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street network (USN) in place of the USN, similar vehicle
trajectories are achieved with less computational cost. During
the process of DSN generation, the existence and direction
of spatially close edges in the USN are captured by the
edges of the generated DSN. A shortcoming of existing DSN
generation techniques is the failure to consider the additional
edge features during this aggregation progress.

In this paper, we utilize the TAPASCologne project
(TAPASCP), SUMO, TraCI, Apriori, R, Python, and the DSN
generation technique [1], as well the broad concepts identified
in the literature review to provide the following contributions:

1) Identification of five significant edge features (SEFs)
from EDA of the TAPASCP.

2) An unsupervised methodology for classifying bags of
edges through an association rules learning approach to
SEF aggregation.

3) Applying the methodology to a DSN generation process
to improve the quality of the generated DSN.

4) Validation of the methodology through SUMO simula-
tions.

In Section II, we examine related works, then in Section III,
we perform exploratory data analysis (EDA) on the TAPASCP,
then we describe our methodology in Section IV, followed up
by a discussion of SUMO experiments and results to evaluate
our methodology in Section V, and a conclusion in Section
VII.

II. RELATED WORK

Originating from Euler’s work on the Könisburg seven
bridges [2] in 1736, graph theory and network science has
overlapped. Today, street-to-graph conversions are common-
place in applications with ITSs. This is seen in the generation
of a traffic-considering ITS for an inter-campus university
shuttle service [3], to optimize movement of taxis to minimize
empty ride time in urban taxi systems [4], and to account for
the effect of nearby traffic during travel time prediction.

The complexity and adaptability of utilizing SNs as graphs
is prevalent in approaches to solving the shortest path problem
in ITSs, such as a robust shortest path model utilizing partial
information of travel time distributions [5], in the comparison
and parallel implementation of genetic shortest path and ant
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I. INTRODUCTION

The transportation system (TS) is the means of which people 
and cargo move around from point A to point B and consists 
of a street network (SN), some civil infrastructure such as 
bridges and traffic lights, and both public and private transport. 
As technology is introduced into a TS, it is considered an 
intelligent transportation system (ITS). ITSs are used in many 
field o f r esearch, s uch a s v ehicular c rowdsourcing (VCS) 
mechanisms which consider regions of interest (ROI) located 
within an ITS, and the VCS participants travel along the SN 
of the ITS to move from source, to ROI, to destination.

Within VCS mechanisms, the participant models perform a 
bountiful amount of cost calculations during the decision of 
which ROI to visit – these often involve iterating through the 
potential routes of the vehicle, each ROI, and each destination. 
When the amount of vehicles, ROI, or edges, nodes, and other 
features of the SN is large, these calculations become high in 
computation cost.

One approach to improving the computational performance 
of a VCS mechanism is to reduce the complexity of the SN. A 
SN is a combination of edges E and vertices V that makeup a 
graph G where G ← {E, V }. By utilizing a discretized street 
network (DSN) generated from the original or unmodified
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colony algorithms [6]. Graph and network properties may also
exceed two dimensional constraints in an ITS to optimize other
vehicular systems such aerial [7] or sensor networks [8].

The discretization of SN components of an ITS is common-
place, and is used at a varying degree of granularity. Nav-
igation maps for intersection crossing are identified through
discretized Gaussian process to identify merging and crossing
area [9], and for the planning of merging scenarios [10].
In one case, roads (edges), are discretized into segments
and lanes of equal size for traffic utilization analysis and
prediction [11]. A low-detail example, is the discretization
of the Anhui expressway into traffic accident segments [12].
The existing DSN generation methodologies are narrow and
specific focusing on one component such as an intersection
[9], a small SN with few edges [11], or an intersection and a
short length of road approaching and leaving [10]. In another
case, the purpose is for data collection rather than simulation
[12]. There is a single DSN generation methodology for a SN
as a whole, that produces a discretized street network (DSN)
with grid-like properties and almost uniform distance between
vertices. This approach accurately preserves spatial and length
properties of a SN [1].

SN datasets and software tools for utilizing SN data are
widely available. A notable SN database is Open Street Maps
(OSM) [13] – OSM is a common source of SNs for software
such as OSMnx [14] which retrieves and visualizes SNs, AOP
[15] which increases the quantity of vertices of SNs to improve
pedestrian movement accuracy, and SUMO (Simulation of Ur-
ban Mobility) [16] which is a traffic modeling and simulation
(M&S) software. SUMO is open source, operates on OSM
SNs, stores SNs in an easy to understand and modify format,
has tools for generating custom SNs, options for in-depth data
collection, and a Python 3.x interface TraCI (Traffic Control
Interface) [17] that enables vehicular M&S. TAPASCP [18] is
an advanced mobility dataset consisting of a SUMO SN that is
retrieved from OSM that have been checked and modified for
accuracy. Included are two prepared scenarios of twenty-four
hours of traffic in Cologne, Germany, and a shorter version
from 6:00am-8:00am.

Data mining makes an appearance in ITSs, such as un-
supervised clustering of ITS data [19], analyzing traffic by
generating association rules [20] using the Apriori algorithm
[21] for association rules learning (ARL), and for decision
analysis on ITS improvements based on big data mining [22].

There exists one DSN generation methodology which dis-
cretizes an entire SN. The shortcomings of this DSN gener-
ation methodology is the discretized edge aggregation, which
only considers spatial edge data. Our contribution addresses
these shortcomings with our edge feature aggregation (EFA)
methodology. Additional to solving the shortcomings of edge
aggregation in [1], our methodology is general an application
to the categorization of any bag of SN edges. The ARL process
of our EFA methodology differs from the existing data science
work in ITSs as we utilize SEFs identified during EDA used
in our EFA methodology, which are unique to this research.

III. EXPLORATORY DATA ANALYSIS

To understand the properties of SN edges, we perform our
EDA on the 71,368 edges of the TAPASCP, we select the
TAPASCP as the SN dataset for this research because it is a
robust and credible work with many citations and a statistically
significant amount of edges.

A. Relevant Edge Features

The unique identifiers (IDs), start and end vertices IDs, and
name, are irrelevant features for categorization; there is not
enough data for road and sidewalk width to be significant.
Of the set of all edge features, the five presented in Table I
are found to be significant as they are present in all edges
of the SN and are categorical. The three numerical features,

TABLE I: Significant Edge Features

Feature Type* Description

numLane NC Number of lanes on one side of the road.
priority NC Value used to resolve same-time-vehicle-arrival

conflicts at when edges meet.
speed NC Speed limit in meters per second.
spreadType C The lanes vehicles default to when entering the

edge {”right”,”center”}
type C Classification of Road (Highway, Residential, etc.)

*N = Numeric, C = Categorical

speed, numLanes, and priority fall into a small amount of
buckets, shown in Figure 1 therefore, those feature also have
categorical traits. The feature of length is used as weight for

Fig. 1: The features speed, priority, and numLanes are both
numerical and categorical.

the edges during ARL. When building the set of all edge
data e ∀ e ∈ E, the amount of contribution ce for any e is
ce = floor( edge.length

8m ) + 1 and edge.length is in meters. 8m
is the optimal discretization increment of edge length for the
TAPASCP as it is the discretization increment used in [23] on
the same dataset.

B. Correlation and Principle Component Analysis

Principle component analysis (PCA) is coded and visualized
with R [24] and the R package caret [25]. Three principle
components (PCs) are generated (Table II). The biplot (Figure
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2), and the correlation plot (Figure 3) of the numerical features
reveals a strong correlation between priority and numLanes,
and a moderate correlation of speed and numLanes, and speed
and priority. The strength of the correlations revealed from

TABLE II: Importance of Components. PCA of the three
numerical features.

PC1 PC2 PC3
Standard Deviation 1.4982 0.7317 0.46903
Proportion of Variance 0.7482 0.1784 0.07333
Cumulative Proportion 0.7482 0.9267 1.00000

Fig. 2: Biplot of numerical features.

Fig. 3: Correlation between numerical features.

PCA and correlation analysis imply that these three features
should be part of the generated edge aggregation process of
DSN generation.

C. Association Rules Learning

ARL has been an efficient method of classification in
data and computer science since the premier of the Apriori
algorithm by Agrawal and Sirikant in 1994 [21]. Since then,
efficient adaptations of Apriori and visualization tools thereof
have been introduced, such as the arules [26] and arulesViz
[27] R packages, that we use in our approach. We perform
ARL on e ∀ e ∈ E of TAPASCP considering the SEFs of

Table I with a minimum length of 5. This results in the
generation of association rules (ARs) containing all SEFs. A
summary of the first ten ARs is presented in Figure 4. The

Fig. 4: Apriori association rules given support = 0.1, confi-
dence = 0.3, and minimum length = 5.

information of Figure 4 reveals a classification of the SN with
a concise summary and a granularity which includes every
edge in the network. Figure 4 describes a suburb with two-
lane roads (one in each direction), where the speed limit is
mostly 13.89 meters

second (i.e. 50 kilometers
hour or 31 miles

hour ) and occasionally
8.33 meters

second (i.e. 30 kilometers
hour or 18.6 miles

hour ).

IV. PROCESS

The edge feature aggregation (EFA) component is the
primary contribution of our methodology in this section, which
we explain first. To show the benefit of EFA, we also explain
how to apply EFA to DSN generation to enhance the quality
of generated DSNs.

A. Edge Feature Aggregation

Our technique will aggregate the features of any bag of
edges E ∀ edges e ∈ E, thus the clustering methodology used
to select E is irrelevant. The aggregated features are combined
into a generated edge b, which is the classification of E. The
EFA procedure is elaborated in Algorithm 1, which requires
three input; a bag of edges E, as well confidence c, and support
s. c and s are part of the ARL function call in Algorithm 1
line 26. In Section III, we identified five relevant, categorical
edge features in the TAPASCP. These features are combined
to form a transaction. The length of each edge determines
the weight of the transaction in the ARL algorithm. This is
achieved by increasing the number of transaction copies with
the equation in Algorithm 1 line 18. The reason for the value
of 8 is described in Section III-A.

1) Example 1: When E is a bag of all edges in the
TAPASCP, c = 0.1, and s = 0.3, the most frequent rules, are
displayed in Figure 4. Algorithm 1 selects the top rule, sorted
by lift, then count. The resulting aggregation of features con-
sist of numLanes = 1, type = highway.residential, spreadType
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Algorithm 1 Generate a new edge with aggregated features
using ARL.

input: Bag of edges e ∀ e ∈ E, Confidence c, Support s
output: Edge generated from aggregated edge features b

1: procedure EFA(E, c, s) begin
2: /* 1 edge in bag. C is a direct copy. */

3: if size(E) == 1 then
4: return e0
5: end
6: /* Select categorical edge features. */

7: D ← Empty list to hold edges w/ only categorical features
8: n← # of features
9: for all edges e ∈ E do

10: d← {
11: type ← e.type
12: spreadType ← e.spreadType
13: speed ← string(e.speed)
14: numLanes ← string(e.numLanes)
15: priority ← string(e.priority)
16: }
17: /* Use length as weight, by increasing the #

of occurrences in the edge bag. */

18: x← floor( double(e.length)
8 ) + 1

19: while x < 0 do
20: D.append(d)
21: x← x− 1
22: end
23: end
24: T ← transactions(D) /* Create transactions. */

25: /* Get association rules w/ any ARL algorithm */

26: R← Apriori(data=T ,confidence=c,support=s,minLen=n)
27: /* Order the rules by lift then count. */

28: Order(R, descending, by={lift, count})
29: b← { /* Select the first rule. */

30: type ← R[0].type,
31: spreadType ← R[0].spreadType,
32: speed ← R[0].speed,
33: numLanes ← R[0].numLanes,
34: float ← R[0].priority
35: }
36: return b
37: end procedure

= right, priority = 4, and speed = 13.89. The output edge b
consists of the aforementioned features.

2) Example 2: In [1], the generated edges of the DSN are
a summary of USN edges around the (x, y) point of the DSN
vertices. This summarization is graphically shown in Figure 5,
in which Figure 5B preserves shape data of Figure 5A. There
are as many bags of edges as there are vertices in the DSN;
each of these edges bags, c = 0.1, and s = 0.3 are input
in Algorithm 1 which output the more characteristic edges of
Figure 5C.

B. Applying Edge Feature Analysis to Discretized Street Net-
work Generation

Our EFA methodology may be applied to any DSN genera-
tion methodology – the pseudo-code is described in Algorithm
2. Three inputs are required, any SN that is to be discretized,

Algorithm 2 Applying EFA to a DSN generation process.
input: Any street network (USN), Confidence c, Support s
output: A discretized street network (DSN+)

1: procedure applyEFA(USN,c, s) begin
2: DSN ← Discretize(USN)
3: EB ← Correlate the edges from the DSN with the USN using

any clustering method. Place into bags.
4: B ← An empty list to hold generated edges
5: for all bags of edges E ∈ EB do
6: b← EFA(E, c, s)
7: B.append(b)
8: end
9: DSN+ ← Apply the generated edges B to the DSN.

10: return DSN+
11: end procedure

referred to as an unmodified street network (USN), as well as
a confidence c and support s value for the ARL algorithm.
Our EFA methodology is to be performed on many bags of
edges throughout the USN. A realistic approach to determining
how many bags, and which edges of the USN should be
placed into those bags, is to generate a DSN from the USN.
Part of DSN generation involves clustering edges a process
which considers spatial properties of SN edges when assigning
clusters, resulting in each edge of a DSN being the aggregation
of one or more edges in the USN. The result are edges bags
that collectively cover all edges in the USN. New edges b are
generated with our EFA methodology. The edges of the DSN
are updated with the new edges b ∀ b ∈ B, resulting in DSN+.

1) Example: A visualization of the input, middle, and
output of Algorithm 2 is presented in Figure 5, depicting a
zoomed in portion of the TAPASCP. USN = TAPASCP (Figure
5A), confidence c = 0.3, and support s = 0.1. A DSN is
generated using the methodology of [1] (Figure 5B). The result
is Figure 5C. Visually shown is a variation in the numLanes
feature of the edge when comparing Figure 5C with B. Also
applied to the DSN+ are the four non-visual SEF described in
Table I.

V. EVALUATION

We evaluate the performance of our methodology with three
SUMO models:
• TAPASCP with 6:00am-8:00am trips (TAPASCP6-8)
• DSN of TAPASCP6-8 generated with [1] (SUMO-DSN)
• DSN of TAPASCP6-8 improved with our EFA method-

ology (SUMO-DSN+)
A trip in SUMO format includes an original edge ID, a
destination edge ID, and a depart time. 109,254 trips from
the USN of the TAPASCP6-8 are correlated with the SUMO-
DSN and SUMO-DSN+. Trip information is generated by
SUMO as output for each of the three simulation runs. We
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(a) Unaltered TCP SN (USN). (b) Generated DSN using [1] (DSN) (c) DSN improved using ARL (DSN+).

Fig. 5: Comparison of generated DSNs (b,c) to the USN (a). Visual difference is in numLanes, non-visual is priority, speed,
spreadType, and type.

evaluate the improvement of SUMO-DSN+ versus SUMO-
DSN by measuring the difference of each trip information
feature e.x. ∆arrivalSUMO-DSN+ = TAPASCP6-8.arrival −
SUMO-DSN+.arrival.

A detailed breakdown of measured features is presented in
Table III which is the numerical summary of Figure 6. The %
of Absolute Improvement is the measurement improvement of
using SUMO-DSN+ versus SUMO-DSN, which is determined
by Equation 1.

% of Absolute Improvement =
|SUMO-DSN+|
|SUMO-DSN|

∗ 100 (1)

For example, to calculate the % of Absolute Improvement for
the 3rd Quarter of Table IIIA, SUMO-DSN = -53 and SUMO-
DSN+ = 124. Thus |−53||124| ∗ 100 = 53

124 ∗ 100 = 57.26%.

A. Measured Features

a) Arrival Time: Arrival time is the time in seconds when
a vehicle reaches the end of it’s trip. The boxes of Figure 6A
are below 0, which means an early arrival time. Table IIIA
confirms an improvement in arrival time on SUMO-DSN+.
There is an improvement with early arriving, with a noticeable
reduction in 1st quarter of 22.25% and minimum by 33.57%.

b) Arrival Speed: Arrival speed is the speed in meters
second

that a vehicle is traveling when it reaches the end of it’s trip,
a negative value means a vehicle arrives at a speed slower
than expected. The SUMO-DSN performs poorly (Figure 6B),
whereas SUMO-DSN+ performs very close to TAPASCP6-
8. We suspect that the poor behaviour of SUMO-DSN is the
result of traffic jams since each edge is 1-lane – SUMO-DSN+
alleviates this congestion by considering numLanes during the
aggregation process.

c) Duration: Duration is the amount of time in seconds
that a vehicle takes to travel from the start to the end of it’s
trip, a negative value means a trip ends sooner than expected.
This measurement of duration in Figure 6C and Table IIIC
are similar to arrival time (Figure 6A and Table IIIA), in that
the results show vehicles arriving early with the SUMO-DSN+
being an improvement over SUMO-DSN.

d) Route Length: Route length is the distance in meters
that a vehicle travels from the start to the end of it’s trip. The
outliers in Figure 6D of route length samples are likely caused
by vehicles being re-routed around congested regions at the
time when the vehicles are added to the simulation, which is
when route selection occurs in our experiments. From Table
IIID, it is shown that the 3rd quarter and Mean of the SUMO-
DSN+ show improvement, while minimum and 1st quarter
results are less accurate. Since the mean improves by 40.39%,
we consider the SUMO-DSN+ an overall improvement to
route length.

e) Waiting Time: Waiting time is the amount of time in
seconds that a vehicle is stopped, which occurs at intersections,
traffic lights, or traffic congestion. Negative values means that
vehicles wait less than expected. The results (Figure 6E and
Table IIIE) reveal that the discretization process results in less
than expected waiting time, likely caused by the reduction of
intersections during the discretization process. The SUMO-
DSN+ improves closeness at the minimum, 1st quarter, and
mean.

f) # of Times had to Wait: The count of times that a
vehicle stops moving for any reason, negative values mean
that less stops occurred than expected. Shown in Figure 6F
and Table IIIF, are vehicles stopping less than expected on
both the SUMO-DSN and SUMO-DSN+. The SUMO-DSN+
is closer to TAPASCP6-8 than SUMO-DSN with improvement
at the minimum, 1st quarter, and mean.

VI. ACKNOWLEDGMENTS

This material is based upon work partially supported by
the National Science Foundation (NSF) under NSF Award
Number 1739409. Any opinions, findings and conclusions, or
recommendations expressed in this material are those of the
author(s), and do not necessarily reflect those of the NSF.

The street network data is partially derived from
OSM data c©OSM contributors and available at
www.openstreetmap.org/.

VII. CONCLUSION

In conclusion, we identify five SEFs from a credible SN
dataset of 71,368 edges through EDA, then present an ARL
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TABLE III: Summary of Trips Comparison

A. Arrival Time (s) B. Arrival Speed (m
s ) C. Duration (s) D. Route Length (m) E. Waiting Time (s) F. # Times had to Wait

DSN+1 DSN2 %3 DSN+ DSN % DSN+ DSN % DSN+ DSN % DSN+ DSN % DSN+ DSN %

Min -33606 -50589 33.57% -47.96 -55.54 13.65% -33606 -49025 31.45% -4917.2 -4279.1 -14.91% -32519 -46458 30.00% -177 -218 18.81%
1st Quarter -11039 -14194 22.23% -10.07 -20.29 50.37% -10328 -12513 17.46% -382.7 -116.8 -227.65% -8922 -11478 22.27% -27 -33 18.18%

Median -4147 -4577 9.39% 0.13 -15.48 99.16% -3293 -3312 0.57% 99.3 324.5 69.40% -2414 -2941 17.92% -3 -4 25.00%
Mean -6041 -8184 26.19% 0.57 -15.05 96.21% -5489 -6927 20.76% 490.9 823.5 40.39% -4603 -6430 28.41% -9 -15 40.00%

3rd Quarter -53 124 57.26% 4.83 -12.53 61.45% -32 146 78.08% 819.8 1141.9 28.21% 17 17 0.00% 4 4 0.00%
Max 24155 24455 1.23% 51.75 37.14 -39.34% 22333 23125 3.42% 28637.5 28637.5 0.00% 22153 22211 0.26% 215 226 4.87%

1 SUMO-DSN+, 2 SUMO-DSN, 3 % of Absolute Improvement

Fig. 6: Difference of Trip Information Features of discretization techniques VS TAPASCD6-8

approach for the unsupervised classification of SNs with an
EFA methodology applicable to any bag of edges. In addition,
we apply our EFA methodology to the domain of DSN
generation, proving increases in quality to an existing DSN
generation methodology.

The future plan for this work is to address the outliers in
the difference of trip information (Figure 6), some of which
are extreme. While this work improves the overall quality
of DSN generation, going forwards it will be necessary to
research methodologies to resolve or remove the outlier cases.
Additional future work is to develop an aggregation method-
ology for the vertices of a SN, which would accurately handle
same-time-vehicle-arrival conflicts and consider traffic signals
along with their features. Other possibilities include research
into alternative methodologies of bag of edge identification,
or adaptations of our EFA methodology for non-edge SN
components.
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