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Abstract—Monitoring environmental variables in lower layers
of the atmosphere is an important activity to measure changes
that result from natural events, and human interventions. Vol-
cano eruptions, commercial aviation, and the massive spread of
pesticides using light aircraft are just some examples of low layer
atmosphere polluters. Twice a day, every day of the year, weather
balloons are released simultaneously from almost 900 locations
worldwide to monitor environmental variables. The flight of
these synthetic rubber balloons last for around 2 hours, then
they become pollution too. Recent advances in small unmanned
aerial vehicles (UAVs) with built in sensors, and their emerging
role in business supply chain make UAVs ideal participants for
environmental monitoring. In this paper, we present an incentive
mechanism for UAV-Crowdsensing. The core of the proposed
mechanism consists of a recurrent reverse action and a recruit-
ment model. By these two components, the system encourages
UAVs sensing from locations that maximize volume coverage
within a given budget. Through extensive simulations, we evaluate
the performance of the proposed incentive mechanism.

Index Terms—Crowdsensing, UAV, Coverage, Drones

I. INTRODUCTION

Swarm Robotics (SR) is part of the autonomous robotics
area, where huge groups of robots work collaboratively trying
to accomplish a specific task. The robot group is made up of
a large number of agents or robots which are simple machines
with basic behaviors and deploying simple skills, although
cooperation among these agents accomplishes complex tasks
working in a decentralized manner.

SR plays an important role in the development of collective
artificial intelligence. SR promises to be efficient in several
application areas such as search and rescue in disaster zones
[3], [10], supply chain management, precision agriculture,
remote sensing, surveillance, last-mile package delivery, and
an ample number of military applications among others.

In recent years the development of unmanned aerial vehi-
cles (UAV) has increased exponentially and this development
begins to make real the idea of having drone-based cooperative
robotics physical systems. With a group of aerial robots work-
ing cooperatively similar to a swarm, most of the expected
tasks can be developed for the cooperative robotics systems
previously mentioned and, at the same time, develop remote
sensing missions, specifically for this case UAV-Crowdsensing

Juan M. Calderon
Bethun-Cookman University
Daytona Beach, FL, USA
calderonj @cookman.edu
Universidad Santo Tomds
Bogota, Colombia
juancalderon @usantotomas.edu.co

given the great number of agents that would make up the
Swarm.

The specific example that we treat for UAV-Crowdsensing is
the case where you can perform monitoring of environmental
variables that can give information on important changes in the
lower layer of the atmosphere, such changes can be the product
of natural events or human intervention. Changes caused by
forest fires, volcanic eruptions, excessive use of pesticides
through the use of aircraft are some of the examples that make
the sensing of different atmospheric variables necessary. The
great advantage of UAV-Swarm is that they can carry out tasks
of UAV-Crowdsensing while performing search and rescue
tasks in cases of natural disasters or forest fires, surveillance
or transport missions and delivery of goods. This last task has
taken great importance in recent years thanks to the strong
support that is receiving from large retail corporation

II. LITERATURE REVIEW

In recent years the development of UAVs has increased
exponentially and with them the approach of solutions based
on the use of this type of autonomous robot. At the same time
and with the evolution of wireless communication networks,
the solutions based on Crowdsensing have increased and
these have attracted the interest of researchers and industry.
Crowdsensing is highly attractive because of the amount of
data that is possible to collect thanks to the use of cellphones
and smart vehicles, although currently most of the designs
are based on the use of smartphones. Some works show the
great variety of applications that can be developed with the
advent of UAVs as [11] where a crowd surveillance system
based on UAVs network is proposed. The system is approached
surveillance using face recognition technology. The use of
UAV Swarm for civilian applications is proposed by [1],
where a network based on UAVs is used for computer vision
applications and communication systems support. As this work
depicts the future of the UAVs swarm is great and full of
huge variety of applications. Another work as depicted in
[5] drive the roll of wireless sensor network for UAVs in
natural disaster management missions. This work establishes
the idea that UAVs can perform secondary tasks in the way to
improve the performance of the primary UAVs team mission.
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In contrast to the previously described works where the UAV
swarm develops specific missions, our approach aims at the
execution of Crowdsensing tasks in the background and in
parallel to primary tasks such as surveillance, natural disaster
assistance, last-mile delivery, and monitoring among others.
Other works raise the development of tasks directly related
to the Crowdsensing mission and the establishment of mobile
communication networks. As the work described by Zhou et
al., in [14] is approaching in a similar way than our work. They
face the possibility of mobile Crowdsensing improvement
through the use of UAVs. This work deals with the issue
of path planning, energy-efficient, and task assignment for an
agent into a group of UAVs. Those issues are resolved using
technics based on dynamic programming, genetic and Gale-
Shapley algorithms. The work described in [13] is a great
example where a possible dangerous gas level is inspected in
the way to determine the best route to evacuate people and
reduce the possible casualties, UAV is an excellent tool for
Crowdsensing applicable to rescue people. They are propos-
ing a policy to optimize the evacuation route, however, the
Crowdsensing if a primary task. In [2] depicts a work facing
the problem of no collaborative and dishonest vehicles been
members of a Crowdsensing network. This work proposes the
use of UAVs network working in a collaboration with ground
vehicles and Road Side Unites (RSUs). The entire system
is evaluated in urban environments. The proposed solution
offers crowd and trust traffic information, high packet delivery
ratios with low overhead, however, the optimization coverage
and budget minimization in the Crowdsensing behavior is
not worked in it. In a similar way proposed by our work,
a crowded network based on UAVs interaction is proposed by
[2], however, this work approach is based on a probabilistic
estimation of the user position with an aim to ensure network
connectivity, the system uses a potential field method. Finally,
A complete network interaction is proposed [4] where a
system called AGMEN (Air-Ground integrated Mobile Edge
Network). This system propose the use of UAVs with network
generation and interaction among them and a ground network
conformed by ground stations working as a control center
and mobile vehicles connected to the ground network. This
project proposed the complete Crowdsensing system based on
the interaction between the UAV network and a ground vehicle
network. Additionally, this research proposed as a challenge,
design policies to optimize the Crowdsensing network and
data collection in a distributed way, as we are proposing in
this work. Unlike the vast majority of the works focused
on UAVs Crowdsensing, our work proposes the development
of Crowdsensing tasks in the background while UAV team
develops a primary task. Additionally, we propose a system
for coverage area maximizing and sample cost-minimizing
through the use of limited budget ensuring the participation
of all members of the robot team in the auction scheme.

III. SYSTEM MODEL

In this section we present the elements of our proposed
incentive mechanism and how these elements are related to

each other. The following are the main elements of our system:
A space region of sensing interest, a set of UAVs going
from starting locations to destinations, a geometrical model of
sensing range, a crowdsourer or data buyer, and a participant
recruitment mechanisms.

A. Farticipants

Our designed UAVs crowdsourcing problem consists of
multiple participants (UAVs) and a crowdsourcer. The crowd-
sourcer wants to acquire sensing samples across a set of
space sub regions G = {g1,92,...,9Kx} of interest. The
crowdsoucer runs a reverse auction to encourage UAVs to
collect data and bid or offer their collected sensing samples.
Let V' = {v1,vs,...,vp} be the set of M UAVs. Also, let
S = {s1,81,...,8m} and D = {dy,ds,...,dp} represent
the sets of starting and destination space regions for UAVs.

B. Geometrical Model and coverage

We propose to cover a space region of sensing interest
by using a sphere geometric model. Equation 1 shows our
geometrical coverage approach.

[ 1 ifdUAV;,UAV;) <R
fldUAV;, UAV;))) = { 0 otherwise,
1

Where, d(UAV;, UAV;) corresponds to the euclidean dis-
tance between a sensor in U AV which is defined as the center
of a sphere and a sensor in UAV]. if d(UAV;,UAV;) < R,
we said that UAV} is covered by UAV;. Otherwise UAV; is
out of the sensing range of U AV;.

Given a region of sensing interest, and a set of UAVs
traversing that region. Our goal is to encourage UAVs data
collection in order to acquire a set of representative sensing
samples from that region using a limited budget.

For that purpose, we use a recurrent reverse auction [9]. At
each round ¢t the UAVs bid (offer to sell) for their sensing
samples at their current locations. And the platform uses
the following sample acquisition method. First, acquire the
less expensive sample U AV;. Once acquired U AV; we don’t
acquire any other sample UAV}, if d(UAV;,UAV;) < R.
Once, acquired UAV; we can assume that we are acquiring
the set of samples in the sphere with center in UAV;, we call
this set .S;. Let us define w; as weight or carnality of .S;, and c¢;
the cost S; which corresponds to the cost of of sample acquired
from U AV;. Given the previous notation, now we can state our
problem as follows: Given a set U of n elements, a collection
{S;},i=1,2,...n of subset of S and a budget L, find the
subset S’ C S such that the total cost of S’ don’t exceed L,
and the total weight of elements covered by S’ is maximized.
This NP-hard problem, presented by Kuller [7] is known as
the Budgeted Maximum Coverage Problem (BMCP). Thus,
we model our sample acquisition policy as a BMCP, next we
present the greedy algorithm we use for sample acquisition.
This algorithm approximates BMCP with an approximation
factor of (1+ 2).
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C. Greedy Algorithm sample acquisition and UAVs Space
Coverage

Now we present our approach for sensing sample acquisition
based on U AV location and sample price. This approach has
the form of the following three functions:Budget optimizer,
Weight optimizer, and Final coverage.

1) Budget optimizer: Algorithm 1 loops through U (set of
all the subset ;) building a collection of subsets based on the
maximization of %, where W’ denotes the total weight of
the elements covered by set .S;, but not covered by any set in
G. In other worlds, acquires the sets of elements that represent
the best value for the paid price c¢; within a budget L. Finally,
the algorithm return the collection of sets G.

Algorithm 1: Weight optimizer

input : S a collection of sets made up by the user locations
output: 7" C S, covering set

begin
G+ 0
C <+ 0
U+ S
T+ 0
while U # 0 do
’

select S; € U that maximizes C—l
if C + ¢; < L then ’
G+~ GUS;
C+CH+Hec;
end
end
return G

end

2) Weight optimizer: Algorithm 2 loops through U building
a collection of subsets based on the maximization of W',
namely the total number of the elements covered by set .S;, but
not covered by any set in G. In other words, acquires the sets
with the maximum number of covered samples, constrained to
the availability of budget L.

Algorithm 2: Weight optimizer

Input : S a collection of sets made up by the user locations
output: 7" C S, covering set

begin
G+ 0
C+0
U<+ S
T+ 0
while U # 0 do
select S; € U that maximizes W,
if C + ¢; < L then
G+ GUS,;
C+ C+ec;
U+U\S;
end
end
return G

end

Algorithm 3 calls the functions budget optimizer, and weight
optimizer. These functions return the collections (set of sets)
G, and G’ respectively. Thus, the final coverage algorithm
returns the collection with the maximum number of elements.

Algorithm 3: Final Coverage

Input : S a collection of sets made up by the user locations
output: S’ C S, covering set

begin
G+ 0
G «+ 0
S0
G < Budget-Optimizer()
G’ < Volume-Coverage-Optimizer()
if |G| > |G’| then
| s =¢
else
| s'=¢
end
return S’

end

D. Coverage

In each round the final coverage algorithm finds a S C S
that covers the greatest possible area covered by S. In areas
where the variable of interest is not uniform distributed Fig-
ure 2 and Figure 3 illustrate how works how final coverage
works, in the former case the algorithm acquired the first
k samples in increasing order of cost, in the latter case the
algorithm avoids to choose redundant samples, and rather,
choose those less expensive which maximize the coverage.
Furthermore, in order to increase the geographical coverage
balance and encourage the mobility towards areas that have
not been covered previously.

E. participant recruitment mechanisms

We use the recurrent Reverse Auction Based Dynamic Price
with Virtual Participation Credit and Recruitment (RADP-
VPC-RC) presented by [9], [12] as recruitment mechanism.
RADP-VPC-RC work using rounds, thus, at every round ¢
participants offer to sell their sensing samples to the platform.
We use RADP-VPC-RC in combination with our greedy
algorithm, and our geometric sensing model to acquire the
set of samples that cover the space using spheres at minimum
cost.

Algorithm 4 sketch the main components of our recruitment
approach. Algorithm input include the UAVs bids, the list of
UAVs locations, and constant k£ > 0 that updates the value of
the virtual participation credit (V' C). VC artificially decreases
the bid’s price of a loser by a constant k, this increases
the loser’s chances of winning in the next round. Thus, the
auctioneer see the bid price as b; — k, but pays b;.

Here, a UAV bid or offer to collect a sample in its location,
and the platform uses Algorithm 3 to select the winner. A
winner increases its bid with a 50% of probability for the
next round. On the other hand, if the bid is rejected (lose),
then the UAV decreases its bid price by a 20%. The VC is
update by a constant VC' = VC + k, and the participant
updates its bid again by using the virtual participation credit
as follows b7 ™ = b7 —v?. This credit is keeps increasing while
the user is losing and as soon as the user wins this value is
set to zero. Another, important element of RADP-VPC-RC is
Return on Investment (ROI), this indicator is used as criteria
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to determine when a user is dropping out of the system. The
ratio is represented as follow:

e; +Bi

Dyt + B

Where, e! corresponds to the earned reward by user ¢ until
round 7. p}.t;, corresponds to the minimum reward, with p;
as the number of participation instances of i up to the current
auction round r, t; as the user’s true valuation, and [3; as
the tolerance period. Every round, the user evaluates their S’
value; if it is below a certain threshold then they drop out. In
addition, RADP-VPC-RC provides a rejoin mechanism, which
allows the auctioneer to communicate the maximum winning
price ¢ to the users that dropped out of the system. The
knowledge of this price allows the users to re-evaluate their
ROI and potentially return to the next auction round. This
expected ROI is evaluated as follows:

ROI = 2)

e+ or + B

FROI = —/——F——
Py, + 1)tk + B

3)

Algorithm 4: participant recruitment mechanisms
(PRM)

input : UAVs bid at time ¢t B = {b%, b}, ...b%,}, UAVs location
V ={vi,va,... ,vMI}, k virtual participation credit constant
output: Participant next bid b§+

begin
lose <— 0

drop < 0
VC + 0 /* set virtual participation credit */

winners < WeightOptimizer(B,V)

if b} € winners then

bf£+1 — 1.1b: /% increase next bid with 50% of
prob */

v;.update(ROI) /+ updates return of investment
*/

VC + 0
else

/+ bid rejected - lose x/
lose <— 1

v; .update(ROT)

end

if lose ==1 & ROI > 0.5 then

/+ vi; will bid at round t+1 */
bfrl — 0.8b§ — VP /x update bid price x/

VC < VC +k
/+ VC update */
if lose ==1 & ROI < 0.5 then
/* drops from the auction */
drop <~ 1
v;.update(EROT)
if drop ==1 & EROI > 0.5 then
/* will re-joint and bid at t+l1 with 50% of
prob x/

if drop ==1 & EROI < 0.5 then

| / stays out %/
bitt

return
end

F. Budget

Budget is divided evenly by the number of rounds; however,
at the end of each round r;, if the total amount of budget as-

[a] UAV View

[b] Top View

Fig. 1: UAV multi-normal distribution in space

signed to round 7; is not used completely. Then, the remaining
part, from round r;, is added to the r; + 1 round.

G. Performance Evaluation

A set of different experiments were designed in order
to evaluate the influence of budget on space coverage, and
participant retention, finally another experiment is meant to
compare sensing coverage when using our acquisition sample
policy versus an acquisition policy based on sample price.

H. Experimental setup

The experiments were developed to evaluate the perfor-
mance of our system using the Virtual Robotics Environment
Platform (VREP). This platform allows virtual model simu-
lations of some commercial physical robots such as Pioneer,
NAO, Drones, and Kephera mobile robots among others. The
interaction environment was established within a volume of
1°000,000 m? with two buildings and a group of trees, in
addition to 50 drones as shown in Figure 1 and Table I.
These Drones perform a primary surveillance task and in the
background execute our mission of UAV-Crowdsensing.

Table I summarizes the simulation parameters for our set
of experiments. Here, our sensing space area of interest corre-
sponds to cube of 100mt x 100mt x 100mt. We deployed 50
UAVs, Figure 1 (b) shows top view of the UVAs deployment
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TABLE I: Simulation parameters.

[ Parameters | Experiment 1 | Experiment 2 | Experiment3 |
Deployment Volume 100mx100mx100m
Instances 50
Location Distr normal normal normal
Bid Distr normal normal normal
Radio 5 5 5
Budget 10:1000 10:1000 10:1000
Beta (3,7) (3,7 (3,7)
Alpha 7 7 7

[a] Top view

[b] Front View
Fig. 2: Normal distributed UAVs in the space.

distribution (normal). UAVs bids’ price are normally dis-
tributed, the sensor range (Radius) for the set of experiment
was set to five following the empirical work of [6]. The RADP-
VPC-RC parameter Beta random per UAV sampled from a
uniform distribution (3,7), and the Alpha parameter was set
to 7. Both Beta, and Alpha are parameters of RADP-VPC-RC
and were set based on the result of [8].
/!

1. Experiment 1: Determining the influence of budget on
participant retention

The goal of this experiment is to explore the influence of
budget on participants’ retention, namely keeping a critical
mass of participants in order of keeping the system functional.
Figure 4 shows the effect of increasing the budget from 50 to

[a] Top view

[b] Front View

Fig. 3: Coverage based on sample acquisition policy UAV-
crowdsensing.

1000. As can be seen as we increase budget we see an almost

N w N v <)) ~
o o o o o o
L s L L L L

Average Active Participants (100 rounds)

o
o
L

400 600 800 1000

Budget

200
Fig. 4: Budget vs Number of active participants

linear increment in the number of active participant after 100
rounds. Keeping a critical mass of participants is fundamental
in crowdsensing. In particular, when recruitment process is
based on auction. Lee [9] showed that a common problem in
reverse auction is participant dropping from the auction due
to participation starvation. This phenomena causes that just a
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UAV Crowdsensing

Coverage
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Fig. 5: Budget vs area coverage

small group of winners stay, then they raise the bids’ prices
without any control given than now there is not competition.
Here, this problem is addressed by increasing participants’
chances of win. This is done by using a virtual participation
credit, and recruitment (RC) component of RADP-VPC-RC.

J. Experiment 2: Exploring the influence of budget on area
coverage

The main goal of this experiment is explore the influence
of budget of area coverage.

Figure 5 shows that coverage scales very well with increases
in budget. This is important because, it is possible to re-
construct the variable of interest by injecting budget. This
also shows how our sample acquisition policy based in a
combination of location and bid’s price is able to cover the
area of interest based on spheres.

K. Experiment 3: Comparing our sample acquisition policy
with an acquisition policy based on sample price

For this experiment the UAVs bids’ sample price are nor-
mally distributed, as well as the UAVs location, see Figure 1.
Thus, the bids’ prices of UAVs located in some clusters are
higher than the bid prices of UAVs located in other clusters.
This could be the cases of UAVs working from different
companies with different bids’ price expectations. Figure 2
shows the result of acquiring samples based on the cheapest
sample price. Here, the UAVs bids’ prices in a cluster are
very low, then the platform uses all its budget to acquire these
samples. Figure 2 shows the data redundancy that result from
acquiring samples in this settings using an acquisition policy
based only on sample price. In contrast, Figure-3 shows the
coverage that result from acquiring sensing samples now using
our data acquisition policy.
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V. CONCLUSION AND FUTURE WORK

This paper presents an UAV-based incentive mechanism
for Crowdsensing with budget constraints. Comprehensive
simulations are presented to evaluate the performance of the
proposed approach. By using extensive simulations we show
how proposed sample acquisition policy outperforms an acqui-
sition policy based on sample price. The work shows desirable
characteristics in terms of number of active participants, and
improvements in space coverage.
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