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Towards a Machine Learned Thermodynamics: Explo-
ration of Free Energy Landscapes in Molecular Fluids,
Biological Systems and for Gas Storage and Separa-
tion in Metal-Organic Frameworks
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In this Review, we examine how Machine Learning (ML) can build on Molecular Simulation (MS)
algorithms to advance tremendously our ability to predict the thermodynamic properties of a wide
range of systems. The key thermodynamic properties that govern the evolution of a system and
the outcome of a process include the entropy, the Helmholtz and the Gibbs free energy. However,
their determination through advanced molecular simulation algorithms has remained challenging,
since such methods are extremely computationally intensive. Combining MS with ML provides
a solution that overcomes such challenges and, in turn, accelerates discovery through the rapid
prediction of free energies. After presenting a brief overview of combined MS-ML protocols, we
review how these approaches allow for the accurate prediction of these thermodynamic functions
and, more broadly, of free energy landscapes for molecular and biological systems. We then
discuss extensions of this approach to systems relevant to energy and environmental applications,
i.e. gas storage and separation in nanoporous materials, such as Metal-Organic Frameworks and
Covalent Organic Frameworks. We finally show in the last part of the Review how ML models can
suggest new ways to explore free energy landscapes, identify novel pathways and provide new
insight into assembly processes.

1 Introduction
In recent years, Machine Learning (ML) has emerged as an ex-
tremely useful tool to explore and predict complex phenom-
ena1–3,3,4,4–16. Data-driven methods yield excellent results when
applied to the parametrization of new force fields and coarse-
grained models17–27 or to facilitate the exploration of the chemi-
cal space in inverse design methods28–30. ML methods have also
been applied in recent years to the reconstruction of complex
high-dimensional potential energy surfaces31–34 and to the pre-
diction of thermodynamic and kinetic properties35–37. This con-
siderably accelerates the determination of the key properties for
these systems, since their computation via conventional molecu-
lar simulation methods often requires an extensive sampling of
the phase space, i.e. performing simulations over very large time-
scales and length-scales that quickly become extremely computa-
tionally intensive. ML can also provide new insights into assem-
bly processes38–40 and yield predictive models for heterogeneous
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catalysis29,41. Artificial neural networks have also been shown to
provide access to free energy landscapes that are difficult to com-
pute. Examples include processes that involve transitions from
one state to another, a task for which rare event sampling and
enhanced sampling simulations are required42–46. Similarly, ML
models can be leveraged to predict adsorption isotherms, adsorp-
tion free energies, catalytic activities on nanoclusters surfaces 47

and as a way to accelerate considerably materials discovery. ML
algorithms and Ensemble Learning models yield new routes to
quickly screen potential candidates for application in gas storage
and separation48–50. ML predictions on gas adsorption capabili-
ties can also be carried out on the basis of crystal designs of ma-
terials such as Metal-Organic Frameworks (MOFs) and Covalent
Organic Frameworks (COFs) at operating conditions51–54. Such
predictions, in turn, also suggest new ways of tailoring novel ma-
terials with enhanced adsorption properties55–58.

In this Review, we focus on how ML can help us predict the
key thermodynamic properties that govern the evolution and out-
come of a system. This includes the Helmholtz free energy for
systems with a constant volume and temperature, the Gibbs free
energy when the temperature and pressure are held constant or
the entropy in the case of isolated systems. Many thermodynamic
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properties can be readily measured in experiments, or calculated
during the course of molecular simulation (MS) runs. This is the
case, e.g., of the volume, temperature, pressure, internal energy
or enthalpy of a system. On the other hand, thermodynamic func-
tions like the entropy and the Helmholtz or Gibbs free energy can-
not be evaluated directly, as they require information on all the
microstates available to the system. This has led to the invention
of novel MS algorithms that achieve an extensive sampling of all
possible configurations of the system. The next section of this Re-
view discusses several of these strategies, as these MS algorithms
provide access to free energies and free energy landscapes that
serve as the starting point for the construction of ML models. We
briefly discuss how MS data can be used to train ML models on
the example of a well-established and widely used deep learning
algorithm, know as Artificial Neural Networks (ANNs)1,59–63. We
then show how MS-ML approaches lead to accelerated predictions
of free energies and extend the discussion to other ML methods
for free energy predictions. Then, we examine several applica-
tions of ML models to molecular and biological systems, before
turning to applications in the field of gas storage and separation.
We finally discuss how MS-ML approaches can be leveraged to
unravel new pathways for assembly processes and provide new
insights into such processes.

2 Building ML Models for Thermodynamics

2.1 Datasets Generation

The first step consists in the generation of data on the free energy
for the system under study. This data will then be used to train
and teach the ML models and allow them to learn the thermody-
namics, and free energy landscape, of the system. To achieve the
evaluation of free energy, MS algorithms rely on determining free
energy differences along a thermodynamic path connecting the
system actually studied and a reference state for the system. Free
energy differences can be indeed obtained by thermodynamic in-
tegration64–68 along paths that connect, for instance, a liquid to
an ideal gas or a "real" crystal to an Einstein crystal69,70. For in-
stance, considering a crystal for a given number of atoms N, vol-
ume V and temperature T , the Helmholtz free energy difference
∆F is given by

∆F =
∫ 1

0

(
∂U
∂λ

)
dλ (1)

in which U denotes the potential energy of the system and λ

is a reaction coordinate along a path that connects the crystal
phase of unknown free energy (for λ = 0) to an Einstein crystal
of know free energy (for λ = 1). In practice, λ is a multiplying
factor which controls the switching on of harmonic springs that
tether the atoms to the lattice sites (λ = 1) and switching off these
springs (λ = 0).

Another class of methods, known as enhanced sampling simu-
lations, is required when the system has to overcome large free
energy barriers along this thermodynamic path. This is, e.g.,
the case when a molecular system undergoes a phase transition
through the nucleation of a new phase, or when a protein un-
dergoes a conformational change or folding event. Examples
of enhanced sampling methods include the umbrella sampling

method71–73 and metadynamics74–77. In such cases, an exter-
nal potential energy ϒ may be added to the system to bolster the
sampling of configurations of high free energy, which would not
be observed in the absence of the external potential. This poten-
tial is often taken to be a harmonic function of a reaction coor-
dinate φ that spans the thermodynamic path. Statistics for P(φ),
the probability of observing configurations with a given value of
φ , are collected over the course of MS runs. The free energy pro-
file is then obtained by subtracting the external potential energy
and by recognizing that the free energy along the profile can be
calculated from −kBT lnP(φ). For more details on the derivation
of the free energy using the umbrella sampling method, we refer
the readers to the excellent references by Torrie and Valleau71, as
well as recent work by Kästner78. More specifically, examining a
process for a given number of atoms N, pressure P and tempera-
ture T , the Gibbs free energy difference can be calculated along
a path spanned by the reaction coordinate φ . In this case, ∆G is
given by

∆G(φ) =−kBT lnP(φ)−ϒ(φ) (2)

In this equation, P(φ) is collected during the umbrella sampling
simulation and the extra potential energy ϒ(φ) is removed to yield
the free energy for the system actually studied, i.e. without the
extra potential energy ϒ(φ). This approach has been applied ex-
tensively to calculate free energy profiles associated with rare
events, including the formation of crystal nuclei,45,79–88 critical
droplets and bubbles in supersaturated phases89–92 and under
nanoconfinement93–95. Such approaches can also be combined
with other methods to determine the rate of, among others, nu-
cleation events96,97. Rare events can also be studied by focusing
on the transition paths that the system takes, as it travels across
the free energy landscape. Methods like the transition path sam-
pling98,99 or the transition interface sampling100,101 approaches,
generate an ensemble of the transition paths connecting the two
states, or free energy minima, and are especially useful for the
determination of rate constants. Alternatively, adiabatic free en-
ergy dynamics102,103 can also be employed to generate free en-
ergy profiles for molecular and biological systems. Finally, free
energy theorems104–106 based on nonequilibrium statistical me-
chanics can also be leveraged to determine free energy differences
through

∆F =
− ln < exp(−βW )>

β
(3)

in which β = 1/(kBT ), W is the amount of work done on the sys-
tem to, e.g., pull a protein from one conformation to another and
< ... > indicates an average carried out over many nonequilib-
rium trajectories connecting the two conformations. In such a
case, ∆F gives access to the free energy differences between two
conformations, or equilibrium states.

Free energy can also be determined through another broad
class of simulation approaches known as flat histogram meth-
ods107–113. Such approaches rely on an extensive sampling of all
possible configurations of the system, with the aim of determining
the density of states g(E) of a given system. One such approach,
the Wang-Landau sampling method107,114–116, was initially im-
plemented in the microcanonical (N,V,E) ensemble and consists
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in performing a random walk in energy space with a probabil-
ity proportional to the reciprocal of the density of states 1/g(E).
At the start of the simulation, g(E) is unknown. Its value is ini-
tially set to g(E) = 1 for all E, with g(E) dynamically updated
during the simulations until a flat histogram for the number of
visits of each E interval is obtained. This method thus yields g(E)
up to a multiplicative constant, It can also be extended to various
ensembles including the canonical (N,V,T ) ensemble109 or the
isothermal-isobaric (N,P,T ) ensemble110,111,117–120 to determine
the corresponding partition functions up to a multiplicative fac-
tor. In some cases, the multiplicative factor can be determined,
and exact values for the partition functions, and thus for the free
energy, can be obtained. This has been achieved with the Ex-
panded Wang-Landau (EWL) simulation method112,121–124 that
performs an extensive sampling of the grand-canonical (µ,V,T )
ensemble125–128. In this case, the algorithm yields Θ(µ,V,T ), the
partition function for the grand-canonical ensemble, as well as
the underlying canonical partition function Q(N,V,T ), as given
by

Θ(µ,V,T ) =
N

∑
i=0

Q(N,V,T )exp(µN/kBT ) (4)

in which µ is the chemical potential. Here the multiplicative con-
stant for the partition function is readily obtained by recognizing
that Q(N = 0,V,T ) = 1. Once the partition function is known, the
free energy can be obtained through statistical mechanics rela-
tions such as

F(N,V,T ) =−kBT lnQ(N,V,T ) (5)

EWL methods apply to all processes where the number of
molecules, or composition of the system, is allowed to fluctu-
ate, for instance in mixtures121 and in the study of adsorp-
tion phenomena121 for gas storage129–131 and separation appli-
cations132. Other flat histogram techniques include the Tran-
sition Matrix Monte Carlo (TMMC) algorithm, which has been
recently applied to the determination of adsorption isotherms
in nanoporous materials.133,134 Furthermore, recent work has
shown how the output of TMMC simulations could be used to
extrapolate the thermodynamic properties through Taylor expan-
sions135.

2.2 Model Training and Validation

The second step consists in using the simulation data to train a
ML model. ANNs have emerged as highly versatile deep learning
algorithms and are popular choices for ML models1,59–63. Thus,
to illustrate how ML models can be built to interpolate between,
and extrapolate beyond, the conditions covered by the simulation
data, we consider an ANN as outlined in the schematic blueprint
of Fig. 1 that summarizes how ML models can be built from the
simulation data. Popular approaches rely on the training of neural
networks with a feed-forward structure and use an optimization
algorithm back-propagation error calculation136 to optimize the
weights, or contributions made by each neuron, to the overall re-
sult. As an example, we consider an ANN with 4 layers. The first
layer is an input layer, with a series of input neurons that corre-
spond to the key parameters or descriptors for the system. There

can be as many input neurons Gi (i = 1,2, ...) as desired. These
can be thermodynamic variables, such as T or P, or geometric pa-
rameters, such as, for instance, dihedral angles in the case of free
energy landscapes for protein folding. The next two layers are
known as hidden layers, and contain variable numbers of neurons
h1 and h2. The last layer is termed the output layer, with output
neurons corresponding to the properties the ML model aims to
predict including, e.g., the free energy, partition function137,138

or any other property of interest. If one of the output neurons is
for the ML-predicted free energy FML, the ML model provides the
following analytic equation

FML = f4[b3+
h2

∑
l=1

W (3,4, l,1) f3(b2+
h1

∑
j=1

W (2,3, j, l) f2[(b1+
3

∑
i=1

W (1,2, i, j)Gi])]

(6)
Here W denotes the weight matrix, f1, f2, f3 and f4 are activa-
tion functions and bi are bias nodes that act as adjustable offsets.
The weights are initially chosen as random numbers and popular
choices for the activation functions include the sigmoid, tanh or
linear functions.

The ANN is trained by minimizing an error function that quan-
tifies the difference between the free energy from the simulation
data Fi and the free energy predicted by the ML model FML

i

∆ =
1

Nd

Nd

∑
i=1

[
(Fi −FML

i )2
]

(7)

where Nd is the number of data points included in the training
dataset.

Weights can be adjusted after each forward pass, using an op-
timization algorithm during the backward pass. The process is
then repeated iteratively until additional iterations do not lead to
a change in the accuracy of the predictions. The back-propagation
algorithm is often used to optimize all weights once per iteration,
leading to the following equation

W n+1(i, j,k, l) =W n(i, j,k, l)−λ
∂∆

∂W n(i, j,k, l)
(8)

in which W n and W n+1 are the weights after n and n+1 iterations,
respectively. The partial derivatives of the error function ∆ are
calculated analytically, and the calculations are repeated until a
convergence criterion is satisfied. Possible convergence criteria
are based either on the rate of convergence, i.e. by how much
∆ improves after each iteration, or on set limits for the value of
∆. The last adjustable parameter λ controls how fast the ANN
actually learns, and is thus referred to as a learning rate.

The simulation data is generally split between a training set
for the optimization of the ANN weights and a hold-out set for
validation purposes. It is often useful to carry out calculations of
root-mean square errors for both the training and hold-out sets.
Both RMSEs are helpful in determining the accuracy of the ML
model, but also to assess if any underfitting or overfitting of the
simulation data takes place. For instance, obtaining a small RMSE
for the ML model with respect to the training dataset and a large
RMSE with respect to the hold-out/validation dataset can be in-
dicative of an overfit. On the other hand, having RMSEs that are

Journal Name, [year], [vol.],1–14 | 3



Fig. 1 Schematic blueprint for a combined MS-ML protocol. Molecular simulations (first panel on the left) can be carried out to generate free energy
profiles (top of second panel) or partition functions (bottom of second panel). The simulation data is then used to train a ML model (here the ANN of
the third panel) and lead to the prediction of free energies for conditions outside of those covered by the simulation data (here a 3D plot of F(φ1,φ2) in
the (φ1,φ2) plane) and of free energy minima as shown by the bright regions on the plot (fourth panel on the right).
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small and of the same order for both datasets shows that the ML
model performs very well.

The size of the datasets used to train and validate the ML model
depends on several factors, such as, e.g., the complexity of the
data to be modeled and the type, and architecture, of the ML
model. Preliminary tests are often performed to assess how the
performance of a ML model scales with the dataset size. In prac-
tice, this can be achieved through the use of a learning curve,
or training curve, that captures how the performance of the ML
model, measured through a training and a validation score, im-
proves as the size of the training dataset is increased. This tool
is especially useful in determining if the ML model gives rise to
any underfitting or overfitting of the data, or if the ML model per-
forms very well for the task at hand. Typical sizes for datasets
used in the training of ML models for the prediction of free en-
ergy surfaces include of the order of 104 − 105 data points139. A
set of 104 data points is typical for datasets for partition functions
used in the training of ML models137.

The preparation of the datasets is also key to the optimization
of the ML model. In order to reduce bias, it may be advanta-
geous to adopt an ensemble learning approach, in which the ML
predictions are averaged over several ANNs with different W ma-
trices50,140. The k members of an ensemble of ANNs can be ob-
tained through several strategies. One such strategy is known as
k-fold cross-validation. In this case, a collection of ANNs with
exactly the same architecture is trained on randomized subsets
of the training dataset, and the k models are then used as the
members of an ensemble141. Another strategy is known as the
bootstrap aggregation (bagging)142 approach with replacement.
The idea there is to generate k training subsets with different sam-
ple densities, with the aim of emphasizing the weight of different
parts of the dataset in the optimzation process. Alternatively, a di-
versity approach can be adopted by using different ANN architec-
tures and varying the number of neurons in the hidden layers143.

Several other ML methods can also be applied to build and
predict free energy surfaces from the simulation data. Such
methods include Bayesian inference144–150, Gaussian progress
regression151, kernel ridge regression, support vector machines,
weighted neighbor schemes139, dimensionality reduction as well
as transfer learning and reinforcement learning152. We finally
add that ML models perform extremely well when they are used
to make predictions for conditions that lie between those covered
in the training datasets. Extrapolations beyond the range of con-
ditions included in the datasets can often be carried out reliably,
provided that the systems exhibit similar properties, e.g. simi-
lar phases for the predictions of fluid properties50,137. However,
as a general rule, extrapolations using a ML model should be car-
ried out with caution, especially if the system undergoes dramatic
changes (e.g. conformational changes for a biomolecule) that are
outside the range of possibilities considered in the training set.
In that case, direct extrapolations may yield to inaccurate predic-
tions.

3 ML-Predictions of Free Energy Land-
scapes for Molecular and Biological Sys-
tems

The introduction of computer simulations in science has advanced
tremendously our understanding of the mechanisms that take
place at the microscopic level in molecular and biological sys-
tems. The ability of simulations to model increasingly complex
systems and to bridge between different length scales and time
scales via multiscale methods has been instrumental to the un-
raveling of many chemical processes153–155. As simulations have
taken into account finer and finer details of the intermolecular in-
teractions, leading, in turn, to increasingly accurate results, CPU
and GPU times have become more and more significant. In order
to overcome such challenges, an increasing number of researchers
implement ML approaches to fast-track the simulations156 and
accelerate chemical discovery157. ML methods have been used to
screen materials, providing excellent starting points for the com-
putational optimization of catalysts and for the discovery of new
trends and behavior158,159. They have also been employed to
predict the properties of molecules and crystals, with the devel-
opment, e.g., of novel ML models based on graph networks to
obtain the formation energies, band gaps and elastic moduli of
crystals with an accuracy comparable to density functional theory
when very large dataset are used for training purposes160.

ML methods can also be leveraged to predict the free en-
ergy of molecular and biological systems. This can be achieved,
for instance, by providing a way to extrapolate the simulation
data beyond the range of conditions covered by the simula-
tions44,137,138,148. Such protocols have been applied to molec-
ular, polymeric and biological systems, which present stringent
tests for the methods as the energy landscapes are often rugged.
A variety of methods have been developed to tackle such systems.
For instance, nonlinear machine techniques have been used to
recover single molecule free energy landscapes from molecular
simulations42. In this case, the diffusion map nonlinear machine
learning technique is used to understand the relation between
changes in external conditions, or in molecular chemistry, and the
free energy landscape, with applications to the n-eicosane chain
and to a family of polyglutamate-derivative homopeptides, In the
latter case, the helical stability-side chain length interdependence
and the critical side chain length for the helix-coil transition were
identified.

Artificial neural networks can also be employed to learn free
energy landscapes through the use of adaptive biasing poten-
tials and of Bayesian regularization to increasing the robust-
ness of the approach to hyperparameters and overfitting148. In
this case, Bayesian regularization penalizes network weights and
auto-regulates the number of effective parameters in the net-
work. Alternatively, ANNs can be used to generate the free energy
landscapes for the conformational equilibria in complex molec-
ular systems44. Starting from free energy data obtained from
enhanced-sampling molecular simulations, ANNs are trained to
represent the free energy surfaces of the alanine di- and tripep-
tides in the gas phase. Another approach consists in using ANNs
to predict the partition function of molecular fluids137 and, thus,
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to gain access to all properties of the system, including the free
energy as outlined in the previous section. Using simulation data
for the partition functions obtained from Expanded Wang-Landau
simulations, ANNs are trained to predict the free energy and the
phase behavior of molecules over a wide range of conditions. In
the case of higher-dimensional surfaces, such as in the case of
multicomponent mixtures138, the determination of free energy
and of the locus for phase transitions can be greatly accelerated
by the combined use of ML and MS methods, with combined ap-
proaches only requiring about 20% of the computational cost in-
volved in a conventional flat-histogram MS approach to elucidate
fully the free energy landscape and phase behavior. In recent
work, alternative strategies, including kernel ridge regression,
support vector machines and weighted neighbor schemes have
been used to learn free energy landscapes and generate accurate
ensemble averages for the observable properties of oligopeptides
in the gas phase, as well as in an aqueous solution139.

In addition to providing predictions for the free energy, ML
models can also be used to gain access to the kinetics of pro-
cesses161. As the system under study becomes more complex,
its underlying kinetic properties become increasingly challeng-
ing to determine and interpret. This is most particularly the case
of proteins, and the implementation of dimensionality reduction,
transfer learning and reinforcement learning is starting to show
promising results152. ML models can also be used to compute
the solvation free energy. Approaches using a global optimization
procedure have been developed to identify low-energy molecular
clusters for different numbers of explicit solvent molecules162,
and sketch maps and nonlinear dimensionality reduction algo-
rithms can be leveraged to quantify similarities between solute
environments in microsolvated clusters. Hydration free energies
have also been determined by combining alchemical free energy
calculations with ML, leading to the computation of highly ac-
curate absolute hydration free energies163. Such approaches
that combine free energy methods with machine learning show
great promise, most particularly for the study of systems of in-
creasing complexity, including the determination of the free en-
ergy of protein-ligand binding for drug design and drug develop-
ment164–167, and in the membrane transport cycle168.

4 ML Thermodynamics of Adsorption
The development of ML models for adsorption processes has
drawn considerable interest in recent years. Several types of ap-
plications can indeed be explored through such models. This in-
cludes catalysis, with the determination of adsorption energies
of molecules such as hydrogen47 on metal surfaces and metal
nanoalloys through, e.g., the combination of ML with Density
Functional Theory (DFT) methods56,169–178. ML predictions for
the free energy of adsorbed phases, and the corresponding surface
phase diagram over a wide range of coverages and adsorbates,
has been carried out with a Gaussian process regression model
on IrO2 and MoS2 surfaces for applications in electrocatalysis179.

Another broad class of applications deals with the study
of porous nanomaterials, such as Metal-Organic Frameworks
(MOFs) and Covalent Organic Frameworks (COFs)58,180. These
materials are candidates for gas storage and separation in energy-

related processes48 and in environmental processes. Examples of
systems for such applications include, among others, the storage
of methane181 or hydrogen for energy applications, as well as the
sequestration182 of CO2 or of Polycyclic Aromatic Hydrocarbons
(PAHs)183 for environmental applications. In these systems, a gas
phase is in thermodynamic equilibrium with the gas adsorbed in-
side the COF or MOF, which means that the two phases share the
same molar Gibbs free energy or chemical potential (as well as the
same temperature). In this case, the relation between free energy
and the properties of the adsorbed phase can be obtained through
Grand Canonical Monte Carlo (GCMC) simulations. These simu-
lations provide access to, for instance, the amount of molecules
adsorbed in the framework as a function of the chemical poten-
tial, or to the selectivity towards a specific molecule in the case of
the adsorption of mixtures.

ML can be combined with GCMC simulations to screen
nanoporous materials and identify the best candidates to reach
volumetric targets for practical applications. For instance, hydro-
gen storage is a major challenge for hydrogen use in contempo-
rary applications as a fuel for automobiles and vehicular appli-
cations. Here, the idea is to have sufficiently densified hydrogen
at a moderate pressure to power vehicles. Nanoporous materi-
als such as, e.g., MOFs and COFs are novel materials that effec-
tively alleviate the issue of storage pressure184–188. Recent stud-
ies have started to leverage ML methods to model and predict
adsorption in such systems. The combined use of Grand canoni-
cal Monte Carlo simulations and of neural networks53 has led to
the proposal of new crystal designs, and their performance has
been assessed by determining hydrogen storage capabilities for
various pressure swing conditions51. Gaussian Process Regres-
sion has also been employed to predict hydrogen adsorption in
nanoporous materials using the CoRE-MOF database.189. Fur-
thermore, strategies combining Monte Carlo approaches with ML
methods have yielded very promising results, in their efficiency in
screening materials as candidates for the storage of several gases,
including methane190, carbon dioxide, hydrogen and hydrogen
sulfide191.

Another application of ML to adsorption phenomena is the ’in
silico’ discovery of novel materials for carbon capture. Genetic
algorithms have been employed to compute interactions between
adsorbates like CO2 and the framework, and to derive accurate
force field parameters for molecular simulations192. Moreover,
deep learning has allowed for the improved assessment of the
importance of textural properties in porous carbons for CO2 ad-
sorption. In this case, ANNs are trained as a generative model to
shed light on this interdependence and, as a result, to guide the
development of the next generation of porous carbon materials57

ML can also be leveraged to tackle the adsorption of multi-
component gas mixtures. In this case, having multiple compo-
nents in the adsorbate increases the dimension of the parameter
space that needs to be studied. This is indeed necessary to quan-
tify the dependence of the selectivity towards the adsorption of a
given component, but also to determine how the thermodynamic
properties of adsorption vary as a function of the mole fraction of
each of the mixture components. Deep neural network have re-
cently been employed to study binary sorption equilibria. In some
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Fig. 2 Example of a combined MS-ML approach for the determination of the properties of adsorption for gas storage and separations in MOFs
and COFs. (a) Example of a configuration for a system of H2 adsorbed in COF-108, (b) Logarithm of the canonical partition function Q(N,V,T ) for
CO2 adsorbed in IRMOF-1, (c) Selectivity derived from the canonical partition functions Q(NCH4 ,NC2H6 ,V,T ) for gas separation of methane-ethane
mixtures with a mole fraction in methane yM = 0.5, and (d) Immersion free energy for a methane-ethane mixture predicted by an ANN (adapted from
refs. 50,129,130,132).
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cases, ML methods are even used as a screening method before
extensive molecular simulations are run. In recent work, a multi-
layer perceptron was trained to model the adsorption of alchem-
ical species in MOFs. Alchemical species are represented by vari-
ables derived from the force field parameters. MOFs are also de-
scribed by simple descriptors, such as their geometric properties
and chemical moieties. This protocol allowed for the prediction of
adsorption for systems relevant to chemical separations, includ-
ing Ar, Kr, Xe, CH4, C2H6 and N2 in MOFs54. Another approach
consists in carrying out Gibbs Ensemble Monte Carlo simulations
to generate simulation data on desorptive drying processes in zeo-
lites193. The results are then used to train a multi-task deep ANN
to predict equilibrium loadings as a function of thermodynamic
state variables for (1,4-butanediol or 1,5-pentanediol)/water and
1,5-pentanediol/ethanol mixtures in an all-silica MFI zeolite and
for the 1,5-pentanediol/water mixture in an all-silica LTA zeolite,
leading to the rapid optimization of the desorption conditions.

Ensemble learning has also been shown to provide a rapid as-
sessment of the performance of nanoporous materials for sepa-
ration purposes. In this case, the output of several ML models,
e.g. the numerical values given by the output neurons of ANNs,
are averaged to remove bias, either in the choice of the data used
for the training dataset or, for instance, in the choice of a spe-
cific ANN architecture. As discussed in Section 2, techniques that
randomize the choice of the simulation data used to train the ML
model, such as bagging and k-fold cross-validation, and diversity
approaches, that average the results obtained with different ANN
architectures, can greatly improve the accuracy and transferabil-
ity of the results. Recent results have show that ensemble learn-
ing the partition functions of fluid confined in MOFs and COFs
(see Fig. 2) leads to accurate predictions for the selectivity and
for the free energy of immersion of the gas in the MOF/COF for
H2 storage, CO2 storage. The prediction of the free energy of
immersion is especially relevant to practical applications, since it
captures the free energy cost of regeneration of the adsorbent for
practical application. This approach was also applied to gas sepa-
ration on the specific example of methane-ethane gas separation
in COFs. More specifically, it allowed for the rapid screening of
a series of COFs through the ML prediction of their relative per-
formance towards the selective adsorption of one of the mixture
components, and the efficient evaluation of the optimal operating
conditions50.

ML has emerged in recent years as an extremely powerful
tool to screen a wide range of nanoporous materials for ap-
plications in gas storage and separation. Inspired by the de-
velopment of ML-based materials research206, the ML-assisted
high-throughput computational screening of MOFs and COFs is
undergoing tremendous development202,207. Examples studied
through such large-scale screening methods (see Table 1) include
the examination of databases of tens of thousands of MOFs for
methane and carbon dioxide storage198, the evaluation of thou-
sands of MOFs membranes for the separation of binary gas mix-
tures205 and the ML-based selection of MOFs arrays for methane
sensing applications208.

Table 1 Examples of ML-assisted high-throughput computational
screening of nanoporous materials for specific applications. hMOFs
denote databases of hypothetical MOFs structures 194, eMOFs refer
to databases of experimental MOFs structures 195 and CoRE-MOFMs
refers to the CoRE database 196 for MOFs membrane. Structure codes
correspond to the CSD database 195.

System Structure Database Notes
CH4 storage 48 130,938 hMOFs Training: 10,433

Testing: 119,965
CH4 storage 197 137,953 hMOFs Training: 10,000

Testing: 127,953
CH4 storage 198 137,953 hMOFs
CO2 storage 199 324,500 hMOFs Training: 32,450

Testing: 292,050
CO2 storage 200 55,163hMOFS
CO2 storage 201 400 hMOFs
CO2 storage 202 100 eMOFs
H2 storage 202 100 eMOFs

CH4/CO2 separation 203 324,500hMOFs Training: 32,450
Testing: 292,050

CO2/N2 separation 204 137,953 hMOF database
CO2/CH4 separation 205 6,013 CoRE-MOFMs Top two structures

XUZDUS &
XEJXER

H2/CH4 separation 205 6,013 CoRE-MOFMs Top candidates
TESGUU &

ZIJOF
O2/N2 separation 205 6,013 CoRE-MOFMs Top candidates

GETXAG &
GOLQII

CO2/CH4 separation 205 6,013 CoRE-MOFMs Top candidates
YEKWOC &
BAHGUN04

5 ML-Guided Exploration of Free Energy
Landscapes

As discussed in previous sections, ML models can be trained on
datasets generated by molecular simulations, as a way to interpo-
late and/or extrapolate the data for conditions that are not cov-
ered by the simulations. This leads to ML predictions that have an
accuracy close to the simulations for only a fraction of the com-
putational costs, and thus as a way to accelerate the discovery
of new materials for a wide range of applications, including high
entropy alloys209, novel glass-forming metallic systems210, ma-
terials with improved catalytic performance158,159, and complex
tasks, such as the prediction of activation energies14,211 or the
elucidation of the polymorph selection process13,212. Operating
conditions for a given system can be fine-tuned almost instantly
through ML models, which provides another path towards an ac-
celeration of purely MS schemes.

Very interestingly, recent work has shown that ML methods
can go beyond such interpolation/extrapolation tasks and enable
the exploration of high-dimensional free energy landscapes213,
defined by cost functions associated with machine learning. In
another example, free energy landscapes, associated with com-
plex assembly processes, can be explored using enhanced sam-
pling simulations for which the reaction coordinate is estimated
from a combined MS-ML approach45. For instance, crystal nu-
cleation has been simulated with umbrella sampling MS along an
entropic pathway, i.e. with an entropic reaction coordinate esti-
mated on-the-fly from a machine learned Helmholtz free energy
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and from the current MS internal energy for each step of the en-
hanced sampling simulations. This combined approach allows for
the exploration of novel pathways spanned by a ML-guided re-
action coordinate, and, in turn, can shed light on the pathways
underlying a wide range of activated processes and rare events.

In recent years, combined MS-ML approaches156 have been
developed using either ANNs, recurrent neural networks214–217,
convolutional neural networks218–222 or autoencoders223–227. In
particular, combinations of deep learning methods with molec-
ular simulations have started to demonstrate great potential in
understanding the role played by the collective variables (CVs)
that underlie the evolution of a molecular system228. Such com-
bined approaches can also yield accurate low-dimensional system
representations, along which enhanced sampling simulations can
be carried out. These methods can be extended to biological sys-
tems, as shown in recent work on oligopeptides using different
ML strategies such as neural networks, kernel ridge regression,
support vector machines and weighted neighbor schemes139. In
particular, the use of autoencoders to learn nonlinear CVs, that
are differentiable functions of atomic coordinates, and their use
in enhanced sampling simulations can greatly accelerate the ex-
ploration of folding free energy landscapes in macromolecular
and biological systems225. New advances in the selection of ap-
propriate CVs for enhanced sampling simulations have also been
recently implemented with the use of supervised machine learn-
ing229. Decision functions in supervised machine learning meth-
ods can be used as initial CVs for enhanced sampling, and the
distance to the support vector machines-decision hyperplane, the
output probability estimates from logistic regression or the out-
puts from neural network classifiers can be leveraged to sample
structural changes. Another approach consists in combining both
ML and variational inference230 to predict and discover collec-
tive variables using deep Bayesian models, with applications to
polypeptides231 and to chemical reactions232.

The sampling of rugged free energy landscapes has been the fo-
cus of considerable attention in recent years. For instance, adap-
tive enhanced sampling by force-biasing using neural networks
(FUNN) has been shown to perform especially well for systems
as diverse as simple particles, proteins and coarse-grained poly-
mer chains233. In studies of phase transformations, path collec-
tive variables can be defined in a space spanned by global clas-
sifiers derived from local structural units, identified via a neural-
network-based classification scheme234. Another approach relies
on an analogy with reinforcement learning to explore the con-
figurational space, i.e. carrying out a reinforced dynamics for
enhanced sampling. This, in turn, allows to capture accurately
the structural changes undergone by proteins in explicit solvent
models235. The combination of statistical mechanics with gener-
ative learning can also result in the formulation of a competing
game between sampling engine and virtual discriminator. This
approach has been applied to many-body Hamiltonian systems,
with a targeted adversarial learning optimized sampling (TALOS)
driving the system to a user-defined target distribution in order
to bolster the sampling of rare events236.

Another emerging idea consists in using coarse-grained free en-
ergy landscapes, with the aim of reducing the time scales neces-

sary to accurately sample the conformational topology for com-
plex chemical and biological systems. In particular, the back-
mapping based sampling method237 back-maps coarse-grained
free energy landscapes to create starting points, with a resolu-
tion at the atomic level, for molecular simulations. Applications
to oligopeptides have demonstrated a gain in efficiency of an or-
der of magnitude for sampling transitions in heptamers, when
compared with purely MS approaches. Similarly, coarse-grained
methods can also be used for the conformational sampling of pro-
teins and peptide chains, using a neural network to determine
free energy surfaces from MS, and then leveraging the machine
learned free energy surfaces to carry out simulations with a reso-
lution at the coarse-grained level26. Nonlinear manifold learning
techniques can also be employed to accelerate the exploration of
free energy surfaces, by biasing the MD simulator towards un-
explored regions using the smoothness of the geometry of the
surface238.

ML methods have also become increasingly instrumental in
guiding free energy simulations when studying solvation envi-
ronments162,239 or protein folding152,156. Such approaches have
also been applied to the determination of free energy landscapes
for protein-ligand unbinding via metadynamics240. Metadynam-
ics can also be combined with a Hamiltonian replica-exchange al-
gorithm (Sampling Water Interfaces through Scaled Hamiltonians
or SWISH) and a machine learned-pathlike variable to compute
the binding free energy for a series of chemically diverse ligands
with a complex target (human soluble epoxide hydrolase) and to
shed light on the role of water in the binding process241. In re-
cent work, combinations of supervised and unsupervised machine
learning techniques have been applied to observables extracted
from MS, with the aim of better understanding protein-ligand
binding in the context of drug resistance in HIV-1 protease166.
Reinforcement learning adaptive sampling strategies, like the RE-
inforcement learning based Adaptive samPling (REAP) method,
provide on-the-fly estimates for the significance of collective vari-
ables for the exploration of the folding free energy landscape of
proteins, and promotes the exploration of the landscape along
key degrees of freedom242 . Another deep learning approach
to study ligand-protein systems is the Reweighted Autoencoded
Variational Bayes for Enhanced sampling (RAVE)243. Recent ex-
tensions have allowed learning of reaction coordinate expressed
as a linear piecewise function, leading to an efficient protocol for
the simulation of slow unbinding processes in practical ligand-
protein complexes in an automated manner.

6 Conclusions
Data-driven methods have led to recent advances in the discov-
ery of novel materials. Furthermore, combinations of machine
learning with molecular simulation algorithms has provided a
way to accelerate conventional computational methods, and as
such, have significantly increased the number, the range and the
complexity of systems that can be studied and screened as can-
didates for specific applications. This Review first focuses on the
determination of free energy via combined ML-MS approaches
and examines examples of systems encompassing molecular flu-
ids, biological systems, as well as fluid confined in nanoporous
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materials known as MOFs and COFs. Free energy simulations are
often very computationally intensive and generally require the
implementation of enhanced sampling methods for an accurate
sampling of high-dimensional free energy surfaces. We thus dis-
cuss recent approaches to compute the free energy and how ML
models can be trained using simulation data as training datasets.
As illustrated by a series of examples presented here, the idea of
such combined MS-ML approaches is to predict as accurately and
as efficiently as possible the free energy, with the aim e.g. of shed-
ding light on phase transition processes in molecular systems or
on conformational changes and folding in biological systems. For
nanoconfined systems, the goal is to screen as rapidly as possible
materials as candidates for gas storage and gas separation appli-
cations. Given the huge number of MOFs and COFs structures
that can potentially be synthesized, a purely MS computational
screening of all possible structures remains a daunting task. In
that case, ML-based screening methods244 can narrow down the
field of nanoporous materials that are candidates for a specific
application, before MS methods58,245, or, alternatively, combined
MS-ML approaches246, are employed to test and characterize a
smaller set of materials. Combined MS-ML approaches can also
considerably accelerate, for instance, the computationally inten-
sive search of the parameter space for the adsorption of multicom-
ponent mixtures, or the determination of the free energy of im-
mersion that quantifies the cost of regenerating the adsorbent for
practical applications. The last part of the Review examines sev-
eral new exciting trends in combined MS-ML approaches. Such
developments include the ML-guided exploration of free energy
landscapes and the ML-aided identification of the crucial param-
eters and collective variables that underlie the occurrence of rare
events in molecular and biological systems and the transitions
they undergo between states. These new approaches are espe-
cially promising, as they allow for the exploration of as yet unex-
plored pathways for assembly, chemical reactions or folding pro-
cesses, and will likely provide new insights in these phenomena.
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