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Blockchain platforms are coming into use for processing critical transactions among participants who have
not established mutual trust. Many blockchains are programmable, supporting smart contracts, which main-
tain persistent state and support transactions that transform the state. Unfortunately, bugs in many smart
contracts have been exploited by hackers. Obsidian is a novel programming language with a type system
that enables static detection of bugs that are common in smart contracts today. Obsidian is based on a core
calculus, Silica, for which we proved type soundness. Obsidian uses typestate to detect improper state ma-
nipulation and uses linear types to detect abuse of assets. We integrated a permissions system that encodes a
notion of ownership to allow for safe, flexible aliasing. We describe two case studies that evaluate Obsidian’s
applicability to the domains of parametric insurance and supply chain management, finding that Obsidian’s
type system facilitates reasoning about high-level states and ownership of resources. We compared our Obsid-
ian implementation to a Solidity implementation, observing that the Solidity implementation requires much
boilerplate checking and tracking of state, whereas Obsidian does this work statically.
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1 INTRODUCTION

Blockchains have been proposed to address security and robustness objectives in contexts that
lack shared trust. By recording all transactions in a tamper-resistant ledger, blockchains attempt
to facilitate secure, trusted computation in a network of untrusted peers. Blockchain programs,
sometimes called smart contracts [Szabo 1997], can be deployed; once deployed, they can maintain
state in the ledger. For example, a program might represent a bank account and store a quantity
of virtual currency. Clients could conduct transactions with bank accounts by invoking the appro-
priate interfaces. Each transaction is appended permanently to the ledger. In this article, we refer
to a deployment of a smart contract as an object or contract instance.

Proponents have suggested that blockchains be used for a plethora of applications, such as fi-
nance, health care [Harvard Business Review 2017], supply chain management [IBM 2019], and
others [Elsden et al. 2018]. For example, an electronics manufacturer might accept shipments of
components from a variety of manufacturers; if any of those components have been replaced with
fraudulent components somewhere in the chain of custody, then the manufactured systems might
include defects, including security vulnerabilities [Dieterich et al. 2017]. A blockchain could pro-
vide a tamper-resistant mechanism for recording signed transactions showing every entity that
was ever responsible for each component.

Unfortunately, some prominent blockchain applications have included security vulnerabilities.
For example, the DAO and Parity bugs were exploited to steal over $80 million worth of virtual
currency [Graham 2017; Sirer 2016]. In addition to the potentially severe consequences of bugs,
platforms require that contracts be immutable, so bugs cannot be fixed easily. If organizations are
to adopt blockchain environments for business-critical applications, then there needs to be a more
reliable way of writing smart contracts.

Many techniques promote program correctness, but our focus is on programming language de-
sign so that we can prevent bugs as early as possible—potentially by aiding the programmer’s
reasoning processes before code is even written. Because of our interest in developing a language
that would be effective for programmers, we designed a surface language, Obsidian, in addition to
a core calculus, Silica. Obsidian stands for Overhauling Blockchains with States to Improve Develop-
ment of Interactive Application Notation. Our design is based on formative studies with program-
mers, and although those studies are not the focus of this article, our goal of usability drove us to
focus on features that provide powerful safety guarantees while maintaining as much simplicity as
possible. In this article, we focus on the design of the language itself and make only brief mention
of our observations in our user studies. For more detail regarding the user studies, readers may
refer to Coblenz et al. [2020a, 2019a].

Obsidian is a programming language for smart contracts that provides strong compile-time fea-
tures to prevent bugs. Obsidian is based on a novel type system that uses typestate [Strom and
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Yemini 1986] to statically ensure that objects are manipulated correctly according to their current
states and uses linear types [Wadler 1990] to enable safe manipulation of assets, which must not
be accidentally lost. We prove key soundness theorems so that Silica can serve as a trustworthy
foundation for Obsidian and potentially other typestate-oriented languages.

We make the following contributions:

(1) We show how typestate and linear types can be combined in a user-facing programming
language, using a rich but simple permission system that captures the required restrictions
on aliases using a notion of ownership.

(2) We show an integrated architecture for supporting both smart contracts and client pro-
grams. By enabling both on-blockchain and off-blockchain programs to be created with
the same language, we ensure that the safety properties of the language are available for
data structures that must be transferred off-blockchain as well as for those stored in the
blockchain.

(3) We describe Silica, the core calculus that underlies Obsidian. We prove type soundness and
asset retention for Silica. Asset retention is the property that owning references to assets
(objects that the programmer has designated have value) cannot be lost accidentally. Silica
is the first typestate calculus (of which we are aware) that supports assets.

(4) As case studies, we show how Obsidian can be used to implement a parametric insurance
application and a supply chain. Through a comparison to Solidity, we show how lever-
aging typestate can move checks from execution time to compile time. Our case studies
were implemented by programmers who were not the designers of the language, showing
that the language is usable by people other than only the designers.

Obsidian is available on GitHub (http://www.github.com/mcoblenz/Obsidian); an archive is
available as well [Coblenz et al. 2020b].

After summarizing related work, we introduce the Obsidian language with an example (Sec-
tion 3). Section 4 focuses on the design of particular aspects of the language and describes how
qualitative studies influenced our design. We describe how the language design fits into the Fab-
ric blockchain infrastructure in Section 5. Section 6 describes Silica, the core calculus underlying
Obsidian, and its proof of soundness (although the proof itself is in Appendix C). After discussing
how the full Obsidian language extends Silica (Section 7), we discuss two case studies in Section 8,
showing how we have collaborated with external stakeholders to demonstrate the expressiveness
and utility of Obsidian. Future work is discussed in Section 9. We conclude in Section 10.

2 RELATED WORK
2.1 Smart Contract Languages

Solidity [Ethereum Foundation 2020a], which targets the Ethereum platform [Ethereum Founda-
tion 2020b], is the predominant domain-specific smart contract language (some blockchain plat-
forms support general-purpose languages; for example, Hyperledger Fabric supports Go, Java, and
JavaScript). Researchers have previously investigated common causes of bugs in smart contracts
[Atzei et al. 2017; Delmolino et al. 2016; Luu et al. 2016], created static analyses for existing lan-
guages [Feist et al. 2019; Grech et al. 2020; Kalra et al. 2018], and worked on applying formal verifi-
cation techniques [Alt and Reitwiessner 2018; Bhargavan et al. 2016; Zakrzewski 2018]. Our work
focuses on preventing bugs in the first place by designing a language in which many commonplace
bugs can be prevented as a result of properties of the type system. This enables programmers to
reason more effectively about relevant safety properties and enables the compiler to detect many
relevant bugs.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 3, Article 14. Publication date: November 2020.


http://www.github.com/mcoblenz/Obsidian

14:4 M. Coblenz et al.

There is a large collection of proposals for new smart contract languages, cataloged by Harz
and Knottenbelt [2018]. One of the languages most closely related to Obsidian is Flint [Schrans
et al. 2019]. Flint supports a notion of typestate but lacks a permission system that, in Obsidian,
enables flexible, static reasoning about aliases. Flint supports a trait called Asset, which enhances
safety for resources to protect them from being duplicated or destroyed accidentally. However,
Flint models assets as traits rather than as linear types due to the aliasing issues that this would
introduce [Schrans and Eisenbach 2019]. This leads to significant limitations on assets in Flint.
For example, in Flint, assets cannot be returned from functions. Obsidian addresses these issues
with a permission system and thus permits any non-primitive type to be an asset and treated as a
first-class value.

Scilla [Sergey et al. 2019] is an intermediate language for smart contracts. Like Obsidian, Scilla is
oriented around state machines. However, in contrast with Obsidian, Scilla is a functional language
and is intended as a target for compilers, not as a high-level language in which programmers can
be effective. Scilla offers restricted computation: no loops, no effectful recursion, and no calls to
mutating transactions. Although this may suffice for many smart contracts, Obsidian provides a
richer, Turing-complete environment. Likewise, IELE [Kasampalis et al. 2019] is an intermediate
language with a compiler that translates from Solidity. IELE is intended to facilitate automatic
formal verification of properties that are specified in the K framework [Rosu and Serbanuta 2010].

There are also proposals for blockchain languages that are more domain specific. For example,
Hull et al. propose formalizing a notion of business artifacts for blockchains [Hull et al. 2016].
DAML [Digital Asset, Inc. 2019] is more schema-oriented, requiring users to write schemata for
their data models. In DAML, which was inspired by financial agreements, contracts specify who
can conduct and observe various operations and data. Likewise, Astigarraga et al. [2018] proposes a
rules-based language to enable business users with less programming background to author smart
contracts.

Xu et al. [2017] gives a taxonomy of blockchain systems. There, the focus is on blockchain
platforms, i.e., systems that maintain blockchains and process transactions. The architecture of a
particular blockchain platform can have some implications on application architecture and design.

2.2 Aliasing, Permissions, and Linearity

The problem of aliasing in object-oriented languages has led to significant research on ways to
constrain and reason about aliases [Clarke et al. 2013]. Unfortunately, these approaches can be very
complex. For example, fractional permissions [Boyland 2003] provide an algebra of permissions to
memory cells. These permissions can be split among multiple references so that if the references
are combined, one can recover the original (whole) permission. However, aside from the simple
approach of reference counting, general fractional permissions have not been adopted in practical
languages, perhaps because using them requires understanding a complex algebraic system.

A significant line of research has focused on ownership types [Clarke et al. 1998], which refers to
a different notion of ownership than we use in Obsidian. Ownership types aim to enforce encapsu-
lation by ensuring that the implementation of an object cannot leak outside its owner. In Obsidian,
we are less concerned with encapsulation and more focused on sound typestate semantics. This
allows us to avoid the strict nature of these encapsulation-based approaches while accepting their
premise: Typically, good architecture results in an aliasing structure in which one “owner” of a
particular object controls the object’s lifetime and, likely, many of the changes to the object.

Gordon et al. [2012] describes a type system that uses permissions to enable safe concurrency.
This work focuses on concurrency but does not help with reasoning about object protocols (as
typestate does). Although the significant restrictions that are there to handle concurrency are war-
ranted in those contexts, because blockchain systems are now always sequential, this complexity is
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not needed for Obsidian. For example, isolated references in Gordon et al. [2012] do not allow read-
only (readable) aliases to mutable objects reachable from the isolated references; owned references
in Obsidian have no such restriction, because Obsidian does not need to support concurrency.

Linear types, which facilitate reasoning about resources, have been studied in depth since
Wadler’s 1990 paper [Wadler 1990] but have not been adopted in many programming languages.
Rust [Mozilla Research 2015] is one exception, using a form of linearity to restrict aliases to muta-
ble objects. This limited use of linearity did not require the language to support as rich a permis-
sion system as Obsidian does; for example, Rust types cannot directly express states of referenced
objects. Alms [Tov and Pucella 2011] is an ML-like language that supports linear types; unlike
Obsidian, it is not object oriented. Session types [Caires and Pfenning 2010] are another way of
approaching linear types in programming languages, as in Concurrent CO [Willsey et al. 2017].
However, session types are more directly suited for communicating, concurrent processes, which
is very different from a sequential, stateful setting as is the case with blockchains.

2.3 Typestate

Fickle [Drossopoulou et al. 2002] was one approach to allow objects to change class at execution
time, but Fickle did not allow references to include any type specifications pertaining to the states
of the referenced objects. DeLine investigated using typestate in the context of object-oriented
systems [DeLine and Fahndrich 2004], finding that subclassing causes complicated issues of partial
state changes; we avoid that problem by not supporting subclassing. Plaid [Sunshine et al. 2011]
and Plural [Bierhoff and Aldrich 2008] are the most closely related systems in terms of their type
systems’ features. Both languages were complex, and the authors noted the complexity in certain
cases, e.g., fractional permissions make the language harder to use but were rarely used and even
then primarily for concurrency [Bierhoff et al. 2011]. Sunshine et al. [2014] showed typestate to be
helpful in documentation when users need to understand object protocols; we used that conclusion
as motivation for our language design.

Silica (Section 6), the core of Obsidian, is based on Featherweight Typestate (FT) [Garcia et al.
2014]. However, since Silica is designed as the core of a user-facing programming language, there
are significant differences, because we wanted our core language to allow us to formalize partic-
ular operations that we included for usability reasons in the surface language. For example, Silica
replaces FT’s atomic field swap with field assignment. This allows fields that temporarily have
modes that differ from their declarations, facilitating a style of programming that our participants
preferred in our formative user studies. This approach is related to the approach taken in Naden
et al. [2012], where fields can be unpacked, but in Silica, unpacking is only possible via the this
reference to maintain encapsulation. Key differences between Silica and FT are shown in Table 1.

Silica avoids class-level inheritance to simplify reasoning about programs. To formalize expres-
sion of (a) fields that are common to more than one state and (b) a type system that is aware of
all possible (nominal) states of a particular object, Silica defines a notion of state in addition to a
notion of contract. FT only has a notion of class and expects the programmer to simulate states by
specifying multiple classes that interoperate.

Support for dynamic state tests is an important feature to facilitate practical programming. Sup-
port for these dynamic state tests has been found to be critical for expressiveness in other object-
oriented contexts as well [Bierhoff et al. 2009]. Unlike FT, Silica supports expressions that execute
dynamic state tests so that programs can branch according to the result.

Silica fuses the notions of typestate and permission into one type construct, unlike FT, which has
separate notions of permission and state guarantee. This approach allows the syntax of Silica to
exactly express the set of possible reference types. Silica also distinguishes between asset contracts
and non-asset contracts; owning references to asset contracts are treated linearly rather than in
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Table 1. Key Differences between Featherweight Typestate and Silica

Featherweight Typestate Silica

pure references cannot be used to mutate Unowned references are only as restricted as

fields of referenced objects necessary for soundness: they cannot be used to
change nominal state but can be used to write
fields

No dynamic state tests Dynamic state tests

Types integrate state guarantees, but do not  Separate contract and state constructs
separate state from class

Inheritance No inheritance
Typestate is integrated with class Typestate implies ownership
No linear assets Linear assets with explicit disown

an affine way (i.e., linear references must be conserved, whereas affine references can be lost). FT
has no way of treating references linearly.

Silica supports parametric polymorphism, a key feature requested by our industrial stakehold-
ers. Although this makes the language more complex, we think this complexity is outweighed by
the benefit of the feature, enabling (for example) reusable containers.

As a result, although some aspects of the system are more complex than FT, Silica is more
expressive in the above respects. Silica serves as a sound foundation for Obsidian but could be
used or adapted for other typestate-oriented languages.

Although the user-centered design aspects of Obsidian [Coblenz et al. 2019a] are not the focus
of this article, others have had success applying user-centered methods to tools for developers.
For example, Myers et al. [2016] argued that human-centered methods could be used in a variety
of different tools for software engineers. Pane, Myers, and Miller used HCI techniques to design
a programming language for children [Pane et al. 2002]. Stefik and Siebert used an empirical,
quantitative approach regarding the design of syntax [Stefik and Siebert 2013].

3 INTRODUCTION TO THE OBSIDIAN LANGUAGE

Obsidian is based on several guidelines for the design of smart contract languages that we identified
in Coblenz et al. [2019b]. Briefly, those guidelines are as follows:

e Strong static safety: Bugs are particularly serious when they occur in smart contracts. In
general, it can be impossible to fix bugs in deployed smart contracts because of the im-
mutable nature of blockchains. Obsidian emphasizes a novel, strong, static type system to
detect important classes of bugs at compile time. Among common classes of bugs is loss of
assets, such as virtual currency.

e User-centered design: A proposed language should be as usable as possible. We integrated
feedback from users to maximize users’ effectiveness with Obsidian.

e Blockchain-agnosticism: Blockchain platforms are still in their infancies and new ones en-
ter and leave the marketplace regularly. Being a significant investment, a language design
should target properties that are common to many blockchain platforms.

We were particularly interested in creating a language that we would eventually be able to eval-
uate with users, while at the same time significantly improving safety relative to existing language
designs. In short, we aimed to create a language that we could show was more effective for pro-
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grammers. To make this practical, we made some relatively standard surface-level design choices
that would enable our users to learn the core language concepts more easily, while using a so-
phisticated type system to provide strong guarantees. Where possible, we chose approaches that
would enable static enforcement of safety, but in a few cases we moved checks to execution time to
enable a simple design for users or a more precise analysis (for example, in dynamic state checks,
Section 4.5).

Typestate-oriented programming [Aldrich et al. 2009] has been proposed to allow specification
of protocols in object-oriented settings. For example, a File can only be read when it is in the Open
state, not when it is in the Closed state. By lifting these specifications into types, typestate-oriented
programming languages allow static checking of adherence to protocols and improve the ability of
programmers to reason effectively about how to use the interfaces correctly [Sunshine et al. 2014].
Featherweight Typestate [Garcia et al. 2014] is a core calculus for a class of typestate languages.
However, we found in user studies that our early prototypes of Obsidian, which were based on
a simplified version of this calculus, led to significant user confusion [Coblenz et al. 2019a]. To
address these problems, we elicited blockchain language requirements from blockchain application
implementations and proposals [Coblenz et al. 2019b]. These requirements motivated the design
of a new formalism; we designed Silica, a new typestate calculus that, despite its simplicity, still
allows users to express nearly all the properties that earlier typestate calculi enabled. Silica also
supports key features that we observed users expected to have, such as dynamic state tests and
field assignment.

We selected an object-oriented approach, because smart contracts inevitably implement state
that is mutated over time, and object-oriented programming is well known to be a good match
to this kind of situation. This approach is also a good starting point for our users, who likely
have some object-oriented programming experience. However, to improve safety relative to tradi-
tional designs, Obsidian omits inheritance, which is error-prone due to the fragile base class prob-
lem [Mikhajlov and Sekerinski 1998], in which seemingly innocuous changes to a base class can
break derived classes. We leveraged some features of the C-family syntax, such as blocks delimited
with curly braces, dots for separating references from members, and so on, to improve learnabil-
ity for some of our target users. Following blockchain convention, Obsidian uses the keyword
contract rather than class. Because of the transactional semantics of invocations on blockchain
platforms, Obsidian uses the term transaction rather than method. Transactions can require that
their arguments, including the receiver, be in specific states in order for the transaction to be
invoked.

Since smart contracts frequently manipulate assets, such as cryptocurrencies, we designed Ob-
sidian to support linear types [Wadler 1990], which allow the compiler to ensure that assets are nei-
ther duplicated nor lost accidentally. These linear types integrate consistently with typestate, since
typestate-bearing references are affine (i.e., cannot be duplicated but can be dropped as needed).
A particular innovation in this approach is the fusion of linear references to assets with affine
references to non-assets. Whether a reference is linear or affine depends on the declaration of the
type to which the reference refers.

The example in Figure 1 shows some of the key features of Obsidian. TinyVendingMachine is
a main contract, so it can be deployed independently to a blockchain. A TinyVendingMachine
has a very small inventory: just one candy bar. It is either Full, with one candy bar in inventory,
or Empty. Clients may invoke buy on a vending machine that is in Full state, passing a Coin as
payment. When buy is invoked, the caller must initially own the Coin, but after buy returns, the
caller no longer owns it. buy returns a Candy to the caller, which the caller then owns. After buy
returns, the vending machine is in state Empty.
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1 // This vending machine sells candy in exchange for coins.

2 main asset contract TinyVendingMachine {

3 // Fields defined at the top level are in scope in all states.
4 Coins @ Owned coinBin;

5

6 state Full {

7 // inventory is only in scope when the object is in Full state.
8 Candy @ Owned inventory;

9 }

10 state Empty; // No candy if the machine is empty.

11

12 TinyVendingMachine () {

13 coinBin = new Coins(); // Start with an empty coin bin.

14 ->Empty; // start in the Empty state

15 3}

16

17 // this must be in the Empty state to call restock, and

18 // this transitions to Full state

19 // ¢ references a Candy that is initially Owned by the caller, and ends up
20 // Unowned by the caller since it is owned by this

21 transaction restock(TinyVendingMachine @ Empty >> Full this,
22 Candy @ Owned >> Unowned c) {

23 // transition to the Full state with ¢ as the inventory

24 ->Full(inventory = c);

25 3}

26

27 transaction buy(TinyVendingMachine @ Full >> Empty this,

28 Coin @ Owned >> Unowned c) returns Candy @ Owned {
29 coinBin.deposit(c);

30 Candy result = inventory;

31 ->Empty;

32 return result;

33 3}

34

35 transaction withdrawCoins() returns Coins @ Owned {

36 Coins result = coinBin;

37 coinBin = new Coins();

38 return result;

39 3}

40 3}

Fig. 1. Atiny vending machine implementation, showing key features of Obsidian.

Smart contracts commonly manipulate assets, such as virtual currencies. Some common smart
contract bugs pertain to accidental loss of assets [Delmolino et al. 2016]. If a contract in Obsidian
is declared with the asset keyword, then the type system requires that every instance of that
contract have exactly one owner. This enables the type checker to report an error if an owned
reference goes out of scope. For example, assuming that Coin was declared as an asset, if the
author of the buy transaction had accidentally omitted the deposit call, then the type checker
would have reported the loss of the asset in the buy transaction. Any contract that has an Owned
reference to another asset must itself be an asset.
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Object@Unowned Object@Shared
Object@Unowned l Object@Unowned Object@Shared l Object@Shared

Object@Owned Object@Unowned Object@Unowned

(@) (b)

Fig. 2. Some common aliasing scenarios. (a) An object with one owner; (b) a shared object.

Table 2. A Summary of Modes in Obsidian

Typestate
Mode Meaning mutation
Owned This is the only reference to the object that is owned. There may Permitted
be many Unowned aliases but no Shared aliases.
Unowned There may or may not be any owned aliases to this object, but Forbidden
there may be many other Unowned or Shared aliases.
Shared This is one of potentially many Shared references to the object. ~ Permitted
There are no owned aliases.
state name(s) This is an owned reference and also conveys the fact that the Permitted

referenced object is in one of the specified states. There may be
Unowned aliases but no Shared or Owned aliases.

References to objects have types according to both the contract of the referenced object and
a mode, which denotes information about ownership. Modes are separated from contract names
with an @ symbol. Exactly one reference to each asset contract instance must be Owned; this ref-
erence must not go out of scope. For example, an owned reference to a Coin object can be written
Coin@Owned. Ownership can be transferred between references via assignment or transaction in-
vocation. The compiler outputs an error if a reference to an asset goes out of scope while it is
Owned. Ownership can be explicitly discarded with the disown operator.

Unowned is the complement to Owned: An object has at most one Owned reference but an ar-
bitrary number of Unowned references. Unowned references are not linear, as they do not convey
ownership. They are nonetheless useful. For example, a Wallet object might have owning refer-
ences to Money objects, but a Budget object might have Unowned aliases to those objects so that
the value of the Money can be tracked (even though only the Wallet is permitted to transfer the
objects to another owner). Alternatively, if there is no owner of a non-asset object, then it may
have Shared and Unowned aliases. Examples of some of these scenarios are shown in Figure 2 to
provide some intuition. A summary of modes is shown in Table 2.
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In Obsidian, the mode portion of a type can change due to operations on a reference, so trans-
action signatures can specify modes both before and after execution. As in Java, a first argument
called this is optional; when present, it is used to specify initial and final modes on the receiver.
The > symbol separates the initial mode from the final one. In the example of Figure 1, the
signature of buy (lines 27 and 28) indicates that buy must be invoked on a TinyVendingMachine
that is statically known to be in state Full, passing a Coin object that the caller owns. When buy
returns, the receiver will be in state Empty and the caller will no longer have ownership of the
Coin argument.

Obsidian contracts can have constructors (line 12 above), which initialize fields as needed. If a
contract has any states declared, then every instance of the contract must be in one of those states
from the time each constructor exits.

Objects in smart contracts frequently maintain high-level state information [Ethereum Founda-
tion 2020c], with the set of permitted transactions depending on the current state. For example, a
TinyVendingMachine might be Empty or Full, and the buy transaction can only be invoked on
a Full machine. Prior work showed that including state information in documentation helped
users understand how to use object protocols [Sunshine et al. 2014], so we include first-class
support for states in Obsidian. By using typestate in Obsidian, the compiler can ensure that ob-
jects are manipulated correctly according to their states. State information can be captured in a
mode. For example, TinyVendingMachine@Full is the type of a reference to an object of contract
TinyVendingMachine with mode Full. In this case, the mode denotes that the referenced object
is statically known to be in state Full.

State is mutable; objects can transition from their current state to another state via a transition
operation. For example, ->Full (inventory = c) sets the state of a TinyVendingMachine to the
Full state, initializing the inventory field of the Full state to c. This leads to a potential difficulty:
What if a reference to a TinyVendingMachine with mode Empty exists while the state transitions
to Full? To prevent this problem, typestate is only available with references that also have own-
ership. Because of this, there is no need to separately denote ownership in the syntax; we simply
observe that every typestate-bearing reference is also owned. Then, Obsidian restricts the opera-
tions that can be performed through a reference according to the reference’s mode. In particular, if
an owned reference might exist, then non-owning references cannot be used to mutate typestate.
If no owned references exist, then all references permit state mutation. In contrast, although an
object may have multiple Shared aliases, those references do not specify typestate, and an object
that has an Owned reference cannot also have a Shared reference, so the same soundness problem
does not exist for Shared.

States can be defined with the asset keyword, in which case an instance of the contract repre-
sents an asset that should not be lost whenever it is in that state. For example, an insurance policy
might own Money while the policy is active to ensure that claims can be paid, but after the policy
changes to an expired state, the policy no longer holds the money.

As another example of the relevance of linearity in smart contracts, we wrote an Obsidian imple-
mentation of the ERC-20 token standard [Vogelsteller and Buterin 2015], which is shown below. In
our implementation, the basic arithmetic of token value is implemented in ExampleToken, which
is trusted code. In practice, this can be implemented in reusable library code. In contrast, the rest
of the implementation in ExampleTokenBank does not use arithmetic directly. As a result, the
compiler can ensure that no instances of ExampleToken are lost accidentally.

The example shows how linear assets are managed in Obsidian. In lines 84 and 92, the tokens
owned by the from and to accounts are temporarily removed from the balances dictionary. Then,
the appropriate amount of tokens are split off in line 101 and merged with the to account’s tokens
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on line 102. Finally, the tokens are restored to the balances dictionary. This style of manipulation
is common in Obsidian: Rather than mutating the tokens inside a collection, they are removed and
tracked linearly, and then the new balance is restored. In each operation, the type system tracks
ownership of the tokens. Any arithmetic is encapsulated inside the token implementation. This
contrasts with a typical Solidity implementation, in which arithmetic is used directly and is not
checked by the compiler.

The example works within the framework of ERC-20. However, linearity allows another possi-
ble way to design token economies. Instead of having a central tracking system (a bank) on the
blockchain recording who owns each number of tokens, we could regard token objects as capabil-
ities [Boyland et al. 2001] that have value independent of a central bank. Then, no central contract
on the blockchain need track a mapping from identity to balance; instead, those who own tokens
will hold owning references to their tokens, and to transfer ownership, the owner can leverage the
ownership transfer semantics in Obsidian. Of course, when ownership passes from the blockchain
to outside the blockchain, or to contracts not written in Obsidian, there must be dynamic checks
at the interface to ensure that untrusted code does not duplicate tokens.

The implementation leverages Dict, a polymorphic dictionary implementation. In practice, the
implementation of Dict might be replaced by a platform-native primitive, such as native mappings
on Ethereum or HashMap instances on Hyperledger Fabric.

1 import "Dict.obs”

2 import "Integer.obs”

3

4 asset interface ObsidianToken {

5 transaction getValue() returns int;

6 transaction merge(ObsidianToken@Owned >> Unowned other);
7 transaction split(int val) returns ObsidianToken@Owned;

8 3

9

10 asset contract ExampleToken implements ObsidianToken {

11 int value;

12

13 ExampleToken@Owned (int v) {

14 value = v;

15 }

16

17 transaction getValue(ExampleToken@Unowned this) returns int {
18 return value;

19 }

20

21 transaction merge(ObsidianToken@Owned >> Unowned other) {
22 value = value + other.getValue();

23 disown other;

24 }

25

26 transaction split(ExampleToken@Owned this, int val) returns ExampleToken@Owned {
27 if (val > value) {

28 revert ("Can't split off more than the existing value");
29 }

30 ExampleToken other = new ExampleToken(val);

31 value = value - val;

32 return other;

33 }

34 3

35
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36 // ERC20 has been slightly adapted for Obsidian, since Obsidian does not have

37 // a built-in authentication mechanism.

38 asset interface ERC20 {

39 transaction totalSupply() returns int;

40 transaction balanceOf (int ownerAddress) returns int;

41 transaction transfer(int fromAddress, int toAddress, int value) returns bool;
42

43 // - allow ownerAddress to withdraw from your account,

44 // multiple times, up to the value amount.

45 transaction approve(int ownerAddress, int fromAddress, int value) returns bool;
46

47 // Returns the amount of allowance still available.

48 transaction allowance(int ownerAddress, int fromAddress) returns int;

49

50 // Transfers tokens from an allowance that has already been granted.

51 transaction transferFrom(int senderAddr, int fromAddr, int toAddr, int value)
52 returns bool;

53}

54

55 main asset contract ExampleTokenBank implements ERC20 {

56 int totalSupply;

57 Dict[Integer, ExampleToken]@Owned balances;

58

59 // map from fromAddress to (map from spender to amount)

60 Dict[Integer, Dict[Integer, Integer]@Owned]@Owned allowed;

61

62 ExampleTokenBank@Owned () {

63 totalSupply = 0;

64 balances = new Dict[Integer, ExampleToken@Owned](new IntegerComparator())
65 allowed = new Dict[Integer, Dict[Integer, Integer]@Owned](new IntegerComparator());
66 }

67

68 transaction totalSupply() returns int {

69 return totalSupply;

70 3}

71

72 transaction balanceOf(int ownerAddress) returns int {

73 Option[ExampleToken@Unowned] balance = balances.peek(new Integer (ownerAddress));
74 if (balance in None) {

75 return 0;

76 }

77 else {

78 return balance.unpack().getValue();

79 }

80 }

81

82 transaction transfer(int fromAddress, int toAddress, int value) returns bool {
83 Integer fromIntegerAddress = new Integer(fromAddress);

84 Option[ExampleToken@Owned] fromBalance = balances.remove(fromIntegerAddress);
85 if (fromBalance in None) {

86 return false;

87 }

88 else {

89 ExampleToken fromTokens = fromBalance.unpack();

90 if (value <= fromTokens.getValue()) {

91 Integer toIntegerAddress = new Integer (toAddress);

92 Option[ExampleToken@Owned] toBalance = balances.remove(toIntegerAddress);
93 ExampleToken toTokens;

94 if (toBalance in Some) {

95 toTokens = toBalance.unpack();

96 }

97 else {

98 toTokens = new ExampleToken(@); // 0 value
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99 3}

100

101 ExampleToken tokensToMove = fromTokens.split(value);

102 toTokens.merge (tokensToMove);

103 balances.insert(toIntegerAddress, toTokens);

104 balances.insert(fromIntegerAddress, fromTokens);

105

106 return true;

107 }

108 else {

109 // Insufficient funds available.

110 balances.insert(fromIntegerAddress, fromTokens);

111 return false;

112 }

113 3}

114 3}

115

116 // Records a new allowance. Replaces any previous allowance.
117 transaction approve(int ownerAddress, int fromAddress, int value) returns bool {
118 Integer ownerAddressInteger = new Integer(ownerAddress);

119 Option[Dict[Integer, Integer]@Owned] ownerAllowancesOption =
120 allowed.remove (ownerAddressInteger);

121

122 Dict[Integer, Integer] ownerAllowances;

123 if (ownerAllowancesOption in None) {

124 ownerAllowances = new Dict[Integer, Integer@Owned](new IntegerComparator());
125 3}

126 else {

127 ownerAllowances = ownerAllowancesOption.unpack();

128 3}

129

130 Option[Integer@Owned] oldAllowance = ownerAllowances.replace(
131 new Integer(fromAddress),
132 new Integer(value));
133 allowed.insert(ownerAddressInteger, ownerAllowances);

134

135 // Options are assets because they CAN hold assets,

136 // but this one doesn't happen to do so.

137 disown oldAllowance;

138 return true;

139 3}

140

141 transaction allowance(int ownerAddress, int fromAddress) returns int {
142 Option[Dict[Integer, Integer]@Unowned] ownerAllowancesOption =
143 allowed.peek(new Integer (ownerAddress));

144 switch (ownerAllowancesOption) {

145 case None {

146 return 0;

147 }

148 case Some {

149 Dict[Integer, Integer@Owned] ownerAllowances = ownerAllowancesOption.unpack();
150 Option[Integer@Unowned] spenderAllowance =

151 ownerAllowances.peek(new Integer (fromAddress));

152 if (spenderAllowance in None) {

153 return 0;

154 3}

155 else {

156 return spenderAllowance.unpack().getValue();

157 3

158 }

159 3}

160 }

161
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162 // senderAddress wants to transfer value tokens from fromAddress to toAddress.
163 // This requires that an allowance have been set up in advance and that
164 // fromAddress has enough tokens.

165 transaction transferFrom(int senderAddr, int fromAddr, int toAddr, int value)
166 returns bool

167 {

168 int allowance = allowance(senderAddress, fromAddress);

169 if (allowance >= value) {

170 int newAllowance = allowance - value;

171 bool transferSucceeded = transfer(fromAddress, toAddress, value);
172 if (!transferSucceeded) {

173 // Perhaps not enough tokens were available to transfer.

174 return false;

175 3}

176 approve (senderAddress, fromAddress, newAllowance);

177

178 return true;

179 3

180 else {

181 return false;

182 3

183 3}

184 3}

4 OBSIDIAN LANGUAGE DESIGN PROCESS AND DETAILS

Obsidian is the first object-oriented language (of which we are aware) to integrate linear assets
and typestate. This combination—and, in fact, even just including typestate—could result in a de-
sign that was hard to use, since typical typestate languages require users to understand a com-
plex permissions model. We also aimed to simplify the job of the programmer relative to exist-
ing blockchain programming languages by eliminating onerous, error-prone programming tasks,
such as writing serialization and deserialization code. In this section, we describe how we designed
language features to improve user experience, in some cases driven by results of formative user
studies [Barnaby et al. 2017]. Some other system features, such as serialization, are discussed in
Section 6. Rather than relying only on our own experience and intuition, we invited participants to
help us assess the tradeoffs of different design options. This enabled us to take a more data-driven
approach in our language design, as suggested by Stefik and Hanenberg [2014] and Coblenz et al.
[2018]. We take the perspective that we should integrate qualitative methods in addition to quan-
titative methods to drive language design in a direction that is more likely to be beneficial for
users.

The syntax of Obsidian is specified in Section 7 as an extension and modification of the syntax
of Silica, and the semantics are defined by translation to Silica.

4.1 Type Declarations, Annotations, and Static Assertions

Obsidian requires type declarations of local variables, fields, and transaction parameters. In ad-
dition to providing familiarity to programmers who have experience with other object-oriented
languages, there is a hypothesis that these declarations may aid in usability by providing docu-
mentation, particularly at interfaces [Coblenz et al. 2014]. Traditional declarations are also typical
in prior typestate-supporting languages, such as Plaid [Sunshine et al. 2011]. Unfortunately, type-
state is incompatible with the traditional semantics of type declarations: programmers normally
expect that the type of a variable always matches its declared type, but mutation can result in the
typestate no longer matching the initial type of an identifier. This violates the consistency usability
heuristic [Nielsen and Molich 1990] and is a potential source of reduced code readability, since
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determining the type of an identifier can require reading all the code from the declaration to the
program point of interest.

To alleviate this problem, we introduced static assertions. These have the syntax [e @ mode].
For example, [account @ Open] statically asserts that the reference account is owned and refers
to an object that the compiler can prove is in Open state. Furthermore, to avoid confusion about
the meanings of local variable declarations, Obsidian forbids mode specifications on local variable
declarations.

Static assertions have no implications on the dynamic semantics (and therefore have no execu-
tion time cost); instead, they serve as checked documentation. The type checker verifies that the
given mode is valid for the expression in the place where the assertion is written. A reader of a
typechecked program can be assured, then, that the specified types are correct, and the author can
insert the assertions as needed to improve program understandability.

4.2 State Transitions

Each state definition can include a list of fields, which are in scope only when the object is in the
corresponding state (see line 8 of Figure 1). What, then, should be the syntax for initializing those
fields when transitioning to a different state? Some design objectives included:

e When an object is in a particular state, the fields for that state should be initialized.

e When an object is not in a particular state, the fields for that state should be out of scope.

e According to the user control and freedom heuristic [Nielsen and Molich 1990] and results by
Stylos et al. [Stylos and Clarke 2007], programmers should be able to initialize the fields in
any order, including by assignment. Under this criterion, it does not suffice to only permit
constructor-style simultaneous initialization.

To allow maximum user flexibility without compromising the integrity of the type system, we
implemented a flexible approach. When a state transition occurs, all fields of the target state must
be initialized. However, they can be initialized either in the transition (e.g., -—>S(x = a) initializes
the field x to a) or prior to the transition (e.g., S: : x = a; ->S).In addition, fields that are in scope
in the current state but will not be in scope in the target state must not be owned references to
assets at the transition. Ownership of fields that will go out of scope in a transition must first be
transferred to another reference or disowned before the transition.

4.3 Transaction Scope

Transactions in Obsidian are invoked on a particular receiving object, and are only available when
the receiver is in a particular state. Correspondingly, other typestate-oriented languages support
defining methods inside states. For example, Plaid [Sunshine et al. 2011] allows users to define the
read method inside the OpenFile state to make clear that read can only be invoked when a File
is in the OpenFile state. However, this is problematic when methods can be invoked when the
object is in several states.

Barnaby et al. [2017] considered this question for Obsidian and observed that study participants,
who were given a typestate-oriented language that included methods in states, asked many ques-
tions about what could happen during and after state transitions. They were unsure what this
meant in that context and what variables were in scope at any given time. One participant thought
it should be disallowed to call transactions available in state S1 while writing a transaction that
was lexically in state Start. For this reason, we designed Obsidian so that transactions are defined
lexically outside states. Transaction signatures indicate (via type annotations on a first argument
called this) from which states each transaction can be invoked. This approach is consistent with
other languages, such as Java, which also allows type annotations on a first argument this.
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return result;

1 contract Wallet {

2 Money@Owned money;

3

4 transaction swap (Money @ Owned m) returns Money @ Owned {
5 Money result = money;

6 money = m;

7

8

9

Fig. 3. Obsidian’s approach for handling transitions.

contract Wallet {

state Empty;

state Full {

Money @ Owned money;

transaction swap (Wallet@Full this, Money @ Owned m)
returns Money @ Owned

{
10 // Suppose the transition returns the contents of the old field.
11 Money result = ->Empty;
12 ->Full (money = m);
13 return result;
14 }
15 3}

Fig. 4. An alternative approach for handling transitions.

4.4 Field Type Consistency and Private Transactions

In traditional object-oriented languages, fields always refer either to null or to objects whose
types are subtypes of the fields’ declared types. This presents a difficulty for Obsidian, since the
mode is part of the type, and the mode can change with operations. For example, a Wallet might
have a reference of type Money@Owned. How should a programmer implement swap? One way is
shown in Figure 3.

The problem is that line 5 changes the type of the money field from Owned to Unowned by transfer-
ring ownership to result. Should this be a type error, since it is inconsistent with the declaration
of money? If it is a type error, then how is the programmer supposed to implement swap? One
possibility is to add another state, as shown in Figure 4.

Although this approach might seem like a reasonable consequence of the desire to keep field
values consistent with their types, it imposes a significant burden. First, the programmer is re-
quired to introduce additional states, which leaks implementation details into the interface (unless
we mitigate this problem by making the language more complex, e.g., with private states or via
abstraction over states). Second, this requires that transitions return the newly out-of-scope fields,
but it is not clear how: Should the result be of record type? Should it be a tuple? What if the
programmer neglects to do something with the result? Plaid [Sunshine et al. 2011] addressed the
problem by not including type names in fields, but that approach may hamper code understand-
ability [Coblenz et al. 2014].
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In Obsidian, we permit fields to temporarily reference objects that are not consistent with the
fields’ declarations, but we require that at the end of transactions (and constructors), the fields refer
to appropriately typed objects. This approach is consistent with the approach for local variables,
with the additional postcondition of type consistency. Both local variables and fields of nonprimi-
tive type, and transaction parameters must always refer to instances of appropriate contracts; the
only discrepancy permitted is of mode. Obsidian forbids re-assigning formal parameters to refer
to other objects to ensure soundness of this analysis.

This design decision introduces a problem with re-entrancy: Re-entrant calls from the middle
of a transaction’s body, where the fields may not be consistent with their types, can be dangerous,
since the called transactions are supposed to be allowed to assume that the fields reference objects
consistent with the fields’ types. One way to address this would be by forbidding all re-entrant
calls at an object level of granularity (i.e., only one transaction with a given receiver can be on the
call stack at a given time). However, we regard this as too restrictive, as it precludes even writing
helper transactions.

Instead, Obsidian distinguishes between public and private transactions. To facilitate refactoring
code into appropriate transactions, Obsidian allows private transactions that can be invoked when
fields have types that are inconsistent with their declarations. To enable this, private transactions
declare the expected types of the fields before and after the invocation. For example:

contract AContract {
state S1;
state S2;

AContract@S1 c;
private (AContract@S2 >> S1 c¢) transaction t1() {.. .}

Transaction t1 may only be invoked by transactions of AContract, only on this, and only when
this.c temporarily has type AContract@S2. When t1 is invoked, the compiler checks to make
sure field ¢ has type C@S2, and assumes that after t1 returns, ¢ will have type AContract@S1. Of
course, the body of t1 is checked assuming that ¢ has type C@S2 to make sure that afterward, c
has type C@ST.

This approach allows programmers to extract portions of their transactions into private trans-
actions, which have specified pre- and post- conditions regarding the field types. The restric-
tion that these transactions are private arises, because the type checker only tracks the types of
fields of this individually (and assumes all other objects have fields of types consistent with their
declarations).

Avoiding unsafe re-entrancy has been shown to be important for real-world smart contract
security, as millions of dollars were stolen in the DAO hack via a re-entrant call exploit [Daian
2016].

4.5 Dynamic State Checks

The Obsidian compiler enforces that transactions can only be invoked when it can prove statically
that the objects are in appropriate states according to the signature of the transaction to be invoked.
In some cases, however, it is impossible to determine this statically. For example, consider redeem
in Figure 5. At the beginning of the transaction, the contract may be in either state Active or
state Expired. However, inside the dynamic state check block that starts on line 29, the compiler
assumes that this is in state Active. The compiler generates a dynamic check of state according
to the test. However, regarding the code in the block, there are two cases. If the dynamic state
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1 main asset contract GiftCertificate {

2 Date @ Unowned expirationDate;

3

4 state Active {

5 Money @ Owned balance;

6 }

7

8 state Expired;

9 state Redeemed;

10

11 GiftCertificate(Money @ Owned >> Unowned b, Date @ Unowned d)
12 {

13 expirationDate = d;

14 ->Active(balance = b);

15 3}

16

17 transaction checkExpiration(GiftCertificate @ Active >> (Active | Expired) this)
18 {

19 if (getCurrentDate().greaterThan(expirationDate)) {
20 disown balance;

21 ->Expired;

22 3}

23 3}

24 transaction redeem(GiftCertificate @ Active >> (Expired | Redeemed) this)
25 returns Money@Owned

26 {

27 checkExpiration();

28

29 if (this in Active) {

30 Money result = balance;

31 ->Redeemed;

32 return result;

33 3}

34 else {

35 revert "Can't redeem expired certificate";

36 3}

37 3}

38 transaction getCurrentDate(GiftCertificate @ Unowned this)
39 returns Date @ Unowned

40 {

41 return new Date();

42 3}

43 3

Fig. 5. A dynamic state check example.

check is of an Owned reference x, then it suffices for the type checker to check the block under
the assumption that the reference is of type according to the dynamic state check. However, if the
reference is Shared, then there is a problem: What if code in the block changes the state of the
object referenced by x? This would violate the expectations of the code inside the block, which
is checked as if it had ownership of x. We consider the cases, since the compiler always knows
whether an expression is Owned, Unowned, or Shared:

o If the expression to be tested is a variable with Owned mode, then the body of the if state-
ment can be checked assuming that the variable initially references an object in the specified
state, since that code will only execute if that is the case due to the dynamic check.
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o If the expression to be tested is a variable with Unowned mode, then there may be another
owner (and the variable cannot be used to change the state of the referenced object anyway).
In that case, typechecking of the body of the if proceeds as if there had been no state test,
since it would be unsafe to assume that the reference is owned. However, this kind of test
can be useful if the desired behavior does not statically require that the object is in the
given state. For example, in a university accounting system, if a Student is in Enrolled
state, then their account should be debited by the cost of tuition this semester. The debit
operation does not directly depend on the student’s state; the state check is a matter of
policy regarding who gets charged tuition.

o If the expression to be tested is a variable with Shared mode, then the runtime maintains a
state lock that pertains to other shared references. The body is checked initially assuming
that the variable owns a reference to an object in the specified state. Then, the type checker
verifies that the variable still holds ownership at the end and that the variable has not been
re-assigned in the body. However, at execution time, if any other Shared reference is used
to change the state of the referenced object (for example, via another alias used in a trans-
action that is invoked by the body of the dynamic state check block), then the transaction is
aborted (recall that the blockchain environment is sequential, so there is only one top-level
transaction in progress at a time). This approach enables safe code to complete but ensures
that the analysis of the type checker regarding the state of the referenced object remains
sound. This approach also bears low execution time cost, since the cost of the check is borne
only in transitions via Shared references. An alternative design would require checks at in-
vocations to make sure that the referenced object was indeed in the state the type checker
expected, but we expect our approach has significantly lower execution time cost. Further-
more, our approach results in errors occurring immediately on transition. The alternative
approach would give errors only when the referenced object was used, which could be sub-
stantially after the infringing transition, which would require the programmer to figure out
which transition caused the bug.

o If the expression to be tested is not a variable, then the body of the if statement is checked
in the same static context as the if statement itself. It would be unsafe for the compiler
to make any assumptions about the type of future executions of the expression, since the
type may change. This case only occurs in Obsidian, not in the underlying Silica formalism,
which is in A-normal form [Sabry and Felleisen 1992].

The dynamic state check mechanism is related to the focusing mechanism of Fahndrich and
DeLine [2002]. Dynamic state checks in Obsidian detect unsafe uses of aliases more precisely (less
conservatively) than focusing, enabling many more safe programs to typecheck. Furthermore, Ob-
sidian does not require the programmer to specify guards, which in focusing enable the compiler
to reason conservatively about which references may alias.

4.6 Parametric Polymorphism

Parametric polymorphism is particularly important for Obsidian to maintain safety of collections
and avoid needless code duplication. Requiring users to cast objects retrieved from containers to
the appropriate type would defeat the point of the language, which is to provide strong static
guarantees, since those casts would have to be checked dynamically. Furthermore, there would
have to be separate containers for different modes, since a container’s elements would need to be
either Unowned, Shared, or Owned. In Obsidian, a contract can have two type parameters: one for
a contract and one for a mode. For example, part of the polymorphic LinkedList implementation
is as follows:
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1 contract LinkedList[T@s] {
2 state Empty;

3 state HasNext {
4 LinkedList[T@s]@Owned next;

5 T@s value;

6 3

7 transaction append(LinkedList@Owned this, T@s >> Unowned obj) {
8

9

10 3

Line 1 shows that the contract type is parameterized by the contract variable T, and the mode is
parameterized by the mode variable s. In line 4, the next field is an Owned reference to an object
of type LinkedList[T@s] - that is, a node whose type parameters are the same as the containing
contract’s type parameters. An object of type LinkedList[Money@Owned] is a container that holds
a list of Money references, each of which the container owns. Using a separate parameter for the
mode allows parameterization over states, e.g., a LinkedList[LightSwitch@0On] owns references
toLightSwitch objects that are each in the On state. In line 7, appending an element to a LinkedList
always takes any ownership that was given, and the parameter obj must conform to the type
specified by the type parameter T@s.

5 SYSTEM DESIGN AND IMPLEMENTATION

Our current implementation of Obsidian supports Hyperledger Fabric [The Linux Foundation
2020], a permissioned blockchain platform. In contrast to public platforms, such as Ethereum,
Fabric permits organizations to decide who has access to the ledger, and which peers need to ap-
prove (endorse) each transaction. This typically provides higher throughput and more convenient
control over confidential data than public blockchains, allowing operators to trade off distributed
trust against high performance. Fabric supports smart contracts implemented in Java, so the Ob-
sidian compiler translates Obsidian source code to Java for deployment on Fabric peer nodes. The
Obsidian compiler prepares appropriately structured directories with Java code and a build file.
Fabric builds and executes the Java code inside purpose-build Docker containers that run on the
peer nodes. The overall Obsidian compiler architecture is shown in Figure 6.

The type checker is syntax-directed and therefore relatively cheap to run. As is typical, the type
checker maintains a context mapping variables to types as it iterates through the body of each
transaction, and updates the context with the changes that result from executing each statement.
Since local variable declarations do not include modes, local variables start out with a specified
context and “inferred” mode; the mode is updated as soon as an assignment occurs. Otherwise,
variables always have a known mode; after branches, the output contexts of both branches are
merged as is specified in the Silica static semantics (AJ:33 in Appendix A). If the merge is not
possible, then the compiler reports an error.

5.1 Storage in the Ledger

Fabric provides a key/value store for persisting the state of smart contracts in the ledger. As a re-
sult, Fabric requires that smart contracts serialize their state in terms of key/value pairs. In other
smart contract languages, programmers are required to manually write code to serialize and dese-
rialize their smart contract data. In contrast, Obsidian automatically generates serialization code,
leveraging protocol buffers [Google Inc. 2019] to map between message formats and sequences of
bytes. When a transaction is executed, the appropriate objects are lazily loaded from the key/value
store as required for the transaction’s execution. Lazy loading is shallow: The object’s fields are
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Fig. 6. Obsidian system architecture.

loaded, but objects that fields reference are not loaded until their fields are needed. After execut-
ing the transaction, Obsidian’s runtime environment automatically serializes the modified objects
and saves them in the ledger. This means that aborting a transaction and reverting any changes is
very cheap, since this entails not setting key/value pairs in the store, flushing the heap of objects
that have been lazily loaded, and (shallowly) re-loading the root object from the ledger. This lazy
approach decreases execution cost and frees the programmer from needing to manually load and
unload key/value pairs from the ledger, as would normally be required on Fabric.

Although transactions can invoke other transactions, the transactional semantics do not nest.
For example, if T1 invokes T2, and T2 reverts, then any changes made by T1 are also reverted.

5.2 Obsidian Client Programs

The convention for most blockchain systems is that smart contracts are written in one language,
such as Solidity, and client programs are written in a different language, such as JavaScript. Un-
fortunately, in Solidity, transaction arguments and outputs must be primitives, not objects; arrays
of bytes can be transferred, but the client and server must each implement corresponding serial-
ization and deserialization code. The interface for a given contract is specified in an Application
Binary Interface (ABI), documented in a schema written in JavaScript. If there are any incompati-
bilities between the semantics of the JavaScript serialization code and the semantics of the Solidity
contract that interprets the serialized message, then there can be bugs.

Obsidian addresses this problem by allowing users to write client programs in Obsidian. Client
programs can reference the same contract implementations that were instantiated on the server,
obviating the need for two different implementations of data structures. Clients use the same
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1 import "TinyVendingMachine.obs"

2

3 main contract TinyVendingMachineClient {

4 transaction main(remote TinyVendingMachine@Shared machine) {
5 restock (machine);

6

7 if (machine in Full) {

8 Coin ¢ = new Coin();

9 remote Candy candy = machine.buy(c);

10 eat(candy);

11 3}

12 3}

13

14 private transaction restock(remote TinyVendingMachine@Shared machine) {
15 if (machine in Empty) {

16 Candy candy = new Candy();

17 machine.restock(candy);

18 }

19 1

20

21 private transaction eat(remote Candy @ Owned >> Unowned c) {
22 disown c;

23 3}

24}

Fig. 7. Asimple client program, showing how clients reference a smart contract on the blockchain. Note that
the blockchain-side smart contract has been modified (relative to Figure 1) to have Shared receivers, since
top-level objects are never owned by clients.

automatically generated serialization and deserialization code that the server does. As a result,
Obsidian permits arbitrary objects (encoded via protocol buffers) to be passed as arguments and
returned from transactions. Since the protocol buffer specifications are emitted by the Obsidian
compiler, any client (even non-Obsidian clients) can use these specifications to correctly serialize
and deserialize native Obsidian objects to invoke Obsidian transactions and interpret their results.

The Obsidian client program has a main transaction, which takes a remote reference. The key-
word remote, which modifies types of object references, indicates that the type refers to a remote
object. The compiler implements remote references with stubs, via an RMI-like mechanism. When
a non-remote reference is passed as an argument to a remote transaction, the referenced object
is serialized and sent to the blockchain. Afterward, the reference becomes a remote reference, so
that only one copy of the object exists (otherwise mutations to the referenced object on the client
would not be reflected on the blockchain, resulting in potential bugs). This change in type is simi-
lar to how reference modes change during execution. Figure 7 shows a simple client program that
uses the TinyVendingMachine above. The main transaction takes a remote reference to the smart
contract instance.

Every Obsidian object has a unique ID, and references to objects can be transmitted between
clients and the blockchain via object ID. There is some subtlety in the ID system in Obsidian:
All blockchain transactions must be deterministic so that all peers generate the same IDs, so it is
impossible to use traditional (e.g., timestamp-based or hardware-based) UUID generation. Instead,
Obsidian bases IDs on transaction identifiers, which Fabric provides, and on an index kept in an
ID factory. Since transaction IDs are unique, each transaction can have its own ID factory and still
avoid collisions. The initial index is reset to zero at the beginning of each transaction so that no
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state pertaining to ID generation needs to be stored between transactions. Blockchains provide a
sequential execution environment, so there is no need to address race conditions in ID generation.
When clients instantiate contracts, they generate IDs with a traditional UUID algorithm, since
clients operate off the blockchain.

Blockchains allow clients to interleave their transactions arbitrarily. This does not suffice to
ensure safety in arbitrary Obsidian client programs. For example, suppose a client has code like
this, assuming that c is a reference to a remote (on-blockchain) object:

1 if (c in S1) {
2 c.t1(); // suppose t1 requires that c references an object in state S1
3

3

In the current implementation, because the test and the t1() invocation execute remotely, it is
possible that an intervening transaction could change the state of the referenced object so that
it is no longer in state S1. In the future, however, Obsidian will address this issue in a platform-
appropriate manner. Once the programmer identifies a critical section, one approach is for the
client to wrap the section in a lambda so that the server can execute it in one transaction. This ap-
proach might work well on Ethereum, where clients must pay for the costs of executing code on the
blockchain. However, on Fabric, this approach is problematic, because the security policy is such
that clients should not force the blockchain to execute arbitrary code (for example, including non-
terminating code). An approach that may be more effective is to use optimistic concurrency [Kung
and Robinson 1981], in which smart contracts on the blockchain defer commitment of changes
from clients until the client’s critical section is done; then, either the transaction is committed, or
the changes are discarded because of intervening changes that occurred.

5.3 Ensuring Safety with Untrusted Clients

If a client program is written in a language other than Obsidian, then it may not adhere to Obsid-
ian’s type system. For example, a client program may obtain an owned reference to an object and
then attempt to transfer ownership of that object to multiple references on the blockchain. This is
called the double-spend problem on blockchains: A program may attempt to consume a resource
more than once. To address this problem, the Obsidian runtime keeps a list of all objects for which
ownership has been passed outside the blockchain. When a transaction is invoked on an argu-
ment that must be owned, the runtime aborts the transaction if that object is not owned outside
the blockchain and otherwise removes the object from the list. Likewise, when a transaction argu-
ment or result becomes owned by the client after the transaction (according to the transaction’s
signature), the runtime adds the object to the list. Of course, Obsidian has no way of ensuring safe
manipulation of owned references in non-Obsidian clients, but this approach ensures that each
time an owned reference leaves the blockchain, it only returns once, preventing double-spending
attacks. Obsidian cannot ensure that non-Obsidian clients do not lose their owned references, so
we hope that most client code that manipulates assets will be written in Obsidian.

6 SILICA

In this section, we describe Silica, the core calculus that forms a foundation for Obsidian. Silica is
so named because obsidian glass is composed in large part of silica (65% to 80%) [Encyclopeedia
Britannica 2020]. Silica is designed in the style of Featherweight Typestate [Garcia et al. 2014],
which is itself designed in the style of Featherweight Java [Igarashi et al. 2001]. Silica leverages
key concepts and notation, such as type splitting, from Featherweight Typestate. However, Silica
differs significantly from FT; the differences are described in more detail in Section 2.3.
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Figure 8 shows the syntax of Silica. Silica uses A-normal form [Sabry and Felleisen 1992] as
a simplification to avoid nested expressions in most cases. Note that [] in typewriter typeface
indicates a static assertion, whereas Roman [] indicates an optional part of the syntax. Following
Featherweight Java [Igarashi et al. 2001], the syntax specification uses a horizontal line above a
symbol to indicate that it is a list. To distinguish these lines from the lines that denote judgments,
sequences will be denoted with a thick, orange line, whereas judgments will use a thin, black line.

T represents the type of a reference to an object. It is divided into two parts: T¢ represents the
contract (analogous to a class) and Tst represents the mode. A contract is either a declared type
with some (possibly zero) type parameters, or a type variable. A mode reflects any ownership held
by the reference (a permission) and any state specification.

Contracts are defined in terms of type parameters Tg, states ST, and transactions M. Construc-
tors for a contract C return a reference with permission P. Each argument is passed with initial
type T, but because the constructor assigns parameters to fields, ownership of parameters may
be consumed, resulting in a new mode Tsr. Changes to types are denoted with T>>Tgr. States ST
consist of a state name S and a collection of fields F. In this syntax, if a name is re-used in different
states, then the field is in scope in all of those states. In the implementation, rather than re-using
names, there is special syntax for this: T f available in S1, S1 declares field f that is in scope
in states S1 and S2. This approach avoids duplicated code in user programs.

Because Silica is an expression language, not a statement language, any sequencing must occur
via nested let-bindings. Here, s denotes a simple expression. For now, simple expressions are merely
variables; we will see in the dynamic semantics that sometimes simple expressions can represent
indirect references to memory locations.

Transaction signatures specify initial and final modes for this and for the parameters. Signa-
tures of private transactions also specify initial and final modes for the fields, which for private
transactions may differ from their declared modes.

6.1 Silica Static Semantics

The static semantics make use of auxiliary judgments, which are defined in Appendix A. The
auxiliary judgments are numbered and referenced by number, as in AJ:22.

6.1.1  Preliminary Judgments.

Typing contexts A and type bound contexts I'

The typing context A includes local variables as well as temporary field types, which allow fields
to temporarily have modes that differ from those in the fields” declarations. Type bounds I' is a set
of generic type variables Tg as defined in the grammar in Figure 8. I is used to track the typing
constraints on type variables.

It is assumed that A and I' are permuted as needed to apply the rules, but when a context is
extended with a mapping, the new mapping replaces any previous mapping of the same variable.

r - .
| I,Tc

A =
| Ax:T
| Asf:T

T = T,/T5 | Type splitting

Type splitting specifies how ownership of objects can be shared among aliases. In Ty = T,/Ts,
there is initially one reference of type Ty; afterward, there are two references of type T, and Ts. For
example, an Owned reference can be split into an Owned reference and an Unowned reference.
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—

Tc@Tst

D(T)
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[asset] X@p implements [(T)@Tsr

contract C{Tg ) implements I{T) {ST M}

interface I{Tg ) { ST Mg }
[asset] S F

Tf
T m(Tg) (T>Tst x) Tsr>Tst

private Tsy>Tst f T m{Tg ) (T>Tst x)
Tst > Tst

Mg { return e }

s

s.f

s.m(T (%)
letx:T=eine
new C(T)@S(3)

S —Owned|Shared S(s)
sfi:i=s

S:=s

[ S @ Ts’r]

if s inp Tst then e else e
disown s

pack

X

14:25

m € TRANSACTIONNAMES
S € STATENAMES
p € PERMISSIONVARIABLES

f € FIELDNAMES

(types of contract references)

(types of contracts/interfaces)
(declaration variables)

(state disjunction)
(permission/state variables)
(concrete permission)

(generic type parameter)

(transaction specifying types for
return, arguments, and receiver)

(private transactions also

specify field types)

(field access)

(contract fields, then state fields)
(State transition initializing fields)
(field update, with 1-based indexing)
(variable assignment)

(static assert)

(state test, owned or shared s)

(drop ownership of owned ref.)

(simple expressions)

Fig. 8. Abstract syntax of Silica.
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The relation is defined such that if Ty = T,/T5, and one of the right-side types holds ownership,
then ownership is held by T, not Ts. The maybeOwned judgment (AJ:22) checks a type to see if it
could be owned; ownership is always known except when a type includes a type variable, in which
case the judgment conservatively assumes that the type might be owned. The nonAsset judgment
is defined in AJ:19. The contract function, defined in AJ:4, extracts contract names from types.

Tc = contract(T)
T = T/Tc@Unowned

SPLIT-UNOWNED

SPLIT-SHARED

Tc@Shared = Te@Shared/Tc@Shared

I' + nonAsset(Tc@Tst) maybeOwned(Tc @Tst)
Tc@Tst = Tc@Shared/Tc@Shared

SPLIT-OWNED-SHARED

anit = unit/unit >"HTONT

6.1.2  Main Typing Judgments.

IA s e: T 4 A |Well-typed expressions

Unlike some traditional typing judgments, in addition to an input typing context A, Silica’s
typing judgment includes an output typing context A’. This is because an expression can change
the mode of object references. For example, using a variable that references an object may consume
ownership of the object.

Note thate : T is defined to mean a sequence e : T. Expressions are typechecked in the context of
a simple expression s, which represents this. Initial programs are written using this, but evaluation
of invocations will substitute indirect references for instances of this. The subscript on the turnstile
tracks the value of this in the current invocation.

T-lookup relies on the split judgment (T} = T»/T3) (6.1.1), which describes how a permission in
T can be split between T, and Ts. If ownership is retained after the split, then T; holds ownership
and T3 does not. Thus, T, will be the type of the present usage of s’, whereas any future uses are
left with the permission in T3,

T = 1/Ts
LA s T kg s T AN s Ty

T-LooKkUP.

In a let expression, the bound variable can be an owning reference to an asset, but if so, e; must
consume the ownership (as indicated by disposable, AJ:20).

T;AFseg: Ty AN DA x:Tikrsey: AN ) x: T/ T + disposable(T))

T-LET.
T;ARsletx:Ty=ejiney: T, 4 A”

In assignment operations, any ownership is transferred to the variable that is being written.
This requires that the left-hand-side variable be of disposable type,

Ter =TT I + disposable(T,)

T;A,s" :Ty,s” :Ten kg s :=s" sunit 4 A” s : T, s" : T*

" T-ASSIGN.

To check a new invocation, T-new checks that the types of the arguments are appropriate for
the field declarations in the contract, considering the state in which the object is being initialized.
The subsOk judgment (AJ:29), which is used in T-new, ensures that the given type parameters are
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suitable according to the declaration of C. stateFields (AJ:1) is used to look up the types of the fields
to which the parameters will be assigned,

[;Avrss’: Ty AN T Ty <: stateFields(C(T), S) subsOkr (T, Tg;)
def (C) = contract C(Tg) implements KT {. ..}

T;A +g new C(TY@S(s") : C(TY@S 4 A’

T-NEW.

When accessing a field of this (note that the s in the expression is identical to the s subscript
in the judgement), there are two cases. In the first case (T-THIS-FIELD-DEF), the type of the field is
consistent with the declared type of the field, in which case T-TH1s-FIELD-DEF makes sure that the
field is in scope in all possible current states of the referenced object (via intersectFields, AJ:3). In
the second case (T-THIS-FIELD-CTXT), the field type has been updated due to an assignment, so the
field type comes from an override in the context. In both cases, any ownership that was present is
consumed from the field using type splitting,

s.f ¢ Dom(A) T, f € intersectFields(T) T, = T/T;
LA s:Trss.f :To4ANs:T,s.f:T;

T-THIS-FIELD-DEF,

T = T;/Ts
LA s:T,s.f :Tykss.f:Th4As:T,s.f:Ts

T-THIS-FIELD-CTXT.

A field can be overwritten only if the current reference is disposable, since otherwise assignment
might overwrite owning references to assets,

A ks S.f Te@Tst 4 A F;A’ Fs Sp TC@TéT R
A,,
I' + disposable(Tc@Tst)

DiAvgs.fi=sp:unit 4 A", s.f : Tc@Tgr

T-FIELDUPDATE.

T-INV defines typing when invoking a method m on an expression s; (s .m(Ty)(52)). In invoca-
tions (of both public and private transactions), if the type of an argument differs from the declared
type of the formal parameter, then the final type of the argument may differ from the declared
final type of the parameter. For example, passing an Owned argument as input to a parameter that
expects an Unowned reference is allowed, but the caller retains ownership. The function funcArg
(AJ:34) computes the resulting final types of the arguments given the types of the input arguments,
since if an Owned reference is passed to an initially Unowned formal parameter, the caller retains
ownership even though the declared final type in the formal parameter would be Unowned.

To check an invocation, T-1Nv first looks up the bound on the type of the receiver, since the
receiver’s type may include type variables (I' - bound (Tc@Tsr) is defined in AJ:23). Next, T-INv
uses the bound and the declared type arguments in the invocation to specialize the types of the
method with specializeTrans; (m(T_M), D(T}) (AJ:32). Then, T-INV checks to make sure the receiver
is of appropriate type. T-INv checks to make sure that all the arguments are of appropriate type
and that the fields are of types consistent with their declarations (Vf,s.f ¢ A). The resulting types
of the receiver and arguments are computed according to their initial types and the declaration of
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the method,
I'+ bound(Te@Tgr,,) = D{T)Y@Tsts1
specializeTransy (m(Tpr), D(T)) = T m<T1(4>(TCX @Ty>TxsT X) Typis> Tt'hl.se
T+ Tsts1 <t Typis 'k Tsy < Te, @Tx Vf,s.f ¢ A
T}, = funcArg(Tc@Tsts1, Tc@Tihis, Tc@T,,;)  T., = funcArg(Tsz, Ty, T, @TysT)
L5 A1 : Te@Tpgys 52 : Tsg bs s1.m(Ta)(55) : T A Asy = T, sz T,

T-1Nv.

Private invocations differ from public invocations, because the current types of the fields must
be checked against the transaction’s preconditions and the field types must be updated after invo-
cation,

T + bound(Tc@Tlr,) = D{TY@Tsts1
specializeTransr(m(T_M), XT)) = Te,@Tfgect>Trst x T m(Te, @Tx»Test %) Tynis> T, ), €
'+ Tsrst <tx Trnis [+ Ty < Te,@Tx I Tr <:Te,@Trgect
T}, = funcArg(C@Tsts1, C@Trpis, C@T}y,; ) T!, = funcArg(Tss, Ty, Te, @TxsT)
T¢ = funcArg(Ty, Te, @Tracer, Te, @Trst)
A1 : Te@Tstsrs sz Tozosf 2 T by stm(Ta)(5) : T A Aysy s Tysg 2 Tgs.f 2 T

T-PrRIVINV.

T-—, allows changing the nominal state of this. Unlike transitions in FT, T-—, does not permit
arbitrary changes of class; it restricts the change to states within the object’s current contract.

The T-—, rule first checks that the current permission of this is compatible with p. Then, it
checks that the values to be assigned to the new fields are compatible with the declared types of
those fields. Finally, it ensures that all possible current fields of this that may reference assets do
not currently own those assets. StateFields (AJ:1) looks up the fields defined in a particular state.
The fieldTypes judgment (AJ:6) gives the current types of the input fields,

[+Tsr <. p  p€{Shared,Owned}]  T;Arsx:TH4A
[+ T <: stateFields(C(T4),S’) unionFields(C(T4), Tst) = Trs fs

fieldTypess(A; Trs f5) = Tjjs I'r disposable(TJZs)

— — T-—p.
T;A, s : C(TA)@Tst Fs s —p S'(X) : unit 4 A, s : C(T4)@S’ r

Checking static assertions of specific states is straightforward; we check to make sure that all
possible states of the reference to be checked are among the permitted states,

Scs
— — — T-ASSERTSTATES.
;A x : Tec@S kg [x@S’] :unit4 A, x : Tc@S

When checking a static assertion of fixed permission, T-AssERTPERMISSION checks for a precise
match of permission,

Tst € {Owned, Unowned, Shared}
;A x: Tc@Tst bs [x@Tst] s unit4 A, x : Tc@Tst

T-ASSERTPERMISSION.

When asserting that a variable is in a state corresponding to a type variable, bound, is used
to compute the most specific mode for the variable. T-AsSERTINVAR applies only if the com-
puted bound is concrete (i.e., has no type variables), which is expressed by the nonVar judgment
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(AJ:25). Otherwise, we require that the asserted mode be an exact match with the current type
(T-ASSERTINVARALREADY),

T + bound,(p) = Tst nonVar(Tst)
CA x : Tec@Tst Fs [x@Tst] s unit 4 A,x : Tc@Tst

DA x : Tc@Tst b [X@p] cunit 4 A, x : Te@Tst

T-ASSERTINVAR

T-ASSERTINVARALREADY.
A x : Tec@p ks [x@p] s unit 4 A, x : Tc@p

Dynamic state tests are typechecked according to the ownership of the variable to be checked.
T-IsIN-STATICOWNERSHIP can be used when a variable is an owning reference but does not provide
a particular state specification that the programmer wants. In contrast, Isin-Dynamic applies when
there is no ownership.

In T-ISIN-STATICOWNERSHIP, Tc @Tst is the type of the expression to be checked. The rule ap-
plies only when the reference to be checked is owned. T-ISIN-STATICOWNERSHIP ensures that the
dynamic states to be checked are valid states according to the declaration of T¢. Then, e; is checked
in a context that assumes that the test has passed; later, e, is checked in a context that assumes
that the test failed. The resulting contexts of the two branches are merged together to construct an
output context Ar. The merge judgment (AJ:33) merges two contexts. The possibleStates judgment
(AJ:16) extracts all possible states given a type; the states judgment (AJ:8) extracts state definitions,

S C states(T¢) I'+ Tst <:. Owned
T;A,x:Tc@Stkse : Ty 4N S, = possibleStates. (Tc@Tst)
A X Te@(Sx \S) s ea: Ty A" Ap = merge(A',A”)

— T-IsIN-STATICOWNERSHIP.
A, x : Te@Tst Fs if X iNgywneq S then ey else e; : Ty 4 Af

In if X iNghareq S then e else ey, e; is permitted to change the state of the object referenced by
x, but it is not permitted to allow another reference to obtain permanent ownership of the object.
While e, is evaluating, all state changes to the object referenced by x that occur via Shared aliases
will cause program termination (due to a dynamic lock), so it is up to the programmer to ensure
that this is impossible.

T-IsIn-DyNamic first checks that the states to be checked are well-defined. It checks e; in a
context in which x has type Tc @S, since the test passed if e; is evaluating. In contrast, the context
for e, merely retains the Shared permission, since shared references cannot make any assumptions
about state,

S C states(Te)  T;Ax:Tc@S ks e : Ty AN, x: Te@Tép
I + bound.(T¢y) # Unowned
;A x : Tc@Shared v ey : Ty A A", x : Tc@Shared
Ar = merge(A’,A”),x : Tc@Shared

— T-IsIN-DyNAMIC.
I3 A, x : Tc@Shared ks if x ingpgreq S then ey else e; : Ty 4 Af
If the test is against a permission variable, then T-ISIN-PERMVAR checks e; in a context that gives
x the permission variable’s permission, which will result in relying on the bound on p in T,
LA x:Tc@prse Ty 4N ;A x : Tc@Tst Fs €3 ¢
T 4 A’
Ay = merge(A’,A") Perm = toPermission(Tst)

— T-ISIN-PERMVAR.
A, x : Te@Tst Fs if X inpery p then e else e; : Ty 4 Af
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In T-ISIN-PERM-THEN and T-ISIN-PERM-ELSE, the compiler knows which branch will be taken:
Either Tgr satisfies the given condition or it does not. If Tsy is a variable, then it is treated as if it
were owned (via toPermission),

Perm € {Owned, Unowned, Shared} P = toPermission(Tst)

T'F P <:, Perm A x: Tec@Tst Fs e : Ty 4 A
T-IsIN-PERM-THEN

;A x : Tc@Tst s if x inp Perm then e else ey : Ty 4 A’

Perm € {Owned, Unowned, Shared} P = toPermission(Tst)
T'+P &, Perm A x: Te@Tst b eg : Ty 4 A

I;A, x : Tc@Tst v if x inp Permthen e else ey : Ty 4 A’

T-ISIN-PERM-ELSE.

The case where a program tests to see if an unowned reference is in a particular state is included,
because it can arise via substitution,

;A x : Tc@Unowned kg ey : Ty 4 A’

= T-ISIN-UNOWNED.
T; A, x : Tc@Unowned kg if X inynowned S then e else ey : Ty 4 A’

Disown discards ownership of its parameter. Existing ownership is split; in Tc@Tst = T/T’, T
retains ownership and T’ lacks it, so the output context uses T’ as the new type of s’. Note that
the split is not a function; one can see by inspection of the definition of split that T’ is not owned,
but may be either shared or unowned,

Te@TsT = T/TI T't Tst <:» Owned
;A s : Tc@Tst +s disown s” :unit4A,s": T

, T-DISOWN.

pack updates A, removing all type overrides of fields of this. It requires that the existing over-
rides are consistent with the field declarations. There is no corresponding unpack; instead, field
assignment and field reading can cause a future need to invoke pack. pack is defined in terms
of ~ (AJ:11), which ensures that either the two types are both owning or neither is owning. The
contractFields judgment (AJ:5) extracts the fields that are available in all states of a contract,

s.f ¢ dom(A) contractFields(T) = Tgeer f kT < Tgea '+ Tr = Tgea
LA s T,s.f : Ty s pack s unit 4 A,s: T

Well-typed transaction

To check a public transaction, PublicTransactionOK first extracts the type parameters Tg of the
enclosing contract C, the type variables in those parameters T, and constructs a type bounds con-
text I' from Tg and Ty (the type parameters of the transaction). Then, the body of the transaction
e is checked in a context that binds this and the parameters x to appropriate types. Those initial
types come from the signature of the transaction; the final types in the output type context must
match the specified types in the signature.

Note that all fields of this must end the transaction with types consistent with their declarations;
otherwise, there would be occurrences of s.fin the output typing context after checking e. The body
e may need to use pack to make this the case.

The Var judgment (AJ:27) extracts the type variables from type parameters. The params judg-
ment (AJ:10) extracts the type parameters from declarations.

params(C) = Tg Var(Tg) =T [ =T6 Ty
Tsthis : C(T)@Ttpiss x : Cx@Tx Fenis € 2 T 4 this : C@QT],, . x : Cx@TY,
T m<T_M>(Cx@Tx>>T32 x) Tynis> T/

this

T-pPACK.

PuBLICTRANSACTIONOK.
{return e} ok in C
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The difference between public and private transactions is that private transactions may begin
and end with fields inconsistent with their declarations. In both cases, inside e, it is possible to set
fields of this so that they do not match their declared types. However, until the fields are updated
so that their types match their declarations, additional public transactions cannot be invoked,
ensuring that only private transactions are exposed to the inconsistent state.

There may be aliases to this. However, if the fields of this are inconsistent with their types, no
public transactions can be invoked, so the inconsistency cannot be visible outside this transaction
or any private transactions that it invokes. Furthermore, the state of this can only be changed if
the permission on this allows that operation (see THIS-STATE-TRANSITION),

params(C) = Tg W)zT contractFields(C(T)) = Tf_f
A=s:(D@Tst, s.f : contract(Tr).Sp1, x : Cx@Tx
N =s: C(T}@TS'T,s.f : contract(Ty).Spz, x : Cx@Ty
T;Arse:THA I'=Tg, Tu
m T m(Ta)(Cx@Ty>T.x) Ts> T¢y {return e} ok in C

Well-formed State

All fields must have distinct names, and if any field is an asset, then the state must be labeled
asset,

PRIVATETRANSACTIONOK.

Viji#j=fi#f T + nonAsset(T) Vi,ji#j=fi#f
Fl—Sﬁok Fl—assetSﬁok.

Well-typed Contract

Contracts must contain only methods and states that are well formed. Contracts must have at
least one state, and every transaction specified in the interface that the contract claims to im-
plement must have an implementation. Likewise, every state specified in the interface must be
present in the contract. The implementOk judgments (AJ:28) define the relationships that must
hold between interfaces, method signatures, and states. That is, all transactions and starts that are
specified in the interface must be defined accordingly in the contract. Finally, the type parameters
T of the contract must be well-formed (genericsOk, defined in AJ:30), and the type arguments
given for the interface must be appropriate for the interface’s specification (subsOk, defined in
AJ:29).

The isVar judgment (AJ:26) identifies the types that are type variables. The transactionName
function (AJ:7) extracts the name from a transaction declaration. The stateNames function (AJ:9)
extracts names from declarations,

MokinC Tgr STok  |ST| >0
transactionNames(I) C transactionNames(C) stateNames(I) C stateNames(C)
VT €T, isVar(T) = T € Var(Tg)
VM € M, transactionName(M) € transactionNames(I) = implementOki(KT), M)
VS € ST, stateName(S) € stateNames(]) = implementOkﬁ(I(T), S)
genericsOkTG(TG) subsOkTG(T, params(I))

contract C(Tg) implements I(T) {ST F M} ok.
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IFACE ok | Well-typed Interface

A well-typed interface must have well-formed type parameters (as defined by genericsOk in
AJ:30),

genericsOki (Te)
interface {TG){ST Mgy} ok.

Well-typed Program

A well-typed program consists of well-typed contracts, well-typed interfaces, and a well-typed
expression,

CON ok IFACE ok okge:TH-
(IFACE,CON, e) ok

6.2 Subtyping

The subtyping relation depends on a sub-permission relation <:., defined below. The top-level
subtyping relation mostly deals with type parameters, delegating the reasoning about permissions
to <:,. The definition uses the definition of substitution for types, which is defined in AJ:31.

T Tgr <is TS/T

I'+tTy <: Ty
<:-UNIT <:-MATCHING-DEFS

T' F unit <: unit I'rTec@Tst <: TC@TS/T

T+ Tgr <iy TéT
I+ D(TY@Tst <: DTY@Tér

<:-MATCHING-DECLS

I'tTgr <iy TS/T
def (C) = contract C(Tg) implements KT'). . .}

'+ (TY@Tst <: o(T/T)(I(T")@T4y)

<:-IMPLEMENTS-INTERFACE

T+ Ter <iy T_S/‘T I'r bound(X@TgT) = Tc@TéT
' X@Tst <: Tc@TéT

<:-BouND

T+ Tst1 < TsTo |Subpermissions
The subpermission judgment is ancillary to the subtyping judgment and specifies when an ex-
pression with one mode can be used where one with the same contract but a potentially different
mode is expected,

L'k Tst, < T, '+ Tst, <t Ty
——— <:-REFL <:x-TRANS
T'vTer <:i Tsr Ik TST1 <: T5T3
T+ bound,(p) =T scy
(P) 5T <:+-VAR ———— <%-S-§’ — <:-S-0
I'kp <y Tst F'rS<:. 8 S <:, Owned
Tsr2 # S
<1*-O-* <:4-U-U
T+ Owned <:, TsTy T+ Tst <: Unowned
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‘FFTST fi*TST‘

I+ Tst, <ix Tsy Tst, # TsT,
I'v Tst, % Tsty

6.3 Silica Dynamic Semantics

To express the dynamic semantics, we must first slightly extend the syntax. Objects, which reside
in heaps p, are referenced by object references 0. We introduce a notion of indirect references I,
which are used only in the formal semantics, not in the implementation, as a tool to prove sound-
ness. Indirect references, introduced in FT [Garcia et al. 2014], allow the formal model to track
permissions of individual aliases to shared objects. Intuitively, indirect references typically corre-
spond with local variables that reference objects; we record the permission each indirect reference
holds in a context p,
0 € OBJECTREFS

I € INDIRECTREFS
C(TY@S(0) € OBJECTS
& € PERMISSIONVARIABLES — STATENAMES U {Owned, Unowned, Shared}
p € OBJECTREFS — OBJECTS
p € INDIRECTREFS — VALUES

e = ...]o
| EO (state-locking mutation detection container)
| EO (reentrancy detection container)
s = 1
v Olo (values)
o) = -|¢,0 (Objects that are state-locked)
14 | ¥, 0 (Objects that have transactions that are on the stack)
E m]

I |
&
2
I
&=
5
o

We extend the previous definition of static contexts so that programs can remain well-typed as
they execute:

b e x|1l]o
A = b:T.
We extend the previous T-lookup rule to account for this extension:
I = L/T
T;AD:Tirsb:To AAD: Ty

T-Lookup.

The abstract machine maintains state {y, p, ¢, ¢/, &). For concision, we abbreviate that tuple as
% and refer to the components as X, and so on. y is used as an abbreviation for X, when there is
only one ¥ in scope. The syntax [X/u] % denotes (X, p, §, ¥, £); p denotes %, if it occurs in X. In
addition, we use X[[ > o] to denote an extension of % ,.
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The dynamic semantics are similar to the dynamic semantics of FT. However, in addition to
heap p and environment p, we keep a state-locking environment ¢, which is a set of references to
objects that are state-locked. ¢ is used for dynamic reentrancy detection; & keeps track of which
states and permissions are feasible for each permission variable.

T,e— e

o=pl)

E-Lookup E-AssIGN

3,1—- 3, p() S 1:=1 > [p[l- 0]/p]Z, ()

I ¢ dom(p)
Setx:T=vine— [p[l > v]/p]Z,[l/x]e

E-LET

S,ep > Y€

E-LETCONGR
Sletx:T=eine;— X letx:T =ejine

o & dom(u) def(C) = contract C(Tg) implements KTH{. ..}
%, new C(D@5S(1) — [ulo > CTHY@S(p(1))]/p] =0

E-NEW

p(p(h) = CTH@S() .
Z,lfl i Z, Si

-FIELD

pp)) = C(M@S()  fields(C@S) =T f
2’ lﬁ = l/ - [/’l[p(l) [and C<T>@S(Ol302’ s 051, ,D(l/), Ojtlsees 0\”)]/,”] z’ ()

E-FIELDUPDATE

The two invocation rules are complex. Reentrancy is checked dynamically at object granularity.
Object-level reentrancy aborts the current top-level transaction. However, as a special exception,
private transactions are not protected from reentrancy (otherwise they would be useless). Reen-
trancy is checked via the i context, which is a set of all objects that have transaction invocations
on the stack.

First, we look up the receiver in the heap to find its dynamic state. In invocations of public
methods, we also must check (by looking in ) that there is not already an invocation on the
receiver in progress. Then, we make fresh indirect references /] and I, which will be used to pass
ownership to the transaction; residual ownership will remain in the original indirect references [;
and I,. Then, since e may use type parameters according to the declarations of C and tdef (C, m),
we need to update & so that the variables are bound according to the invocation by resolving any
type variables to concrete permissions or states (via lookup). Then, we proceed by substitution
in an environment that tracks in ¢ an in-progress invocation on the object indirectly referenced
via [j, which is directly referenced by p(l;). This object reference must be removed from i when
evaluation of the transaction body is complete. To arrange this, the rule steps to an expression in
a box. Afterward, evaluation will proceed inside the box until the contents of the box reaches a
value, at which point the invocation returns, the value is unboxed, and the reference is removed
from ¢.

We define lookupg (Tst) so that it looks up Tst in & if Tsr is a variable and otherwise simply
maps to Ts7. This definition ensures that each permission variable maps to a concrete permission
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or state, rather than a permission variable, eliminating the need for recursive lookups.

up() =CD@S(...)  p(h) ¢y
tdef(C,m) = T m{Ty)(Te, @Tx>Txest X)Tthis > T/p;4
17 ¢ dom(p) I; ¢ dom(p) params(C) = Tp
& =& PermVar(Tp) — lookupg(Perm(T)),PermVar(TM) — lookupg(Perm(M))

p'=p. 1 = p(h), 1 - p(l)
3= <[l, p,’ ¢7 (lﬁ, P(ll))7 §,>

— —— )
5, L.m(M) (L) — 3| [ /x][1] /this]e i

{return e}

E-inv

plp() = CD@S(....)
tdef (C,m) = Te,@Traect>Tpst T m{Tp)(Te, @To>TosT X) Tenis> Ty (return e}

17 ¢ dom(p) I, ¢ dom(p) params(C) = Tp
& =& PermVar(Tp) — lookupsz(Perm(T)),PermVar(TM) - lookupg(Perm(M))

p'=p. 0 p(h), 1 - p(l)

= wp 8
3, L.m(M) (L) — =/, [I;/x][l; /this]e

E-privINV

The two rules above use lookup§:

lookupg (Tst) = Tst

nonVar(Tst)
lookup, (p) = £(p) lookup; (Tst) = Tst

p(p(l)) = CM@S'(....)
2,1 =ownea SI) = [ulp(l) = CDY@S(p(I))]/1] =, ()

In E-—pareq, @ shared object can transition state if it is not statelocked (p(I) ¢ ¢) or the transi-
tion does not actually change which state the object is in,

E-—>owned -

plp)) =CD@S'(...)  p)¢pvs=5
3,0 =sharea SI') = [ulp(l) = CTHY@S(p"))]/1] =, ()

E-—shared

E-ASSERT.

3, [s@Tsr] — 2,()

In the scope of an if in block, we must ensure that other aliases cannot be used to violate
the state assumptions of the block. We only check for state modification, not for general field
writes, since the typestate mechanism is restricted to nominal states rather than pertaining to all
properties of objects. To do this, we track references to objects that are state-locked in ¢. These
references are dynamically state-locked: Modifications to the referenced objects’ state via other
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references will result in an expression getting stuck.

&) =Tst

3,1if [ is inp p then e; else e; — 3, if [ is inp Tt then e; else e,

E-IsIN-PERMVAR

Perm € {Owned, Unowned, Shared} -+ P <:, Perm
E-IsIN-PERM-THEN

>,if | is inp Perm then e; else e; — X, ¢;

Perm € {Owned, Unowned, Shared} -+ Perm £:, P
E-IsIN-PERM-ELSE

>,if [ is inp Perm then e; else e; — 3, ey

E-IsIN-UNOWNED

X, if [ is inypowned Sthene; else ey — 3, e,

p(p(l)) =Cc(M@s'(...) S’ €S

— E-IsIN-OWNED-THEN
>, if [ is ingwned S then e; else e; — X, e;

E-IsIN-SHARED-THEN checks p(I) ¢ ¢, because the static semantics that correspond generate
a temporary owning reference. If it did not check, or it allowed nested checks, then that would
generate multiple distinct temporary owning references

p(p() = CM@S(...)  p() ¢ ¢
3, if [ is ingpared S then e; else e; — [p, p(D)/P] 3,

E-IsIN-SHARED-THEN

p(D)

p(p()) =C(DH@S'(...) S'¢S
E-IsIN-ELSE E-pDisown

%,if lis in, Sthene; else e, — 3, e, >, disown s — 2, ()

———  E-PAcK
3, pack = %, ()
[e], and [e]” permit the boxed expression to first evaluate to a value, and then afterward remove
the corresponding object reference from the appropriate context,
AR e:THA TiArse:THA
T-STATE-MUTATION-DETECTION - T-REENTRANCY-DETECTION

LA ks [e], s THA ;AR [e] :THA

X-¢) E-BoxX-¢/

E-
oL = (@\o/glno S[o] = [\ 0)/¢]% 0

e — > e S.e— > e
E-BOX-¢-CONGR >

’ ’ o 7 7
s[e, - =[], e - 2[e]

6.4 Silica Soundness and Asset Retention

E-BOX-1/-CONGR.

In this section, we outline the proof of type soundness. We also state the asset retention theorem,
which formally states the property that owned references to assets can only be dropped with the
disown operation. Full proofs can be found in Appendix C. We focused on a paper-based proof
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rather than a mechanized proof due to the high cost of mechanization. We derive additional confi-
dence in the soundness from the existing soundness proofs of related systems, including FT [Garcia
et al. 2014].

Global consistency defines consistency among static and runtime environments. It requires that
every indirect reference to an object in p maps to a legitimate indirect reference in p and that
p maps indirect references to appropriately typed values. It also requires that every type in the
static context correspond with an indirect reference in the indirect reference context. The per-
mission variables must be available for lookup in & and map to concrete permissions or states.
Finally, every object in the heap must have only compatible aliases, as expressed by reference
consistency.

We will also need typing for ():

- T-().
[;AFs () :unit4 A

I, %, A ok | Global Consistency

range(p) C dom(p) U {()}
dom(A) c dom(p) U dom(p)
{L1 (L:unit) e A} c{l]p(l) = ()}

{l'| (I:boolean) € A} c ({l | p(I) € {true, false}}
(L1(:T) ey {l]pl) = o}
PermVar(T')  {p | £(p) = Tst}

Vs : Te@Tst € A,3AC, T s.t. Te = C(T)
>, A+ dom(u) ok

I,%, A ok

Reference consistency expresses the requirement that all aliases to a given object must be com-
patible with each other and consistent with the actual type of the object in the heap. It also requires
that objects in the heap have the right number of fields. The fact that the fields must reference ob-
jects of appropriate type is implied by the requirement that all references must reference objects
of types consistent with the reference types.

Reference Consistency

(o) = C(TY@S(0') 0| = |stateFields(C,S)|
refTypes(Z, A, 0) = D “FC(T)<:D
VT, T, € D, T, & T; or StateLockCompatible(Ty, Tz)

>, A+ ook ,

where
StateLockCompatible(Ty, T;) 2 o € e A (i #£)) = owned(T;) ANT; = C(TY@Shared).

StateLockCompatible is defined to allow the original Shared alias (via which the state was
checked) to co-exist with the state-specifying reference. This would not normally be permitted,
but is safe while o0 € X4, because the shared alias cannot be used to mutate typestate while that is
the case.
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The relation < defines compatibility between pairs of aliases:

Alias Compeatibility

T, & Ty C(T@Tst & CT)@T{y
SYMCOMPAT SUBTYPECOMPAT

TioT C(TY@Tst « KT)@Tst

cD@Tsr & KD@T¢y
p— — PArRAMCOMPAT UUCOMPAT
C(TY@Tst < C(T"Y@T¢y Tc@Unowned < Te@Unowned

USCompPAT UOComPAT
Tc@Unowned <> Tc@Shared Tc@Unowned <& Tc@Owned

— USTATESCOMPAT SCoMPAT
Tc@Unowned < Tc@S Tc@Shared <> Tc@Shared

refTypes computes the set of types of referencing aliases to a given object in a given static and
dynamic context. References may be from fields of objects in the heap; from indirect references;
and from variables in the static context. Fields of objects in the heap include both fields whose
types are specified in their declarations and fields whose types are overridden temporarily in the
static context A,

refTypes(2, A, 0) = ref FieldTypes(u, o) + envTypes(Z,0) + ctxTypes(A, o)
refFieldTypes(i0) = ( )[T,- | u(0") = C(TY@5(0), ft(A, C(T),S) =Tf and 0 € 0]
o’edom(p
fH(A,C,S) =[Tf |s.f : T € A]U (allFields(C,S)\ [Tf | s.f € dom(A)])

envTypes(2, A, 0) = led:-rl;l(p)[T [2,(I) =oand (I: T) € A]

ctxTypes(A,0) = [T |o: T € Al.

Definition 6.1 (<'). A context A is I-stronger than a context A’ with respect to I and 3 (denoted
A <lr 5 A') if and only if for all I : T” € A’, there is some T and [ such that T+ T <: T',1: T € A,
T~T, and 2 (I) = Z,(I").

Note that this differs from the definition of <! given in FT. Here, the indirect reference in the
two contexts need not match. This weakening is necessary, because permissions are split in invo-
cations. After an invocation, the new expression typechecks in a context that may retain some of
the permissions from the original reference (whereas the remaining permissions were transferred
to the invocation, i.e., retained in a different indirect reference). This means that although the per-
missions are still at least as strong in the new context, the strongest permission may be held by a
different indirect reference than in the original.

COROLLARY 6.1 (<!-REFLEXIVITY). Forall A,T,3, A <£,2' A.
Proor. Trivial application of the definition because <: is reflexive. O
LEMMA 6.1 (CANONICAL FORMS). If[;A g v: T 4 A, then:

(1) IfT = C(T").S, thenv = C(T"Y@5(5).

(2) If T = unit, thenv = ().
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Proor. By inspection of the typing rules. O

LEMMA 6.2 (MEMORY CONSISTENCY). IfT, 3, A ok, then:

(1) Ifl: C(T"Y@S € A, then Jo.p(l) = 0 and u(o) = C(F)@S(E).
(2) IfT;Avrge:T 4 A, andl is a free variable of e, then | € dom(p).

Proor. The proof is shown in Appendix C.1. O

THEOREM 6.2 (PROGRESS). If e is a closed expression and ;A s e : T 4 A/, then at least one of the
following holds:

(1) eis avalue

(2) For any environment ¥ such thatT',%, A ok, 3,e — X', e’ for some environment 3’

(3) e is stuck at a bad state transition — that is, e = E[l /sparea S(s)] where p(p(l)) =
TH@S'(...), S # S, p(l) € ¢, andT; A v | : C(T"Y@Shared + N'.

(4) e is stuck at a reentrant invocation — that is, e = E[l.m(5)] where u(p(l)) = C(TY@S(. . .),
p(l) € y.

(5) e is stuck in a nested dynamic state check — that is, e = E[if s inspareqa TsT then eq else e;]
where u(p(l)) = C(T)@S(. ..) and p(l) € ¢.

Proor. The proof, which proceeds by induction on the typing derivation, can be found in Ap-
pendix C. O

THEOREM 6.3 (PRESERVATION). Ifeisa closed expression,T;Arse: T 4 A", T,3, Aok,and>, e —
3, e’ then for some A, T"; A +s e’ : T" 4 A", T, %', A" ok, and A" <{- 5 A,

Proor. The proof, which proceeds by induction on the dynamic semantics, can be found in
Appendix C. O

Informally, asset retention is the property that if a well-typed expression e takes a step in an
appropriate dynamic context, then owning references to assets are only dropped if e is a disown
operation.

THEOREM 6.4 (ASSET RETENTION). Suppose:

(1) T,3,A ok

(2) o€ dom(p)

(3) refTypes(3,A,0) =D

(4) T;A ks e:THN

(5) e is closed

(6) X,e = 3¢

(7) refTypes(Z',A’,0) = D’

(8) AT’ € D such that T + nonDisposable (T")
(9) VT' € D’ : T + disposable (T”)

Then in the context of a well-typed program, either I' + nonDisposable (T) or e = E[disown s],
where p(s) = o.

Proor. The proof, which proceeds by induction on the typing derivation, can be found in Ap-
pendix C. O

7 OBSIDIAN LANGUAGE DEFINITION

Unlike Silica, which is an expression language to facilitate writing proofs, we designed Obsidian
as a statement language to reflect the expectations of object-oriented programmers.
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Table 3. Differences between Obsidian and Silica

Difference

Translation

Obsidian supports sequences of statements,
not just expressions.

Constructors can have arbitrary behavior,
not just initializing fields.

A-normal form is not required.

State transitions are not labeled with the
type of this.

State transitions specify new values for an
arbitrary collection of fields.

State tests are not labeled with the type of
the expression being tested.

There is no pack in Obsidian.

Obsidian uses S: : f to denote a field in a
future state of this.
There is no switch in Silica.

Local variable declarations in Obsidian
specify contract types but may omit
intializations for the new variables. Silica
uses let.

Sequences of statements are translated to a nested
let-bind expression.

Constructors are translated to transactions that
invoke new and return the result. Every use of new
in Obsidian is translated to a call to that
transaction.

The translator let-binds nested translated
expressions to fresh variables and uses those
variables in the body as required.

The translator locally infers types of this for
state transitions [Pierce and Turner 2000].

The translator ensures that all new fields are
initialized.

The translator locally infers types [Pierce and
Turner 2000].

pack is inserted automatically by the translator
before public invocations and at the ends of
transaction bodies.

The translator defines local variables in a hidden
namespace and inserts them into transitions.

The translator translates each use of switch to a
tree of if in expressions.

A translation context tracks the declared contract
types of variables and checks that assignments
are consistent with the declarations. Translating
local variable declarations that lack initialization
mutates the context but does not emit any Silica
code.

The high-level Obsidian language differs from the core Silica language in various ways discussed

in this section. We define the semantics of Obsidian by translation to Silica, so Table 3 shows the
differences and how the translator handles them.

7.1 Obsidian Syntax

In addition to the syntactic features described in the grammar below, the implementation also
supports the following features:

e FFI contracts, which define interfaces that are implemented in trusted Java code rather than
in Obsidian code (used for exposing runtime support in Fabric and JDK classes).
e Import statements, for using code defined in other files.

Also, note that in some cases the syntax is more permissive than strictly needed so that the
compiler can conveniently give good error messages. For example, e; = e; is only permitted when
e; is a variable, S: : f, or this.f.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 3, Article 14. Publication date: November 2020.



Obsidian 14:41

Relative to Silica, Obsidian adds constructors and statements:

CTOR = C@P (T > Tsrx){ STMT}
STMT = e
e=e (variable assignment and field update)
- S(jT—e) (State transition)
Cx=e (variable declaration with init)
Cx (variable declaration)
le@ Tsrl (static assert)

if (e) {STMT} else {STMT}

|
|
|
|
|
|
| ifsinTsy {STMT} else {STMT} (dynamic state test)
|

|

|

return [e]
revert e (revert state, providing an error message)
switch e{case S{STMT}} (case analysis on dynamic state)

To expressions, Obsidian adds assignments e; = e, as well as S::f, which represents a field f in a
future state S. Obsidian also uses new to invoke constructors, rather than initializing fields directly.

e e=e
new C(e)

| Suf (state field initialization expression)

Although not shown here, the Obsidian implementation also supports primitive types int,
string, and bool, constants of those types, and some primitive operators for expressions of those
types, such as + and -.

We briefly outline a translation from Obsidian to Silica in Appendix B. The statement-oriented
reformulation generally only results in trivial extensions to the typing rules. The most signifi-
cant extension is for if, which, like dynamic state checks if in, merges the states from the two
branches to construct a result context. When return occurs, the type checker conducts the same
checks that run at the ends of transactions to ensure that no assets are lost. In addition, branches
that are guaranteed to return or revert do not affect the typing context after the if statement.
This optimization improves precision, since the code after the if only executes if the non-exiting
branch is the one that executed, and the two branches might change the typestate of a variable
divergently. Other than these small changes, we rely on Silica to show soundness of Obsidian.

Obsidian relaxes Silica’s requirement that every contract define at least one state. Obsidian con-
tracts that do not define states behave as if they were always in a particular state with a user-
inaccessible state name.

In Obsidian, private transactions need not specify types for all fields. Instead, fields whose types
are unspecified have types according to their declarations.

8 CASE STUDY EVALUATION

We wanted to ensure that Obsidian can be used to specify typical smart contracts in a concise and
reasonable way. Therefore, we undertook two case studies to assess the extent to which Obsidian
is suitable for implementing appropriate smart contracts.

Obsidian’s type system has significant implications for the design and implementation of soft-
ware relative to a traditional object-oriented language. We were interested in evaluating several
research questions using the case studies:

(RQ1) Does the aliasing structure in real blockchain applications allow use of ownership
(and therefore typestate)? If so, then what are the implications on architecture? Or,
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alternatively, do so many objects need to be Shared that the main benefit of typestate
is that it helps ensure that programmers insert dynamic tests when required?

(RQ2) To what extent does the use of typestate reduce the need for explicit state checks and
assertions, which would otherwise be necessary?

(RQ3) Can realistic systems be built with Obsidian?

(RQ4) To what extent do realistic systems have constructs that are naturally expressed as
states and assets?

To address the research questions above, we were interested in implementing blockchain appli-
cations in Obsidian. To obtain realistic results, we looked for domains in which:

e Use of a blockchain platform for the application would provide significant advantages over
a traditional, centralized platform.

e We could engage with a real client to ensure that the requirements were driven by real
needs, not by convenience of the developer or by the appropriateness of language features.

e The application seemed likely to be representative in structure of a large class of blockchain
applications.

8.1 Case Study 1: Parametric Insurance

8.1.1 Motivation. In parametric insurance, a buyer purchases a claim, specifying a parameter
that governs when the policy will pay out. The parameter is chosen so that whether conditions
satisfy the parameter can be determined objectively. For example, a farmer might buy drought
insurance as parametric insurance, specifying that if the soil moisture index (a property derived
from weather conditions) in a particular location drops below m in a particular time window, the
policy should pay out. The insurance is then priced according to the risk of the specified event. In
contrast, traditional insurance would require that the farmer summon a claims adjuster, who could
exercise subjective judgment regarding the extent of the crop damage. Parametric insurance is
particularly compelling in places where the potential policyholders do not trust potential insurers,
who may send dishonest or unfair adjusters. In that context, potential policyholders may also be
concerned with the stability and trustworthiness of the insurer: what if the insurer pockets the
insurance premium and goes bankrupt, or otherwise refuses to pay out legitimate claims?

To build a trustworthy insurance market for farmers in parts of the world without trust between
farmers and insurers, the World Bank became interested in deploying an insurance marketplace
on a blockchain platform. We partnered with the World Bank to use this application as a case study
for Obsidian. We used the case study both to evaluate Obsidian as well as to improve Obsidian, and
we describe below results in both categories.

The case study was conducted primarily by an undergraduate who was not involved in the
language design, with assistance and later extensions by the language designers. The choice to
have an undergraduate do the case study was motivated by the desire to learn about what aspects
of the language were easy or difficult to master. It was also motivated by the desire to reduce bias;
a language designer studying their own language might be less likely to observe interesting and
important problems with the language.

We met regularly with members of the World Bank team to ensure that our implementation
would be consistent with their requirements. We began by eliciting requirements, structured ac-
cording to their expectations of the workflow for participants.

8.1.2  Requirements. The main users of the insurance system are farmers, insurers, and banks.
Banks are necessary to mediate financial relationships among the parties. We assume that farmers
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have local accounts with their banks and that the banks can transfer money to the insurers through
the existing financial network. Basic assumptions of trust drove the design:

e Farmers trust their banks, with whom they already do business, but do not trust insurers,
who may attempt to pocket their premiums and disappear without paying out policies.

e Insurers do not trust farmers to accurately report on the weather; they require a trusted
weather service to do that. They do trust the implementation of the smart contracts to pay
out claims when appropriate and to otherwise refund payout funds to the insurers at policy
expiration.

e There exists a mutually trusted weather service, which can provide signed evidence of
weather events.

8.1.3 Design. Because blockchains typically require all operations to be deterministic and all
transactions to be invoked externally, we derived the following design:

e Farmers are responsible for requesting claims and providing acceptable proof of a relevant
weather event to receive a payout.

e Insurers are responsible for requesting refunds when policies expire.

e A trusted, off-blockchain weather service is available that can, on request, provide signed
weather data relevant to a particular query.

An alternative approach would involve the weather service handling weather subscriptions. The
blockchain insurance service would emit events indicating that it subscribed to particular weather
data, and the weather service would invoke appropriate blockchain transactions when relevant
conditions occurred. However, this design is more complex and requires trusting the weather ser-
vice to push requests in a timely manner. Our design is simpler but requires that policyholders
invoke the claim transactions, passing appropriate signed weather records.

Our design of the application allows farmers to start the exchange by requesting bids from
insurers. Then, to offer a bid, insurers are required to specify a premium and put the potential
payout in escrow; this ensures that even if the insurer goes bankrupt later, the policy can pay out
if appropriate. If the farmer chooses to purchase a policy, then the farmer submits the appropriate
payment.

Later, if a weather event occurs that would justify filing a claim, then a farmer requests a signed
weather report from the weather service. The farmer submits a claim transaction to the insurance
service, which sends the virtual currency to the farmer. The farmer could then present the virtual
currency to their real-world bank to enact a deposit.

8.1.4 Results. The implementation consists of 545 non-comment, non-whitespace lines of Ob-
sidian code. For simplicity, the implementation is limited to one insurer, who can make one bid
on a policy request. An overview of the invocations that are sent and results that are received in
a typical successful bid and claim scenario is shown in Figure 9. All of the objects reside in the
blockchain except as noted. The full code for this case study is available online.!

We made several observations about Obsidian. In some cases, we were able to leverage our
observations to improve the language. In others, we learned lessons about the implications of the
type system on application design and architecture.

First, in the version of the language that existed when the case study started, Obsidian in-
cluded an explicit ownership transfer operator <-. In that version of the language, passing an
owned reference as an argument would only transfer ownership to the callee if the argument was

!https://github.com/mcoblenz/Obsidian/tree/master/resources/case_studies/Insurance.
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Weather Insurance
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Money@0wned
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Fig. 9. Invocations sent and results returned in a typical successful bid/claim scenario.

decorated with <-. For example, deposit(<-m) would transfer ownership of the reference m to the
deposit transaction, but deposit(m) would be a type error, because deposit requires an Owned
reference. While redundant with type information, we had included the <- operator, because we
thought it would reduce confusion, but we noticed while using the language (both in the case study
and in smaller examples) that its presence was onerous. We removed it, which was a noticeable
simplification.

Second, in that version of the language, asset could only be a property of contracts. We noticed
in the insurance case study that it is more appropriate to think of asset as a property of states,
since some states own assets and some do not. In the case study, an instance of the PolicyRecord
contract holds the insurer’s money (acting as an escrow) while a policy is active, but after the policy
is expired or paid, the contract no longer holds money (and therefore no longer needs to itself be an
asset). [t is better to not mark extraneous objects as assets, since assets must be explicitly discarded,
and only assets can own assets. Each of those requirements imposes a burden on the programmer.
This burden can be helpful in detecting bugs, but should not be borne when not required. We
changed the language so that asset can apply to individual states as well as entire contracts.

Third, the type system in Obsidian has significant implications on architecture. In a traditional
object-oriented language, it is feasible to have many aliases to an object, with informal conventions
regarding relationships between the object and the referencing objects. UML also distinguishes
between composition, which implies ownership, and aggregation, which does not, reinforcing the
idea that ownership in the sense in which Obsidian uses it is common and useful in typical object-
oriented designs. Because of the use of ownership in Obsidian, using typestate with a design that
does not express ownership sometimes requires refining the design so that it does. In this case
study, we found applying ownership useful in refining our design. For example, when an insur-
ance policy is purchased, the insurance service must hold the payout virtual currency until either
the policy expires or it is paid. While the insurance service holds the currency, it must associate
the currency for a policy with the policy itself. Does the policy, therefore, own the Money? If so,
then what is the relationship between the client, who purchased the policy and has certain kinds
of control over it, and the Policy, which cannot be held by the (untrusted) client? We resolved
this question by adding a new object, the PolicyRecord. A PolicyRecord, which is itself Owned
by the insurance service, has an Unowned reference to the Policy and an Owned reference to a
Money object. This means that PolicyRecord is an asset when it is active (because it owns Money,
which is itself an asset) but Policy does not need to be an asset. We found that thinking about
ownership according to the Obsidian type system helped us refine and clarify our design. Without
ownership, we might have chosen a less carefully considered design.
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contract Policy { contract Policy {
state Offered { enum States {Offered, Active, Expired}
int cost; States public currentState;
int expirationTime; uint public cost;
} uint public expirationTime;
state Active; constructor (uint _cost, uint _et) public {
state Expired; cost = _cost;
state Claimed; expirationTime = _et;
currentState = States.Offered;
Policy@Offered(int c, int expiration) { }
->0ffered(cost = c, expirationTime = expiration);
} function activate() public {
require(currentState == States.Offered,
transaction activate(Policy@Offered >> Active this) { "Can't activate Policy not in Offered state.");
->Active; currentState = States.Active;
} cost = 0;
expirationTime = 0;
¥
transaction expire(Policy@Offered >> Expired this) { function expire() public {
->Expired; require(currentState == States.Offered,
} "Can't expire Policy not in Offered state.");
3} currentState = States.Expired;
cost = 0;
expirationTime = 0;
}
}
(a) Obsidian implementation of a Policy contract. (b) Solidity implementation of a Policy contract.

Fig. 10. Comparison between Obsidian and Solidity implementations of a Policy contract from the insurance
case study.

It is instructive to compare the Obsidian implementation to a partial Solidity implementation,
which we wrote for comparison purposes. Figure 10 shows an example of why parts of the Ob-
sidian implementation are substantially shorter. Note how the Solidity implementation requires
repeated execution time tests to make sure each function only runs when the receiver is in the
appropriate state. Obsidian code only invokes those transactions when the Policy object is in
appropriate state; the runtime executes an equivalent dynamic check to ensure safety when the
transactions are invoked from outside Obsidian code. Also, the Solidity implementation has cost
and expirationTime fields in scope when inappropriate, so they need to be initialized repeatedly.
In the Obsidian implementation, they are only set when the object is in the Of fered state. Finally,
the Solidity implementation must track the state manually via currentState and the States type,
whereas this is done automatically in the Obsidian implementation. However, Solidity supports
some features that are convenient and lead to more concise code: the Solidity compiler automati-
cally generates getters for public fields, whereas Obsidian requires the user to write them manually,
and built-in arrays can be convenient. However, the author of the Solidity implementation must
be very careful to manage money manually; any money that is received by transactions must be
accounted for, or the money will be stuck in the contract forever. Solidity also lacks a math library;
completing the implementation would require us to provide our own square root function (which
we use to compute distances).

We showed our implementation to our World Bank collaborators, and they agreed that it rep-
resents a promising design. There are various aspects of the full system that are not part of the
case study, such as properly verifying cryptographic signatures of weather data, communicating
with a real weather service and a real bank, and supporting multiple banks and insurers. However,
in only a cursory review, one of the World Bank economists noticed a bug in the Obsidian code:
the code always approved a claim requests even if the weather did not justify a claim according to
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the policy’s parameters. This brings to light two important observations. First, Obsidian, despite
being a novel language, is readable enough to new users that they were able to understand the
code. Second, type system-based approaches find particular classes of bugs, but other classes of
bugs require either traditional approaches or formal verification to find.

8.2 Case Study 2: Shipping

8.2.1 Motivation. Supply chain tracking is one of the commonly proposed applications for
blockchains [IBM 2019]. As such, we were interested in what implications Obsidian’s design would
have on an application that tracks shipments as they move through a supply chain. We collabo-
rated with partners at IBM Research to conduct a case study of a simple shipping application. Our
collaborators wrote most of the code, with occasional Obsidian help from us. We updated the im-
plementation to use the polymorphic LinkedList contract, which became available only after the
original implementation was done.

8.2.2 Results. The final implementation2 consists of 141 non-comment, non-whitespace, non-
printing lines of Obsidian code. We found it very encouraging that our collaborators were able
to write the case study with relatively little input from us, especially considering that Obsidian
is a research prototype that had extremely limited documentation at the time the case study was
completed. Although this is smaller than the insurance case study, we noticed some interesting
relationships between the Obsidian type system and object-oriented design.

Figure 11 summarizes an early design of the Shipping application.® Transactions can be invoked
when a package changes status. For example, depart in Transport changes the state from Load
to InTransport, creating a new Leg corresponding with the current step in the package’s jour-
ney. However, the implementation does not compile; the compiler reports three problems. First,
LeglList’s arrived transaction attempts to invoke setArrival via a reference of type Leg@Unowned;
this is disallowed, because setArrival changes the state of its receiver, which is unsafe through an
Unowned reference. Second, append in LeglList takes an Unowned leg to append, but uses it
to transition to the HasNext state, which requires an Owned object. Third, Transport’s depart
transaction attempts to append a new Leg to its leglList. It does so by calling the Leg constructor,
which takes a Shared Transport. But calling this constructor passing an owned reference (this)
causes the caller’s reference to become Shared, not Owned, which is inconsistent with the type of
depart, which requires that this be owned (and specifically in state InTransport).

Figure 12 shows the final design of the application. This version passes the type checker. Note
how a Leglist contains only Arrived references to Leg objects. In addition, when a Transport is
in InTransit state, it owns one Leg, which is also in InTransit state. Each Leg has an Unowned
reference to its Transport, allowing the TransportList to own the Transport. A TransportList
likewise only contains objects in Unload state; one Transport in InTransport state is referenced
at the Shipment level.

We argue that although the type checker forced the programmer to revise the design, the revised
design is better. In the first design, collections (TransportlList and Leglist) contain objects of
dissimilar types. In the revised design, these collections contain only objects in the same state.
This change is analogous to the difference between dynamically typed languages, such as LISP, in
which collections may have objects of inconsistent type, and statically typed languages, such as
Java, in which the programmer reaps benefits by making collections contain objects of consistent
type. The typical benefit is that when one retrieves an object from the collection, there is no need
to case-analyze on the element’s type, since all of the elements have the same type. This means that

Zhttps://github.com/laredo/Shipping.
3This version corresponds with git commit 8106e406e8ca005f8878dea5ac78e54b439fe509 in the Shipping repository.
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Transport -
TransportList LegList

state Empty;
state HasNext {
LegList@Owned next;

state Load;

state Empty; state InTransport {

state HasNext {

N lue | } legList
TransportList@Owned next; va . }
K )— state Unload; ‘_
}

. o Leg@Unowned value;
. LegList@Owned legList;
Transport@Unowned value; LegList@Shared cLeg:

arrived();
append(Leg@Unowned pLeg)
depart(Transport@Load >> InTransport this); returns LegList@Shared;
‘transponList
value
Shipment
Leg

TransportList@Owned transportList;

state InTransit;
state Arrived;

carrier Transport@Shared carrier;

b H a ahas @Owned reference to b
Leg@InTransit(Transport@Shared t,...);

b —<> a ahas @Unowned reference to b setArrival(Leg@InTransit >> Arrived this,

b —D a ahas @Shared reference to b

Fig. 11. Initial design of the Shipping application (which does not compile).

TransportList Transport LegList
. state Load; state Empty;
2;::: Er;lsp’\t‘)g)(t { state InTransport { state H_asNext{
TransportList@Owned next; ‘value ) Leg@InTransit currentLeg; ' legList LegList@Owned next;
. state Unload; Leg@Arrived value;
Transport@Unload value; LegList@Owned legList:
append(LegList@Owned this,
depart(Transport@Load >> InTransport this); Leg@Avrrived >> Unowned pLeg);
transportList
value
Shipment Leg
TransportList@Owned transportList; state InT_ransit;
Transport@InTransport inTsp; state Arrived;
carrier O Transport@Unowned carrier;

Leg@InTransit(Transport@Unowned t,...);
setArrival(Leg@InTransit >> Arrived this, ...);

b ﬂ a ahas @Owned reference to b

b % a ahas @Unowned reference to b
b —D a ahas @Shared reference to b

Fig. 12. Revised design of the Shipping application.

there can be no bugs that arise from neglecting to case-analyze, as can happen in the dynamically
typed approach.

The revised version also reflects a better division of responsibilities among the components. For
example, in the first version (Figure 11), LeglList is responsible for both maintaining the list of
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legs as well as recording when the first leg arrived. This violates the single responsibility principle
[Martin et al. 2003]. In the revised version, LegList only maintains a list of Leg objects; updating
their states is implemented elsewhere.

One difficulty we noticed in this case study, however, is that sometimes there is a conceptual gap
between the relatively low-level error messages given by the compiler and the high-level design
changes needed to improve the design. For example, the first error message in the initial version
of the application shown in Figure 11 is as follows: Cannot invoke setArrival on a receiver
of type Leg@Owned; a receiver of type Leg@InTransit is required. The programmer is
required to figure out what changes need to be made; in this case, the arrived transaction should
not be on Legl ist; instead, LeglList should only include legs that are already in state Arrived.
We hypothesize that more documentation and tooling may be helpful to encourage designers to
choose designs that will be suitable for the Obsidian type system.

We also implemented a version of the Shipping application in Solidity, which required 197 non-
comment, non-whitespace lines, so the Obsidian version (141 lines) took 72% as many lines as the
Solidity version. The translation was straightforward; we translated each state precondition to an
execution time assertion, and we flattened fields in states to the top (contract) level. Although the
types no longer express the structural constraints that exist in the Obsidian version, the general
structure of the code and data structures was identical except that we implemented containers
with native Solidity arrays rather than linked lists. As with the prior case study, the additional
length required for Solidity was generally due to execution time checks of properties that were
established statically in the Obsidian version.

8.3 Case Study Summary

We asked four research questions above. We return to them now and summarize what we found.

(1) RQI: Does the aliasing structure in real blockchain applications allow use of ownership (and
therefore typestate)? The aliasing structure in the blockchain applications we implemented
does allow use of ownership and typestate. However, it forces the programmer to carefully
choose an ownership structure, rather than using ad hoc aliases. This can be restrictive
but can also result in a simpler, cleaner design.

(2) RQ2: Does typestate prevent the need for state checks and assertions? Implementing smart
contracts in Solidity typically requires a couple of lines of assertions for every function
in smart contracts that are designed to use states. This makes the Obsidian code more
concise, although some features that Obsidian currently lacks (such as auto-generated
getters) improve concision in Solidity.

(3) RQ3: Can realistic systems be built with Obsidian? We and our collaborators were able to
successfully build nontrivial smart contracts in Obsidian, despite the fact that Obsidian is
a research prototype without much documentation.

(4) RQ4: Do realistic systems have constructs that are naturally expressed as states and assets?
The applications that we chose benefited from representation with assets and states, since
they represented objects of value and the transactions that were possible at any given time
depended on the state of the object. Of course, not every application of smart contracts
has this structure.

9 FUTURE WORK

Obsidian is a promising smart contract language, but it should not exist in isolation. Authors
of applications for blockchain systems (known as distributed applications, or Dapps) need to be
able to integrate smart contracts with front-end applications, such as web applications. Typically,
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developers need to invoke smart contract transactions from JavaScript. We would like to build a
mechanism for JavaScript applications to safely invoke transactions on Obsidian smart contracts.
One possible approach is to embed Obsidian code in JavaScript to enable native interaction, cou-
pled with a mapping between Obsidian objects and JSON.

Obsidian currently has limited IDE support. Although programmers can receive live feedback on
errors while editing Obsidian code in our extension for Visual Studio Code, in the future, it would
be better if there were debugger support so programmers could step through their Obsidian code
in a debugger.

In the current implementation, Obsidian clients invoke all remote transactions sequentially. This
means that another remote user might run intervening transactions, violating assumptions of the
client program. More discussion of approaches to address this can be found in Section 5.2.

The type system-oriented approach in Obsidian is beneficial for many users, but it does not
lead to verification of domain-specific program properties. In the future, it would be beneficial to
augment Obsidian with a verification mechanism so that users can prove relevant properties of
their programs formally. It would also be useful to conduct a corpus study to assess to what extent
Obsidian’s type system detects bugs that occur frequently in deployed code, and of those, which
are exploitable security vulnerabilities.

The translation from Obsidian to Silica is presented informally. In the future, a formal definition
of the translation would be beneficial.

One limitation of Obsidian’s approach of using linear types is that it prevents assets from being
lost but does not prevent them from becoming inaccessible. For example, one could write a contract
that has a deposit operation but lacks a withdraw operation. Future analyses could try to show
that there is always some execution path that could be used to withdraw assets.

Finally, Obsidian currently only supports Hyperledger Fabric. We would like to target Ethereum
as well to demonstrate generality of the language as well as to enable more potential users to use
the language.

10  CONCLUSIONS

With Obsidian we have shown how:

e Typestate can be combined with assets using a permissions system that expresses ownership
to provide relevant safety properties for smart contracts, including asset retention.

e A unified approach for smart contracts and client programs can provide safety properties
that cannot be provided using the approaches that are currently in use.

e A core calculus can encode key features of Obsidian and provide a sound foundation for the
language.

e Applications can be built successfully with typestate and assets, with useful implications
on architecture and object-oriented design.

Obsidian represents a promising approach for smart contract programming, including sound
foundations and an implementation that enables real programs to execute on a blockchain plat-
form. By formalizing useful safety guarantees and providing them in a programming language
that was designed with user input, we hope to significantly improve safety of smart contracts that
real programmers write. By combining techniques from human-computer interaction, traditional
principles of type system design, and evaluation via case studies, we can obtain a language that is
much better than if we used only one of those techniques alone.

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 3, Article 14. Publication date: November 2020.



14:50 M. Coblenz et al.

APPENDIXES
A AUXILIARY JUDGEMENTS
A.1  Program Structure

We assume that the contracts and interfaces defined in a program are ambiently available via
the def function, which retrieves the definition of a contract or interface (definition) by name.
Likewise, the definition of a state S of contract or interface D can be retrieved via sdef (D, S), and
the definition of a transaction can be retrieved via tdef (D, m). Note that for declaration variables
def (X) is the interface bound on X; similarly, sdef(X,S) is the state in the bound on X. That is
sdef (X, S) = sdef (def (X), S).

‘ Auxiliary Judgment 1: stateFields(D, S) ‘
On individual states, stateFields gives only the fields defined directly in those states:

def (C) = contract C(Tg) implements KT) {ST M)}
SFeST
stateFields(C,S) = F stateFields(I,S) = -

‘ Auxiliary Judgment 2: unionFields(T) ‘

The unionFields function looks up the fields that are defined in ANY of the states in a set of
states. Note that the syntax guarantees that any field has consistent types in all states in which it
is defined. This is useful when it is known that one of two different types captures the state of an
object, but it is not known which one.

Tst € {Shared, Owned, Unowned}

cdef (C) = contract C{[asset]S Fs M)}
F = Ug gstateFields(D, S) F = Ug g, stateFields(C, S)

unionFields(D@S) = F unionFields(D@Tst) = F

Auxiliary Judgment 3: intersectFields(T) ‘

The intersectFields function looks up the fields that are defined in ALL of the states in a set of

states. Note that the syntax guarantees that any field has consistent types in all states in which it
is defined.

Tst € {Shared, Owned, Unowned}

cdef (C) = contract C{[asset]S Fs M}
F = Ny gstateFields(D, S) F = ﬂSEFSstateFields(D, S)

intersectFields(D@S) = F intersectFields(C@Tst) = F

Auxiliary Judgment 4: contract(T¢) ‘

The contract function relates types with their contracts.

contract(Tc@TsT) = Te

Auxiliary Judgment 5: contractFields(C) ‘

On contracts, contractFields gives the set of field declarations defined in all of a contract’s states,

contractFields(C) £ intersectFields(C@Unowned).

Auxiliary Judgment 6: fieldTypess(A; Ty f)
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fieldTypes gives the current types of the fields, given that some of them may be overridden in
the current context.

fefs  fieldTypess(A; Ty f5) =T
fieldTypess(:; Trs fs) = ﬁ fieldTypess(A,s.f : T; Ty, f5) = T,T'

fieldTypess (A, b : T; Ty fs) = fieldTypess(A; Trs f)

Auxiliary Judgment 7: transactionName(M), transactionName(Msig), transactionNames(M)

transactionName (Tm(TM)(T>>T5Tx)TST>> TST) £ m
transactionName (Tm(TM)(T>>TSTx Tsr> Tsr e)
transactionName (TST >> TSTme(TM)(T>>T5Tx)TST>> TST) 2 m

transactionName (TST >> TSTme<TM>(T>>T5Tx Tst> TsT €

transactionNames (M) £ transactionName (M)

Auxiliary Judgment 8: states (D) ‘

The states function extracts the state definitions from contracts and interfaces.

contract C(Tg) implements KTYST M) interface {TGMST Mgig)
states(C) = ST

states(I) =

Auxiliary Judgment 9: stateName(S), stateNames(D),

The stateNames function extracts the names of states from declarations by iteratively applying
stateName to individual states.

states(D) =

stateName([asset] SF) = S stateNames(D) = stateName(S)

‘ Auxiliary Judgment 10: params (D) , params (M) ‘
The params function extracts the type parameters from declarations.

def (C) = contract C(Tg) implements KTHY{ST M} def(I) =
params(C) = Tg

interface KTg){ST Msig)
params() = Tg

params(T m(Ty)(T>TsT X) Tst,> Tst, €) = Ty

params(Tsrs1 >> Tsrsof T m(Ty)(T>Tst x) Tst,> Tstp €) = Ty
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Auxiliary Judgment 11: Ty = T, | Ownership equality

Tl =~ TZ T1 X Tz Tz ~ T3
~-REFL ~-Sym ~-TRANS
T] ~ Tl TZ ~ T1 T1 ~ T3

maybeOwned(T;) maybeOwned(T,) o notOwned(Ty) notOwned(T)

T1 ~ T2 T1 =~ Tg

Auxiliary Judgment 12: S ok | Well-formed state sequence

Well-formed states cannot have conflicts regarding ownership, and if any states are specified, then
Owned would be redundant. There must be no duplicates in the list.

S statename-list

S ok

Auxiliary Judgment 13: S statename-list | Well-formed statename sequence

S statename-list S'¢S

S statename-list S, S’ statename-list

Auxiliary Judgment 14: T ok | Well-formed type

S ok
Tc@S ok Tc@p ok unit ok

A.2 Reasoning About Types

Auxiliary Judgment 15: toPermission (Tst) ‘

The judgment toPermission provides a conservative approximation of ownership to ensure that
if toPermission indicates non-ownership, the type is definitely disposable.

toPermission (g) £ Owned toPermission (Unowned) £ Unowned
toPermission (p) = Owned toPermission (Shared) = Shared

toPermission (Owned) = Owned

Auxiliary Judgment 16: possibleStates; (Tc@Tst) = Tst ‘

P € {Owned, Shared, Unowned}
possibleStatesr(Tc@g) =S possibleStates (Tc@P) = stateNames(def (Tc))

[asset] X@p implements KTY@Tsy €T
possibleStates (Tc@p) = possibleStates; (Tc@TsT)

Auxiliary Judgment 17: T + isAsset (T) ‘

asset S F € possibleStates: (D(T)@Tst) asset X@p implements (TY@Tsy, € T
T+ isAsset(D(T)@Tst) T+ isAsset(X@TsT)
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Auxiliary Judgment 18: T + nonAssetState (ST) ‘

T + nonAssetState(S F)

Auxiliary Judgment 19: T  nonAsset (T) ‘

Tk nonAssetState(possibleStatesr(D(T)@TST)) X@p implements I(T)@Tsn. el
T + nonAsset(D{TY@Tst) T + nonAsset(X@TsT)

Auxiliary Judgment 20: T + disposable (T) ‘

The disposable judgement describes reference types that are NOT owning references to assets.
When applied to a set of states, all states must be disposable in order for the set to be disposable.

notOwned(T) maybeOwned(Tc @TsT) I' + nonAsset(Tc@Tst)
I + disposable(Tc@Tst) T + disposable(Tc@Tst)

Auxiliary Judgment 21: notOwned (T) ‘

notOwned(Tc @Unowned) notOwned(Tc @Shared) notOwned(unit)

Auxiliary Judgment 22: maybeOwned (T) ‘

TST <:, Owned
maybeOwned(Tc @Tst) maybeOwned(Tc @p)

Note that all permission variables could be owned, because we only have upper bounds on
permissions. Therefore, we must treat all permission variables as though they may be owned.

Auxiliary Judgment 23: T + bound (T) ‘

The bound of a type T or permission is the most specific concrete (i.e., non-parametric) type that
is a supertype of T. Likewise, the bound of a state Tst is the most specific state that is a supertype
of Tst. For example, if we know from a type parameter that the type variable X must implement
an interface I{T) and p must be a subpermission of Owned, then the bound of X@p is I(T).Owned.
However, a concrete type such as C(T)@S is already as specific as possible—therefore, its bound
is itself.

T + bound,(Tst) = Tér
' + bound(unit) = unit T + bound(D(TY@Ts7) = D(T}@TS'T

[asset] X@p implements I(T}@TS/T el I+ bound,(Tst) = Tér
I + boundX@Tst) = I(T}@TS'T
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Auxiliary Judgment 24: T' + bound, (Tst) ‘

P € {Owned, Shared, Unowned}
T + bound,(P) = P T + bound.(S) =S

[asset] X@p implements KTY@Ts €T
T + bound,(p) = Tst

Auxiliary Judgment 25: nonVar (T) , nonVar (I¢) , nonVar (Tst) ‘

nonVar(D{T)@Tst) nonVar(unit) nonVar(D(T))

Tst € {Owned, Shared, Unowned}

nonVar(Tst) nonVar(S)

Auxiliary Judgment 26: isVar (T) , isVar (I¢) , isVar (Tst) ‘

isVar(X@Tst) isVar(X) isVar(p)

Auxiliary Judgment 27: Var (Tg) , PermVar(Ig), Perm(T) ‘

Var([asset] X@p implements KT)@Tst) 2 X
PermVar([asset] X@p implements KT)@Tst) = P

Perm(Tc@Tst) = Tst

Perm(unit) £ Unowned

Auxiliary Judgment 28: implementOkp(I (T), Msic), implementOk (I (T), ST)

specializeTrans,.(m, {T)) = T/,, m<T_1(4>(T/>>T§T x) Tgr,> TéTf
TrT <:T  TrTsr <u Tgrp I+ Tgr <u Tst,
Ik TSTf <ix TéTf Tk Trer <: Tr’et

implementOk- (IKTY, Tyer m(TpW(T>Tst X) Tst,> Tsty)

sdef (S, I(T)) = asset S sdef (S, KT)) =S
implementOk (I(T), [asset] S F) implementOkr(I(T), S F)

To check implementOky. (I (T), S), we only need to ensure that if our state is an asset, then the
state we are implementing is also an asset.
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Auxiliary Judgment 29: subsOkr (T, Ti) ‘

T+ D(T)@Tsr <: KL)@T§r
subsOkr (D(T,)@Tsr, asset X@p implements I<T2>@T§T)

T+ D(T))@Tst <: I(TZ)@TS’T T + nonAsset(D(T;).Owned)
subsOkr (D(T,)@Ts, X@p implements I(E)@TS'T)

We can substitute a non-asset for an asset generic parameter, but not vice versa. Note that,
as we can use type variables without their corresponding permission variable (e.g., we can write
X@Owned, not just X@p), we must check whether the generic parameter is an asset in any state,
not just its bound. Similarly, we must check if the type we pass is an asset in any state, not just the
one we pass.

‘ Augxiliary Judgment 30: genericsOkp. (Ti) ‘

genericsOky (Tg) expresses whether a use of a type parameter is suitable when the parameter
must implement a particular interface.

VT € T,isVar(T) = T € Var(T)  subsOkp(T, params(I)) T r nonAsset(I{T).Owned)
VTg €T, (Var(Tg) = X or PermVar(Tg) = p) = Tg = X@p implements (T)@Tsr
Tgr = S = V¥SeS,Se stateNames(I)

genericsOkp ( X@p implements KTY@Tst)

VT € T, isVar(T) = T € Var() subsOkr (T, params(I))
V1 €T, (Var(Tg) = X or PermVar(Ig) = p) = Tg = X@p implements I(T}@TST
Tst =S = VS €8,S € stateNames(I)

genericsOkp (asset X@p implements KTY@Tst)

‘ Auxiliary Judgment 31: o (T /1) (e) ‘
o (T/Tg) (e) defines how to substitute a concrete type for a type parameter.

Tc = [asset] X@p implements I(Tg)@TéT
o(XTY@Tst/Tc)(e) = [D(T)/X][Tst/ple

T=T.T....T, T6=Ts Te,...,Tc,
o(T/Ts)(e) = (o(Tn/Ta,) © 0(Tu-1/Tg, ) © -+ 0 o(T1/T,)) (e)

Augxiliary Judgment 32: specializeTransy (m(T_M), D(T)))

specializeTrans (m(Typ), D(T))) defines how to specialize a transaction definition by substituting
concrete types for the transaction’s type parameters Ty as well as for the type parameters on the
receiver’s contract Tg.
tdef(D,m) = M Tar = params(M) T = params(D)
subsOkr (T, Tg) subsOkr (T, Tar)
specializeTransr(m<T2>,D(T)) = o(Ty/Tr) (o (T/Tg)(M))

ACM Transactions on Programming Languages and Systems, Vol. 42, No. 3, Article 14. Publication date: November 2020.



14:56 M. Coblenz et al.

Auxiliary Judgment 33: merge(A,A’) = A”
The merge function computes a new context from contexts that resulted from branching. It
ensures that ownership is consistent across both branches and takes the union of state sets for
each variable.
For brevity, letd == x | x.f.
merge(A; A') = A merge(A; A') = N’
Sym &)
merge(A’; A) = A” merge(A,d : T;N',d:T")=A",d: (TaT)

x & Dom(A") merge(A,A") = N’ T + disposable(T)
merge(A,x : T;A") = N’

DISPOSE-DISPOSABLE

TeT2T

Tc@Owned & Tc@S £ To@Owned

Tec@Shared ® Tc@Unowned = To@Unowned

Tc@S ® Tc@S’ 2 Tc@(SUS’)

C(TY@Tst ® KT)@T4y 2 KT).(Tst ® Tp) if def (C) = contract C(Tg) implements I(T){. ..}
D(TY@Tst ® D(T)@T4y 2 D(T).(Tst @ Tp).

Auxiliary Judgment 34: funcArg(Tc @TSTpassedv Tc @TSTinputf decl> 1C @TSToutputfdecl) ‘
This function specifies the output permission for a function argument that started with a par-
ticular permission and was passed to a formal parameter with given initial and final permission
specifications. The function is only defined for inputs that correspond with well-typed invocations.

maybeOwned(Tc @Ts1passed)
JuncArg(Te @Tstpassed> Tc @Unowned, Te@Tstoutput-dec) = Tc @Tstpassed

FUNCARG-OWNED-UNOWNED

FUNCARG-SHARED-UNOWNED

funCArg(TC @Shared, TC@U nowned, TC @TSToutput—decl) = TC @TShared

Tc @TsTinput—dect # Unowned

FUNCARG-OTHER
fU”CArg(TC @TSTpassed7 TC@TSTinput—decl’ TC@TSToutput— decl) =Tc @TSToutput—decl

‘ Auxiliary Judgment 35: funCArgReSidual(TC@TSTpassed, Tc @TSTinput—decl’ Tc @TSToutput—decl)
This function specifies the type of the reference that remains after an argument is passed to a
function.

maybeOwned(Tc @Ts1passed)
funcArgResidual(Tc @Tstpassed» Tc@Unowned, Tc @Tstoutput-dect) = Tc @Tstpassed

FAR-OU

FAR-SU

funcArgResidual(Tc @Shared, Tc @Unowned, Tc @Tstoutput—dect) = Tc@Tshared

Te@Tstinput-dect # Unowned .
funcArgResidual(Tc @Tstpassed» Tc @TsTinput—dect> Tc@TsToutpur—dect) = Tc@Unowned

*
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B TRANSLATION FROM OBSIDIAN TO SILICA

The implementation of Obsidian implements type checking directly on Obsidian programs rather
than first translating to Silica. However, we define the semantics of Obsidian by translation to
Silica. The ~» relation operates in a variable binding environment A that maps variables to their
types, as well as the type bounds context I'. Because Obsidian supports declaring local variables
with only contracts specified, not full types (whereas Silica has no variable declarations at all,
only let-bindings), we need an additional context, ®, which maps local variable names to declared
contract names:

®:=x:C.

When translating assignments, the translator checks to make sure the assigned expression’s
contract is consistent with the contract that was specified in the variable’s declaration. This con-
trasts with A, which tracks complete types (not just contract names) of variables. A is needed for
inferring types in translated expressions. After declaring local variable x but before an assignment
to x, x is recorded in © but not A. After the assignment, the variable is in both contexts.

The translation from Obsidian to Silica can be undefined due to type errors in the source Ob-
sidian program. For brevity, we only show a few example rules to summarize how the translation
works. The sequence operator is right-associative.

The variable name _ indicates that the translator chooses a fresh variable name, which has not
previously been used.

T;A;0 kg stmt ~ e 4 A

EmpTY

A0k, 0~ ()4 A

When translating an assignment, because Silica requires A-normal form, we let-bind the right-
hand-side to a fresh variable, x’, so that we can translate the assignment to a Silica assignment.
Assignment requires that the left-hand-side variable has already been declared.

IA;O ks e~ e 4 A I;A s e : C@Tst 4 A* x:Ce®
I';A',x: C@Ts7;0 +g stmts ~> e” 4 A" x" fresh

— ASSIGN
[;A;0 kg x =e;stmts ~ let x’ : C@Tst =€’ inlet _:unit=x:=x"ine” 4 A"

In a declaration without an assignment, we need only record in © the declared contract name
for future checking.

x ¢ dom(O) [A;0,x:C kg stmts ~ e 4 A’

— DEecL
T;A;0 ks Cx;stmts ~ e 4 A’

In a declaration with an assignment, we compute the type of e to prepare the appropriate typing
context for the rest of the statements.

x ¢ dom(®) IA;0,x:Crse~ e 4A”
T5A ks e : C@Tst 4 A*
A, x: C@TsT;0,x : C kg stmts ~ e’ 4 A"

— DECLASSIGN
T;N;0 ks Cx =e;stmts ~ letx : C@Tst = e’ ine”” 4 A”

The overline in the premise of Switch indicates that each statement is translated to a Silica
expression e;’. The ellipsis here represents nested generation of dynamic state checks according to
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the same structure shown for the first one, each using the appropriate e!’. The pattern concludes
with revert since switch requires that one of the cases matches.

;A0 ks e~ e 4A ;A0 kg stmt ~ e’ 4 A
I'Abrge: C@Tst 4 A* P = toPermission(Tst) x fresh
BR =ifx inp Sy then e} else . . . else revert
I;A”;0O kg stmts ~> stmts’ 4 A"’

NL = let x : C@Tst = €’ in BR

P— SWITCH
T'; A; © k, switch e{case S{stmt}};stmts ~> let _: unit = NL in stmts” 4 A"

Expressions of the form S: : f are translated to bound variables. We use the convention that no
variable names in the source program may begin with __ to avoid collisions.

S:x
AR, Six~> S xH4A

C SOUNDNESS THEOREMS

THEOREM C.1 (PROGRESS). Ifeis a closed expression andT; A +¢ e : T 4 N, then at least one of the
following holds:

(1) eis a value.

(2) For any environment ¥ such thatT', %, A ok, 3, e — X/, e’ for some environment 3'.

(3) e is stuck at a bad state transition—that is, e = E[l =sparea S(s)] where p(p(l)) =
(TH@S'(...),S# S, p(l) € ¢, andT; A v [ : C(T"Y@Shared 4 \’.

(4) e is stuck at a reentrant invocation — that is, e = E[1.m(5)] where u(p(l)) = C(TY@S(. . .),
p) €y.

(5) e is stuck in a nested dynamic state check — that is, e = E[if s ingpareqa TsT then eq else e;]
where p(p(l)) = C(TY@S(...) and p(l) € ¢.

Proor. By induction on the derivation of ;A ks e : T 4 A",

Case: T-lookup. e = b. We case-analyze on b.
Subcase: b = x. Then b is not closed. Contradiction.
Subcase: b = 1. Suppose I', %, A ok. By global consistency, | € dom(X,). Then b — X ,(I)
by rule E-lookup.
Subcase: b = o. Then b is a value.
Case: T-let. Because e is closed, e = let x : T = e; in e,. Otherwise, since e is closed, e; is closed,
and the induction hypothesis applies to e;. This leaves several cases:
Case: e, is a value v The properties of the context permit creating a fresh indirect refer-
ence [ that isnotin p. By E-let, Z,letx : T =vine — [p[l = v]/p] Z, [I/x]e.
Case: Y, e; = Y/, el’. Then E-letCongr applies, and %, e — ¥, let x : T = e] in e;.
Case: eq is stuck with e; = E[l > sp4req S(s)]. Then

e=letx: T =E[l >sharea S(5)] in ey
e =E'[l >sharea SG)].
Case: e is stuck with e; = E[E[l.m(s)]. Then
e=letx:T=E[E[l.m(s)] in e,
e =E'[E[l.m(s)].
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Case: T-assign. Because e is closed, e = I’ := [”’. By memory consistency, I’ € dom(p). By E-
assign, 2,1 :=1" - [p[l = 0]/p] %, ().

Case: T-new. Because e is closed, e = new C(T)@5(1) (any variables x would be free, so all pa-
rameters must be locations). The properties of the context permit creating a fresh object
reference o that is not in y. I are a free locations of e, so by memory consistency (6.2),
[ € dom(p), and m is well-defined. By E-new:

=, new C(TY@S(1) — [plo = C(TY@S(p(1))]/1] =, 0.

Case: T-this-field-def. Because e is closed, e = [. f;. By assumption:
1) AR Lfi TN
(2) T,X,A ok.
By memory consistency, p(I) = o for some oand p(o) = C(T"Y@S(s"). Note that 1 < i < |5’
by well-typedness of s. f; and global consistency. By rule E-field, 3, s.f; — Z, 5.

Case: T-this-field-ctxt. Identical to the This-field-def case.

Case: T-field-update. Because e is closed, e = [.f; := I”. By memory consistency, u(p(l)) =
C(TY@S(1”). fields(C(T"Y@S) is ambiently available. By E-fieldUpdate, 3,1.f; := I’ —
(ulp() > XTH@S, L, . LU L, ll’l’,,l)]/y] %, ().

Case: T-inv. Because e is closed, e =1;.m(T)(l). By memory consistency, p(p(l)) =
c(TH@S (...). The transaction is ambiently available. We generate fresh [] and [ so that
they are not in dom(p). If rho(l;) € ¥, then e is stuck at a reentrant invocation. Otherwise,
let
1) 2" =2l & p()][L; = p(l)].

(2) & = PermVar(Tp) — Perm(T), PermVar(Ig) — Perm(Tyy).

() 27 =[&'/E1 Y. p(l) Y]
(4) e’ = tdef(C,m).

I
Then by E-Inv, 3,e — %", W[lz’/this]e’ P
Case: T-privInv. Analogous to the Public-Invoke case, using rule E-Inv-Private, except that the
invocation is never stuck (E-Inv-Private does not check that rho(l;) ¢ ¥).
Case: T-—,. Because e is closed, e = [ — S(l_’). By assumption, [ : C(TH@TsT. By memory con-
sistency, | € dom(p) and p(p(l)) = C(TH@S(. . .). We case-analyze on Tsr.

Subcase: Tst =S or Tst = Owned. By E-—iuneds 2.1 =owned S(f) - [plp(l) =
CT)@SI)/p] % ()
Subcase: Ts = Shared.
Case: p(I) ¢ ¢. Then by E-—parea,

3,1 = sharea SU') = [plp(l) = CTH@S(1)]/u] =, ().

Case: ﬂ(P(l)) = C<T,>@S(' . ')' Then bY E__>shared,
E,Z —shared S(l/) - [H[P(l) = C(T/>@S(l’)]/[,l] 2, ()
Case: e is stuck at a bad state transition. In that case, we have
e = E[l >shared S(I)] where u(p(l)) = CHT@S'(...),S S, p(l) € g, and T; A ks
1 : C(T").Shared 4 A’. C = C* due to memory consistency.
Subcase: Tst = Unowned. This case is impossible, because it contradicts the antecedent
Tst # Unowned of T-—,,.
Case: T-assertStates. Because e is closed, e = [l@g:l. By rule E-assert, %, assert [ in S— >, 0.
Case: T-assertPermission. Because e 1is closed, e =[I@Tsr]. By rule E-assert,
¥, assert [ in Tst — X, ().
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Case: T-assertInVar. Because e is closed, e = [I@Ts7]. By rule E-assert, ¥, assert [ in Tst —
%, 0.

Case: T-assertInVarAlready. Because e is closed, e =[l@Tsr]. By rule E-assert,
3, assert [ in Tsy — 3, ().

Case: T-IsIn-StaticOwnership. Because e is closed, e = if [ ing,neq S then e; else e;. By memory
consistency, there exists S’ such that u(p(l)) = C(T"H@S(. . .).
Subcase: S’ = S. Then by E-IsIn-Dynamic-Match-Owned, 3, e — X, e;.
Subcase: S’ # S. By IsIn-Dynamic-Else, 3, e — 3, ;.

Case: T-isInDynamic. Because e is closed, e = if [ ingpgreq S then e; else e;. By memory consis-
tency, | € dom(p) and there exists S’ such that u(p(l)) = C(T"Y@S(. . .).
By inversion, we have [ : C(T").Shared.
Subcase: S’ = S. Then if p(I) € ¢ then we are stuck in a nested dynamic state check. Oth-

erwise, by E-IsIn-Dynamic-Match-Shared, =, e — [¢, p(I)/$] 2,

Subcase: S’ # S. By IsIn-Dynamic-Else, 2, e — 3, ;.

Case: T-IsIn-PermVar. Because e is closed, e = if [ inp p then e; else e;. By assumption T, 2, A ok,
so &(p) = Tst for some Tsy. Then 3, if Linp p then ey else e, — 3, if linp Tsy then eg else ey.

Case: T-IsIn-Perm-Then. Because e is closed, e = if [ in, Perm then e; else e;. By inversion,
I' + P <:, Perm. As both P and Perm are permissions, not variables, we have - + P <:, Perm,
so by E-IsIn-Permission-Else 2, e — X, e;.

Case: T-IsIn-Perm-Else. Because e is closed, e = if [ in, Perm then e; else e,. By inversion,
I' - Perm <:, P, and P # Perm. As both P and Perm are permissions, not variables, we
have - + Perm <:, P, so by E-IsIn-Permission-Else %, e — 3, e,.

Case: T-IsIn-Unowned. Because e is closed, e = if [ in, Perm then e, else e,. In this case, by
E-IsIn-Unowned X, e — es.

Case: T-disown. Because e is closed, e = disown [. By rule disown, 2, disown [ — X, ().

Case: T-pack. By pack, 3, pack — 3, ().

Case: T-state-mutation-detection. Because e is closed, e = 0, where e’ is also closed. If e’
is a value v, then by E-Box-¢, %,[v] — [(#\ 0)/¢] 2, v. Otherwise, by the induction hy-
pothesis, either 2, e’ — ¥, e”’, or e’ is stuck with an appropriate evaluation context. In the
former case, by E-box-¢-congr, 2,0 — Z/,O. In the latter case, e is stuck with an
appropriate evaluation context.

p(D)’

(o
Case: T-reentrancy-detection. Because e is closed, e = , where ¢’ is also closed. If e’ is a
value v, then by E-Box-/, Z,D — [(¥ \ 0)/¥] 2, v. Otherwise, by the induction hypoth-
esis, either X, e’ — X/, e”, or ¢’ is stuck with an appropriate evaluation context. In the
0 (o] . .
former case, by E-box-i/-congr, 2, — Z', . In the latter case, e is stuck with an

appropriate evaluation context. O

THEOREM C.2 (PRESERVATION). Ifeisa closed expression,IT; A vse: T 4 A", T,3, A ok, and>, e —

3, e’ then for some A, T"; A +s e’ : T" 4 A", T, %', A" ok, and " <§ - A

Proor. Proof proceeds by induction on the dynamic semantics.

Case: E-lookup. e = [. We case-analyze on T.
Subcase: T = unit
By assumption, I', %, A ok, and T; A +5 [ : T 4 A”. By assumption and E-Lookup, 3,1 —
%,%,(1). The fact that %,(I) = () follows directly from global consistency. Then by
T-(), I3 A 5 () : unit 4 A. Global consistency is immediate, because the contexts are
unchanged, and A" <£2, A" by <!-reflexivity.
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Subcase: T = C(T")@Tst
By inversion, A = A, [ : Ty, To = T/T,, and A" = Ay, : T,. By rule E-lookup, e’ =
2, (). The fact that X ,(I) = o for some o follows directly from global consistency. [ # o
by construction and if 0 occurs in Ay, then we apply the strengthening lemma to gener-
ate a new proof of I'; A k5 e : T 4 A’ in which o does not occur. Thus, A’ = A”,0: T, is
a valid typing context. Then by Var, I'; A”,0: To +s 0: T 4 A", 0 : T’ for some T”. Now,
A’ is the same as A except that some instances of Ty have been replaced with T,. The
required consistency is obtained from the Split Compatibility lemma (C.12). We have
A <{_’ 5 A", because the two contexts differ only on o, which is not relevant to the <!
relation. .

Subcase: T = (T"Y@Tst or T = X@Tst
By memory consistency, this case is impossible.

Case: E-assign. e = [ := I’. By assumption:

(1) Z,1:=1 > [pll = 0]/p] 2, ().

2) ;A LT, U Ty kg =1 cunit 4 AL T 1 T

By inversion:

A) Ty = T*/T*.

(2) T+ disposable (Ty).

Let A" = A, 1: T*,I’ : T**. By rule T-(), I'; A’ 5 () : unit 4 A’. We obtain consistency as a

corollary of the split compatibility lemma. Finally, A" <f. s, A" due to reflexivity of <!

Case: E-new. ¢ = new C(T")@5(1), because e is closed (any variables would be free, so they must
not exist).
By assumption, I'; A ks new C(F)@S(i) cC(TH@S 4 A”; also, ¢’ =0, and o ¢ dom(p).
Let A" =A",0:C(T"Y@S. By Tlookup, T;A" 0:C(TY@S Fso0:C{TH@S A", 0:
C(T"Y@Unowned. Since o is fresh and T,3,A ok, there are no refer ences to o in
the previous contexts, so all of the aliases are trivially consistent. We also have

I + T<:stateFields(C(T"),S), where [ : T € A, which implies the required field property
for reference consistency. By the split compatibility lemma, we have I', 3, A’ok. We have
A" <11_’ - A", because the two contexts differ only on o, which is not relevant to the <!
relation.
Case: E-let. e = let x : T} = v in e; By assumption:
(1) Z,letx: Ty =viney, — [p[l — v]/p] Z, [I/x]e.
(2) T,2,A ok.
(3) T;Aksgletx:Ty=viney : T 4A".
Subcase: v = o.
(1) By inversion:
(@ T;A s 0:T; 4 A"
(b) T;A , x: Ty kg e : TAA", x: T/
(c) T+ disposable(T])
(d) I ¢ dom(p)
(2) Let A’ = A*,1:T;. By the substitution lemma (C.13) applied to 1b,
TsA b [I/xley : T4 A1 T).

(3) By global consistency and la, T; is consistent with all other references in
refTypes(Z, A, 0). Now, note that by global consistency, all references were pre-
viously compatible with T;. ¥’ now includes a reference to the same object with
indirect reference 1, which corresponds with [ : T; € A’. The only rule that could
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have been used in 1a is T-lookup, which split Ty = T,/Ts and replaced 0 : Ty € A
with o : T3 € A’. By the split compatibility lemma (C.12), T3 is compatible with all
other aliases to o, and in particular with T;.
4) AT <f.’2, A*,x : T], because | ¢ dom(A™,x : T}).
Subcase: v = (). By inversion:
(1) T;A +5 () :unit4 A
(2) T;A,x :unitrs ey : THA, x: T/
(3) T * disposable (unit)
(4) 1 ¢ dom(p)
Let A’ = A%, 1 : unit. By the substitution lemma (C.13) T;A*, [ : unit ks [I/x]e; : T A
A**,[:T/. Then the extensions to the contexts do not affect permissions, so they must
be compatible, and T', X', A" ok. A*™*, [ : T/ <IF’2, A™,x : T], because [ ¢ dom(A™, x : T|).
Case: E-letCongr. e =let x : T} = ¢; in e,.
(1) By assumption:
(@) T,%, A ok
(b) T;A ks letx: Ty =ejiney : T 4 A”
(2) By inversion:
(@) Z,e1 = X7, e].
(b) T;ARg e : Ty 4 AF
(© A x:Tirsep: o A A", x: T/
(d) T r disposable (T})
(3) By the induction hypothesis:
(@) T™;A™ kg e] : Ty 4+ A" for some I, A, and A"*
(b) T7*,3*, A ok
(©) A" <f5 A"
(4) By C.5with3cand 2c, wehave I; A, x : Ty kg €3 : To 4 A, x : T/, with A™ <lz* A,
(5) Let A’ = A" and let T** =T, T"*.
Then, by rule Let with 3a, 4, and 2d, [##; A" kg let x : Ty = e] in ey : T 4 A™, where
AP <l A,
5
(6) By C.15,T**, 3/, A’ ok.
Case: E-Inv. e = ll.m<M>(E), because e is closed.

(1) By assumption, and because e is closed:

- — (L)
@ 2 L.mM) (L) = [y, p(L) /Y127, [1/x][1] /this]e ’

(b) T,X%,A ok

©) T80, L - XT)@Tstin, b+ Tiz ks l.m({M)(L2) = T 4 Ao, 1y = T}, I - T},
(2) By inversion:

(@) ] ¢ dom(p)

(b) I; ¢ dom(p)

(c) params(C) =Tp

d) 27 =3[l = p()][l; — p(l2)]

(e) & =& PermVar(Tp) v Perm(T), PermVar(Ty) — Perm(M)

() = =[&/E1 Y. p() /Y] 3!

(®) pp(h)) = DH@5(...)

®) p) ey

(i) tdef(C,m) = m{Tu)(Tx>Txst x) Trnis>T),,; €

this
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(i) T+ CD@Ts11<:C(T)@Trnis

(k) T+ Ty <: Cyx@Ty

() T}, = funcArg(C(DY@Tsr11, CTH@Tynis, CHI@T), )
(m) T/, = funcArg(Tiz, Ty, Cx@TxsT)

12
(3) We assume that the transaction is well-typed in its contract:
T m{M)(Cx@T:>TysT x)Tynis> T/, e ok in C. As a result, we additionally have
(by inversion)
(@) Tp, Tg; this : C(TY@Tspis, x : Cx@Ty ks, €: T 4 this: c(h@T! i X 1 Cx@Txst
Then by the substitution lemma for interfaces (C.9), we also have

(@) Tp.Toithis:C(T)@Tihis, x:C(T)@Txks, eTthis:C(TY@T,, , . x:C{T)@Txst

where I, : C/(T")@T, <> by global consistency.
(4) LetT’ =T,Tp, Ty. By the substitution lemma (C.13) on 3a, we have:
1 C(TY@Trhisy 1y:C (T Y@Ticks, [1/x][1; /this]e:TL:C(TY@T],,, .- 1:C(TY@TxsT
(5) funcArgResidual is defined in AJ:35. Let:
Tig = funcArgResidual(C(T)@Tst11, C(T)@Tshis, C(T)@T/),;,)

TIZR = funcArgResidual (Tj3, Tx, Cx@TxsT)

A = AL Tig, b Tig. 1 : C(D@Topis. Iy : C(T)@T),

Note that [; and I, do not occur free in [12’7] [[{ /this]e, because otherwise (3a) would
not have been the case. Then we have (by weakening 4): I'"; A’ [lZ’W] [[]/this]e : T 4
AL Tig. byt T, 1] - C(DY@T),, 1 - C(T)@TcsT

(6) By rule Reentrancy-detection:

p(l)
| [L/x][1] /this]e ST Top TRl CD@T],, 1 - C{T)@Txest

which corresponds to the evaluation step in 1a. This also gives us that every indirect
reference has a contract type, as required by global consistency.
(7) Consider:

TllR —funcArgReszdual(C(T)@TST“,C(T)@Tthls,C(T)@ T/..)
quCArg(C<T>@TST11’ <T>@Tth139 <T>@ thls)

If T/ # (THY@T! inis» then there are two possibilities, both with CTY@Typis =
Unowned. If C(TY@Tsri; = Tc@Shared, then Tjg = Te@Shared; otherwise,
maybeOwned (Tj1r). In both cases, Tjjg ~ T/, and T + T <: T}|. The same argument
holds for I, and its type. Therefore:

ALy Tig, Ly s Tigg, 1] C<T>@T'hls I : C/(T"Y@TxsT <r s Dol T, 2 T,

(8) By assumption of I', 3, A ok, & contains mappings for each p € PermVar (I'). Note that
&' additionally contains mappings for each Tg and Tp, so PermVar (I'") € {p | £(p) =
Tst}, as required by global consistency. Finally, to show I'”, 3/, A’ ok, we need to show
that the new types for [; and I, are compatible with the aliases in A’.

First consider Tjr and C(T)@T;pis, which alias the object origi-
nally referenced with type C(TY@Ts711. By assumption (1c and 1b),
C(TY@Tsry is compatible with all existing aliases in X. Note that Tjp =
funcArgResidual(C(T)@TSTZ1, C(TY@T,piss C(T)@T’hls)
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Consider the cases for Tjg:

Case: FuncArg-owned-unowned. Previously, I : C(T)@TST“ was in A, and
I’,3,A ok. Now, A’ includes both C{TY@Tp;s and C{T)@Ts7;1. But Typis =
Unowned, which is compatible with all other references.

Case: FuncArg-shared-unowned. Previously, [; : C(T)@Shared was in A, and
I”,%,A ok. Now, A’ includes both C(T)Y@T,;s and C(T).Shared. But T,j;s =
Unowned, which is compatible with Shared.

Case: FuncArg-other. Previously, [; : C(TY@Tsri; was in A, and I, 3, A ok. Now, A’
includes both C(TY@T; ;s and C(T).Unowned. But Unowned is compatible with all
other references.

The corresponding argument applies to .
Case: E-Inv-Private. e = I;.m(M)(l;), because e is closed.
This case is similar to the E-Inv case, except that the fields are treated in a manner analo-
gous to arguments: the field states are part of the initial context; they are transformed via
funcArg; and the resulting types are in the output context.
Case: E-IsIn-Dynamic-Match-Owned. e = if x inyyneq TsT then eg else ez, because e is closed.
(1) By assumption, and because e is closed:
(a) T,2,A ok
(b) T;Ag, [ : C(TY@Tst Fs if 1 is ingyneq S then e; else ey : Ty 4 A"
(c) X,if lis ingyneq S then e else e — 3, g
(2) By inversion:
@) p(p) = NH)@S(...)
(b) T;A0,1:C(TY@S +s e : Ty 4 A*
(c) S € states(C(T))
d) Sy = possibleStatesy. (C(T)@TST)
(e) T+ Tsr<:.Owned
(F) T; Mg, x : C(T).(Sx \ S) kg €3 : Ty 4 A™
(g) A" = merge(A*, A™™)
(3) Let A’ = Ag, 1 : C(T)@S. By 2b, T; A’ b e : Ty 4 A*.
(4) The difference between A and A’ is that in A’, the type of [ is C(T)@S. To show that
I,%', A’ ok, we need to show that p(p(l)) = C(TY@S(. . .). But this is given by (2a).
(5) By the merge subtyping lemma C.19, if [ : T € merge(A*, A*"), then [ : T’ € A" with
['+T'<:Tand T’ ~ T. Thus, A" <[5, A”.
Case: E-IsIn-Dynamic-Match-Shared. e = if [ is ingp4req S then e; else e,
(1) By assumption, and because e is closed:
(@) T,3, Ao, [ : C(TY@Shared ok
(b) T;Ap, 1 : C(TY@Shared v if  is ingpareq S then e; else ey : Ty 4 A"’
(c) 2,if [ is ingpareq S then e; else e; — [P, p(1)/P] 2,
(2) By inversion:
(@) T; A0, 1: C(TY@S Fs €1 : Ty 4 A1 : C(TY@Tst
(b) T + bound (Tst) # Unowned
(c) S € stateNames (C)
(d) T; A, : C(TY@Shared vs 5 : Ty 4 A**, 1 : C(TY@Shared
(e) A” = merge(A*, A*),1: C(T)@Shared
)
)

p(D)

() p(p(h) = CM@S(.. )
@ p()¢¢
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(3) Let A" = Ay, : C(T}@S. By State-mutation-detection and 2a, I'; A"
A///'

(4) The difference between A and A’ is that in A’, the type of [ is c(TY@S. By (2f),
we know that p(p(l)) = C(T)@S(. . .). However, there may be other aliases to p(l)
that have Shared permission. Since p(l) is in the ¢ context of %', any other refer-
ences to p(l) must be compatible with C(T)Y@Shared, so we have T,3’, A’ ok via
StateLockCompatible.

(5) By the merge subtyping lemma C.19, if [ : T € merge(A*, A™), then [ : T” € A* with
[+ T <:T. Thus, A" <L A",

Case: E-IsIn-Dynamic-Else. e = if [ is in, S then e; else e,

(1) By assumption, and because e is closed:

@) T, A ok
(b) Z,if lisin, S then e; else e; — X, e;
() I;Ar,iflisin, S thene; else ey : Ty 4 A"

(2) By inversion:

M up) = CDH@S'(...)
(2) S¢S

(3) By inversion, either:

() T;A,1: C(T)@Shared kg ey : Ty 4 A*; or:
(b) T30, 1: C(T).Sx \ S kg €y : Ty 4 A™

(4) If we are in case (3a), thenlet A” = A. Then by 3a,T'; A’ k¢ e; : T; 4 A*. By assumption,
I',%, A’ ok. By the merge subtyping lemma C.19,if [ : T € merge(A*, A*), thenl: T" €
A*withT + T’ <: T. Thus, A* <{.; A"

(5) Otherwise, let A’ = Ay, 1 : C(T).g \ S. Then by 3b,I'; A" k5 e; : Ty 4 A™. By inversion,
we had T; Ao, L : C(TY@Tst Fs €5 : Ty 4 A*. As a result, there are no other owning
references to the object referenced by [, and the referenced object is in state S’ by
(2a). Since S’ ¢ S, C(T).S, \ S is a consistent type for the reference, and T, 3, A’ ok.
By the merge subtyping lemma C.19, if [ : T € merge(A*, A*™), then [ : T € A™ with
[+ T’ <:T.Thus, A" <[5 A”.

Case: E-IsIn-PermVar

(1) By assumption, and because e is closed:

(a) T,%,A ok
(b) T;A vy if lisinpey, p then ey else ey : Ty 4 A”
(c) 2,iflis inpe,m p then e; else e, — 3, if [ is inpe,, TsT then e else e,

(2) By inversion:

(@) &(p) =Tsr

(b) ;A L: Tc@pts e : Ty HA
(€ TsAL:Tc@T§y ks ep: Ty A A
(d) Ar = merge(A’,A")

(e) Perm = toPermission(T¢;)

(3) To perform substitution for type parameters, we must have proved subsOkr (T, Ti),
so we must have I' - Tst <:. p. Then by 2b and the permission variable substitution
lemma C.10, we have I'; A, : Tc@Tst Fg eq : Ty 4 A’

(4) We proceed by case analysis on Tsr.

Ty A
oty 1
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Subcase: Ts = S
If P = Unowned, then T¢. = Unowned, and by 2c we can apply T-IsIn-Unowned
to show I; A, I : Tc@Unowned ks if [ is ingnowned S then e; else e, : T A Aj’,.
If P = Shared, then T{; = Shared, and by 2c we can apply T-IsIn-Dynamic to show
T3 A, L : Tc@Shared g if 1 is ingpgreq S then e; else e : Ty A A}.
If P=Owned, then T+T{, <: Owned, so maybeOwned(Tc@T¢;), and
T+S, < T¢r, where Sy = possibleStates. (Tc@Tst). Then by the subtype
substitution lemma C.4 and by 2c we have T;A,[: Te@(Sx \ S) Fg ey : Ty 4 A
Now we can apply T-IsIn-StaticOwnership to get T;A1:Tc@Tg, ks
if 1 is ingyneq S then e; else ey : Tj A}.
Subcase: Tst = P
If T + Perm <:, P, then by IsIn-Permission-Then,
;A1 : Tc@TsT v if | is inpery P then e; else ey : T; A A}.
Otherwise, I' + Perm £:, P, so by 2c and IsIn-Permission-Else, I'; A, I : Tc@Ts Fs
if [ is inp Perm then e; else e; : T - A}.
Subcase: Ts = q. This case is impossible, because ¢ only maps to nonvariable states
and permissions.
(5) In all cases, global consistency is maintained, because the environment does not
change, A} <£ 5 A" by reflexivity.
Case: E-IsIn-Permission-Then. By assumption, and because e is closed:
(1) I,2,A ok
(2) T;A kg iflisinp Perm then eg else e; : Ty 4 A”
(3) 2,if [ is inp Perm then e else e — 3, ¢;
By inversion:
(1) Perm € {Owned, Unowned, Shared}
(2) -+ P <:, Perm
To prove that e is well typed, we must have used either IsIn-Permission-Then or
IsIn-Permission-Else. However, we know that - + P <:, Perm, so we must have used
IsIn-Permission-Else. Then by inversion of IsIn-Permission-Then, we have I';Aq,x :
Tec@Tst +seq : Ty A N,
Let A" = A, x : Tc@Tst. Global consistency is maintained, because the environment has
not changed, and A" <{-,2, A" by <!-reflexivity.
Case: E-IsIn-Permission-Else. By assumption, and because e is closed:
(1) T,2,A ok
(2) T;A vy if lis inp Perm then e; else e; : Ty 4+ A"
(3) X,if [ is inp Perm then e; else e; — 3, €3
By inversion:
(1) Perm € {Owned, Unowned, Shared}
(2) - +Perm<:, P
(3) P # Perm
To prove that e is well-typed, we must have used either IsIn-Permission-Then or IsIn-
Permission-Else. However, we know that - + Perm <:, P and P # Perm, so we must have
used IsIn-Permission-Else. Then by inversion of IsIn-Permission-Else, we have T'; A, x :
Te@Tst +s e; : Ty 4 A’. Global consistency is maintained, because the environment has

not changed, and A"’ <lr’2, A" by <!-reflexivity.
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Case: E-IsIn-Unowned. By assumption, and because e is closed:
(1) I,2,A ok
(2) T;A vy if 1 is ingnowned S then e; else ey : Ty 4 A”
(3) 2,if [ is ingnowned S then e; else e; — X, €5
By inversion:
(1) ;A x : Tc@Tst bg €3 : 11 4 A’
ey is well typed by 1. Global consistency is maintained, because the environment has not
changed, and A"’ <lr,z' A" by <!-reflexivity.
Case: E-Box-¢. ¢ =[v] .
(1) By assumption, and because e is closed:
(a) T,%, A ok
(b) T;A kg a :THA
© 3.[7], = L6\ /g5
(2) By inversion:
(@ I Arsv:THA”
(3) Note that Eo can only arise in the context of a shared-mode dynamic state test.
Therefore, A must be of the form Ay, [ : C(T)@Shared and A” must be of the form
A, 1: C(TY@Shared.
(4) Since v is a value, either v = () or there exists 0’ such that v = o’. If v = (), then let
A" =By T-(), T';- k() unit : - 4. Otherwise, v = 0" and by Var, there exists 0’ : Ty € A
with T} = T,/Ts.In that case,let A’ = A, 0" : T;. The proof proceeds as in the E-lookup
rule: by Var, there exists A”" =0’ : T such T; A" ks 0" : T 4 A",
(5) A’ differs from A’ only on bindings for o’, which is not relevant to the <! relation,
so A" <£,2' A" by <!-reflexivity.
(6) T,X, A’ ok by the split compatibility lemma.
Case: E-Box-¢-congr. e =[¢] .
(1) By assumption, and because e is closed:
(a) T,2,A ok
(b) T;A kg Eo :THA”
© 2 [e], - 3 [],
(2) By inversion:
(a) Z,e > X, ¢
(b) T;AFse:THA”
(3) Let A’ = A. By 1a, T, 3, A’ ok. Note that A”" = A”. A" <L _, A” by <!-reflexivity. By

>
. . . ’ ’ . 14
State—mutatlcgn—detectlon, A kg 0 :THA”.
Case: E-Box-y. e = :

(1) By assumption, and because e is closed:
(a) T,2,A ok
(b) T;A kg [0] : THA”
© Z[v] = [\ o)/ylZ,v

(2) By inversion:

(@ IGArsv:THA”

(3) Let A" =A.By 2a, 5 A" ks v: THA”. 3 = [(¢ \ 0)/¢/] 2. Note that the definition of
consistency does not depend on %,,. With 1a, we conclude that T, X', A” ok. Note that
A" = NN <11-’2, A" by <!-reflexivity.

Case: E-Box-y-congr. e = e[’.
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(1) By assumption, and because e is closed:
(a) T,X,A ok
(b) T;A rg Eo T4 A

) s.[ef -2 [e]
(2) By inversion:
(@ T;Arse:THA”
(b) Z,e —» X', ¢’

(3) Let A" = A. By 1a, T, %, A’ok. Note that A" = A”. A" <
Reentrancy-detection, I'; A’ + o :THA”.

Case: E-State-Transition-Static-Ownership. e = —,,,5ea S (l_’)

(1) By assumption, and because e is closed:

(a) T,2,A ok B

() 5.1 —ownea ST) = [ulp(l) = CD@S (TN 2. ()

©) T30, : C(TY@Tst 1 | = owned S(X) : unit 4 A%, 1 : C(TY@S
(2) By inversion:

(@) T't Tst <: Owned

(b) T;AgFpx: T 4 AF

() THT<: type(stateFields(C(T) S)

(d) unionFields(C(T), Tst) = Tflfl

(e) fieldTypes;(A*; Ty, ﬁ

(f) T+ dzsposabli( fl)

(3) Let A" = A, 1: C{TY@S. By T-(), I'; A +; () : unit 4 A. To show that I', 3’, A’ ok, it suf-
fices to show that any T € refTypes(2’, A", p(l)) that specifies state specifies type
C(Ty@S’. But note that by 1c, [ is in the original typing context with an owning
type. Since I, 3, A ok, and C(T)@Tst € refTypes(Z, A, p(1)), the only owning alias
to the object referenced by [ is [ itself. Replacing [ : g(T}@TST in Awith [ : {T)@S
replaces the type of the only owning alias with C(T)@S, which is consistent with
u(p(l)) = c(TY@S(). N < r s A” by <! -reflexivity.

Case: E-State-Transition-Shared. e = | > 4,04 S(l )

(a) By assumption, and because e is closed:

(a) T,X,A ok B
(b) 2,1 =sharea SU') = [ulp(l) = KTHY@S(p(I))]1/1] 2, ()

(2) Now, assume typing rule —gp 4,04 applied, since if — .4 applied, then the argument
for case E-State-Transition-Static-Ownership (above) applies. Then:
(@) T; Ao, 1 : C(TY@Tst Fi | =sharea S(X) : unit 4 A*, 1 : C(T)@S

(3) By inversion:

(@) T F Tst <:. Shared. By 2, we assume therefore Tsr = Shared.
(b) T; A X : T 4 A

() THT <: type(stateFlelds(C(T) S")

(d) unionFields(C(T), Tst) = Tflfl
)
)
)

r s« A by <! reflexivity. By

(e) fieldTypes;(A*; Tflfl)
(f Fl—dzsposable( )

p() €V ulp ()) cMm@s(...)

(g
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(4) There are two subcases.

Subcase: p(I) ¢ ¢.Let A’ = A. By T-(), I; A +; () : unit 4 A. Now, all existing aliases to
the object referenced by p(l) were compatible with the previous reference, which
was of type C (TY@Shared. As a result, none of those references restricted the state
of the object, and the new state (in X’) is consistent with A.

Subcase: p(p(l)) = C(T)@S(...). Let A’ = A. By T-(), T'; A +; () : unit 4 A. All refer-
ences to the object referenced by p(l) have the same type in 3’ as they did in 3,
because neither the contract nor the state of the object have changed, and we have
I,>, A’ ok.

(5) In both cases, A"’ <lr,z' A" by <!-reflexivity.
Case: E-Field. e = [.f;.
(1) By assumption, and because e is closed:
(@) T.3,A ok
(b) 2,1.fi = =, 0;
(2) By inversion:

@ p(p() = ATH@S(s)

(3) Now, there are two subcases, because there are two possible type judgments for e.

Subcase: this-field-def

(a) By assumption: I; Ao, L : T+ Lf : To 4 Ao, L T,1f : T;
(b) By inversion:
(i) I.f ¢ Dom(A)
(if) Ty f € intersectFields(T)
(iii) Ty = Tz/T3
() LetA" =A¢,1:T,l.f : T5,0; : T,. Thenby Var,I'; A" +5 0; : T, 4+ A’ for some A"”.
T, >, A’ ok, because T is a consistent permission for o; per the split compatibility
lemma (as in the E-lookup case). A" agrees with A”” on all [, so A" <£,z' A" by
<l-reflexivity.

Subcase: this-field-ctxt
(a) By assumption: I'; Ao, [ : T,1.f : Ty by Lf : T 4 Ao, L : T, 1.f : T3
(b) By inversion: Ty = T5/Ts
Let A" = Ao, 1 : T,I.f : T5,0; : T,. Then by Var, I'; A’ +5 0; : T3 4+ A" for some A"”.
I, 3, A’ ok, because T, is a consistent permission for o; per the split compatibility
lemma. A" agrees with A” on all [, so A"’ <§,2' A" by <!-reflexivity.

Case: E-FieldUpdate. e = I.f; :=I'.
(1) By assumption, and because e is closed:

(a) T,%, A ok

(b) 3, 1.fi =1 — [u[p() — C(T)@S(01,02, . .., 0i—1, p(I"), 0i41s - - -+ O\ﬁl)]/'u] %, ()

() AR Lfi =1 :unit4 A", L f; : Tc@Tst

(2) By inversion:

@ p(p() = KTHY@5S(0)

(b) fields(C(T)@S) =T f

(C) F,A ] lfl : TC@TST 4 A"

(d) T5A° by Lfi : Te@TYy 4 A™

(e) T+ disposable (Tc @TsT)

(3) Let A" = A% L.f; : Tc@Tst. By T-(), I; A F; () = unit 4 A,
(4) Note that ¥’ = [u[p(l) = C(TY@S5(01, 02, . . .,0i-1, p(I), 0i41, ..., 01))]/p] Z. By the
same argument used in the proof of preservation for the E-lookup case, T, %, A* ok and
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likewise T, %, A™* ok. To show I', ', A’ ok, we note that the only change relative to >
and A™ is regarding the type of [. f;. p(I) has the same number of fields in X’ as in 3.

Although p(I) may now have an additional reference to p(l’) that did not exist before,

this reference is compatible with all of the other references in re fTypes(Z’, A*, p(I’)),

because if the new reference is owned, this is only because Tc @TsT was owned, which

was previously accounted for in re fTypes(2’, A*, p(I”)), and that ownership has been

removed in A**.

(5) A" agrees with A" on all [, so A"’ <1{,2, A" by <'-reflexivity.
Case: E-Assert. e = [x@Ts7].
(1) By assumption, and because e is closed:
(@) .3, A ok
(b) X,assertlin Tst — X, ()
(2) There are two subcases:

Subcase: Tst = S. By assumption, I'; Ao,/ : C(T).S ks [I@S’] : unit 4 Ao, I : C(T).S.
Let A" = A. By T-(), I; A" +; () : unit 4 A’. Since ' = 3, A’ = A, and T, 2, A ok, we
haveT',>’, A’ ok.

Subcase: Tst # S. By assumption, I';Aq,[: C(TY@Tst Fs [I@Tst] : unit 4 Ao, 1 :
C(TY@Tst. Let A’ = A. By T-(), I A" +; () : unit 4 A’. Since 2" =3, A’ = A, and
T,2, A ok, we have I', >, A’ ok.

Case: E-Disown. e = disown .
(1) By assumption, and because e is closed:
@) I.%,A ok
(b) X, disownl — 3,1
(2) There are two subcases:

Subcase: T; Ag, I : C(T).S r¢ disown [ : unit 4 Ag, I : T’. By inversion, C(T).S =
T/T'. Let A’ = A”. By T-(), I'; A’ k5 () : unit 4 A’. Although the split compatibil-
ity lemma does not precisely apply here, an analogous argument does: any other
alias to the object referenced by [ was previously compatible with C(T).S, so we
can see by case analysis of the definitions of compatibility and splitting that such
aliases are also compatible with T".

Subcase: T';Aq, 1 : C(T)@Owned ts disown [ :unit 4 Ay, I :T’. By inversion,
C(TY@Owned = T/T". By T-(), T; A’ +; () : unit 4 A’. Although the split compati-
bility lemma does not precisely apply here, an analogous argument does: any other
alias to the object referenced by I was previously compatible with C(T)@Owned,
so we can see by case analysis of the definitions of compatibility and splitting that
such aliases are also compatible with T”.

(3) In both subcases, A" = A", so A" <£2, A" by <l—reﬂexivity.
Case: E-Pack. e = pack.
(1) By assumption, and because e is closed:
(@) T, A ok
(b) %, packs — %, ()
(¢) T;A0,1:T,L.f : T +; pack : unit 4 A, : T. (Note that l.f : T can be any subset of
the declared fields, including the empty subset.)
(2) By inversion:
(a) I.f ¢ dom(Ao)
(b) contractFields(T) = Tyecr
(C) I'r Tf<: Tyect
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(3) Let A" = A.By T-(), T; A" +; () : unit 4 A”. Note that every Ty is a subtype of Tyec;. The
impact on refTypes(X’, A’, o) is that types defined for fields will replace types defined
in A. But because every replacement is a supertype of the type that it replaces, we have
I,%', A’ ok by the subtype compatibility lemma (C.3). O

THEOREM C.3 (ASSET RETENTION). Suppose:

(1) T,3,A ok

(2) o€ dom(p)

(3) refTypes(S,A,0) =D

(4) T;Arse:THA

(5) e is closed

(6) X,e —» 3 e

(7) refTypes(3',A’,0) = D’

(8) AT’ € D such thatT nonDisposable (T”)
(9) VT’ € D’ : T + disposable (T")

Then in the context of a well-typed program, either T' + nonDisposable (T) or e = E[disown s],
where p(s) = o.

Proor. By induction on the typing derivation.

Case:

Case:

Case:

Case:

Case:

Case:

Case:

Case:

T-lookup. In (6), the only rule that could have applied is E-lookup, which leaves ¥ un-
changed. A’ is the same as A except that some instances of T; have been replaced by
T5. If T + nonDisposable (T), then it is proved. Otherwise, I +- disposable (T), and by the
definition of split, I' + disposable (T;) and T + disposable (T3), so there was no change in
disposability in A’, contradicting the conjunction of (8) and (9).

T-Assign. By assumption, T; A, s" : Ty, s” : Ty kg 8" :=s" cunit 4 A”,s" : T, s" : T*. By
inversion, T + disposable (T!), so no owned references to assets were lost by replacing T;.
As in the case for T-lookup, the definition of split (by inversion, Ts» = T*/T**) ensures
that either (8) or (9) is contradicted.

T-Let.e = let x : T = e; in e;. There are two subcases, depending on the rule that was used
forX,e —» X', e’:

Subcase: E-let. 3’ has a new mapping for a new indirect reference /, which may cause an
additional alias to an object, but all previous aliases are preserved, so it cannot be the
case that all non-disposable references are gone.

Subcase: E-letCongr. The induction hypothesis applies to e;, because 3, e; — X/, e]. This
suffices to prove the case, because there are no changes to A.

T-new. By rule E-New, X, new c(THY@S(l) — [ulo— C(F)@S(m)]/y] 3, 0. By inver-

sion, ;A ks s” : T 4 A’. By the induction hypothesis, any nondisposable references in A
are preserved in A’. The new X’ also preserves any existing nondisposable references.
T-this-field-def. Rule E-field leaves ¥ unchanged. By the split non-disposability
lemma (C.2), if T + disposable (T;), then I + disposable (T5). No other types are changed
in the typing context.

T-this-field-ctxt. Same argument as for This-field-def.

T-fieldUpdate. Although >’ replaces a field, which may reference an object, the reference
that was overwritten was disposable (by inversion).

T-inv. The changes in A consist of replacing types with the results of funcArg. ¥’ has
additional aliases to objects, but additional aliases cannot cause loss of owning references.
We consider the cases for funcArg:
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Case:

Case:
Case:
Case:
Case:

Case:

Case:

Case:

Case:

Case:

Case:

Case:
Case:

Case:

M. Coblenz et al.

FuncArg-owned-unowned.This case preserves ownership in the output type.

FuncArg-shared-unowned. The input type here is not owned.

FuncArg-other. If owned(Tc@TsTinpur-dect)> then in A, the corresponding variable is an
owning type. By substitution, ownership of the object will be maintained in the next
context.

This represents a contradiction with the assumption that ownership was lost.

Case: T-privInv. This case is analogous to the case for Public-Invoke, but with additional
aliases changed due to fields.

T-—,. e =5 —, §'(x). A rule E- —, applied, replacing an object that previously had a
type consistent with C(T@Tst in 1 with one that references an object in state S’. The
new static context contains an owning reference to the new object, so ownership of s was
not lost. For the dynamic context ¥’, it suffices to examine the references from fields of
the old object (u(p(l))). It remains to consider the fields that were overwritten, but these
all had types that were disposable (by inversion of T-— ).

T-assertStates. This rule causes no change in either A or X, which is a contradiction.

T-assertPermission. This rule causes no change in either A or X, which is a contradiction.

T-assertInVar. This rule causes no change in either A or ¥, which is a contradiction.

T-assertInVarAlready. This rule causes no change in either A or X, which is a contradic-
tion.

T-IsIn-StaticOwnership. e = if x in,yueq S then e else e;.

(1) IfE-IsiIn-Owned-Then applies, then 3, e — 3, e; (and by the preservation lemma, e; is
well-typed). By the same argument as for T-lookup, no ownership was lost in A” and
A""; any consumed ownership is now in Ty. From the merging preserves nondisposability
lemma (C.21), we find a contradiction with the assumption that a type has changed
from nondisposable to disposable in this step.

(2) Otherwise, E-IsIn-Else applies, and the same argument applies to e,.

T-isInDynamic. e = if X ingpqreq S then e; else e;. The same argument as in the T-IsIn-
StaticOwnership case applies, except that the situation is even simpler, because A and A’
agree that x : Tc@Shared.

T-IsIn-PermVar. The argument is the same as for T-isiInDynamic.

T-IsIn-Perm-Then. E-IsIn-Perm-Then applies, and, 3’ = 3. By the same argument as in
the T-Lookup case, no ownership was lost in A’, which contradicts the assumption.

T-IsIn-Perm-Else. The argument is the same as for T-IsIn-Perm-Then, but with E-IsIn-
Perm-Else.

T-IsIn-Unowned. The argument is the same as for T-IsIn-Perm-Then, but with E-IsIn-
Unowned.

T-disown. Then e = disown s.

T-pack. Note that pack leaves ¥ unchanged; the only change is removing s. f : Ty from A.
But by inversion, Ty ~ Tyec;. As a result, no ownership can change from A to A’, contra-
dicting the assumptions.

T-state-mutation-detection. e = 0. The step must have been either via E-Box-¢ or via
E-Box-¢-congr.

Case: E-Box-¢. The change in E-Box-¢ and state-mutation-detection has no impact on

ownership, so this contradicts the assumptions.

Case: E-Box-¢-congr. We have the required property by the induction hypothesis, since
the present rules make no changes themselves to A’ and ¥’, which were provided in-
ductively.
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Case: T-reentrancy-detection. e = O. The step must have been either via E-Box-y or via
E-Box-i/-congr.
Case: E-Box-y. The change in E-Box-{ and state-mutation-detection has no impact on
ownership, so this contradicts the assumptions.
Case: E-Box-y-congr. We have the required property by the induction hypothesis, since
the present rules make no changes themselves to A’ and X', which were provided in-
ductively. O

C.1 Supporting Lemmas
LeEMMA C.1 (MEMORY CONSISTENCY). IfT, X, A ok, then:

(1) Ifl: C(T")Y@S € A, then Jo.p(l) = 0 and p(o) = C(T")@S(5).
(2) IfT;Avrge:T 4 A, andl is a free variable of e, then | € dom(p).

Proor.

(1) Assume [ : C(T")@S € A. Then p(I) = o follows by inversion of global consistency. y(0) =
C*(T*Y@S'(0’) follows by inversion of reference consistency (which itself follows by in-
version of global consistency). By inversion of reference consistency, - - C*(T*)@S’ <: D.
By definition of refTypes, C(TH@S € D, so - F CHTH@S’ <: C(T")@S. This implies that
C=C*S=8"and-+ T* <: T’ (by definition of subtyping).

(2) By induction on the typing derivation, we prove that if [ is a free variable of e, then
I € dom(A). Then the conclusion follows immediately from the definition of global con-
sistency. We consider some example cases:

Case: T-lookup. s’ is a free variable, but s’ : T; € A.

Case: T-let. Any free variables in e must be in e; or e,. The result is obtained by induction
on e; and e,.

Case:s =, S’(x). s is a free variable, but s : C(T4)@Tst € A.

Case: T-assertStates. x is a free variable, but x € dom(A).

The remaining cases are similar to the above. O

LEMMA C.2 (SPLIT NON-DISPOSABILITY). If Ty = T3/T3, and Ty is not disposable, then T, is not
disposable.

Proor. By inspection of the definition of Ty = T/T5 and owned. Note that in the Split-owned-
shared and Split-states-shared cases, although owned(T;), C is not an asset, which makes T; dispos-
able. O

LeEMMA C.3 (SUBTYPE COMPATIBILITY). IfT & T’,andT + T’ <: T"”, then T < T".

Proor. By straightforward case analysis of the subtyping relation. O
LeEMMA C.4 (SUBTYPING REFLEXIVITY). Forall typesT,T + T <:T.

Proor.

Case: unit. Rule Unit applies.
Case: Tc @Tst. By rule Refl in the definition of the subpermission relation, rule Matching-
definitions applies. O

LEMMA C.5 (EXCLUSIVITY OF ISASSET/NONASSET). For all types T:

(1) IfT + isAsset (T) is provable, thenT' + nonAsset (T) is not provable.
(2) IfT v nonAsset (T) is provable, then T + isAsset (T) is not provable.
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Proor. By straightforward case analysis of the isAsset and nonAsset rules. O
LeEmMA C.6 (EXCLUSIVITY OF ISVAR/NONVAR). For all types T:

(1) IfisVar (T) is provable, then nonVar (T) is not provable.
(2) If nonVar (T) is provable, then isVar (T) is not provable.

For all declaration types Tc:

(1) IfisVar (TI¢) is provable, then nonVar (T¢) is not provable.
(2) If nonVar (T¢) is provable, then isVar (T¢) is not provable.

For all permissions/states Tst:

(1) IfisVar (Tst) is provable, then nonVar (Tst) is not provable.
(2) If nonVar (Tst) is provable, then isVar (Tst) is not provable.

Proor. By straightforward case analysis of the isVar and nonVar rules. |
LemmA C.7 (EXCLUSIVITY OF MAYBEOWNED/NOTOWNED). For all typesT:

(1) If maybeOwned (T) is provable, then notOwned (T) is not provable.
(2) If notOwned (T) is provable, then maybeOwned (T) is not provable.

Proor. By straightforward case analysis of the ownedState and notOwned rules. O
Definition C.1 (Non-disposability).
maybeOwned(Tc@TsT) I + isAsset(Tc@Tst)
I' + nonDisposable(Tc @TsT)

ND-OWNED.

LEmMMA C.8 (EXCLUSIVITY OF DISPOSABILITY AND NON-DISPOSABILITY). For all typesT:

(1) IfT + disposable (T) is provable, thenT' + nonDisposable (T) is not provable.
(2) IfT v+ nonDisposable (T) is provable, then T + disposable (T) is not provable.

Proor.

(1) Consider the cases for I + disposable (T).

Case: D-Owned. Let T = Tc@Ts7. By inversion, maybeOwned (Tc@Tst) and T F
nonAsset (Tc@Tst). Then we cannot prove nonDisposable, which requires T +
isAsset (Tc@TsT).

Case: D-not-owned. There is no rule by which to prove I' - nonDisposable (T).

Case: D-Unit. There is no rule by which to prove I' + nonDisposable (T).

(2) To prove I' + nonDisposable (T), we must use ND-Owned; so T = Tc@Tst, and we must
show that maybeOwned (Tc@Tst) and T + isAsset (Tc @Ts7). But this directly contradicts
the premises of D-not-owned and D-owned, and D-unit does not apply. So there is no rule
by which to prove I  disposable (T). ]

LEMMA C.9 (INTERFACE SUBSTITUTION). If

(1) T;A,s" : KTY@Tst s e: T 4 A
(2) T+ C(T"y <: KT)
(3) Cok

thenT; A, s" : C(TY@Tst Fs € : T 4 A, where
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(1) ifs’ : KT)@T}y € N, then A = N, s" : C(T"Y@T},
(2) otherwise N = N’.

Proor. By induction on the typing derivation. The relevant cases are Inv and P-Inv; all other
cases will be identical, because x has the same permission or state. Because interfaces do not have
fields, there must not be any field assignments or access involving x, so we do not need to consider
those.

Case: Inv In this case, e = s;.m(Ty)(57).
If s’ = 51, with the assumption that m ok in C, then we have:
(1) specializeTransy (m(T_M), I(T)) =T m(T_]({)(TCx @Ty > Tist x) Trnis > T,
(2) Cok
(3) Tk Tsr < Tynis
(4) T+ Tsz <: TCX@Tx
(5) T}, = funcArg(Tc@Tsts1, Tc@Trhiss Tc@T},;)
(6) Ts’z = funcArg(Tsz, Tx, TCX @TxST)
So then
(1) transactionName (m) € transactionNames (C)
(2) def(m,C) =M =T m(Ty NI} T4 > Tlgp x) Ty > Ti
(3) implementOkr(I(ﬂ, M).
By definition of implementOk, this implies that the invocation is still well-typed.
If s’ €55, thenT + I(T)@T;T <: T for some argument of type T. But then because sub-

typing is transitive, C ’(F)@T;T is also a subtype of T, so the invocation is still safe.
Case: P-Inv Identical to the Inv case, except that we cannot invoke a private transaction on s’,
as interfaces do not have private transactions, so s” must be one of the arguments. O

LEMMA C.10 (PERMISSION VARIABLE SUBSTITUTION). Suppose

(1) T+ Tst < p
2) T;A,x : Tc@ptrse:THA

ThenT; A, x : Tc@Tst Fs e : T 4 A,
Proor. Follows from C.4 O
LEmMA C.11 (EXCLUSIVITY OF SUBPERMISSION). For any permissions P and P’:

(1) If- + P <:, P’ is provable, then - + P £:. P’ is not provable.
(2) If -+ P £ P’ is provable, then - + P <:, P’ is not provable.

PRrooF. By case analysis of the subpermission rules, we can see that every pair of permissions is

related. The only way that - + P <:. P’ and - + P’ <:, P can be true is if P = P’, but then we cannot
prove - + P £:, P’ O

LEMMA C.12 (SPLIT COMPATIBILITY). IfT; A kg s’ :T4A andT,3, Aok, thenT,3, A’ ok.

Proor. For one expression, it suffices to show that replacing T with T5 in A leaves the re-
maining context consistent with X. The proof of this is by cases of splitting; this is theorem
splittingRespectsHeap in heapLemmasforSplitting.agda in the supplement. For multiple ex-
pressions, simply iterate the argument. O

LEmMA C.13 (SUBSTITUTION). IfT5 A x : Tx ks e: T 4 A/, x : T, thenT; A1 : Ty v [I/x]e : T' 4
AT
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Proor. Substitute [ for x throughout the previous proof. ]
LeEMMA C.14 (SUBTYPE REPLACEMENT). If

o A x:Tytrse:T 4N, x: T,
o THT/ < Ty
° T;sz

thenT; A, x : T) ks e : T 4N x : T)” wherel' v T <: T).

Proor. By induction on the typing derivation and the subtyping derivation. Relevant cases
include:

Case: T-lookup.
(1) By assumption:
(@) TrTY<Ty
(2) By inversion of T-lookup:
@ Te = T'/T;
(3) Note that it suffices to show that T;” = T’/T,”. Consider the cases for 2a:
Case: Split-unowned T, = Tc@Unowned. Split-Unowned applies to T/, resulting in
T}" = Tc@Unowned.
Case: Split-shared By assumption, T, = Tc@Shared. If T)” = Tc@Shared, then the
result follows by Split-Shared. Otherwise, maybeOwned (T)), but this contradicts
the assumption that T, =~ T;.
Case: Split-owned-shared By inversion of maybeOwned, we have the following
cases:
Subcase: T, = Tc @p. All subtypes of Tc@p are themselves maybeOwned and
nonAsset, so Split-owned-shared applies.
Subcase: T, = Tc @Owned. All subtypes of Tc@Owned are themselves maybe-
Owned and nonAsset, so Split-owned-shared applies.

Subcase: Ty = Tc @S. All subtypes of Tc@S are themselves maybeOwned and
nonAsset, so Split-owned-shared applies.
Case: Split-unit. T, = T, = unit. Split-unit applies for T}, since the only subtype of
unit is unit. Then T;"” = unit, which is a subtype of T}.
Case: T-IsIn-StaticOwnership. I' - T;” <: T, results in a smaller set of initial possible states for
x, resulting in a potentially smaller set of possible states for x in the resulting context.
This explains why it is not necessarily the case that 7" = T} ]

CoROLLARY C.4 (SUBTYPE SUBSTITUTION). If

e A x:Tyrse:T 4N, x: T, and
o T/ <: Ty
thenT; AL : T v [I/x]e: T" 4+ A',1: T wherel + T} <: T,.
Proor. Follows by applying both C.14 and C.13. ]
CoROLLARY C.5 (L-STRONGER SUBSTITUTION). IfT;Arse: T 4 A and A’ <’r s A, thenT; A v
e:THA” withA" <L, N

Proor. By induction on A’, applying C.4 and the definition of A” <lr s A |

LEMMA C.15 (L-STRONGER CONSISTENCY). IfA’ <£ A andT,>, Aok, thenT,>, A’ ok.
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Proor. By induction on A and application of subtype compatibility (C.3). O

’

LEMMA C.16 (STRENGTHENING). IfT;A,s" : Ty ks e: T 4 A,s
thenT;Avse:T 4N,

: Ty, and s” does not occur free ine,

Proor. By induction on the typing derivation. Since s’ does not occur free in e, s" must not be
needed in either proof. O

LEmmA C.17 (WEAKENING). If ;A kg e:T 4 A, and s’ does not occur free in e, then T'; A, s" :
Torse:TH N,s" Ty

ProoF. By induction on the typing derivation. Since s’ does not occur free in e, s” must not be
needed in either proof. O

LeEmMMA C.18 (MERGE CONSISTENCY). IfT, 3, A ok andT, X, A’ ok, thenT, 3, merge(A,A’) ok.
Proor. By induction on merge(A, A’).

Case: Sym. By the induction hypothesis, I', 3, merge(A’, A)ok, and merge(A’, A) = merge(A, A\’).
Case: @. By inversion, A=A",x:T and A" = A", x : T’. Because A" is a subset of A", x:
(T ® T’), by the induction hypothesis, T, %, merge(A”,A””") ok (the induction hypothe-
sis applies, because dom(A”") € dom(A”,x : (T ® T’)) and A”(x") = A(x’) for all x # x').
Therefore, by the definition of consistency, it suffices to show that T @ T’ is compatible
with all T” € refTypes(Z, A””). We assume that either T < T or T” & T’.
Subcase: T @ T = T. Anything compatible with T is trivially compatible with T.

Subcase: Tc @Owned ® Tc @S = Tc @Owned. If T” is compatible with Tc@Owned,
then it is proved. Otherwise, T” is compatible with Tc@S$ (by inspection of the def-
inition of ). In particular, 7" must be Tc@Unowned, in which case rule Unowne-
dOwnedCompat applies.

Subcase: Tc @Shared ® Tc @Unowned = Tc @Unowned. If T” is compatible with
Tc@Unowned, then it is proved. Otherwise, T” is compatible with Tc@Shared, and
by definition of <, either T” = Tc@Shared or T" = Tc@Unowned. The later case was
already addressed, and in the former case, SharedCompat gives T" < Tc@Shared.

Subcase: Tc @S & T¢ @§ =Tc@(S US’). The only compatibility rule that could have
applied was UnownedStatesCompat, and it still applies to Tc@(S U S).

Subcase: C(TY@Tsr & I<F)@TS'T =KT & T")@Tsr & KT & T)@T,, =1<F>@TS*T.
If T is compatible with C (TY@Tsr, then it will also be compatible with I (F)@T;T by
SubtypeCompat, ParamCompat, and application of one of the other subcases for 7.
If T is compatible with I (F)@TS’T, then it will also be compatible with I (F)@TS*T by
ParamCompat and application of one of the other subcases for T¢,

Subcase: D(T)@Tsr eaD<F>@TS'T= DTOTY@Tst @D(T@T')@Ts’TzD(’_IT*)@TS*T. If

T” is compatible with D(TY@Tsr, then it will also be compatible with D(F)@TS*T by
ParamCompat, and application of one of the other subcases for T¢,. If T is compatible
with D(T"Y@Tsr, then it will also be compatible with D(F)@T;T by ParamCompat,
and application of one of the other subcases for T¢.

Case: Dispose-disposable. Eliminating a variable from a context that is already consistent with
> leaves a context that is still consistent with X. Note that this rule does not allow re-
moving bindings of the form x.f : T, because removing those bindings could result in
inconsistencies, since then the types of those fields would (incorrectly) be assumed to be
according to their declarations. O
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LeEmMA C.19 (MERGE SUBTYPING). Ifl: T € merge(A*, A*), thenl: Ty € A" andl : T, € N** with
't 1 < T, T+ <:T, Ti #T,and T, =~ T.
Proor. By induction on the merge judgment.

Case: Sym. The conclusion follows immediately from the induction hypothesis.
Case: @. In each subcase, the conclusion follows from the induction hypothesis and the @& sub-

typing lemma (C.20).
Case: Dispose-disposable. d ¢ merge(A*, A™), so the conclusion follows immediately from the
induction hypothesis. ]

LEMMA C.20 (® sUBTYPING). IfTy ®Tp =T, thenT + Ty <:T andT' + T, <: T.

ProoOF.

Case: T @ T. It is proved by reflexivity of <:.

Case: Tc @Owned & T¢ @g. T+ Tc@Owned <: Tc@Owned and T + Tc@S <: Tc@Owned.

Case: Tc@Shared ® Tc@Unowned. T+ Tc@Shared <: Tc@Unowned and T+
Tc@Unowned <: Tc@Unowned.

Case: Tc@S ® Tc@S'.T + Tc@S <: Tc@(SU ') and T + Tc@S’ <: Tc@(S U S').

Case: C(T)@Tsr @ 1<?)@TS'T. I't (T)@Tst <: KT).(Tst ® T¢;) and T+ KD)@TY, <
KT).(Tst ® Tgy) by rule implements-interface and the induction hypothesis.

Case: D(T)@Tsr ® D<f)@TS'T. I'+ XTY@Tst <: D(T).(Tst ® T;) and T+ DXT)@T}, <
D(T).(Tst ® T¢;) by rule Matching-Declarations and the induction hypothesis.

Note that in each of the above cases, T} ~ Ts. O

Tueorem C.6 (Unicity ofF owNErsHIP). If [,3, A ok, and o+ C(T}@S(. ..) €pu, and
refTypes(Z, A, 0) = D, then at most one T € D is either C(T).S or C{T)@Owned.

Proor. By inversion of reference consistency, YTi,T, € D,Ty & Tyor (o€ Spand T; =
(TY@S and T; = C(TY@Shared(i # j)). Note that C(T)@Owned is not compatible with either
C(TY@Owned or C(T).S, and C(T).S is not compatible with C(T).S. If there were more than
one alias of type C(TY@Owned or C(T).S, then they would be incompatible, which would be a
contradiction. Even if 0 € X4, the aliases are restricted to shared and state-specifying aliases, and
never more than one state-specifying alias exists. O

LEmMA C.21 (MERGING PRESERVES NONDISPOSABILITY). Suppose A1, A, are static contexts. If (s :
T eAyors:T e ;) T+ nonDisposable (T), and merge(Ay, Az) = A, then's : T' € A such that T +
nonDisposable (T").

Proor. By case analysis on merge(Ay, Ay).

Case: Sym. The induction hypothesis applies to merge(A, A’) since the lemma was stated sym-
metrically.

Case: @. Note that in all cases of the definition of T} @ T, = T3, if either owned(T;) or owned(T),
then owned(T3)as well.

Case: Dispose-disposable. Without loss of generality, suppose s : T € A;. By inversion, x ¢ A,.
By assumption, I' + nonDisposable (T). But by inversion, I + disposable (T). This is a con-
tradiction (C.8). O
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