules N. The inset shows the variation of lnΘ(µ,V,T ) with the
chemical potential µ . (b) Probability distribution at coexistence for the vapor and the liquid phases.
The inset is a plot of the potential energy versus N.

To analyze further the results and obtain the remaining properties at coexistence, we calculate

the probability distribution for N using Eq. 5. We plot in Fig. 1(b) the variations of p(N) as a

function of N at coexistence. We observe two peaks of equal area, with the peak on the left of

the graph corresponding to the vapor phase and the peak on the right corresponding to the liquid.

Using the statistical mechanics formalism, we can compute the densities at coexistence from the

probability distribution as ρ = ∑N
N
V p(N) over each of the two peaks. At coexistence, the p(N)

distribution exhibits a minimum between the two peaks for a value of N = Nb. In line with prior

work,52 we compute the properties using the probability distribution p(N) for values of N up to
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Nb in the case of the vapor phase, and for values of N greater than Nb for the liquid phase. We

find that ρl = 0.607 g/cm3 and ρv = 0.071 g/cm3 from the EWL simulation results. These results

are found to be, once again, in very good agreement with experimental data77 (ρl = 0.626 g/cm3

and ρv = 0.063 g/cm3). We also plot (inset of Fig. 1(b)) the dependence of the potential energy

of the fluid as a function of N as collected during the EWL simulations. This is the last piece of

information necessary to calculate the entropy through Eq. 1.

Figure 2: (Left) Entropy for the liquid (low S) and the vapor (high S) along the phase boundary for
N2. (Right) ∆S = Sv− Sl as a function of temperature. EWL results are shown as squares, while
experimental data77 are plotted as filled circles and connected with a dotted line for eye guidance.

Gathering the EWL simulation results at coexistence for Θ(µ,V,T ), for the average numbers

of molecules and energy of each of the two phase, we can evaluate the entropy for the two coex-

isting phases. We plot the results against temperature in the left panel of Fig. 2 for the liquid and

the vapor branches for N2. We observe that, as temperature increases, the entropy of the liquid in-

creases, while the entropy for the vapor phase decreases. This is consistent with the expected trend

for the densities, namely that the density of the liquid at coexistence decreases as temperature in-

creases, leading to a greater entropy. Conversely, the density of the vapor increases along the phase
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boundary as temperature increases, leading to a lower entropy. The right panel of Fig. 2 shows the

difference in entropy between the two phases, together with a comparison with the experimen-

tal data.77 As a result of the combined variations in Sl and Sv, ∆S decreases as the temperature

increases. For instance, we find from the EWL simulation results a value of ∆S = 1.20 kJ/kg at

T = 110 K, in very good agreement with the experimental data77 (∆S = 1.25 kJ/kg). This validates

the statistical mechanical approach used in this work to calculate the entropy at coexistence, as well

as the accuracy of the EWL simulations and of the partition functions Q(N,V,T ) and Θ(µ,V,T ).

Figure 3: Vapor-liquid equilibria for SF6 (red), N2 (black), CO2 (blue) and H2O (orange). Exper-
imental data77,78 are shown as filled circles, while EWL simulation results are shown with open
squares.

We now turn to the results obtained for the phase envelope of the various molecular fluids

considered here. We report in Fig. 3 the results obtained from the EWL simulations, together with

the experimental data from the literature.77,78 For all systems, the simulated vapor-liquid equilibria

are in good agreement with the experimental data. This shows that the force fields used in this work

provide a very good account of the features of the vapor-liquid phase transition for this series of

molecular fluids.
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Figure 4: Dependence of ∆S as a function of temperature. Same legend as in Fig. 3.

The variation of ∆S as a function of temperature for all the molecules studied in this work is

plotted in Fig. 4. Since experimental data is available for all systems on ∆S (with the exception of

SF6), this allows us to test the ability of the force fields and of the EWL simulations to account

correctly for the entropy change as the system undergoes the phase transition process. The com-

parison between simulations and experiments is plotted in Fig. 4. This shows that our approach

provides accurate results for entropy along the phase boundary of molecular systems, and that it

accounts correctly for the various types of intermolecular interactions considered in this work.

To compare the behavior of the entropy along the phase boundary, we rescale the proper-

ties for each fluid by its critical properties and compare the scaled entropy-pressure and entropy-

temperature plots along the phase boundary. Thus, the next step consists in evaluating the critical

properties for all systems. To this end, we build on the standard scaling laws to determine the

thermodynamic locus for the critical point. Starting with the critical temperature, we extrapolate
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Tc through the following scaling law applied to the order parameter ρl−ρv

ρl−ρv = B(T −Tc)
β (9)

in which β = 0.325 is the 3D Ising exponent and B and Tc are two fitting parameters. To determine

the critical density ρc, we use the law of rectilinear diameters79

ρl +ρv

2
= ρc +A(T −Tc) (10)

in which A and ρc are two fitting parameters. The critical pressure Pc is obtained by fitting the

simulation results with the Antoine equation

lnP =C− D
T +E

(11)

in which C, D and E are fitting parameters, and finding the value taken by pressure at T = Tc.

Finally, we calculate the critical entropy by taking the average of the entropy for the two coexist-

ing phases at the highest temperature available. As we will see in the next paragraph, the highly

symmetric behavior of the entropy along the phase boundary is a sound basis for the evaluation

of Sc through a simple arithmetic average. We summarize in Table 1 the results for the critical

points, as well as the available experimental critical points, for the molecules studied in this work.

The estimates for the critical temperature, critical pressure and critical density from the simulation

results are in very good agreement with the experimental data for all systems, further confirming

that the force fields perform well for all molecules considered here and that EWL simulations are

an accurate approach for the determination of the critical properties. Here, the novel information

provided by EWL simulations is the estimate for the critical entropy Sc for these systems. Experi-

mental data for Sc is available for N2 and CO2 and provides a direct test. Indeed, we find that the

value of Sc obtained from EWL simulations is within 1.4% of the experiment for N2 and 2.2% in

the case of CO2, which shows that our approach yields accurate results for Sc.
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Figure 5: Scaled temperature-entropy plot along the phase boundary for the liquid (low entropy)
branch and the vapor (high entropy) branch. Same legend as in Fig. 3.
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Figure 6: Scaled pressure-entropy plot along the phase boundary for the liquid (low entropy)
branch and the vapor (high entropy) branch. Same legend as in Fig. 3.
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Table 1: Critical properties for the molecular fluids studied in this work. EWL denotes the
Expanded Wang-Landau simulation results, and Exp the experimental data.77,78

SF6 N2 CO2 H2O
Tc EWL (K) 323 123 306 641
Tc Exp (K) 319 126 304 647

Pc EWL (bar) 39.1 33.5 75.8 223.8
Pc Exp (bar) 38.8 34.0 73.8 220.6

ρc EWL (g/cm3) 0.75 0.31 0.47 0.31
ρc Exp (g/cm3) 0.74 0.31 0.47 0.32

Sc EWL (kJ/kg/K) 1.42 4.19 3.49 7.90
Sc Exp (kJ/kg/K) - 4.25 3.57 -

We gather in Fig. 5 the scaled temperature-entropy plots for all compounds considered here.

The graph shows two branches: one for the liquid, or low entropy branch, and one for the vapor, or

high entropy branch. The plot also shows that the two entropy branches close at the critical point of

coordinate (1,1) in the scaled plots. Very interestingly, despite the significant differences between

the types of intermolecular interaction that take place in these systems, the scaled plots exhibit

two remarkable features. First, they show a highly symmetric behavior, regardless of whether the

molecules bear a permanent dipole, quadrupole or a higher electrostatic moment. To better assess

this symmetry, we consider the equation (Sl+Sv)
2 = Sc +A(T − Tc) and fit the data to determine

the fitting parameter A. We obtain very small values for A, ranging from 10−3 to 10−4 for all

systems, and with p values ranging from 10−3 to 10−7. This provides numerical evidence for the

determination of Sc and for the symmetric behavior observed for the entropy along the binodal.

Second, the plots for the various compounds nearly fall exactly onto the same plot. This suggests

that a behavior, akin to what is observed for the law of corresponding states, can be observed

for these entropic plots of the phase coexistence curves. Focusing on the results obtained for

temperatures close enough to the critical point, we carry out fits for temperatures such that T/Tc >

0.75 for the liquid branch according to

T
Tc

= Al(1−
Sl

Sc
)υl +1 (12)
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and for the vapor branch
T
Tc

= Av(
Sv

Sc
−1)υv +1 (13)

in which Al , Av, υl and υv are fitting parameters. We gather the results in two groups. The first

group includes the experimental data, which only accounts for N2 and CO2 since these are the two

systems for which we have Sexp
c . The second group includes the EWL simulation results for all

systems and all types of interactions studied here. Allowing for υl and υv to take different values

and thus allowing for an asymmetric entropic behavior, we find that υv = 1.95 and υl = 1.61

lead to entropies within a root-mean square error (RMSE) of 0.009 with respect to the data for

the experimental group, and with a RMSE of 0.076 for the EWL group. The larger RMSE for

the EWL group is consistent with the much broader range of compounds, and of intermolecular

interaction types, accounted for in the second group. Constraining υv = υl (assuming a symmetric

behavior) leads to an exponent of 1.78. We add that with this exponent we obtain similar RMSEs

as when we allow for υv 6= υl , both for the experimental group (0.010) and for the EWL group

(0.081). This implies that this constraint does not impact significantly the accuracy of the fit, and

thus confirms the symmetric nature of the scaled temperature-entropy plot.

Turning now to the scaled pressure-entropy plot in Fig. 6, we find that the two branches for

the liquid and for the vapor also exhibit a symmetric in line with our findings for the scaled

temperature-entropy plots shown in Fig. 5. We therefore follow the same method as before to

analyze the results. More specifically, we focus on the results obtained as the system approaches

criticality, and here include data for P/Pc > 0.3, and perform the following fits for the two groups

P
Pc

= Cl(1− Sl
Sc
)ωl +1

P
Pc

= Cv(
Sv
Sc
−1)ωv +1

(14)

in which Cl , Cv, ωl and ωv are fitting parameters. Given the symmetric nature of the pressure-

entropy plot, we constrain ωl = ωv and find an optimal value of 1.24 for the exponent. This leads

to an overall RMSE of 0.087 for the experimental group and of 0.221 for the EWL group. We
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obtain again a larger RMSE for the EWL group, as expected from the much broader range of

compounds and of interaction types taken into account in this group.

Figure 7: Scaled entropy of vaporization-temperature plot along the phase boundary for the sys-
tems studied in this work. Same legend as in Fig. 3. (Inset) Experimental data for the internal
energy of vaporization vs. values predicted using Eq. 16 for CO2.

We now turn to the variation of the scaled entropy of vaporization as a function of the scaled

temperature (see Fig. 7). From Eqs. 12 and 13, we can obtain the following relation between the

scaled entropy of vaporization ∆S
Sc

= [Sv−Sl ]
Sc

and temperature as

∆S
Sc

= A
(

Tc−T
Tc

)ζ

(15)

with ζ = 1
υ

, where υ is the exponent obtained from the fits of the data to Eqs. 12 and 13. Taking

the value obtained previously (υ = 1.78), we check that Eq. 15 accurately models the temperature

dependence of ∆S, with, for instance, a RMSE of 0.008 for the experimental dataset for CO2. We

finally examine the variation of the internal energy of vaporization as a function of temperature.

Using the thermodynamic definition for S = P
T ρ

+ U
T −

µ

T for both phases at coexistence, we can

write the internal energy of vaporization ∆U =Uv−Ul as

∆U = AScT
(

Tc−T
Tc

)ζ

−P
(

1
ρv
− 1

ρl

)
(16)
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in which we have replaced ∆S with the fit provided in Eq. 15. As shown in the inset of Fig. 7 on the

example of CO2, this equation models well the behavior of ∆U along the coexistence curve with a

RMSE of less than 8 kJ/kg across the entire temperature range studied here.

Conclusions

In this work, we focus on the behavior of entropy along a phase boundary in a series of molecular

fluids. The molecular fluids considered here (SF6, N2, CO2 and H2O) encompass several levels of

interaction complexity, including systems solely relying on repulsion-dispersion, or short-range,

interactions and systems with permanent quadrupoles and dipoles, leading to long-range interac-

tions. This, in turn, allows us to assess the impact of the range and complexity of the intermolecular

interactions on a recently observed symmetric behavior of entropy for the vapor-liquid equilibria

of atomic fluids. To determine the entropy of molecular fluids along the phase boundary, we use

a statistical mechanical approach, based on the evaluation of the canonical partition function and

by the grand-canonical partition function through Expanded Wang-Landau simulations. Once the

partition functions have been obtained, all thermodynamic properties, including the notoriously

challenging determination of entropy, can be readily calculated. We test the EWL simulation re-

sults against the available experimental data for the entropy of the coexisting phases for N2 and

CO2. We obtain a very good agreement between simulations and experiments for the variations of

entropy along the phase coexistence, and for the change in entropy upon the phase change for N2,

CO2 and H2O. Our approach therefore allows us to determine the critical entropy Sc of molecular

fluids for apolar, quadrupolar and dipolar systems. Further analysis on scaled temperature-entropy

and pressure-entropy plots shows that, for all molecular systems, the phase transition occurs sym-

metrically from an entropic standpoint. We identify the values of the exponents according to which

the two branches of the phase diagram close to reach the critical point. Extensions of this analysis

to other types of systems, including, for instance, internal degrees of freedom and ionic fluids, will

be the topic of future work.
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