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Abstract—The transportation system is an important part of
the daily lives of a major portion of the world’s population.
Therefore, innovative applications are designed to improve the
experience of drivers and pedestrians in this system as technolog-
ical advances allow. These applications analyze street networks
to come up with suggestions such as fastest route or optimal
ride-sharing route. Graph theory has been used frequently for
these analyses, where each junction is represented by a vertex
and each road segment is represented by an edge. However,
applications also require grouping of these vertices so that they
can run optimization methods in a larger scale.

In this paper, we propose a method for creating street networks
with adjustable complexity. By using k-Means clustering, our
mechanism allows for the increase or decrease of the gradient
of a street network. The implementation results demonstrate the
proposed method’s efficiency and flexibility for providing street
network graphs with adjustable complexity.

Index Terms—Street Networks, Simulation, k-means Cluster-
ing, Connected and Autonomous Vehicles, Graph Theory

I. INTRODUCTION

The transportation system provides invaluable services to
users, which traditionally focus on moving people and goods
from one point to another in the shortest time. With the
introduction of technological tools and applications into this
system in the recent years, the transportation ecosystem started
to offer interesting and innovative applications. Examples
of these include not only the applications we use everyday
such as navigation tools with expected trip duration, but also
applications with a futuristic focus such as crowd sourcing
methodologies or smart routing applications for connected and
autonomous vehicles (CAV). These new applications generally
have a wider scope and aim to provide service for a whole city,
state or even a country. Therefore, they require high processing
power, speed and their implementation is mostly based on
cloud-based technologies.

The street network graphs have been important resources
and tools for the innovative applications. A graph G is a simple
construct of vertices V' and edges E. A street network can be
represented as a graph where the roads segments are the edges
of GG and the intersections, dead ends and connections between
road segments are the vertices of G. When a street network
is converted into a graph, the rich literature on graph theory
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and related tools become available to study this network.
Hence, such a graph is a useful tool for not only intelligent
transportation system research, but also for street network
analysis [1] and cyber-physical system applications [2], [3].

The value in defining street networks as graphs was rec-
ognized early. The use of graph theory in the study of street
networks dates back to Euler’s solution of the urban problem
of the Konigsburg bridges puzzle [4]. Graph theory is also
proven to be useful for building complex street and city
networks, and in the analysis of street network data [5].

Even though the street network graphs have proven to be
resourceful in many fields, there are various challenges in
studying them. Due to the processing limitations, some of the
street network applications are oversimplified or their sample
sets are very small. On the other hand, a graph of a complex
street network such as the output of the street network retrieval
tool OSMnx [6] contains various vertices and edges. A major
portion of these may not be necessary for some of the street
network applications. As the length of roads and distance
between any two points in a street network forms the important
data, they may be represented just as a spacial graph in which
V has two positional values (x,y) and E has a length value [.
Additionally, same application may require different levels of
complexity on the same graph data depending on the scope of
the study. Hence, the literature and applications in this domain
suffer from the lack of a street network graph generation
method with dynamic complexity.

In this paper, we introduce an approach to create street
networks with adjustable complexity using k-means clustering.
Our mechanism allows for the increase or decrease of the
gradient of a street network by adjusting the number of clusters
k. Consider a paper map for any geographical location with
roads. A highway map showing the major routes throughout a
state has a lower gradient of detail than a map of a downtown
and all of the minor, interconnected streets. Much like a paper
map, the gradient of detail in a street network may also need
be reduced depending on the requirements of an application.
This will improve the performance during processes with high
requirements such as traffic simulations.

The remainder of this paper is organized as follows. Related
work is given in Section II. Our graph generation approach and
a detailed description of the processes are given in Section III.
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We present the graph complexity adjustment with implemen-
tation examples in Section IV and conclude in Section V.

II. RELATED WORK

Since the Euler’s work on Konigsburg seven bridges [4],
the graph theory and eventually network science have been
important tools for network analysis. Therefore, there are var-
ious approaches using graph theory, network science and street
network to graph conversion specifically for transportation sys-
tems. The simplification of the graphs is also important in this
field because of the scalability and applicability requirements.

As an urban planning example, Masucci et al. [5] uses graph
theory for an analysis of London street network. The analysis
compares London street network to idealized graph models
and the results lay out the characteristics of the street network.
An interesting outcome of the study shows that the physical
and mental effort are needed equally to navigate within the
city. Walkability is another critical property for urban planning.
There are even walking index parameters created for this
purpose [7]. Foti [8] proposes a scalable methodology that
takes into account the destinations, demographics, historical
travel behavior to create variables that can be used to define
walking, automobile, and transit selection in an urban model.

Urban Network Analysis (UNA) toolbox for ArcGIS [1]
is also used in urban planning and computes network cen-
trality measures on street networks such as gravity index,
betweennness or closeness. For urban planning applications,
UNA includes buildings in addition to the vertices and edges in
its calculations. Frizzelle et al. [9] also make use of geographic
information systems (GIS) for street network analysis. Their
approach focuses on the quality, accuracy and scalability of
existing road data since the main purpose of the approach is
to decide on the usability of road datasets for health research
and applications.

The OSMnx [6] is one of the most comprehensive open
source tools to download and analyze street networks. OSMnx
acquires the map data from OpenStreetMap, constructs graphs
using the data and provides simplification and visualization
options. It also has built-in network measurement features,
which is common in street network analysis. TrajGraph [10]
is another visual analysis tool that uses graph theory for urban
planning analysis. TrajGraph focuses on mobility patterns and
uses real taxi trajectory data for its measurements such as
Pagerank and betweenness. The results of the analyses are
used to suggest a level for the importance of city streets.

The idea of grouping or clustering of road segments or
junctions has been an important part of some transportation
system or urban planning approaches. The framework by Kili¢
and Gok [11] is a web based public transportation route
planning tool, which groups addresses within the geographical
region around a university. The tool determines the most
efficient route from the starting point, an address within one
of the clusters, to its destination using these grouping of
addresses.

There are also several approaches using k-means cluster-
ing in transportation system. Pattanaik et al. [12] propose a

framework, which identifies groupings of traffic on road maps
using k-means clustering to group nearby vehicles, which they
visualize with convex hulls.

The existing street network to graph conversion approaches
serve the purpose of various specific applications. The method
proposed in this paper can be used to eliminate the scalability
limitations for most of these approaches by generating net-
works with varying complexity.

III. STREET NETWORK TO GRAPH CONVERSION

The transportation system simulators are used frequently
for street network analysis and generation of what-if scenarios.
SUMO (Simulation of Urban MObility) is chosen as the trans-
portation system simulation platform for our approach. SUMO
is an open source traffic simulation software package which
provides tools for creating, editing, and running 2D (two-
dimensional) traffic simulations, extensive traffic modeling and
pattern creation [13]. In SUMO software package is a Python
interface known as TraCI (Traffic Control Interface) which
provides micromanagement of the street network simulation
at an atomic level [14]. A sample of a simple street network
simulation produced by using SUMO and TraCI is shown in
Figure 1, which features a grid-style layout of roads, triangular
vehicles of multiple colors (types), intersections, and circular
points of interest. SUMO street network data is stored in the
data format XML (Extensible Markup Language) [15].

Fig. 1: A grid style road network with simulated traffic.

Complimenting SUMO, we used OpenStreetMap (OSM) as
a source of geographical map and road data provided by OSM
contributors [16]. The OSM data is available under the Open
Data Commons Open Database Licence and SUMO allows
utilization of this data as a source of realistic street network
data.

In addition to SUMO and OSM, we developed modules in
R and Python in this study. Python’s version 3.7.1 is utilized
for the conversion of SUMO street network data into a data
structure that R may work with to create a directed graph.
R is a free software environment for statistical computation
and graphics [17]. The following R packages are utilized
during the process of street network simplification; R’s base
package is used for data wrangling, plotting points to a graph,
and for an implementation of the k-means algorithm method.
R’s jsonlite package [18] is used for reading and writing
data in JSON (JavaScript Object Notation) format [19]. R’s
statnet[20] and ergm [21] packages are used to visualize
directed graphs.
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A. Processing the street network data

The street network data is filtered to extract the ver-
tex and edge information. The data points that are fil-
tered include identifiers (ID) of the vertices and edges as
well as the two-dimensional (2D) positions of each ver-
tex. Table I lists the filtered and processed format param-
eters in the street network data. The processed parame-
ters are converted into an R readable format for further
analysis. The tru_center_coords and true_coords
parameters are spacial x and y position values. The
normal_center_coords and normal_coords param-
eters are normalized spacial x and y position values between
0 and 1. The from and to parameters are the IDs of vertices
belonging to the start and end point of an edge.

TABLE I: R JSON Data vs SUMO XML Data

R JSON Format SUMO XML Format

Vertex data
id id

true_center_coords [z, ]
) 2y .2 ) 2y 2
normal_center_coords ~ [RX(@ )z max(y ) -y~
max(xz?) max(y
Edge Data
id from_to

Hmt(n ytoL [Ifromy yf'rom]]
(ot at, max) o,
max(zfo) ’ max(y?o) ’
max(a:?ram)fwfrom max(y?rom)fyirom ”
max(a:?rom) ’ max(y?crom)
from from
to to

true_coords

normal_coords

Figure 2 depicts the street network data before and after it
is processed into the format we use for our implementation.
Figures 2a and 2b depict the vertex data of the street network
in XML and JSON format respectively and Figures 2¢ and 2d
depict the edge data of the street network in XML and JSON
format respectively.

:100001535_7_0 :100001535 hap
"16759.50,16247.19 16763.56,16242.132
16763.31,16239.99 16758.17,18236.02 16752.41,18242.80
16757.17,18247.24">
</junction> b

(a) vertex (XML)

_center_coords™: [ . 1,
"normal_center_coords™: [

(b) vertex (JSON)

"3143352386_to_3143352388": [
"true_coords": [[ , 1.1
11,
"normal_coords": [[

<edge 1d="-309026254" from="3143352386"
ghway . service" sh
7410.31,18694.63 17

(c) Edge (XML)

(d) Edge (JSON)

Fig. 2: A comparison of SUMO XML formatted data versus
filtered data in JSON format.

After we filter the street network data as described in Table
I and shown as an example in Figure 2, the vertex data and the
edge data are ready to be processed further. The filtered data is
combined into a three-dimensional (3D) matrix for both vertex

and edge data, the structures of which are given in Tables II
and III respectively.

TABLE II: Vertex data matrix in R.

Vertex Data

true_center_coords normal_center_coords

ido true_center_coordsg normal_center_coordsg
idq true_center_coordsi normal_center_coordsi
id,  true_center_coords, mnormal_center_coordsy
TABLE III: Edge data matrix in R.
Edge Data

true_coords normal_coords from to
idg true_coordsg normal_coordsg fromg tog
idq true_coordsi normal_coordsi fromy to1
idnp, true_coordsy normal_coordsy, fromn  ton

B. Creating an Adjacency Matrix

The vertex and edge data is ready to be translated into
a directed graph following Algorithm 1. Algorithm 1 takes
vertex and edge data as input and returns an adjacency matrix
which we use to represent a directed graph. To create an
adjacency matrix for a weighted directed graph, simply line
14 of Algorithm 1 can be changed to:

A [indexFrom, indexTo] — A
[indexFrom, indexTo] + 1.

Algorithm 1 Creating and adjacency matrix from vertex and
edge data.

1: procedure CREATEADJACENCYMATRIX(Vertices data V'
and Edges data F)

2: ny < length (V)

3: vertIDS < an array of all ids of each vertex in V
4:

5: /* Initialize the adjacency matrix */

6: A < a 2D array of Os of size ny by ny

7

8: /* Fill the empty adjacency matrix */

9: for each edge e in E do

10: IDfrom < start vertex of e

11: IDto ¢ end vertex of e

12: indexFrom ¢ index (IDfrom,vertIDs)
13: indexTo < index (IDto,vertIDs)

14: A [indexFrom] [indexTo] « 1

15: return A

As an example, we describe the process of creating a
directed graph from vertex and edge data using R. To create a
directed graph in R, an adjacency matrix of the street network
is created and supplied into the statnet library method
gplot. The process of creating a directed graph from a
SUMO street network is presented in Figure 3.
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The SUMO street network (Figure 3a) is processed into
an edge matrix (Figure 3b), in which one row of the edge
matrix is a unidirectional edge between the junction id stored
in the from attribute to the junction id stored in the to
attribute. With the from and to attributes of the edge matrix,
an adjacency matrix is constructed (Figure 3c). Finally the
adjacency matrix is input is used with the gplot method in
the R statnet library to visualize the directed graph (Figure
3d).

(a) SUMO street network

gneJ0 gneJl gneJ3 gneJ5 gned6 gneJ
gneJo 0 1 0 0 0

gneJl
gneJ3
gneJs
gneJé
gneJ9

cooor
o O

1
0
1
1
1

cocoro
coor

(c) Adjacency Matrix

(d) Directed Graph

Fig. 3: The process of creating a directed graph from a SUMO
street network.

C. Directed Graphs

Using Algorithm 1, we create seven adjacency matrices
which are processed into the directed graphs shown in Figure
4. Figure 4d is derived from a map of Florida Polytechnic
University in Lakeland, Florida and Figures 4f and 4g are more
complex street networks of one city and two city networks
respectively. Figures 4a, 4b, 4c, and 4e are custom made street
networks.

The corresponding statistics for the directed graphs are
shown in Table IV. Three of the directed graphs are realistic in
size and shape of a potential street network. A graph marked
as realistic is derived from real-world street network data.

TABLE IV: Directed Graph Statistics

Graph  Vertices Edges Realistic?
Fig. (4a) 6 7
Fig. (4b) 7 12
Fig. (4¢) 37 104
Fig. (4d) 278 498 Yes
Fig. (4e) 412 1186
Fig. (4f) 2656 6872 Yes
Fig. (4g) 2973 7037 Yes

IV. ADJUSTING GRAPH COMPLEXITY

In this section, we will discuss the methods of processing
the vertexes of our street networks by performing k-means
clustering on the x and y position values and using the results

of the k-means clustering to rebuild a street network graph
which is of less complexity. The k-means clustering is chosen
as it produces as output a centroid with x and y position
values that can then be plotted as a any other vertex in the
street network may. As such, any clustering algorithm in which
the output is a centroid with x and y position values may be
substituted for the k-means steps in this section.

1) Assigning Each Vertex to a Cluster: In order to produce
a centroid as output from the k-means clustering algorithm, it
is necessary to assign vertices to a cluster and provide x and
y position values of which will be used when determining the
centroid’s x and y position values. In Algorithm 2 we perform
k-means clustering on the vertices data V' based on Euclidean
distance of the x and y position values of each vertex in V.
The amount of clusters & must be given to the algorithm and
should be within 1 > k£ < ny where ny is the amount of
vertices in V. For k-means clustering, we use the kmeans
procedure from R and the Hartigan-Wong algorithm.As will
be shown in the results section of the paper, the simplicity of
a street network is increased as the value of k is increased.
We initialize an empty list C' of length ny,, which contains an
integer for each vertex in V. The list will correspond to the
cluster which the vertex is placed in by the k-means clustering
algorithm. For initialization, the cluster is placed into cluster
-1. The vertices data V/, clustering algorithm F' and amount
of clusters k are given as inputs into a k-means clustering
method. Within this method, the vertices of V are grouped
into numbered clusters.

Algorithm 2 K-Means clustering on vertex data.

1: procedure GROUPANDFINDCLUSTERSK-
MEANS(Vertices data V', Given number of -clusters
k, Clustering algorithm F')

2: ny < length (V)

3: xyCoords < a 2d array of the (x,y) coordinates of
each vertex in V. Size ny by 2.

4:

5: /* Initialize empty clusters index array */

6: C <+ an empty array of -1’s of size ny

7:

8: /* Perform k-means on the (x,y) positions of V. */

9: C + k-means (xyCoords, F, k)

10: return C

2) Finding Centroids:: The centroids of the clustered ver-
tices represent all of the vertices within that cluster as a
single vertex. Unless k is equal to the amount of original
vertices, the centroids x and y position values will be nearby
all of the vertices that share the same cluster. In Algorithm 3
we determine the (x,y) coordinates for the centroid of each
cluster by cross-referencing our vertex data and the cluster
index data from the output of Algorithm 2. The centroid
(z,y) coordinate values are the arithmetic means of all the
(z,y) coordinate values of vertices within the cluster that the
centroid belongs to. The centroids are used as the vertices of
the simplified street network.
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(a) (b) (©) (d)

(e) ® ®

Fig. 4: Seven directed graphs for the street network data, where complexity increases from (a) to (g).

Algorithm 3 Find centroids given vertex cluster indexes and Algorithm 4 Determine edges between clusters.

vertex data.
1: procedure FINDCENTROIDS(Vertices data V, Vertex
cluster indexes C)

2: n < max (C)

3: /* Initialize centroids array. */

4: R < a 2d array of 0.0’s of size n by 2
5: Rsizes <« an array of 0’s of size n
6:

7: /* Find the arithmetic mean for (x,y) in V */
8: for each vertex v in V do

9: x < X coordinate of v

10: y <y coordinate of v

11: iy < index (v, V)

12: ic < C [iy]

13: newSumX < R [ic] [0] + x
14: newSumY < R [ic] [1] +y
15: R [ic] [0] <+ newSumX

16: R [ic] [1] + newSumY

17: newSize < Rsizes [i¢g] + 1
18: Rsizes [i¢] < newSize

19: for each centroid r in R do

20: ip < index (r, R)

21: T < R[igr] / Rsizes[iRr]

22: R[ig] «+ T

23: return R

3) Connecting Clusters: Just as roads connect the junctions
of a street network, the vertices of the simplified street network
must also retain their connections to one another. In Algorithm
4, we construct a weighted adjacency matrix for the k-means
clustered data which will be used to create the edges of the
simplified street network. This adjacency matrix is of size n*
by n* where k is the total amount of centroids or otherwise
the k of the k-means clustering algorithm. If an edge in the
unprocessed edge data has a starting vertex and an ending
vertex that belongs to two different clusters, then we say that
there is a link between those two clusters. For example, given
that A and B are two clusters and eq and e; are vertices that
belong to clusters A and B respectively, we say that there
exists a one-directional edge from A to B.

Gradient of Complexity Reduction: Figure 5 depicts the
results of varied values of k of a graph input into Algorithm
2, then 3 and 4. Shown are the gradients of complexity of the

1: procedure FINDNEIGHBORS(Vertex data V', Edge data E,
Centroids R, Clusters ()

2: ng + length (R)

3: vertIDs < an array of all ids of each vertex in V'
4:

5: /* Initialize the Adjacency Matrix */

6: A < An 2d matrix of 0’s of size ng by ng

7:

8: /* Fill the Adjacency Matrix */

9: for each edge e in F do

10: IDfrom < start vertex of e

11: indexFrom ¢ index (IDfrom,vertIDs)
12: co < ClindexFrom]

13: IDto « end vertex of e

14: indexTo < index (IDto,vertIDs)

15: c1 + ClindexFrom]

16: newWeight < Alcy] [e1] + 1

17: Alcgl [c1] ¢ newWeight

18: return A

directed graph from Figure 4d which is the street network of
Florida Polytechnic University, in Lakeland Florida. Figure 5a
depicts the simplified directed graph in which k is equal to
the total amount of vertices and 5Sh is the same street network
where k is 2.96% of the total amount of vertices.

V. CONCLUSION

Street network analysis is critical in various fields, from
urban planning to ride-sharing applications. The conversion of
street networks to graphs has been an important part for these
analyses. However, there are complexity and scalability issues
in the existing approaches. To address these issues, we propose
a street network graph generation method with adjustable
complexity. By using k-Means clustering, our mechanism
allows adjustment of the gradient of street networks.

We plan to implement this approach on a large trans-
portation system to dynamically simplify a portion of the
street network using our techniques. We are going to utilize
many occurrences of k-means clustering to street network for
adjusting the gradient of simplification as necessary in a way
that varies across the street network. Another direction of
future research could be on the development of methods for
determining the optimal value of k for a given application.
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(e) 29.66%

(f) 11.86%

(c) 64.83% (d) 47.03%

(2) 5.93% (h) 2.97%

Fig. 5: The directed graphs of a street network in incremental levels of vertex reduction.
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