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crowdsourcer recruits a subset of participants that match with
the collection requirements. Examples of VCS tasks include
route and infrastructure monitoring [4], traffic prediction [23],
and map creation and updating [18].

The following summarizes the VCS protocol for data acqui-
sition. A data buyer or crowdsourcer broadcast a request for
data collection at time t. Vehicles traveling through the area
on interest receive that request via mobile app. The interested
participants respond using their apps to send both location
coordinates, and sample’s price (bid price) to the crowdsourcer.
The crowdsourcer receive all the participants’ location and
bid prices, and selects the subset of samples to acquire
using its limited budget. The crowdsourcer communicate this
information to the subset of selected participants, who then
use their sensor to collected, and send sensing samples back
to the crowdsourcer. The crowdsourcer receive the data, and
send them back the corresponding payment to participants.
This close, what we call a round. This process is repeated
at regular time intervals. This methods for data acquisition is
called recurrent reverse auction.

In addition to follow this protocol, This work focuses on
getting a set of representative sensing samples within a given
budget for a given number of rounds. Consider temperature as
an example. This environmental variable has a high variability.
Thus, in order to provide accurate reports, we need to collect
a representative set of samples of a target region, at regular
intervals (rounds). In order to get such a set of samples, we
take into account both participant location and sample bid’s
prices.

Our reasoning about participant location takes into account
that vehicles’ owners are usually located in neighborhoods,
and these neighborhoods are usually clustered in terms of both
location, and income. Thus, it is natural to assume that the true
valuation of participants located in high income neighborhoods
may be different from those living in low income regions. In
this settings, the use of a reverse auction to acquire sensing

Abstract—In this paper, we present an incentive mechanism 
for vehicular crowdsensing (VCS) based on a recurrent reverse 
auction. The proposed approach encourages participant’s vehicles 
to used their sensors to collect data while also maximizing 
their utility. This approach tackles important issues in VCS 
such as cost explosion, and area sensing coverage. Using a 
realistic street network from OpenStreetMaps with extensive 
SUMO (Simulation of Urban Mobility) simulations, we show our 
VCS algorithm significantly o utperforms t he b aseline approach 
in terms of sensing coverage and active number of participants 
by three and eight times respectively.

Index Terms—Vehicular Crowdsensing, Incentive Mechanism, 
Coverage, SUMO

I. INTRODUCTION

The massive use of mobile technology and wearable sensors 
presides the advent of new data collection paradigm called 
mobile crowdsensing (MCS) [17]. MCS leverages the per-
vasive use of mobile devises and peoples’ mobility patterns 
to collect sensing samples at a finer l evel o f granularity 
than tradition methods using isolated meteorological stations. 
MCS’s applications are usually used for collection and report 
of environment variables such as pollution, temperature [24], 
pollen, noise [15], etc. In all these cases, the idea is to collect 
a representative set of sensing samples in order to re-construct 
a variable of interest.

Vehicular Crowdsensing (VCS) extends the concept of 
MCS. Here, the data collection process is carried out by 
sensor attached to autonomous or non-autonomous vehicles 
(AVs). Given that vehicles travel through road networks, the 
sensing task is usually based on sensing trajectories rather 
than in isolated discrete sensing samples [9]. Elements of 
VCS system include a set of participants and one or several 
crowdsourcers [27]. Here, participants are a group of vehicles 
willing to contribute with a set of sensing tasks, and the
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samples based on samples’ price may end up consuming
the crowdsourcer’s budget by acquiring a redundant set of
samples from low income neighborhoods as shown in Figure 1.
On the another hand, if we follow our proposed Incentive
Mechanism for Vehicular Crowdsensing with Budget Con-
strains(IMVCBC) we may get a fewer number of samples.
However, these samples are a better representation of the
variable of interest as shown in Figure 2.

Fig. 1: Greedy acquisition policy

Fig. 2: IMVCBC acquisition policy

The rest of this paper is organized as follows. Section II
corresponds to the related work. We present the system model,
and performance evaluation in section III and IV respectively.
Finally, Section V concludes this paper.

II. RELATED WORK

Problems such as area coverage and keeping a minimum
mass of participants have been a challenge for crowdsensing.
Systems addressing these problems have been proposed by au-
thors such Jaimes et al. [10] who address the problem of price
and user location imbalance by the combination of the Greedy
Budgeted Maximum Coverage Algorithm (GBMCA) [11] and
the Reverse Auction Dynamic Price(RADP-VPC) [14]. Unfor-
tunately, the authors of this work does not consider vehicles
as participants, and the work only focus on pedestrians.

A pioneer paper on VCS corresponds to the work of He et
al. [9] who propose a mechanism to provide sensing cover-
age based on a subset of the predicted participants’ sensing
trajectories rather than on a discrete set of sensing samples.

Papers in this category include [8], [27] which propose similar
mechanism for reaching sensing coverage, but differ in the
solutions of the optimization problem. An extension of these
approaches is the idea of providing sensing coverage based
on a combination of participants’ trajectory segments rather
than the entire predicted trajectories. Some works following
approach include [3], [12].

Another work on VCS corresponds to the work [28] who
use multi-robot planning concepts for participants’ trajectories
generation, and an auction based-approach for trajectories’ ac-
quisition. following a similar approach Xiao et al. [26] models
the relation between a crowdsourcer and participants as a non-
cooperative game. Here, the participants and crowdsourcer
strategies corresponds to the sensing accuracy, and a payment
policy respectively.

A. Simulation Environments and Mapping Information

The participants of a VCS mechanism exist within a street
network (SN). A notable database of SNs is OpenStreetMaps
(OSM) [16], which is a common SN format for software such
as AOP [22], a tool which increases the amount of vertices
in a SN to improve quality of pedestrian movement, the SN
visualization tool OSMnx [2], for the crowdsensing simulation
tool CrowdSenSim [6], and the traffic simulator SUMO (Sim-
ulation of Urban Mobility) [13]. SUMO is software package
for traffic modeling and simulation (M&S), with capability of
utilizing OSM format SNs, or generating a custom SN. The
Python 3.x interface TraCI (Traffic Control Interface) [25] for
SUMO enables vehicular M&S. The combination of an OSM
SN and SUMO in VCS is seen when Zhu et al. [28] utilizes
the TAPAS Cologne project [21], a SUMO scenario to evaluate
their VCS mechanism. OSM format SNs are common among
VCS models and the SN we utilize is sourced from OSM –
we utilize a dense sub-network of the OSM dataset with many
roads close together that is both necessary and unique to our
model, rather than existing SN dataset.

The logic of VCS mechanisms may be computational com-
plex, resulting in slow simulations. Reducing the complexity
of the SN through discretization will improve the performance
of mechanisms such as ours which frequently query shortest
paths on the SN. While components of SNs are discretized
in research, such as for the identification of merging and
crossing areas [1] and planning of merging scenarios [5]
at intersections, or to discretize roads into segments and
lanes to roadway usage maximization in connected vehicles
[19], a pioneer in discretized SN (DSN) generation is the
methodology of Goss et al. [7] which considers the spatial
and directional information of the SN to generate a DSN
that retains important spatial information such as parks, lakes,
river, etc. which produces simulation results similar to a non-
discretized SN. To improve the performance of our VCS
mechanism, we utilize a DSN generated using [7] as the SN
in our model.
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III. SYSTEM MODEL

We propose to cover a region of sensing interest by using a
disk model as shown in Figure 3. Here, the center corresponds
to the location of the sample offered by a participant vehicle
vi we are considering to acquire at time t. And the disk’s
radius (R) represents the sensing influence or capacity of the
vehicle’s sensor. Thus, a high quality sensor would have a
larger radius of influence than low quality one. In order to keep
the problem simple, we assumed R the same for all participant,
and made R a system parameter.

Fig. 3: Disk Covering Model

We combine the geometrical model with the recurrent re-
verse auction. At each round t, all vehicles bid for their sensing
samples at their current locations. The platform receives all
bids and by using the geometric model system selects the
sample vi whose disk cover the greatest number of samples
at the lowest price. Once vi is acquired, no other sample is
acquired within the disk centered at vi. We call the samples
initially covered by that disk Si. We call wi as weight or
carnality of Si, and ci the cost Si which corresponds to the
cost of vi. Given the previous notation, now we can state our
problem as follows: Given a set U of n elements, a collection
{Si}, i = 1, 2, . . . , n of subsets of S and a budget L, we
want to find the subset S′ ⊆ S such that the total cost of S′

does not exceed L, and the total weight of elements covered
by S′ is maximized. This NP-hard problem, presented by
Kuller [11] is known as the Budgeted Maximum Coverage
Problem (BMCP). Thus, we model our sample acquisition
policy as a BMCP.

A. Sample acquisition and area coverage

Now we present our approach for sensing sample acquisition
based on vehicles location and sample price. This approach has
the form of the following three functions:

1) Maximize coverage based on the ratio weight-price.
2) Maximize coverage based on weight.
3) Selecting winners.
1) Maximize coverage based on the ratio weight-price:

Algorithm 1 loops through U (set of all the subset Si) building
a collection of subsets based on the maximization of W ′

ci
,

where W ′ denotes the total weight of the elements covered
by set Si, but not covered by any set in G. In other words,

acquires the sets of elements that represent the best value for
the paid price ci within a budget L. Finally, the algorithm
return the collection of sets G.

Algorithm 1 Maximize coverage based on the ratio weight-
price

input: S a collection of sets made up by the user locations
output: T ⊆ S, covering set

1: procedure maxCovByRatio(S) begin
2: G← ∅
3: C ← 0
4: U ← S
5: while U 6= ∅ do
6: if C + ci ≤ L then
7: G← G ∪ Si

8: C ← C + ci
9: U ← U \ Si

10: end
11: end
12: return G
13: end procedure

2) Maximize coverage based on weight: Algorithm 2 loops
through U building a collection of subsets based on the
maximization of W ′, namely the total number of the elements
covered by set Si, but not covered by any set in G. In other
words, acquires the sets with the maximum number of covered
samples, constrained to the availability of budget L.

Algorithm 2 Maximize coverage based on weight
input: S a collection of sets made up by the user locations
output: T ⊆ S, covering set

1: procedure maxCovByWeight(S) begin
2: G← ∅
3: C ← 0
4: U ← S
5: while U 6= ∅ do
6: select Si ∈ U that maximizes W ′

i

7: if C + ci ≤ L then
8: G← G ∪ Si

9: C ← C + ci
10: U ← U \ Si

11: end
12: end
13: return G
14: end procedure

3) Selecting Winners: Algorithm 3 calls Algorithm 1, and
Algorithm 2, These algorithms return the collections (set of
sets) G, and G′ respectively. Thus, selecting winner algorithm
returns the collection with the maximum number of elements.

B. Coverage

In each round the final coverage algorithm finds a S′ ⊆ S
that covers the greatest possible area covered by S. In areas
where the variable of interest is not uniform distributed
Figure 1 and Figure 2 how the final coverage works, in
the former case the algorithm acquired the first k samples
in increasing order of cost, in the latter case the algorithm
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Algorithm 3 Selecting winners
input: S a collection of sets made up by the user locations
output: S′ ⊆ S, covering set

1: procedure selectWinners(S) begin
2: G← ∅
3: G′ ← 0
4: S′ ← S

5: /* Maximize budget based on the ratio

weight-price. */

6: G← maxCovByRatio(S)
7: /* Maximize budge based on the weight. */

8: G′ ← maxCovByWeight(S)
9: if |G| ≥ |G′| then

10: S′ ← G′

11: else
12: S′ ← G
13: end
14: return S′

15: end procedure

avoids to choose redundant samples, and rather, choose those
less expensive which maximize the coverage. Furthermore,
in order to increase the geographical coverage balance and
encourage the mobility towards areas that have not been
covered previously.

C. participant recruitment mechanisms

We use the recurrent Reverse Auction Based Dynamic Price
with Virtual Participation Credit and Recruitment (RADP-
VPC-RC) presented by [14] as the recruitment mechanism.
RADP-VPC-RC works using rounds, thus, at every round t
participants offer to sell their sensing samples to the platform.
We use RADP-VPC-RC in combination with our greedy
algorithm, and our geometric sensing model to acquire the
set of samples that cover the space using spheres at minimum
cost.

Flowchart in Figure 4 sketches the main components of
our recruitment approach. Flowchart input include participant
true valuation (tv) or minimum value a participant is willing
to accept for its sample, tv is generated from normal distri-
bution. Other inputs are current round (r), the total number
of participants n, the number of winners m, and α and β
which corresponds to parameters of return of investment (ROI)
or Si. Vehicles’ bid’s price is randomly generated from an
uniform distribution from [tv , 1.5tv] which corresponds to the
tv plus a small profit. The set of winner S

′
is computed using

Algorithm 3 (Selecting Winners). The winners (yes, left arrow)
increase their bids’ price by 10% with a 50% probability. On
the another hand, all the losers decrease their bids’ price by
20% in the hope of winning in the next round. In addition,
the losers bids’ price is artificially decreased using the virtual
participation credit V C. The losers also evaluate their return
of investment (ROI) or Si. If Si ¡ Sth where Sth is a threshold,
the participant drops, otherwise that vehicle will participate in
the next round. Here, Equation 1, represents Si.

Si =
eri + βi
pri .ti + βi

(1)

Where, eri corresponds to the earned reward by user i until
round r. pri .ti, corresponds to the minimum reward, with pri
as the number of participation instances of i up to the current
auction round r. For those who drop the system uses a re-
join mechanism, which allows the auctioneer to communicate
the maximum winning price ϕk to the users that dropped out
of the system. The knowledge of this price allows the users
to re-evaluate their ESr+1

k and potentially return to the next
auction round. This expected ESr+1

k is evaluated in Equation
2

ESi =
erk + ϕk + βk

(prk + 1).tk + βk
(2)

Fig. 4: Participant Recruitment Mechanisms (PRM)

IV. PERFORMANCE EVALUATION

We evaluate two important metrics for VCS, namely per-
centage of area coverage and number of active participants.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on March 02,2021 at 00:05:47 UTC from IEEE Xplore.  Restrictions apply. 



Area coverage is improved by using the geometric model, and
active number participants (ANP) is tackled by the recruiting
framework. ANP is a fundamental element in crowdsensing,
in particular for systems based on recurrent reverse auctions.
Here, participants who are not able to continuously sell their
samples find that the cost of participation is greater than
the reward that result from selling samples . Thus, these
rational participants will drop from the system causing that few
survivors increase their bid’s price in an exponential way, this
as result of the lack of competition. We address this problem
by using a virtual participation credit (aging approach) and
a re-join model that encourage drooped participants to re-
consider participation.

We evaluate the efficiency of the incentive model imple-
mented as a SUMO scenario. To improve the performance of
our VCS model, we used a DSN generated using Goss et al.
[7] technique in place of an OSM SN. The model contains re-
alistic data mapping to the common vehicle behaviors retrieved
from the Uber Movement dataset [20] and applied to the roads
in the SN. Each simulation step represents a single round in the
algorithm, after each round, we capture the active participants
and compute the coverage ratio through the use of Monte
Carlo simulation. The result of this approach is compared to
the minimum cost approach, where the samples were chosen
starting from the lowest bid prices until the budget runs out.

A. Experimental Setup

We perform the experiments as follows. The participants
are initialized with a random starting location and ending
location following a 2-dimensional uniform distribution. Prior
to starting the first round, all the participants are assigned
their true valuations, and bid prices generated using a normal
distribution with the parameter shown in Table 1. The first
round starts as the participants begin to travel towards their
destination following the shortest path determined by Dijk-
stra’s algorithm. The winners are chosen during the round
are represented using disks with the predetermined R value
Figure 5, our goal is for these disks to have minimum overlap
with maximum coverage, at the same time staying within
the budget constraints. The coverage area are computed using
Monte Carlo simulation following the flow shown in Figure 6.
T denotes the counter for the total number of points generated
and C denotes the number of points that are covered by the
disks. Random points P are generated uniformly between
the boundaries of the map, and euclidean distance is used to
determine whether the point falls within the radius of any given

disks. The coverage percentage is computed by
C

T
. Experiment

parameters are presented in Table I

B. Experiment 1 (Average Coverage Percentage)

In order to study the relationship between budget and
coverage, we change the value for budget from 5 to 50 with
increments of 5 while keeping all other variables constant. For
each budget value we repeat the simulation 1000 times and
the results are averaged. Figure 7 shows the average coverage
for each budget value, the graph shows when the budget

TABLE I: Simulation Parameters

Parameter Value

Target Area 5200 x 5200 meters
# Edges 9119
True Valuation

µ 5
σ 2

Monte Carlo Simulation 100000
Number of Vehicles 100
Source random
Destination random
Budget

IMVCBC range(start=5,end=50,step=5)
Greedy range(start=5,end=50,step=5)

Fig. 5: Single round result IMVCBC (blue) vs greedy bid (red)

value is low, the incentive mechanism seems to have worse
performance, however this is only due to the randomness for
both algorithms when the budget is really low. As the budget
increase we see a significant improvement in performance for
our incentive mechanism, it out performs the greedy approach
by IMVCBC as the budget approaches 50.

C. Experiment 2 (Active Participants)

The experiment for active participants follows the same
setup as the experiment for coverage percentage. Each round
the number of participants that are actively participating in the
auction is captured, Figure 8 shows the relationship between
budget and the average number of participants that participates
in the auction over the 1000 rounds of simulation, the graph
shares a similar behavior as the experiment for coverage, the
growth for the greedy algorithm is slow and steady while our
incentive mechanism shows a much better rate of growth as
the budget value increases.
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Fig. 6: Monte Carlo area estimation

Fig. 7: Budget value vs. Coverage
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VI. CONCLUSION AND FUTURE WORK

This paper presents Incentive Mechanism for Vehicular
Crowdsensing with Budget Constrains (IMVCBC). IMVCBC
combines a geometric coverage model with a recruitment
mechanism based on reverse action to encourage participant
vehicles to collect sensing data. The use IMVCBC improves
sensing coverage, reduce the collection of redundant data by

Fig. 8: Budget value vs. Active participants

while using a limited budget. Through the use of a real-
world traffic model (SUMO) and extensive simulations, we
test IMVCBC in terms of area coverage, and number of active
participants. We found that IMVCBC outperforms a greedy
policy by increasing area coverage by around three times, and
number of active participants by eighth times.
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[25] Axel Wegener, MichałPiórkowski, Maxim Raya, Horst Hellbrück, Stefan
Fischer, and Jean-Pierre Hubaux. Traci: An interface for coupling road
traffic and network simulators. In Proceedings of the Communications
and Networking Simulation Symposium, pages 155–163. ACM, 2008.

[26] Liang Xiao, Tianhua Chen, Caixia Xie, Huaiyu Dai, and H Vincent Poor.
Mobile crowdsensing games in vehicular networks. IEEE Transactions
on Vehicular Technology, 67(2):1535–1545, 2018.

[27] Susu Xu, Xinlei Chen, Xidong Pi, Carlee Joe-Wong, Pei Zhang, and
Hae Young Noh. Incentivizing vehicular crowdsensing system for large
scale smart city applications. In Sensors and Smart Structures Tech-
nologies for Civil, Mechanical, and Aerospace Systems 2019, volume
10970, page 109701C. International Society for Optics and Photonics,
2019.

[28] Xiru Zhu, Shabir Abdul Samadh, and Tzu-Yang Yu. Large scale active
vehicular crowdsensing. In IEEE Vehicular Technology Conference VTC,
pages 1–5. IEEE, 2018.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on March 02,2021 at 00:05:47 UTC from IEEE Xplore.  Restrictions apply. 


