PMP: Cost-effective Forced Execution with Probabilistic Memory Pre-planning

Wei You', Zhuo Zhang', Yonghwi Kwon?, Yousra Aafer!, Fei Peng', Yu Shi!, Carson Harmon', Xiangyu Zhang'
1Department of Computer Science, Purdue University, Indiana, USA
?Department of Computer Science, University of Virginia, Virginia, USA
Email: {you58, zhan3299, yaafer, pengf, shi442, harmon35, xyzhang}@purdue.edu, yongkwon@virginia.edu

Abstract—Malware is a prominent security threat and exposing
malware behavior is a critical challenge. Recent malware often
has payload that is only released when certain conditions are
satisfied. It is hence difficult to fully disclose the payload by
simply executing the malware. In addition, malware samples
may be equipped with cloaking techniques such as VM detectors
that stop execution once detecting that the malware is being
monitored. Forced execution is a highly effective method to
penetrate malware self-protection and expose hidden behavior, by
forcefully setting certain branch outcomes. However, an existing
state-of-the-art forced execution technique X-Force is very heavy-
weight, requiring tracing individual instructions, reasoning about
pointer alias relations on-the-fly, and repairing invalid pointers
by on-demand memory allocation. We develop a light-weight and
practical forced execution technique. Without losing analysis pre-
cision, it avoids tracking individual instructions and on-demand
allocation. Under our scheme, a forced execution is very similar
to a native one. It features a novel memory pre-planning phase
that pre-allocates a large memory buffer, and then initializes
the buffer, and variables in the subject binary, with carefully
crafted values in a random fashion before the real execution.
The pre-planning is designed in such a way that dereferencing
an invalid pointer has a very large chance to fall into the
pre-allocated region and hence does not cause any exception,
and semantically unrelated invalid pointer dereferences highly
likely access disjoint (pre-allocated) memory regions, avoiding
state corruptions with probabilistic guarantees. Our experiments
show that our technique is 84 times faster than X-Force, has
6.5X and 10% fewer false positives and negatives for program
dependence detection, respectively, and can expose 98% more
malicious behaviors in 400 recent malware samples.

I. INTRODUCTION

The proliferation of new strains of malware every year
poses a prominent security threat. Recently reported attacks
demonstrate the emergence of new attacking trends, where
malware authors are designing for stealth and leaving lighter
footprints. For example, Fileless malware [5] infects a target
host through exploiting built-in tools and features, without
requiring the installation of malicious programs. Clickless
infections [1] avoid end-user interaction through exploiting
shared access points and remote execution exploits. Cryptocur-
rency malware [4] allow attackers to generate huge revenues
by illegally running mining algorithms using victim’s system
resources. According to [3], a massive cryptocurrency mining
botnet has generated $3 million revenue in 2018. Under this
new threatscape, malicious payloads have evolved and look
much different than traditional ones. Thus, a critical challenge
the security community is facing today is to understand and
analyze emerging malware’s behavior in an effort to prevent
potentially epidemic consequences.

A popular approach to understanding malware behavior is to
run it in a sandbox. However, a well-known difficulty is that
the needed environment or setup may not be present (e.g.,
C&C server is down and critical libraries are missing) such
that the malware cannot be executed. In addition, recent mal-
ware often makes use of time-bomb and logic-bomb that define
very specific temporal and contextual conditions to release
payload, and some samples even use cloaking techniques such
as packing, and VM/debugger detectors that prevent execution
when the malware is being monitored.

Researchers in [32] proposed a technique called forced-
execution (X-Force) that penetrates these malware self-
protection mechanisms and various trigger conditions. It works
by force-setting branch outcomes of some conditional instruc-
tions. (e.g., those checking trigger conditions). As forcing
execution paths could lead to corrupted states and hence
exceptions, X-Force features a crash-free execution model
that allocates a new memory block on demand upon any
invalid pointer dereference. However, X-Force is a very
heavy-weight technique that is difficult to deploy in practice.
Specifically, in order to respect program semantics, when X-
Force fixes an invalid pointer variable (by assigning a newly
allocated memory block to the variable), it has to update
all the correlated pointer variables (e.g., those have constant
offsets with the original invalid pointer). To do so, it has
to track all memory operations (to detect invalid accesses)
and all move/addition/subtraction operations (to keep track of
pointer variable correlations/aliases). Such tracking not only
entails substantial overhead, but also is difficult to implement
correctly due to the complexity of instruction set and the
numerous corner situations that need to be considered (e.g., in
computing pointer relations). As a result, the original X-Force
does not support tracing into library functions.

In this paper, we propose a practical forced execution
technique. It does not require tracking individual memory or
arithmetic instructions. Neither does it require on demand
memory allocation. As such, the forced execution is very
close to a native execution, naturally handling libraries and
dynamically generated code. Specifically, it achieves crash-
free execution (with probabilistic guarantees) through a novel
memory pre-planning phase, in which it pre-allocates a region
of memory starting from address 0, and fills the region with
carefully crafted random values. These values are designed in
such a way that (1) if they are interpreted as addresses and
further dereferenced, the addresses fall into the pre-allocated
region and do not cause exception; (2) they have diverse

random values such that semantically unrelated pointer vari-
ables unlikely dereference the same random address and avoid
causing bogus program dependencies and corrupted states. An
execution engine is developed to systematically explores dif-
ferent paths by force-setting different sets of branch outcomes.
For each path, multiple processes are spawned to execute the
path with different randomized memory pre-planning schemes,
further reducing the probability of coincidental failures. The
results of these processes are aggregated to derive the results
for the particular path. The engine then moves forward to the
next path.
Our contributions are summarized as follows.

o We develop a practical forced-execution engine that does
not entail any heavy-weight instrumentation.

o We propose a novel memory pre-planning scheme that
provides probabilistic guarantees to avoid crashes and
bogus program dependencies. The execution under our
scheme is very similar to a native execution. Once the
memory is pre-planned and initialized at the beginning,
the execution just proceeds as normal, without requiring
any tracking or on the fly analysis (e.g., pointer correla-
tion analysis).

« We have implemented a prototype called PMP and eval-
uated it on SPEC2000 programs (which include gcc),
and 400 recent real-world malware samples. Our results
show that PMP is a highly effective and efficient forced
execution technique. Compared to X-Force, PMP is 84
time faster, and the false positive (FP) and false negative
(FN) rates are 6.5X and 10% lower, respectively, regard-
ing dependence analysis; and detect 98% more malicious
behaviors in malware analysis. It also substantially super-
sedes recent commercial and academic malware analysis
engines Cuckoo [2], Habo [10] and Padawan [8].

II. MOTIVATION

In this section, we use an example to motivate the problem,
explain the limitations of existing techniques, and illustrate our
idea. The code snippet in Figure 1 simulates the command and
control (C&C) behavior of a variant of Mirai [7], a notorious
IoT malware that launches distributed denial of service attacks
when receiving commands from the remote C&C server. In
particular, it reads the maximum number of destination hosts
(to attack) from a configuration file (line 9), and allocates
a Cmd object with sufficient memory to store destination
information in the Dest objects (lines 10-12). When the
C&C server is connectable (line 15), the malware scans the
local network for the destination hosts (line 16), receives the
requested command (line 17), and performs the corresponding
actions on the destination hosts (lines 18-22).

To expose such malicious behavior, analysts could run the
sample in a sandbox and monitor its system call sequences
and network flows [8]. Unfortunately, a naive execution-based
analysis is incomplete and hence cannot reveal all the mali-
cious payloads, especially those that are condition-guarded and
environment-specific. In our example, if the configuration file

does not exist or the C&C server is not connectable, the mali-
cious behavior will not be exposed at all. One may consider to
construct an input file and simulate the network data. However,
such a task is time-consuming and not practical for zero-
day malware whose input format and network communication
protocol are unknown. In addition, recent malware samples are
increasingly equipped with anti-analysis mechanism, which
prevents these samples from execution even if they are given
valid inputs (please refer to Section IV for real-world cases).
This poses great difficulties for dynamic analysis.

Forced execution [32] provides a practical solution to sys-
tematically explore different execution paths (and, hence reveal
different program behaviors) without any input or environment
setup. It works by force-setting branch outcomes of a small set
of predicates and jump tables. One critical problem faced by
forced execution is invalid memory accesses due to the absence
of necessary memory allocations and initializations, which
are present in normal execution. Without appropriate handling
of invalid memory accesses, the program is most likely to
crash before reaching any malicious payload. In our example,
the malicious behaviors were supposed to be exposed, if the
predicate in line 15 is forced to take the true branch, and
the jump table in line 18 is forced to iterate different entries.
However, the forced execution fails in line 30, because cmd is
not properly allocated and its dests field is not initialized.

X-Force. In X-Force [32], researchers show that simply ignor-
ing exceptions does not work as that leads to cascading failures
(i.e., more and more crashes), they propose to recover from
invalid memory accesses by performing on-demand memory
allocation. In particular, X-Force monitors all memory oper-
ations (i.e., allocate, free, read and write) to maintain a list
of valid memory addresses. If an accessed memory address is
not in the valid list, a new memory block will be allocated
on demand for the access. To respect program semantics,
when a pointer variable holding an invalid address x is set
to the address of the allocated memory, all the other pointer
variables that hold a value denoting the same invalid address
or its offset (e.g., x + ¢ with ¢ some constant) need to be
updated. X-Force achieves this through linear set tracing,
which identifies linearly correlated pointer variables that are
induced by address offsetting. When a pointer variable is
updated, all the correlated pointers in its linear set need to
be updated accordingly based on their offsets.

Assume in an execution instance, line 8 takes the false
branch and line 15 is forced to take the t rue branch. In this
execution, cmd is a NULL pointer, hence the dests pointer
in line 27 points to 0x8 (the offset of dests field is 8). The
rounded rectangle in Figure 1 illustrates what X-Force does
for the memory access of dests[0]—>ip in line 30. Linear
sets are maintained for each register and each memory address.
In particular, SR(r) and SM(a) are used to denote the linear
set of register r and address a, respectively. After executing
instruction «, the linear set of register rbx is updated to be
the same as that of ¢dests, i.e., SR(rbx) «+ SM(&dests)
such that SR(rbx)=SM(&dests)={0x7ffdfffffed0}, which

01 typedef struct{char ip[16]; long port;} Dest;
02 typedef struct{long act; Destx dests[0];} Cmd;

03

04 int main(int argc, char xargv[]) {

05 Cmd xcmd = NULL;

06 int max = 0;

07

08 if (config_file_exists()) {

09 max = read_from_config file();

10 cmd = malloc (sizeof (Cmd) + maxxsizeof (Destx));
11 for (int i = 0; 1 < max; i++)

12 cmd->dests[i] = malloc(sizeof (Dest));

13 }

14 c.

15 if (cnc_server_connectable()) {

16 scan_intranet_hosts (cmd, max);

17 cmd->act = get_action_from_cc_server();

18 switch (cmd->act) {

19 case 1l: do_action_1 (cmd->dest, max); break;
20 case 2: do_action_2 (cmd->dest, max); break;
21

22 }

23 }

24

25 }

-
a. mov rbx, [rbp - 0x10]

26 void scan_intranet_hosts(Cmd x*cmd, int max) {

27 Dest *xdests = cmd->dests;

28 for (int i = 0; 1 < max; i++) {

29 struct sockaddr_in *host = iterate_host();
30 inet_ntop (host->ip, dests[i]->ip);

31 dests[i]->port = ntohl (host->port)

32 }

33}

/* Validate Memory Address: get_accessible(0x7ffdfffffed0) = true */
/% Update Linear Set: SR(rbx) «— S M (&dests) = {0x7ffdfffffed0} */

B. mov ecx, [rbp - 0x14] // ecx = [rbp - 0x14] = [0x7ffdfffffecc] = 0x0
/* Validate Memory Address: get_accessible(0x7ffdfffffed4) = true */
/% Update Linear Set: SR(rex) <— SM(&i) = {0x7ffdfffffecc} */

~. lea rdx, [rbx + 8*rcx] // rdx = rbx + 8*rcx = 0x8
/% Update Linear Set: SR(rdx) «— SR(rbx) = {0x7ffdfffffed0} */

§. mov rax, [rdx] // rax = [rdx] = [0x8]
/* Validate Memory Address: get_accessible(0x8) = false (invalid read on 0x8) */
/* Allocate Memory Block: malloc(BLOCK_SIZE) = 0x2531000 */
/* Update Reference: rdx = *(0x7ftdfffffed0) = 0x2531000 + 0x8 = 0x2531008 */

€. mov rax, [rax] // rax = [rax] = [0x0]
/* Validate Memory Address: get_accessible(0x0) = false (invalid read on 0x0) */
/* Allocate Memory Block: malloc(BLOCK_SIZE) = 0x2532000 */
/* Update Reference: rdx = *(0x7ffdfffffed0) = 0x2532000 + 0x8 = 0x2532008 *//

Fig. 1: Motivation example. The assembly code here is functionally equivalent with the original one for easy understanding.

is the address of dests. Intuitively, the pointer value in rbx
is linearly correlated to that in dests. Hence, fixing either
one entails updating the other. The linear correlation is further
propagated to register rdx after executing instruction +, since
its value is derived from rbx by address offsetting (i.e.,
&dests[0] = &dests + 0). When executing instruction &,
X-Force detects an invalid access through the pointer denoted
by rdx (i.e., &dests[0]), holding an invalid address 0x8.
Hence, it allocates a memory block with address 0x2531000
and initializes it with zero values. Register rdx is then
updated to 0x2531008. The value of sdest should also be
updated, since it linearly correlates with rdx. Similar memory
recovery operations are needed for instruction e that accesses
dests [0]—>ip through an invalid memory address 0x0.

As we can see that each memory operation should be
intercepted by X-Force for memory address validation and
linear set tracing. Upon the recovery of an (invalid) pointer
variable, all the linearly correlated variables need to be updated
accordingly. This causes substantial performance degradation.
It was reported that X-Force has 473 times runtime overhead
over the native execution [32]. Furthermore, since many library
functions such as string functions in glibc can lead to linear
set explosion (due to substantial heap array operations), X-
Force chose not to trace into library functions to update linear
sets. As a result, its memory recovery is incomplete (see
Section IV for a real-world example).

Our technique. We propose a novel randomized memory pre-
planning technique (called PMP) to handle invalid memory
accesses with probabilistic guarantees. Instead of allocating
new memory blocks on demand, PMP pre-allocates a large
memory block with a fixed size (e.g., 16KB) when the
program is loaded. The pre-allocated memory area (PAMA)
is filled with carefully crafted random values such that if these
values are interpreted as memory addresses, the corresponding

accesses still fall into PAMA. We call this self-contained
memory behavior (SCMB). In addition, these random val-
ues are designed in a way that they are self-disambiguated.
That is, it is highly unlikely that two semantically unrelated
memory operations access the same random address, causing
bogus dependencies. We call this self-disambiguated memory
behavior (SDMB). For example, the simplest way to achieve
SCMB is to pre-allocate a chunk of memory starting at 0x00
and fill it with 0x00. As such, dereferences of null pointers
(e.g., xp with p = 0) or pointers with some offset from null
(e.g., *(p+8)), yield value 0x00 due to the initialization.
If the yielded value 0x00 is further interpreted as a pointer,
its dereference continues to yield 0x00, without causing any
memory exception. However, such a scheme leads to sub-
stantial bogus program dependencies as semantically unrelated
memory operations through uninitialized/invalid pointer vari-
ables all end up accessing address 0x00. For example, assume
p and q are not properly initialized and both have a null value
due to forced execution and there are two pointer dereference
statements “1.xp = ...; 2. ... = %q”. A bogus dependence
will be introduced between 1 and 2. Such bogus dependencies
further lead to highly corrupted program states. SDMB is to
ensure that unrelated pointer variables have a high likelihood
to contain disjoint addresses such that it is like they were all
properly allocated and initialized. Intuitively, PMP diversifies
the values filled in the pre-allocated large memory region such
that dereferences at different offsets yield different values.
Consequently, follow-up dereferences (of these values) can
continue to disambiguate themselves.

In addition to the aforementioned pre-planning, during
execution, PMP also initializes global, local variables, and
heap regions allocated by the original program logic with
random values pointing to PAMA. Note that otherwise they
are initialized to O by default. As such, when these variables
are interpreted as pointers and dereferenced without being

0x0000 80! fe'00 0000 00! 00 00[50138'00!00'00'00! 00 ' 00
0x0010 48174000000 00,0000 |f8!04,00.!00 00/00!00!00
0x0020 do ffi 00100.00/00,00.,00|/08,00,00,00 00,0000, 00
exffde E:ss;19;9@;99;09;@@;09;99 30'30!00'00'00'00'00' 00
oxffeo 40 ,fc|00,00,00,00,00,00|98,20,00,00,00,00,00,00

oxfffe

%) 1 2 3 4 5 6 7

8 9 a b c d e f

20150100100100100:0000

e81a7/00100100100: 00100

Fig. 2: Pre-allocated memory area. The data is presented in
the little-endian format for the x86_64 architecture. The bytes
in gray are free to be filled with 8-multiple random values.

properly initialized along some forced path, the accesses still
fall in PAMA and also have low likelihood to collide (on
the same address). Through SCMB, PMP enables crash-free
memory operations, which are critical for forced execution.
Since it does not require tracing memory operations or per-
forming on-demand allocation, it is 84 times faster than X-
Force (Section 1V). Through SDMB, PMP respects program
semantics such that it can faithfully expose (hidden) program
behaviors with probabilistic guarantees. As shown in our
evaluation (Section IV), PMP has fewer false positives (FP)
and false negatives (FN) than X-Force as well.

Figure 2 illustrates a 64-KB pre-allocated memory area
mapped in the address space from 0xO to Oxffff. Note that
although this memory region may overlap with some reserved
address ranges, we leverage QEMU’s address mapping to
avoid such overlap (see Section III-E). It is filled with crafted
random values that ensure both SCMB and SDMB. For our
motivation example, instruction § reads the memory unit at
address 0x8 (i.e., &dests[0]) and gets the value 0x3850.
Subsequently, the instruction € uses 0x3850 as the address
to access dests[0]->ip. These two accessed addresses
(0x8, 0x3850) are contained in the PAMA, hence no memory
exception occurs. The data dependence between these two
addresses are also faithfully exposed, without undesirable
address collision. Observe that there is no memory validation
and linear set tracing required.

We want to point out while SCMB and SDMB can be
effectively ensured in forced execution, they may not be as
effective in regular execution. Otherwise, dynamic memory
allocation could be completely avoided. The reason is that
forced execution aims to achieve good coverage to expose
program behaviors such that it bounds loop iterations [32].
As a result, linear scannings of large memory regions are
mostly avoided, allowing to establish SCMB and SDMB
effectively and efficiently. Intuitively, one can consider that
our design is equivalent to pre-allocating many small regions
that are randomly distributed. This is particularly suitable for
heap accesses in forced-execution as they tend to happen in
smaller memory regions. Even if overflows might happen, the
likelihood of critical data being over-written is low due to the
random distribution.

III. DESIGN

A. Overview

Figure 3 presents the architecture of PMP, which consists
of three components: the path explorer, the dispatcher and the

memory scheme n

high address

memory scheme 1 (Oxfffffffff)

path

m scheme
_— —é

Path Explorer Dispatcher

Executor 1

execution result

80 ife |00 100100 00100 00]50138/00100/00100100100] ~ bss

4874 00 00 ,00,00,00,00 | £8,04,00,00,00,00,00, 00
de‘ff‘oa‘ae‘ee‘ea‘eo‘ea\aa‘ee‘ae‘ae‘ae‘ee‘aa‘oa

text

end of PAMA

...... Pre-Allocated
Memory Area

(PAMA)

30,30,00,00,00,00,00,00
98,20.00,00,00,00,00, 00
e81a7100'00100'00'00'00| _ -~~~

88,1900 ,00,00,00,00,00
40 ,fc 00 ,00,00,00,00,00
20150100 10010006 00 '00

l<— low address
(0x0)

Executor n

Fig. 3: Architecture of PMP.

executors. Given a target binary, the path explorer systemat-
ically generates a sequence of branch outcomes to enforce,
including the PCs of the conditional instructions and their
true/false values. We call it a path scheme. Note that like
X-Force, PMP does not enforce the branch outcome of all
predicates, but rather just a very small number of them (e.g.,
less than 20). The other predicates will be evaluated as usual.
PMP operates in rounds, each round executing a path scheme.
For each path scheme, PMP further generates multiple versions
of variable initializations, each having different initial values
but satisfying both SCMB and SDMB. We call them memory
schemes. The reason of having multiple memory schemes is
to reduce the likelihood of coincidental address collisions.
A process is forked for each path and memory scheme and
distributed to an executor for execution. At the end of a round,
the dispatcher aggregates the results from the executors (e.g.,
coverage). Another path scheme is then computed by the path
explorer to get into the next round, based on the results from
previous rounds.

Path Explorer. In essence, path exploration is a search process
that aims to cover different parts of the subject binary. In each
round, a new path scheme is determined by switching ad-
ditional/different predicates, or enforcing additional/different
jump table entries, to improve code coverage. Since the search
space of all possible paths is prohibitively large for real-world
binaries, PMP follows the same path exploration strategies in
X-Force [32], including the linear search, the quadratic search
and the exponential search. In particular in each round, the
linear search selects a new predicate or jump table entry to
enforce, which is usually the last one that does not have all its
branches covered in previous rounds. The exponential strategy
aims to explore all combinations of branch outcomes and is
hence the most expensive. It is only used to explore some
critical code regions. Quadratic search falls in between the
two. Since these are not our contributions, interested readers
are referred to the X-Force project [32].

Dispatcher. The dispatcher aggregates execution results (e.g.,
code coverage and program dependencies) of multiple ex-
ecutors in a conservative fashion. Specifically, it considers
a result valid if and only if it is agreed by n executors,
with n configurable. In our experience, n 2 is good
enough in practice. Such aggregation further improves our

N

Program Loading During Execution

—> program entry —>| Global Variable Init
—> call instructions —>| Local Variable Init
—> memory allocation —>

<|PAMA

6\(&& PAMA Preparation

crafted file address space

4

Fig. 4: Workflow of Memory-preplanning.

probabilistic guarantees. Intuitively, assume PMP ensures that
a reported result has lower than p € [0, 1] probability to be
incorrect during a single execution (on an executor), due to
the inevitable accidental violations of SCMB or SDMB. The
aggregation further reduces the probability to p™ if the memory
schemes on the various executors are truly randomized (and
hence independent).

Executors. All executors are forked from the same main
process with the same initialized PAMA. Each executor then
enforces a given path and memory scheme assigned to it. Such
a design avoids the redundant initialization of PAMA. Note
that all memory accesses must start from some variable, whose
value is fully randomized across executors.

The rest of this section will explain in details the memory
pre-planning step and the probability analysis for SCMB and
SDMB guarantees. Execution result aggregation is omitted due
to its simplicity.

B. Memory Pre-planning

Overview. Figure 4 presents the workflow of memory pre-
planning. When a program is loaded, a pre-allocated memory
area (PAMA) is prepared by invoking the mmap system call
to map a crafted file to the program address space. The file
content is randomly generated beforehand. During execution,
program variables (including global, local variables and heap
regions) are initialized by PMP with random eight-multiple
values pointing to PAMA. Specifically, PMP intercepts: 1) the
program entry point for initializing global variables; 2) call
instructions for initializing local variables; and 3) memory
allocations for initializing heap regions. Note that PAMA
preparation happens a priori and incurs negligible runtime
overhead, while variable initialization occurs on-the-fly during
execution. Both are generic and do not require case-by-case
crafting. We further discuss these steps in the following.

PAMA Preparation. PAMA is mapped at the lower part of
the address space starting from 0x0, in order to accommodate
null pointers or pointers with invalid small values. The word-
aligned addresses within PAMA (i.e., those having O at the
lowest three bits) are filled with carefully crafted random
values, such that if these values are interpreted as addresses,
they fall within PAMA. As such, the range of random values
that we can fill is dependent on the size of PAMA. For a
64-KB PAMA (i.e., in the address range of [0, Oxffff]), the
first two least-significant bytes of a filling value are free to
be set with a random eight-multiple value. Other bytes are
fixed to zero. Note that such a value is essentially a valid

word-aligned address in PAMA. For a 64-MB PAMA, the
first three least-significant bytes of a filling value can be set
randomly, providing better SDMB. The maximum PAMA can
be as large as 128 TB, as a larger PAMA would overlap with
the kernel space. While a feasible design is to change the entire
virtual space layout (by changing kernel), it would hinder the
applicability of our technique. In practice, we find that 4-MB
of PAMA provides a good balance of SCMB and SDMB.

Global Variable Initialization. In an ELF binary, the unini-
tialized or zero-initialized global variables are stored in the
.bss segment. During loading, PMP reads the offset and size
information of the .bss segment from the ELF header. PMP
then initializes the segment like a heap region.

Heap Initialization. Pre-planning heap regions that are dy-
namically allocated by instructions in the subject binary is
relatively easier. PMP intercepts all memory allocations and
set the allocated regions to contain random word-aligned
PAMA addresses. Note that PMP writes these values to each
word-aligned address in the heap region. If a regular compiler
is used to generate the subject binary, the compiler would
enforce pointer-related memory accesses to be word-aligned
through padding. However, malware may intentionally intro-
duce pointer accesses that are not word-aligned. Section III-E
will discuss how PMP handles such cases. In the following
discussion, we always assume word alignment.

Local Variable Initialization. Initializing local variables is
more complex. After initializing PAMA and before spawning
the executors, PMP initializes the entire stack region like a
heap region. Note that stack frames are pushed and popped
frequently and the same stack address space may be used by
many function calls. As such, the stack space may need to be
re-initialized. A plausible solution is to identify stack frame
allocations (e.g., updates of rsp register) and conduct initial-
ization after each allocation. However, due to the flexibility
of stack allocations, it is difficult to precisely identify them.
Inspired by stack canaries used to detect stack overflows, PMP
uses the following design to initialize stack regions. It inter-
cepts each function invocation. Then starting from the current
address denoted by 7sp, it randomly checks eight ! unevenly
distributed addresses lower than the rsp address (i.e., the
potential stack space to be allocated), in the order from high
to low, to see if they are PAMA addresses (meaning that they
were not overwritten by previous function invocations). We
also call these addresses canaries without causing confusion in
our context and use C; to denote the ith canary. PMP identifies
the lowest (last) canary that is not PAMA address, say C}, and
then re-initializes [Cy, 1, 7sp] (note that stack grows from high
address to low address). If all eight canaries are overwritten,
PMP continues to check the next eight. Observe that since
stack writes may not be continuous, the detection scheme has
only probabilistic guarantees. In practice, our scheme is highly

IEight is an empirical choice and works well in our evaluation. The number
and the distribution of canaries are configurable.

01 typedef struct{double xfl; long *f2;} T; 21 void casel () {
02 typedef struct{char £f3; long xf4; long *£f5;} G; 22 long **a = malloc(...);
03 G *g; 23 T *b;
04 24 if (condl()) init (b);
05 void case3 () { 25 if (cond2()) {
06 long *e = NULL, xf = NULL; 26 long *xalias = b->f2;
07 if (condl()) init(e, f); 27 * (b->f2) = %xa; // [0x0008] = [0x0010]
08 if (cond2()) { 28 * (b->f1) = 0.1; // [0xffd0] = 0.1
09 xe = 0x6038; // [0x0000] = 0x6038 29 long tmp = =*alias;
10 long tmp = *f; // tmp = [0x0000]: bogus dep! 30 }
11 } 31 }
12 } 32
13 33 void case2() {
14 void cased () { 34 long *c; double xx*d;
15 if (condl()) init(g); 35 if (condl()) init(c, d);
16 if (cond2()) { 36 if (cond2()) {
17 * (g->f4) = 0x0830; 37 x*c = Oxdeadbeef; // [0xffd8] = Oxdeadbeef
18 long tmp = *(g->f5); // &(g->f5) = 0x10000 38 double tmp = xxd; // [Oxdeadbeef]: error!
19 } 39 }
20 } 40 }
(a) code snippet.
Local Variable (case1) Heap Region
2:0x01ed7010 +—> 0x1ed701@—‘10100100100100100100100‘
b:0x20 b
| ' PAMA
T Canary €1 0 1 2 3 4 5 6 7 8 9 a b C d e f
Tt ! 0x0000 80' fe' 00'00'00' 00'00' 00 |50! 38! 00' 00'00'00' 00' 0O Local Variable (case2)
[chapgfyﬁ}””} 9x0010 > 48i74jae}ee}ee}ee}90}ee f8'e4veeeeeeeaeeeej [c:oxf1ds
s : @x0020—1d0! ff! 00.00,00!00.00' 00|08 00! 00 00.00!00! 00,00 p_d:exffds
| canary C3 | I —— [N - NE
T > R 7| ||
) oxffde={88:19 00:00,00.00:00. 00 [ELNELN 00 00, 00,00.,00,00
Global Variable Oxffe@ |40 fc 00 00 00! 00 00 00|98 20 00 00! 00 00 00 00
oxfffeo 20150, 00,0000 00:00,00|e8:a71 000000000000

(b) memory scheme.

Fig. 5: Memory pre-planning.

effective and we haven’t encountered any problems caused by
incorrect stack initialization.

Example. We use the code snippet shown in Figure 5a as
an example to explain the memory pre-planning process. In
the code, a global variable g is defined at line 3, two local
variables a, b are defined in function casel (). Assume in
an execution instance, line 24 takes the false branch and b
is not allocated and initialized; and line 25 is forced to take
the true branch. Although a is initialized by the original
program code with an allocated heap region, the data in the
heap region is not initialized. Without memory pre-planning,
the program would have exception at any of the memory
operations in lines 26-29.

In this example, the global variable g is set to a random
PAMA address at the beginning. Upon calling casel (),
PMP checks the canaries at C7, Cs, and so on (see the stack
frame in the top-left corner of Figure 5b), and then identifies,
say, the region from [C3,rsp] needs re-initialization, which
includes local variables a and b. Inside the function body,
a is set to a dynamically allocated heap region at line 22,
but other variables such as g and b keep their initial PAMA
address value (as line 24 is not executed). Specifically, g and b
point to 0xfffO and 0x20 (in PAMA), respectively. Consider the
read operation at line 28 that triggers pointer dereferences on

b and then b—>£1. The former dereferences address 0x20 and
yields value OxffdO, which is further interpreted as an address
in the follow-up dereference of b—>f1, yielding another valid
PAMA address. Observe that any following dereferences will
be within PAMA and do not cause any exceptions, illustrating
the SCMB property. The value of b—>f1 (i.e., 0xffd0) deref-
erenced at line 28 is different from that of b—>£2 (i.e. 0x08)
dereferenced at line 27, and hence disambiguate themselves,
illustrating SDMB.

C. Other PAMA Memory Behavior and Interference with
Regular Memory Operations.

Memory pre-planning is particularly designed to handle
exceptional memory operations (caused by forced execution).
As such, all the values filled in PAMA are essentially in
preparation for these values being interpreted as addresses and
further dereferenced. It is completely possible that the subject
binary does not interpret values from PAMA as addresses.
For example, it may interpret a PAMA region as a string
and access individual bytes in the region. In such cases, the
accessed values are just random values. This is equivalent to
how X-Force handles uninitialized/undefined buffers.

A PAMA location can be written to and later read from
by instructions in the subject binary, dictated by the program
semantics. Program dependencies induced by PAMA are no

different from those induced through regular memory regions.
For example, the code at line 26 in Figure 5a establishes
an alias between variable alias and b—>f2. At line 27, a
memory write is conducted on b—>£2. At line 29, a memory-
read is conducted on alias. PMP can correctly establish the
dependence between line 27 and line 29, since they both point
to the same memory address 0x8.

It may happen that a PAMA location is written to by the
subject binary and then read through a semantically unrelated
invalid pointer dereference later. As the written value may not
be a legitimate PAMA address, the later read causes exception.
For example, line 37 at function case2 () of Figure Sa
writes a value Oxdeadbeef that is not a word-aligned address
within PAMA to the address indicated by pointer c. Assume
c happens to have the same value Oxffd§8 as an unrelated
pointer d. The write to xc also changes the value in *d to
Oxdeadbeef. As such at line 38, an exception is triggered for
the read of x+d. In the next subsection, our probability anal-
ysis shows that such cases rarely happen as the likelihood for
two semantically unrelated pointers are initialized to the same
random value is very low. Furthermore, PMP employs different
memory schemes in multiple executors, further reducing such
possibility.

In the worst situation, the subject binary uses its own in-
structions to set semantically unrelated pointers to null. In nor-
mal execution, these pointers would point to different properly
allocated memory regions. However in forced execution, they
may not be allocated, and all point to address 0. In such cases,
PMP cannot disambiguate the accesses of these variables, and
lead to bogus dependencies. For example, the local variables
e and f in function case3 () of Figure 5a are explicitly
set to null by the original program code. In forced execution
where line 7 is not executed, they point to the same address
0x0, resulting in bogus dependence (e.g., between lines 9 and
10). Our experimental results in Section IV show that such
cases rarely happen.

D. Probability Analysis

In this section, we study the probabilistic guarantee of
PMP for the SCMB and SDMB properties. Violations of
SCMB lead to exceptions whereas violations of SDMB lead to
bogus dependences and corrupted variable values. To facilitate
discussion, we introduce the following definitions. Let PA be
the set of all possible addresses within PAMA, and WA be its
word-aligned subset. Assume the size of PAMA is S. Then,
on a 64-bit architecture, we have equation (1).

S = |pa| = |wa| x 8 (1)

In addition, let FV be a random subset of WA, called the
filling value set, whose elements are used as the values to
be filled in PAMA. Without loss of generality, we assume 0
belongs to FV. We define the ratio between the size of FV
and the size of WA as diversity, denoted as d. Then, we have
equation (2).

|Fv| = |wa| x d =

d-S
E @

The initialization of PAMA can be formulated as a mapping
f + WA — FV, which assigns each word (with 8 bytes
alignment) in PAMA (i.e., denoted by addresses in WA) with
a random value selected from FV. Intuitively, a more diverse
FV leads to a more random memory scheme. The initialization
that fills the whole PAMA with value O can be considered an
extremal case where FV contains only a single element 0. Note
that in this case, SCMB is fully respected, while SDMB is
substantially violated as all invalid memory operations collide
on address 0.

Probabilistic Guarantee of SCMB. When a pointer variable
is initialized (by PMP) with a value indicating an address close
to the end of PAMA, dereference of its offset may result in an
access out of the bound of PAMA. As an example, consider
the dereference of g—>f£5 at line 18 of function case4 () in
Figure 5a. Recall that g is set to be 0xfff0 by PMP. The address
of g—>£5 is hence 0x10000, out of the bound of PAMA with
16 KB size.

Theorem 1. Let x be a filling value selected from FV, « be an
offset. The probability P,,,; of x + « being out of the bound
of PAMA is calculated by equation (3).

Perri = P((z4a)gea | z€rv) = %- <1_d-85> 3)

Proof. For PMP to access an out-of-bound address z +
o, x must belong to an address set IA = WA N
{S—a,S—a+1,...,5—1}. To simplify discussion, let o/ =
|IA|= /8, S'=|wA| and N =|FV|. Let the size of IANFV
be i. We can infer conditional probability P(z € IA |t €FV) =
i/N, denoted as P;;. Additionally, because there are (i;j)
possible FVs that could be uniformly chosen from (recall

0€FV always holds) and (O;’) . (S;\?O‘Ll) FVs have i common

—i1
elements with T2, P(|Fv N Ta|=i)= (%)- (51\73_‘11)/(}9\,:}) ,
denoted as Pj;o. Enumerating size i € {1,...,a'}, Pepp1 =

S Pa-Pa=(0//N)-((33)/ (G0 =5 (1-4%) O

Intuitively, the larger the pre-allocated memory area (i.e.,
S) and the lower the diversity (i.e., d), the lower the P,,..1. In
particular, the P.,,; of a naive initialization that fills PAMA
with value O is 0. In a typical setting of .S'=0x400000, =8
and d=1, P.,,1 =1.9073e—06, illustrating a very low chance
of exception. A plausible way to completely avoid SCMB
violation is to avoid using address values close to the end
of PAMA. However this requires knowing the largest possible
offset, which is difficult in practice.

Probabilistic Guarantee of SDMB. SDMB will be compro-
mised when two unrelated pointers are initialized to the same
value by chance. Taking local variables ¢ and d for case?2 ()
in Figure 5a as an example, both of them are initialized to
0xffd8, causing invalid pointer dereference at line 38.

Theorem 2. Let x and y be two filling values independently se-
lected from FV. The probability P,,,o of coincidental address
collision, when z and y have the same value, is calculated by
equation (4).

Pe7.r2:P(Z‘=y|.Z‘€FV, yEFV)Z)

d-S
Proof. Recall x and y are independently selected from FV.
Thus, fixing £ =wvg as a constant, we can infer P,,.o=P(y=
v l[yeFV)=1/|Fv|=8/(d-95). O

With a typical setting d = 1 and .S = 0x400000, P.ro =
1.9073e—06, a very low probability.

Perr3 =P (I (z,8) N1(y,7) # 0 | z€EFV, yEFV)
< 64 B+v—8 5)
—d2.52 S—8

8 2
1——)2.
+1-72)

Proof is elided due to space limitations. With a setting of
B = 0x1000, v = 0x1000, and the rest as the same before,
P...3 = 0.00195, still reasonably low. Note that one can
always improve the guarantee by having more executors with
different pre-plans.

E. Implementation

PMP is implemented based on the QEMU user-mode em-
ulator [9]. Specifically, PMP instruments conditional jumps
and indirect jumps to enforce path scheme. A path scheme is
a sequence of branch outcomes that need to be enforced. As
an instance, “401a4c:T, 4094fc:F, 40a322#40a566” is a path
scheme that contains three branch outcomes to be enforced in
order. Particularly, the predicates at 0x40lad4c and 0x4094fc
should take the t rue branch and false branch respectively,
the jump table at 0x40a322 should take the entry at 0x40a566.
Currently, PMP supports ELF binary on the x86_64 platform.
It can be easily extended to support other architectures due to
the cross-platform feature of QEMU. We leave it as our future
work. In the rest of the subsection, we discuss a number of
practical challenges faced by PMP.

Handling File and Network I/O, Infinite Loop and Re-
cursion. Forced execution may result in exceptional program
behaviors, such as invalid file/network access, infinite loop
and infinite recursion. To make PMP applicable to real-world
executables, these issues need to be handled. PMP follows
similar solutions to X-Force regarding these problems. The
difference lies in that we implement them on QEMU while
X-Force was on PIN. We briefly discuss these solutions for
the completeness of discussion.

To handle invalid file access, PMP wraps file open functions
(e.g., open and fopen). If the file to be opened does not
exist, a file padded with random values will be used. To
handle infinite loop, PMP adopts the profiling-based approach
proposed in [31] to dynamically identify loop structures. For
each identified loop structure, PMP resets the loop bound
to a pre-define constant. This is more sophisticated than X-
Force, which uses a fixed global loop bound. To handle
infinite recursion, PMP intercepts call and return instructions
to maintain a call stack. At each function invocation, PMP
checks whether the appearances of the target function in the
call stack exceed a pre-defined threshold. If so, PMP skips
the function invocation. Note that while maintaining a faithful

shadow call stack is very challenging due to the various strange
calling conventions, PMP does not require a precise shadow
stack.

Allocation of Large PAMA. PAMA is located at the lower
part of the address space starting from 0x0. The default load
address for non-position-independent executables is usually
0x400000. If the size of PAMA is larger than 4MB, there
will be overlap between PAMA and the text/data segment of
the subject executable, which is problematic.

To support large-size PAMA, we enable the address map-
ping mechanism provided by QEMU, which translates a guest
address (denoted as GA) used by the subject executable to a
host address (denoted as HA) used by QEMU. In the user-
mode emulation, QEMU and the subject executable share the
same address space. The address mapping g2h is flattened to
essentially an offsetting operation, such that ha = g2h(ga) =
ga + base, where ga € GA, ha € HA, and base is a pre-defined
base address. We set the base address to the size of PAMA to
avoid any overlap. Consequently, we need to adjust the filling
values accordingly such that they are mapped to the addresses
within PAMA (started from 0x0 in the host space). Formally,
let FV' be the set of the adjusted filling values. Then we have
FV ={x — base | z€FV}.

Misaligned Memory Access. The memory pre-planning of
PMP assumes that any pointer field of a structure is word-
aligned. It is a reasonable assumption for most real-world
applications, since making pointer fields word-aligned (by
padding if needed) is the default behavior of compilers. For
example, mainstream compilers will place a 7-byte padding
between the £3 field and the £4 field of the structure G in
Figure 5a by default, such that the offset of £4 is word-aligned.

Although we didn’t find any real-world cases in our eval-
uation, it is possible to disable word-alignment via a spe-
cial compilation option. The misalignment of a pointer field
(within PAMA) may result in invalid memory access. For
example, assume the global variable g in Figure 5a points
to Oxfff0 set by PMP. If its pointer field £4 is not word-
aligned, its value will be loaded from Oxfff1, which would be
0xe800000000000050. If this value is used as an address, the
access falls out of PAMA (even out of the user address space)
and causes exception.

We develop the following mechanism in the dispatcher
to handle misaligned memory accesses in a demand driven
fashion. If a path scheme results in invalid memory access in
all the executors (most likely induced by misaligned accesses),
the dispatcher checks the QEMU exception log to acquire
the instruction ¢ that accesses misaligned address. Then PMP
additionally intercepts the code generation of instruction
to mask the most-significant bytes of the accessed memory
address to make it fall within PAMA. Note that while our
design anticipates misaligned pointer field accesses are rare,
which is true according to our experience (see Section IV), it is
possible future malware may purposely introduce lots of such
misalignments. In this case, PMP would have to instrument
all memory operations to sanitize the addresses.

IV. EVALUATION

A. Experiment Setup

We evaluate PMP with the SPEC2000 benchmark set as
well as a set of malware samples provided by VirusTotal [12]
and Padawan [8]. The experiment on SPEC2000 is conducted
on a desktop computer equipped with an 8-core CPU (Intel®)
Core™ {7-8700 @ 3.20GHz) and 16G main memory. The
experiment on the malware samples is conducted on a virtual
machine (to sandbox their malicious behaviors) hosted on
the same desktop. On both experiments, the configuration of
PMP is as follows: 4-MB pre-allocated memory area (i.e.,
S = 0x400000), diversity d = 1, and 2 executors (i.e., n = 2).

B. SPEC2000

SPEC2000 is a well-known benchmark set contains 12 real
world programs, some of them are large (e.g., 176.gcc). The
list of programs and the characteristics of their executables can
be found in Appendix A. We choose SPEC2000 for the pur-
pose of comparison as it was used in X-Force. Table I presents
the comparative results on different aspects, including forced
execution outcomes, code coverage and memory dependence.

Forced Execution. In this experiment, both PMP and X-Force
use the same linear path exploration strategy. Specifically, it
first executes the binary once without forcing any branch out-
come. Then it traverses the executed predicates in the reverse
temporal order (the last predicate first) and finds the predicate
that has an uncovered branch. A new path scheme is then
generated to force-set the uncovered branch. The procedure
repeats until there are no more schemes that can lead to new
coverage. Column 2 in Table I reports the total execution time
when PMP finishes the exploration. Columns 3 and 4 present
the number of executions that pass and fail (i.e., encounters
an exception), respectively. The number in parentheses denote
the number of executions finished per second. Columns 11-
13 show the corresponding results for X-Force. From these
results, we have the following observations. (1) PMP can
perform 12.6 forced executions per second on average, which
is 84 times faster than X-Force (0.15 execution per second).
Since PMP uses 2 executors for each path scheme, one may
argue that X-Force can be parallelized to use two cores (for fair
comparison). We want to point out that first it is unclear how to
parallelize the linear search algorithm; and the second executor
in PMP is just to provide better probabilistic guarantees. In
most cases, such improvement may not have practical impact
(see our next experiment). Hence in deployment, additional
executors may be turned off. (2) The execution failure rate of
PMP is 3.5%, which is reasonably low and comparative with
X-Force. Note that the rate is higher than what we identified in
the SCMB probability analysis (Section III-D). The reason is
that the majority of failures reported by both PMP and X-Force
are not caused by memory exceptions, but rather inevitable as
the path explorer forces the execution to enter branches that
must lead to failures (e.g., forcing the true branch of a stack
smash check inserted by the compiler).

Code Coverage. Columns 5~7 and 14~16 show the code
coverage of PMP and X-Force, respectively. Observe that on
average PMP covers 83.8% instructions, 79.1% basic blocks
and 91.8% functions, which is comparable to X-Force. For
most of the benchmark programs, PMP achieves more than
80% code coverage. Specifically, for mcf and gzip, PMP
achieves 100% code coverage.

The worst cases are eon and gcc. Further manual inspection
shows that this is due to some inherent shortcoming of the
linear search strategy. To illustrate, consider the code snippet
in Figure 6, which is extracted from gcc that validates function
arguments before proceeding. When the check_arg () func-
tion is invoked for the first time at line 2, the t rue branch of
predicate at line is taken by default. The linear path exploration
will force the next execution to take the £alse branch, since it
has not been covered before. At the second-time invocation of
check_arg () atline 3, the false branch of the predicate
at line 8 will not be forced to execute again (hence take the
true branch by default), since it has been covered before.
That means, the code after line 3 will not get executed due to
the validation failure at line 3.

The essence of the problem is that linear search only
focuses on predicates, without considering their context. For
example, function check_arg () may be invoked from mul-
tiple places, and each calling context should be considered
differently. That is, a branch being covered in a context should
not prevent it from being explored again in a different context.
In our future work, we will explore a context-sensitive path
exploration method that can provide probabilistic guarantees.
Specifically, we will explore a sampling algorithm that can
sample a predicate, together with its unique context, in a
specific distribution (e.g., uniform distribution).

Memory Dependence. We also conducted an experiment,
in which we detect the program dependencies exercised by
forced execution. A dependence is exercised when an in-
struction writes to some address, which is later read by
another instruction. This is to evaluate the SDMB property
of PMP. Note that it is intractable to acquire the ground
truth of program dependencies, even with source code (due
to reasons such as aliasing). Therefore, we use two methods
to evaluate the quality of detected dependencies. First, we run
the SPEC programs on the inputs provided by the SPEC suite
(some of them are large and comprehensive) and collect the
dependencies observed. These must be true positive program
dependencies. As such, forced execution is supposed to expose
most of them. Any missing one is an FN. Second, we built a
static type checker to check if the source and destination of a
(detected) dependence must have the same type. We developed
an LLVM pass to propagate symbolic information to individual
instructions, registers, and memory locations such that we
know the type of each binary operation and its operands. Note
that we need the symbolic information just for this experiment.
PMP operates on stripped binaries. Ideally, force execution
should report as few mistyped dependencies as possible. Each
mistyped dependence must be an FP. Columns 8~10 and

TABLE I: SPEC2000 Results

PMP X-Force
Benchmark execution status code coverage memory dependence execution status code coverage memory dependence
time (s)| # run | # fail | # insn |# block | # func | # found |# correct |# mistyped | time (s) | # run | # fail | # insn |# block | # func |# found |# correct |# mistyped
) 38 | 11 | 7.650 | 699 | 6l 3804 0 369 | 10 | 7.420 | 669 | 61 3343 28
164gzip | 246 |56/ 3%) | 100%) | 99%) |(100%)| % | @0%) | ©%) | M2 |©017s)| 3% | ©1%) | ©5%) |100%)| 3092 | 6a%) | (%)
1,006 | 82 | 26,783 | 2,007 | 226 8,083 333 1,000 | 79 | 26677 | 2,004 | 226 7199 | 2,428
175vpr | 768 | 13101 8%) | ®3%) | 71%) | 89%) | B8 619 | %) | ¥ |00 %) | 83%) | 70%) | 89%) | 32| s57%) | (18%)
76,524 | 822 |186,310] 16,104 | 1,239 384,161 | 11,467 76,647 | 799 [183,280] 16,008 | 1,221 332303 | 63,131
176.gec | 34902 | G660 | 3%) | (49%) | @4%) | 65%) |77337| 67%) | %) |>*701 0.08)| 3%) | 48%) | @3%) | 64%) [P0 (s8%) | (11
44 | 2 | 2977 | 213 | 24 1243 0 T6d | 2 [2047 [213 | 24 1011 130
18Lmef |86 | 16701 (1%) | (100%) | (100%) [(100%) | 718 | 13 | ©®%) | 37* |43 %) | 99%) |100%)|100%)| Y7 | 68%) | (o%)
3753 | 15 | 40404 | 4237 | 104 14300 |20 7830 | 13 | 41,685 | 4381 | 104 12,002 | 2,749
186.crafty | 8603 | 3516 |(0.5%)| (96%) | 96%) | (100%)| 2% | 64%) | 0.08%) | 270 | (0.03/5) | 0.4%)| ©9%) | ©9%) |(100%) | 22810 | (53%) | (129%)
590 | 68 | 22,0935 | 2.688 | 279 6,664 | 887 1685 | 69 | 23331 2,799 | 288 5870 | 3.682
197.parser | 982 | 16| @) | ©00%) | ©02%) | ©4%) | OO | 61%) | 0% | O340 |0279)| @%) | ©5%) | 96%) | ©97%) | "V740 | 0%y | (1)
707 | 27 28,600 | 5,560 | 502 3457 vy) 659 | 36 | 27,602 | 5413 | 501 3557 | 5.660
22eon | 372 | qo0i)| @%) | 71%) | 0%) | ®2%) | P22 | @) | a%) | %0 waes)| @) | ©9%) | 68%) | 81%) | P | 9% | 62%)
10318 | 508 118,135 11,600 | 692 28394 | 4,001 T0.400 | 502 |119.467| 11,676 | 696 24,713 | 18.866
253.perlbmk | 1189 1 2y | (5a) | (88%) | 90%) | 97%) | 0720 | @3y | %) |'700%|0.06/)| @%) | 89%) | 90%) | ©7%) | 7¢O | 35%) | 27%)
7754 | 310 | 49,860 | 4519 | 401 20651 | 3,059 7467 | 298 | 49920 | 4521 | 401 18228 | 6,593
2dgap | 1041 g5 | @) | 54%) | 50%) | 88%) | 228 | 4% | 8% |18 007 | @) | 54%) | 50%) | 88%) | BT | @re) | a7
7232 | 157 [100718[15513 | 577 19,039 | 630 7233 | 132 [100,652] 15480 | 577 15395 | 14072
235vortex | 870 |14 91| 2%) | ©92%) | 01%) | ©92%) | 725 | Gewy | %) | ¥ [0i12s)| Q%) | ©2%) | 91%) | ©92%) | 7T | @8%) | 26%)
) 39 | 13 | 6338 | 545 | 60 3375 0 58 [11 [5179 | 471 | 53 849 | 215
256.bzip2 | 160 | (5601 (5%) | ©2%) | 94%) | 95%) | 27 | 6% | %) | ¥ |©019s)| @w) | 76%) | 82%) | 84%) | 2P| 76%) | 9%)
3072 | 97 | 523351 3,682 | 165 10333 | 528 2097 | 90 | 52831 | 3,749 | 165 8212 | 3.032
300.twolf | 2214 1 3 | 39%) | 91%) | 86%) | 99%) | 24932 | @3%) | %) | 2% |014s)| G%) | ©02%) | 88%) | 99%) | 209 | 329y | (12%)
Average T 1266 | 35% | 838% | 79.1% [918% | - | 606% | 2.6% T 0.055 | 34% | 82.7% | 81.0% | 909% | - | 506% | 19.6%
01 int some_func(char xargl, char xarg2) { 01 long suspend_impl(..){..
02 check_arg(argl); 02 if (is_valid(arc)) {..
03 check_arg(arg?2); 03 memcpy (new_arc, arc, 0x40);..
04 do_something(); // do nothing 04 * (arc->tail) = nodel;..
05 05 node2 = *(new_arc->tail);..
06 } 06}
07 void check_arg(char =xarg) { 07 }
08 if (strlen(arg) == 0) exit(-1);
09 Fig. 7: Explaining FPs and FNs by X-Force using mcf.
10)

Fig. 6: Explaining problem of lincar search using gcc. the largest). We use the memory dependences reported while

executing the test cases normally as the ground truth to identify

17~19 show the memory dependence results for PMP and the false positives and false negatives for PMP and X-Force.

X-Force, respectively.

Observe that X-Force has 6.5 times more mis-typed memory
dependences compared to PMP (19.6% versus 2.6%), that
is, 6.5X more FPs. In addition, the must-be-true memory
dependences reported by X-Force are 10% fewer than those by
PMP. That is, X-Force has 10% more FNs. The main reason
is that X-Force does not trace into library execution such that
pointer relations are incomplete. We will use a case study
to explain this in the next paragraph. Mis-typed dependences
(FPs) in PMP are mostly caused by violations of SDMB. The
results are consistent with our analysis in Section III-D. Note
that our probabilistic guarantee for SDMB was computed for
a pair of accesses, whereas the reported value is the expected
value over a large number of pairs.

Case Study. We use /81.mcf as a case study to demonstrate
the advantages of PMP over X-Force, as well as over a naive
memory pre-planning that fills the pre-allocated region and
variables with 0. To reduce the interference caused by the
path exploration algorithm, we use the execution traces of the
runs on the provided test cases as the path schemes. That is,
we enforce the branch outcomes in a way that strictly follows
the traces. The test cases fall into three categories: training,
test, and reference, with difference sizes (reference tests are

Since both the forced and unforced executions of a test input
follow the same path, the comparison particularly measures
the effectiveness of the memory schemes. To be more fair, we
only run PMP on a single executor.

The results are shown in Table II. The 2nd and 3rd columns
compare the execution speed. Observe that PMP is much
faster, consistent with our earlier observation. For the memory
dependences, PMP has no FPs or FNs while the naive planning
method has some; and X-Force has the largest number of FPs
and FNs. The former is because SDMB is violated. The latter
is due to the incompleteness of pointer relation tracking (i.e.,
missing the library part). Note that the numbers of FPs and
FNs are smaller compared to the previous experiment as these
are results for a small number of runs, without exploring paths.

Consider the code snippet from mcf shown in Figure 7.
Variable arc is a buffer that contains many pointer fields. As
it is copied to new_arc at line 3, the pointer fields in arc and
new_arc are linearly correlated. However, X-Force misses
such correlations as it does not trace into memcpy () at line 2.
This could lead to missing dependences such as that between
lines 4 and 5; and also bogus dependences. For example, the
read « (new_arc—>tail) atline 5 must falsely depend on
some write that happened earlier.

10

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

Cuckoo
Habo
Padawan }——| [—¢—keow o oo

Cuckoo™

X-Force

PMP

0 50 100 150 200 250

(a) number of exposed syscall sequences.

(b) executions per second.

uPMP mX-Force 30 = PMP mX-Force

25

20

(c) length of path scheme.

Fig. 8: Overall result of malware analysis.

TABLE II: Experiment with mcf.

TABLE III: Analysis on malware samples used for case study.

Execution Time (s) Memory Dependence Case ID Cuckoo Habo Padawan Cuckoo++ X-Force PMP

Item PMP | X-Force | ground PMP Naive X-Force 1 031 12 17 12 12 283 301

found | fp | fn | found | fp | fn | found | fp | fn 2 004 27 29 28 27 32 216

test | 0.0305 1.987 1847 | 1847 | 0| O | 1848 | 5 | 4 | 1858 |28 17 3 225 49 49 166 165 183 220

train | 0.0348 2.578 2065 | 2065 | 0 | 0 | 2069 | 13| 9 | 2088 | 45 |22 4 309 153 169 292 221 274 705
ref | 0.0609 4.390 2062 [2062 | 0 | 0 | 2068 [14| 8 | 2080 | 37 | 19

C. Malware Analysis

We use 400 malware samples. Half of them are acquired
from VirusTotal under an academic license, and the other half
fall into the set of malware used in the Padawan project.
Note that the authors of Padawan cannot share their samples
due to licensing limitations. Hence, we crawled the Internet
for these samples based on a set of hash values provided
by the Padawan’s authors through personal communication.
Many samples could not be found and are hence elided. The
400 samples cover up-to-date malware of different families
captured from year 2016 to 2018. We compare the malware
analysis result of PMP with that of Cuckoo [2] (a well-known
sandbox for automatic malware analysis), Padawan [8] (an
academic multi-architecture ELF malware analysis platform),
Habo [10] (a commercial malware analysis platform used by
VirusTotal for capturing behaviors of ELF malware samples)
as well as X-Force [32].

In order to compare our technique with the state-of-
the-art anti-evasion measures, we implemented two popular
anti-evasion methods [19] (i.e. system time fast-forwarding
and anti-virtualization-detection) as extensions to Cuckoo.
We name the extended system Cuckoot™. Specifically in
the first method, we modify the kernel to make the sys-
tem clock much faster (e.g., 100 times faster), mainly for
the following two reasons. First, a malware analysis VM
often has a very short uptime since it restarts for each
malware execution. As such, advanced malware may check
the system uptime to determine the presence of sandbox
VM. Second, advanced malware samples often sleep for a
period of time before executing their payload (in order to
defeat dynamic analysis). In the other method, we inter-
cept file system operations to conceal the artifacts produced
by virtual machine (e.g., /sys/class/dmi/id/product_name and
/sys/class/dmi/id/sys_vendor).

The detailed comparison results are shown in Appendix C.
Note that the malware behaviors of Padawan are provided by
its authors. We set up an execution environment similar to
Padawan (Ubuntu 16.04 with Linux kernel version 4.4) for

11

the other tools, including PMP, X-Force, Habo, Cuckoo and
Cuckoo™™, so that the results can be comparable. We set 5
minutes timeout for each malware sample.

Result Summary. Figure 8 presents the overall result of
malware analysis. Specifically, the number of unique system
call sequences exposed by different tools are show in Fig-
ure 8a. To avoid considering similar system call sequences that
have only small differences on argument values as different
sequences, we consider sequences that have more than 90%
similarity as identical. As we can see that the executions with
anti-evasion measures enabled (i.e., Cuckoo™ and Padawan)
expose more system call sequences than the native executions
(i.e., Cuckoo and Habo), but disclose fewer than the forced
execution methods (i.e., X-Force and PMP). On average, PMP
reports 220%, 243%, 150%, 151% and 98% more system call
sequences over Cuckoo, Habo, Cuckoo™ ™, Padawan and X-
Force, respectively. Details can be found in Appendix C.

The comparison of execution speed and length of path
schemes between PMP and X-Force are shown in Figure 8b
and Figure 8c respectively. Note that Cuckoo and Padawan
only runs each sample once (instead of multiple executions
on different path schemes as force execution tools do). Hence
we do not compare their execution speeds and length of path
scheme. On average, PMP is 9.8 times faster than X-Force
and yields path schemes with the length 1.5 times longer than
X-Force. The longer the path scheme, the deeper the code was
explored. The second case studies in this subsection show that
with the longer path schemes, PMP can expose some malicious
behavior in deep program paths that could not be exposed by
X-Force.

Case Studies. Next, we use four case studies from different
malware families to illustrate the advantages of PMP.

Casel: 1e19p857a5£5a9680555fa9623a88e99. It is
a ransom malware that uses UPX packer [11] to pack its
malicious payload in order to evade static analysis. Figure 9a
shows a constructed code snippet to demonstrate part of its
malicious logic. It mmaps a writable and executable memory
area (line 2), then unpacks itself (line 3) and transfers control

int main(int argc, char xxargv) {
void xcode_area = map_exec_write_mem() ;
upx_unpack (code_area) ;
transfer_control (code_area, argc, argv);
05 }

void code_area(int argc, char *xargv) {
if (!'is_cmdline_valid(argc, argv)) exit();
char xaction = argv[l], *key = argv[2];
delete_self();
if (strcmp(action, encrypt) == 0) {
for (FILE xfile: traverse_directory()) {
FILE xencrypted_file encrypt (file, key);
replace_file (encrypted_file, file);

15 }
16}
17 }

(a) simplified code.

mmap (0x400000, , PROT_EXEC | PROT_READ | PROT_WRITE,)

unlink ("/root/Malware/1el9b857a5f5a9680555fa9623a88e99")
open ("/etc",O_RDONLY |O_DIRECTORY |O_CLOEXEC)
getdents64 (0,)

open ("/etc/passwd", O_RDONLY)

open ("/etc/passwd.encrypted", O_WRONLY | O_CREAT, 0666)
unlink ("/etc/passwd")

Q 0O Q00w

(b) captured system call sequence.

Fig. 9: Case 1: the ransom malware sample.

(line 4) to the unpacked payload (lines 7-17). The malicious
payload checks the validity of command line parameters (line
8) and deletes itself from the file system (line 10). If the
command line parameter specifies the encrypt action, the
malware traverses the file system to replace each file with its
encrypted copy (lines 13-14).

The comparison of different tools on this malware is shown
in the second row of Table III. Triggering payload requires
the correct command line parameters. Hence directly running
the malware using Cuckoo, Habo, Cuckoo™ and Padawan
fail to expose the malicious behavior. Both X-Force and
PMP expose the payload. Figure 9b shows the captured
system call sequence. Observe the unlink syscall b that
removes the malware itself and the encryption and removal
of “/etc/passwd” by syscalls e-g.

Case2: 03cfe768a8b4ffbelbb0fdef986389dc. It is
a bot malware that receives command from a remote server.
Figure 10a shows the simplified code of its processing logic. It
checks whether a file exists that indicates the right execution
environment (line 2) and whether the remote server is con-
nectable (line 4). If both conditions are satisfied, the malware
communicates with the remote server. The remote server will
validate the identity of the malware by its own communication
protocol (lines 4-7). If the validation is successful, a command
received from the remote server will be executed on the victim
machine (lines 8-9).

The comparison of different tools on this malware is shown
in the third row of Table III. The malicious payload of this
malware sample is hidden in a deeper path, which requires a
much longer path scheme. Figure 10b shows the path scheme
enforced by PMP to expose the malicious behaviors. The
length is 28, which is larger than the longest path scheme
that is enforced by X-Force within the 5 minutes limit. These
forced branches are to get through the ID validation protocol.

12

01 int main(int argc, char x*argv) {

02 if (!files_exist("/tmp/ReV1112")) exit (0);
03 if (!connectable ("ka3ek.com")) exit (0);
04 Info xinfo = get_system_info();
05 Greet xgreet = get_validation (info);
06 Reply xreply = compute_reply (greet);
07 Cmd x*cmd = get_command (reply);
08 if (!emd) exit (0);
09 execute_cmd (cmd) ;
10 }
(a) simplified code.
40492b:T | 404aec:T | 404e07:T | 401f3f:F | 40lee3:T
404fdc:F | 404fea:T | 405118:F | 40513a:F | 405144:F |
40517b:F | 40517f:F | 40523e:F | 405254:T | 40523e:F |
405254:T | 40523e:F | 405254:T | 40523e:F | 405254:T
40523e:F | 405254:F | 4044be:T | 4044e9:F | 40454b:F
404565:T | 404596:T | 404794:F
(b) path scheme.
Fig. 10: Case 2: the bot malware sample.

Case3: 14b788d4c5556fe98bd767cdl0ac53ca. It is
an enhanced variant of Mirai, which is equipped with a time-
based cloaking technique. Figure 11 shows a simplified version
of its code snippet. At line 4, it checks whether the system up-
time is short, which indicates a potential analysis environment.
If the system uptime is long enough, it checks whether there
exists any initialization script in the “/etc/init.d” directory (line
8) 2. If both conditions are satisfied, the malware sample adds
itself to an initialization script for launching at system reboot.

Cuckoo and Habo cannot expose the aforementioned be-
haviors. Cuckoo™™ and Padawan can expose the traversal
of the “/etc/init.d” directory (line 6), by passing though the
uptime check via fast-forwarding system time and using a
long-running VM snapshot, respectively. However, they cannot
expose the modification of initialization script (line 9), due
to the failure of the initialization script check, as the default
OS environment does not have any initialization script. PMP
and X-Force can expose both behaviors by forcing the branch
results.

Case4: 8a6624385a7504e1387683b04c5f97a. This
is a sniffer equipped with a vm-detection-based cloaking tech-
nique. Figure 12 shows a simplified version of its code snippet.
If a VM environment is detected, the malware sample deletes
itself and exits (lines 2-3). Otherwise, it enters a sniffing loop,
which randomly selects an intranet IP address and a known
vulnerability and checks whether the host with the IP contains
the vulnerability (lines 5-7). If so, the information about the
vulnerable host is sent to the server and the payload is sent to
the vulnerable host (lines 8-9).

Cuckoo and Habo cannot expose the aforementioned be-
haviors. Cuckoo’™™ and Padawan can expose the network
communication to the selected IP address, since they are
enhanced to conceal VM-generated artifacts. However, they
cannot expose sending the vulnerable host information and
payload, since the analysis environment is often offline and
there may not exist a vulnerable host on the intranet. PMP
can expose both behaviors. X-Force can expose both in theory

2 An initialization script has a file name that starts with ‘S’, followed by a
number indicating the priority.

01 int main(int argc, char x*argv) {
struct sysinfo info;

03 sysinfo(&info);

04 if (info.uptime < 128) exit (0);

05 DIR *dir = opendir ("/etc/init.d");

06 while (struct dirent xent = readdir (dir)) {
07 char name = ent->d_name;

08 if (name[0] == 'S’ && is_num(name[l])

09 add_to_init_script ("/etc/init.d/s99");
10

11 }

Fig. 11: Case 3: the enhanced variant of Mirai.

but fails within the timeout limit due to its substantially larger
runtime cost.

D. Time Distribution

We measure the runtime overhead of different components.
The distribution is shown in Appendix B. As we can see
that most of the time (84%) is spent on code execution,
while only 13% and 3% of time are spent on memory pre-
planning and path exploration, respectively. In memory pre-
planning, 2%, 5%, 69% and 24% of time are spent on PAMA
preparation, initialization of global variables, local variables
and heap variables. Observe that PAMA preparation takes very
little time as most work is done offline.

V. RELATED WORK

Forced Execution. Most related to our work is X-Force [32].
The technical differences between the two were discussed
in the introduction section. As shown by our results, PMP
is 84 times faster than X-Force, has 6.5X, and 10% fewer
FPs and FNs of dependencies, respectively, and exposes 98%
more payload in malware analysis. Following X-Force, other
forced-execution tools are developed for different platforms,
including Android runtime [33] and JavaScript engine [25],
[21]. Compared to these techniques, PMP targets x86 bina-
ries and addresses the low level invalid memory operations.
Additionally, PMP is based on novel probabilistic memory
pre-planning instead of demand driven recovery.

Memory Randomization. Memory randomization has been
leveraged for different purposes, such as reducing vulnerability
to heap-based security attacks through randomizing the base
address of heap regions [14] and randomly padding alloca-
tion requests [15]. DieHard [13] tolerates memory errors in
applications written in unsafe languages through replication
and randomization. It features a randomized memory manager
that randomizes objects in a “conceptual heap” whose size is
a multiple of the maximum real size allowed. PMP shares a
similar probabilistic flavor to DieHard. The difference lies in
that PMP pre-plans the memory by pre-allocation and filling
the pre-allocated space and variables with crafted values. In
addition, PMP aims to survive memory exceptions caused by
forced-execution whereas DieHard is for regular execution.

Malware Analysis. The proliferation of Malware in the past
decades provide strong motivation for research on detecting,
analyzing and preventing malware, on various platforms such
as Windows [16], [23], Linux [19], [20], as well as Web

13

01 char xdata = read_file("/sys/class/dmi/id/product_name");

02 if (contains(data, "VirtualBox", "VMware"))
03 remove_self_and_exit ();

04 while (1) {

05 char »ip = select_intranet_ip(ip_list);

06 char *vuln = select_known_vuln(vuln_list);
07 if (connect_and_check (ip, vuln)) {

08 send_info_to_server (ip, wvuln);

09 send_payload(ip, wvuln);

10

11 }

Fig. 12: Case 4: the sniffer malware sample.

browsers [24], [22]. Traditional malware analysis fall into
two categories: signature-based scanning and behavioral-based
analysis. The former [12], [28] detects malware by matching
extracted features with known signatures. Although commonly
used by anti-malware industry, signature-based approaches are
susceptible to evasion through obfuscation. To address this,
behavioral-based approaches [34], [26], [17] execute a subject
program and monitor its behavior to observe any malicious
behavior. However, traditional behavioral-based approaches
are limited to observing code that is actually executed.

Anti-targeted Evasion. Modern sophisticated malware sam-
ples are equipped with various cloaking techniques (e.g.,
stalling loop [27] and VM detection [6]) to evade detection.
To fight against evasion, unpacking techniques [18], [29] are
applied to enhance signature-based scanning, and dynamic
anti-evasion methods [26], [30] are developed to hide dynamic
features of analysis environment such as execution time and
file system artifacts. These techniques are very effective for
known targeted evasion methods. Compared to these tech-
niques, PMP is more general. More importantly, PMP and
forced execution type of techniques allow exposing payload
guarded by complex conditions that are irrelevant to cloaking.

VI. CONCLUSION

We develop a lightweight and practical force-execution
technique that features a novel memory pre-planning method.
Before execution, the pre-planning stage pre-allocates a mem-
ory region and initializes it (and also variables in the subject
binary) with carefully crafted values in a random fashion. As a
result, our technique provides strong probabilistic guarantees
to avoid crashes and state corruptions. We apply the prototype
PMP to SPEC2000 and 400 recent malware samples. Our
results show that PMP is substantially more efficient and
effective than the state-of-the-art.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and Dr. William Robertson (the PC contact) for their con-
structive comments. Also, the authors would like to express
their thanks to VirusTotal and the authors of Padawan for
their kindness in sharing malware samples and the analysis
results. The Purdue authors were supported in part by DARPA
FA8650-15-C-7562, NSF 1748764, 1901242 and 1910300,
ONR N000141410468 and N000141712947, and Sandia Na-
tional Lab under award 1701331. The UVA author was sup-
ported in part by NSF 1850392.

[1

—

[2]
[3]

[5]
[6]

[7]
[8
[9]
[10]

(11]
(12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Clickless powerpoint malware installs when users hover over a
link. https://blog.barkly.com/powerpoint-malware-installs- when-users-
hover-over-a-link.

Cuckoo. https://cuckoosandbox.org/.

Cybersecurity statistics. https://blog.alertlogic.com/10-must-know-
2018-cybersecurity-statistics/.

Evil clone attack. https:/gbhackers.com/evil-clone-attack-legitimate-
pdf-software.

Fileless malware. https://www.cybereason.com/blog/fileless-malware.
Linux anti-vm. https://www.ekkosec.com/blog/2018/3/15/linux-anti-
vm-how-does-linux-malware-detect-running-in-a-virtual-machine-.
Mirai malware. https://en.wikipedia.org/wiki/Mirai_(malware).
Padawan. https://padawan.s3.eurecom.fr/about.

Qemu user emulation. https://wiki.debian.org/QemuUserEmulation.
Tencent habo. https://blog.virustotal.com/2017/11/malware-analysis-
sandbox-aggregation.html.

Upx. https://upx.github.io/.

Virustotal. https://www.virustotal.com/gui/home/upload.

Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic memory
safety for unsafe languages. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06. ACM, 2006.

Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfusca-
tion: An efficient approach to combat a board range of memory error
exploits. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12, SSYM’03. USENIX Association, 2003.
Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient tech-
niques for comprehensive protection from memory error exploits. In
Proceedings of the 14th Conference on USENIX Security Symposium -
Volume 14, SSYM’05. USENIX Association, 2005.

Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and
Christopher Kruegel. Disclosure: detecting botnet command and control
servers through large-scale netflow analysis. In Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012.
Ahmet Salih Buyukkayhan, Alina Oprea, Zhou Li, and William Robert-
son. Lens on the endpoint: Hunting for malicious software through
endpoint data analysis. In International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, 2017.

Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting Chen,
Xiaosong Zhang, and Jean-Yves Marion. Towards paving the way for
large-scale windows malware analysis: generic binary unpacking with
orders-of-magnitude performance boost. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018.

Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding linux malware. In Proceedings of the 39th
IEEE Symposium on Security and Privacy, 2018.

Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Triggerscope: Towards
detecting logic bombs in android applications. In 2016 IEEE symposium
on security and privacy (SP). IEEE, 2016.

Xunchao Hu, Yao Cheng, Yue Duan, Andrew Henderson, and Heng Yin.
Jsforce: A forced execution engine formalicious javascript detection. In
Xiaodong Lin, Ali Ghorbani, Kui Ren, Sencun Zhu, and Aiqing Zhang,
editors, Security and Privacy in Communication Networks. Springer
International Publishing, 2018.

Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher
Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Eliciting malicious
behavior in browser extensions. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014.

Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge,
and Engin Kirda. Cutting the gordian knot: A look under the hood
of ransomware attacks. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2015.
Amin Kharraz, William Robertson, and Engin Kirda. Surveylance:
automatically detecting online survey scams. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018.

Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui
Zheng, Xiangyu Zhang, and Dongyan Xu. J-force: Forced execution on
javascript. In Proceedings of the 26th International Conference on World
Wide Web, WWW ’17. International World Wide Web Conferences
Steering Committee, 2017.

14

[26] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel,
Engin Kirda, Xiaoyong Zhou, and Xiaofeng Wang. Effective and
efficient malware detection at the end host. In USENIX 2009, 18th
Usenix Security Symposium, 2009.

Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of
procrastination: detection and mitigation of execution-stalling malicious
code. In Proceedings of the 18th ACM conference on Computer and
communications security. ACM, 2011.

Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson,
and Giovanni Vigna. Polymorphic worm detection using structural
information of executables. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 2005.

Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. Omniun-
pack: Fast, generic, and safe unpacking of malware. In 23rd Annual
Computer Security Applications Conference (ACSAC 2007), 2007.
Kirti Mathur and Saroj Hiranwal. A survey on techniques in detection
and analyzing malware executables. International Journal of Advanced
Research in Computer Science and Software Engineering, 3(4), 2013.
Tipp Moseley, Dirk Grunwald, Daniel A Connors, Ram Ramanujam,
Vasanth Tovinkere, and Ramesh Peri. Loopprof: Dynamic techniques
for loop detection and profiling. In Proceedings of the 2006 Workshop
on Binary Instrumentation and Applications (WBIA), 2006.

Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhigiang Lin, and
Zhendong Su. X-force: Force-executing binary programs for security
applications. In Proceedings of the 23rd USENIX Security Symposium,
2014.

Zhenhao Tang, Juan Zhai, Minxue Pan, Yousra Aafer, Shiging Ma,
Xiangyu Zhang, and Jianhua Zhao. Dual-force: Understanding web-
view malware via cross-language forced execution. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018. ACM, 2018.

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin
Kirda. Panorama: Capturing system-wide information flow for malware
detection and analysis. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS *07. ACM, 2007.

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

APPENDIX
A. Spec2000 Benchmark

Benchmark source lines binary size # insn # block # func
164.gzip 8,043 143,760 7,650 707 61
175.vpr 17,760 435,888 32,218 2,845 255
176.gcc 230,532 4,709,664 378,261 36,931 1,899
181.mcf 2,451 62,968 2,977 213 24

186.crafty 21,195 517,952 42,084 4,433 104
197 .parser 11,421 367,384 24,584 2,911 297
252.eon 41,188 3,423,984 40,119 7,963 615

253.perlbmk 87,070 1,904,632 133,755 12,933 717
254.gap 71,461 1,702,848 91,608 9,020 458

255.vortex 67,257 1,793,360 109,739 16,970 624

256.bzip2 4,675 108,872 6,859 577 63
300.twolf 20,500 753,544 57,460 4,280 167
B. Time Distribution
Path
Exploration Global
39 P Var Init
5%
Memory
E t Pre-Planning)
xecution Var Init PAMA

13%

84% 69%

Preparation

2%

C. Details of Malware Analysis Result

[[Cuckoo [Habo [Padawan [Cuckoo++ [X-Force [PMP
[Ave. | 4165 | 3888 | 5315 | 5328 | 6740 | 13336 |

https://blog.barkly.com/powerpoint-malware-installs-when-users-hover-over-a-link
https://blog.barkly.com/powerpoint-malware-installs-when-users-hover-over-a-link
https://cuckoosandbox.org/
https://blog.alertlogic.com/10-must-know-2018-cybersecurity-statistics/
https://blog.alertlogic.com/10-must-know-2018-cybersecurity-statistics/
https://gbhackers.com/evil-clone-attack-legitimate-pdf-software
https://gbhackers.com/evil-clone-attack-legitimate-pdf-software
https://www.cybereason.com/blog/fileless-malware
https://www.ekkosec.com/blog/2018/3/15/linux-anti-vm-how-does-linux-malware-detect-running-in-a-virtual-machine-
https://www.ekkosec.com/blog/2018/3/15/linux-anti-vm-how-does-linux-malware-detect-running-in-a-virtual-machine-
https://en.wikipedia.org/wiki/Mirai_(malware)
https://padawan.s3.eurecom.fr/about
https://wiki.debian.org/QemuUserEmulation
https://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html
https://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html
https://upx.github.io/
https://www.virustotal.com/gui/home/upload

S 133 9C ¥C | jd! €PPEISOQ0EY8TLSTPTPOSERT8PEYOSL | 00T YL (43 0T 6l LT 0T 61PIPEI8ELIOYSISTSTTOLIIOETOPOIE | 0SO
8¢ a4 187 oy L 1§74 SB069JSSYSHOPRT2G0P299998 L9203V L 660 LS Iy 9 8¢ 61 81 BY88P20TY999C6T 1 IPTRIOLETERIOPRE | 6V0
78 (014 8¢ 9¢ [1)4 9¢ 99¥C1€99SPLG99£0699PI8BPYTIYL | 860 €6 69 S Ly S 8 POEAPST620CLAT LESAE6E09PI0BITPOE | 8Y0
S0S [X474 9¢ 16C 9¢ 9¢ S16J93L92991JG2[991BRISSHQIJeTL L60 YL 8¢S [1)4 8¢ 9¢ 6¢ 3990999L9¥) LEVIPIZS0OPBESITEELIE LY0
444 6T £€C €C L 8 8E6LYRYLTRII99809°BPEEBIVORIPLIL | 960 69 €9 9¢ 9¢ [1)4 9¢ B9G98BCOBILOAE6IPIPICLPIOPEITIE | V0
€L1 94 6¢ 8¢C 54 6C P8996TLPPEE8YL6IIEI208Y6B099PBOL S60 ss or [43 8¢C 81 L1 JOILT1I8689J29PSOSIPLOPTBIR 1 SE S¥0
Sy e 8¢ ¥4 1C T 89®PJSSYSELO6LOIA]I O ERE[99LIPSOL 60 s¢ 1€ 1C 1 LT 1C BIEOALT90VBTLYRTSTOCIIVISSOIE | ¥¥0
YL e (44 9C ST Sl S09°9PS8ELOBSI699E60LIBILSSITOPY | €60 9¢ (44 13 0¢ 8T 0T 206%7C80CLI0LILYSqPLOYOBILBESYIIC | €70
89 Sy S¢ 8¢ 144 8¢ £0999CPI6I99B668EEI6LLO6SO6PI0G9 | T60 9y 194 T 4 0¢ 0T 99€9L9¢9¥8€97998°PCT100026¢9I99PC | TH0
LS 8 6¢ 8y 134 0T 6£1°PEI0IILELIPTSSOT9IOIPSLEYI9 | 160 08 39 |54 (0} 54 < [8€3LPT19EPP29SPY]I€B0V66P8TPEC | 110
£3 |§3 61 6l 0T 6l 99929910LS2P28q0906061°99¥20JSSE9 | 060 (44 44 €¢ [43 61 1T PoB69C690°9916PIGBTEPPLIYS8PAI]T | O0V0
SOI 88 19 LS LT §3 69BPTI9 [€37SOSI 1907 1PO9096CPTITY | 680 S¢ 9¢ 6¢ 8¢C Ll Ll 809PYC0139B97A2¢ 1 [T9V68EYBI9898C | 6£0
YL 194 € LT 144 8¢ QPBBIBIGSTOHOETPSPOIEO809PLS96ET9 | 880 ¥S [44 0¢ 0¢ 81 0T [8¥90°98P9C1CLS0TY0IR6To¥996ST8T | 8€0
[43 [43 54 €C ST Sl 9L695€0JS886170B8ISEILBY01 196209 | L8O ss or [43 8¢C 81 L1 Jee8¢8901989J8eBIPSTOBPOIBYIEIST L€0
8 194 13 1€ 144 1 £PPT998J90JPTE6LBLI T TPTIIS8ERIYS 980 (1) 6¢ 0¢ LT LT L1 Bp69198996L908£8°09H8296LC1JAVC | 9€0
9L 6¢ LE 9¢ L 9¢ 1900®8L9PAIT8YT0LI920JCHIYPICTPIS $80 9¢ (44 0¢ 0¢ 8T 0T O0HP9YEL6ALSIPETTOLTTESOILTYOET | S€0
0¢ 6C 0¢ 0T S Il 899¢€0€T0BORISY0€9029€€529969¢9IS | ¥80 Sel L1 L S 8 S SCOTEPITOLERIILTLITLILEBIAPIOPTT | ¥€0
99 (014 (43 8T 81 L1 JE1TSTOVSSH99€650L9069C29TEETIS | €80 69 09 ()4 1§74 54 < €EYPILOYEEILI66YLBIPIBIEYTYA0IT | €€0
9L a4 6¢ 8T 54 6T 966060°P2PI8LOP8I [8¥999]€99068°S | T80 a4 S1 hd! ¥T hd! jd| 693959L68B90LIPLIL6TTA99ILLOT | TEO
€8 LL 134 (44 [1)4 134 670€26SEPSTOSELIIEOLTYEIILIBBOPS | 180 10€ €8¢ <l <l LT cl 66°88BEC96BISSS0896BSISLLSBIAO] 1€0
€6 09 Ly oy 54 (44 JT8IRI8IAS8ILLSIECTO8ATTION [9JOF 080 Y or 0¢ LT 81 L1 J23€99998Y06J7JUTP8Y66Y LBV LAT 0€0
6¢ 6¢ LT LT 8T L1 69PSEVOBISLOPYPIAOPILELEROOILYOS | 6L0 16 [44 6¢ 8¢C (44 6C JOEV6601°77EEPI68P109996£6¥S0591 620
€81 LST (Ui} L8 94} orl O1LT96J1 T¥8¥9890€C8®PYLIOCPPIOS | 8LO YL e 9C 4 ST Sl £€9J66C19CLYOES09PI0SLIEOPPILE] | 8CO
34 194 e 1€ 61 1C 8€996CS1TPOT9¢CT€L9Y0SP9289¢eqS | LLO [43 8T 4! 4! 0T jd! 86£6PI6LHITIT266PS LY TIHBI661 L20
£l 9L 8¢ 8¢ [43 S¢S L8295¥3£999T619PLE09HPYICIPI9LS 9L0 1974 194 143 Ie S¢ 1T 0€6°2099999J79¢L6LY1L09998Y9LI6LT | 920
96 g9 1S 8y €9 9T £0°08252q0TE6S9LE99IBIIBAEEJE]S SLO 98 (014 9T LT 81 Ll J99PTISE0LBSLBIATISO66V IIETEO6LSLI S0
1L id 9¢ 43 (44 YT TSSPYII96¢EGJBIREGOGS LOIOLYITES L0 9 8¢ [1)4 (44 184 or 999638J929TeS YA 16J9148Tq9TIE T 20
8L e LT 9T Sl Sl OVPOLBALLLSEALPEYRAPTSO80ICPYALS | €LO Sy €€ 9T YT | jd! 9J969566L9CLOSIEIPLEGOCS [ILET €20
06 (514 LT 8¢C 6¢ LT BOYPYAPOY699S2186BPeR6SAT6HTILS | TLO €L €9 0S 9¢ [1)4 9¢ C8SSTeYeEOrPRITSOVYAIEOLILBLOECEL | TT0
96 0L 9 6S LT ¢ 6099L81BP1£6999SCEE9988L9791999C | 120 9¢ (44 LT 1€ 8T 0T C9B8qLJe6EILGBOLEEBYI[ITIPIICE T 120
LTC 101 09 29 19 09 611°29SL9090LBPILEPT609LELBEOSS | 0LO €8 9L 68 (44 Oor 1374 9€J6IVBIEV08S29I60£89599¢199CC T 020
LS or 13 8¢ 34 0T P68TEBTTIEBIPSI0FLEGIPLITPI6IT6SS | 690 L8 69 c¢ Ly 123 8 6£YY6678198,J6TA0E08S8EPPOSYOTT | 610
651 143 9¢ Y4 L1 ¥ PeEY1I8eYPYILLECTLSP0YEPOYII0ALS | 890 1L i4 3 Se (44 ¥ LO®Y6P19CY99T8TIBYA6E9YIV6LOETT | 810
69 14 [1)4 33 < YT 808S0€3J8999806PS [£99L0JEV6PRES | L90 LyE |§3 54 6l Ll 0T 99L90S5669P2998S99768LST®9GJOI | LIO
YL 44 [43 9T €C LT 1818P9LY6¥C29965°8PIPELPPLTYTS | 990 33 33 LT €C 91 Sl PYPA0YSqSIA6EBIITTO161LYO01 910
611 84 € LT (44 8¢ 09POTC8PAPEOYEQT091 S8BLP206ECOS | 90 19 94 LE 143 1 €C 9JTIY6JJBCIPHASPP6C8SI981P0 S10
6L LE 54 1 91 4 JBEILERYILGJIGIIQY1I9L969C eI 90 8¢ 44 S¢ 0¢ S¢ (44 YPIPELBS €JA6JI 1 T8BSEPISO868°J°0 10
s¢ 9¢ 6¢ 4 91 Sl 0PIPOYO6867IPIPILIOLIPCOIPAOPSIY | €90 YL e £C 4 ST Sl qCBPOOLIIEO6PI 99T EYILOZIT6BRBIO0 | €10
374 194 S¢ 1€ 61 1C €21 €361IYBICYIT89ELESTARIIBEOS Y 290 LT 4 6l Ll 01 L 0S9°9PLO0S8LTBLOBSOPITEEEPITPO20 | CI0
YTt LL 09 [19 09 £9P9EYPO6TOH0SE6£866164998°6°19F | 190 €€ L1 6¢ 9¢ S1 S1 J9¥91S88L0°0SBSSE1699¢9969997290 | 110
[0)4 (014 54 LT 81 L1 q99699J9 ¢ T9IEAPLLIPOSI9L68LIO6Y 090 6 69 S¢ 8y €9 8% 9BZ020LS 1 €69PISPILEICBIPYPSSRI0 | 010
e 194 0¢ 9T L 0¢ 9J92GIPOIETSIBOPLTCSE8TYATLEAL8Y | 650 08 14 LE LT [43 < 9019TTLIS99LESY18BO66YA9IPITAVA60 | 600
9¢l 9 a4 6¢ LE ()4 POPT¥qOeeLeHY8TA9096SBTILOIEILI9Y 890 Sy €¢ LT 4 | jd! £90L8L2JOTI9€0LSPEA9q1 1199880 | 800
99 (44 S¢ or 54 (44 9L9PY9oPOy6vcEPATqBISHALOPYOIVTY | LSO 06 L9 (514 Ly 139 Ly BREPQJOSEIIBITTRIVLITSIO6SYLEI8I0 | LOO
()4 €€ 54 (44 61 (44 96L978S990JCA28YCIOLITLIPILELSOY | 950 165 e LT LT | jd! PP9991118STPTSPIITS0617C0ELSBLSO | 900
s¢ 84 8¢ 6T 8T 81 £00¥OP1 19€SY Iy ye19vC068YeSH80y | SSO 23 91 ST 9C ST Sl 09BYBCERTIAYE TBIYCIOBPAOEYIEISYO | SO0
L8Y e LT LT jd! jd! S6£9672LYSOPYIT198ESITOELTILS8UE | ¥S0 91¢ (43 LT 8¢ 67 LT 9P68¢£9864°PJ0990°9H 798889 LJ0¢0 00
99 (U4 [43 LT 81 L1 9L3LO8EYOLIT998L969TOLILI8TEGIIE | €S0 8¢I 9l 86 69 S9 0L LEPOTBITTROYY62C999998JECHIT610 | €00
SL 19 (614 [43 81 0T TO9Y7A0®I198ELBLOR T YEYII8098ITE | TS0 YL e LT Y4 Sl Sl 99J9979699J0¢eq83¢£00999¢36¥¥S00 | TO0
LT LT 61 0T L L TSY0JUYOBIS06S 19178969Yq1J99PE 160 6 44 [£3 8¢C < 6C YP19JBLP6TYIVS 19861 C869PIPEIS000 100
dINd | 99104-X | ++ooyon) | uemeped | oqeH | ooyon) SAN ail dINd | 99104-X | ++ooyon) | uemeped | oqeH | ooyon) SAN ail

15

s¢ 44 33 0€ 9C 0¢ J17496988J0S€0TTICS00TERLTYITBCOH | 00T 9IL 1cs IS¢ [433 §¢¢ Ly¢ BY0qSP9LI99L99BITLIJPIES08LBCRIG | OSI
8¢ LE 0¢ 6C L1 81 JOPIRYIIEE02EIS 1 TERICOTLEBS LPY 661 LL 143 9 9¢ S1 S1 SOPIETI¥8LAYTYERTISATTI0E169P0°9 | 61
681 43 LT 0T jd! YT BPO [£L9989J6CPILIVA8TYLSTICRLE) 861 YL YL 09 8y 43 LT VLILBOA66LI6BILLEIGIO0SLIBPAII6]D | 8P
<9 [§3 YT 61 Ll 0T SeyRIBELRTYILY0I910VLEAYSYIo89.) | L6 43 e (44 Y4 ! Sl SLLALLIPYBPAI T THTPPO9ELIPI9I8A | LY
9¢ 9¢ LT LT 91 L1 916J6989C€AP6R0J9TBED10JL9TOI08) 961 LEE 44 9T 4 (44 9T JO968IS L9890V 18CCAI9189CC9S LA id!
€¢ € 9T T jd! jd! 0961219PJOPT8BIOT SBEI190J0SBIES S61 s¢ 1€ T 0T LT 1c 639€7T99690Ce6I8PYTO1 1€998P880YT | Sl
6 69 139 8y 139 Ly O0CIJBOPI9GTSLTOEPOIP8299L29009¢) | 61 67 (44 £€C 4 0¢ 0T 1BB6L8J1J6P09109S®BS€QO9B]JPTOoE jad!
%44 £0¢ 91 8¢ (44 jd! 90€PIS 1J06JSSOOTITSTITOTIBISLLT €61 i} 9 (14 6¢ LE 0or 7901 1SLESATI08EBICOIPOLYLAVIILP® | €1
L8 S¢S 34 LS LT e 9636999SBAPITACOT €IESILLEETITT® | Tol SL SL 09 8y (43 LT 9¢€62196J09PYTOSYOLOFPREQT69T%® | Thl
Y LE €€ 8¢ 81 81 99TLSE2EI6LPIP6I0BTA0EI9T9P2 | 161 187 (U4 |£3 8¢ 6l 81 1€95TT8Y¢/JA0EBSOV8P6I0PTE0I99® | 11
78 44 8¢ |§3 61 1T C8ETY0°610L9BqI[BPETRTSPPAIELO® | 061 jad! 6S 6¢ 6¢ 9¢ 6¢ 81€898€qTSP9I8LSA608IAI8EYEA0VI® | OF
6 €9 67 44 Ly YT 9OP68695966L2S92LBISOTBSSEIOPER | 681 <9 e 9T 1T 61 [44 JO8Y61O9C08ELIGBLI6YBPS699¢69C98 | 6€1
9L e 0T 4 Sl Sl BOBIJOPEYO € B8P S69E9BTOBHI 881 €IL 1349 Siy 6S¢ £9¢ LyE 8¥.98996J8C0LATEOTLLPBTI0999J968 | 8EI
16 (44 6C 8¢C (44 6C CSOEELqRO8186137LC0PTPITIO8PED | L8] YL YL Ly 8y [43 LT 910®8IPY9297S0°0SPBILALPAT ¥C8LI8E | LE
sel 09 [0)4 or LE (14 967ILBREIEEEI6BI6TI68EBOIILED 981 6L 133 54 €C ST Sl 8BI98E69VTLIYLYEI8Y8IALTI8EOPIBE | 9€1
OLT 9 5y (44 9y 8¢ LTOPQJOE209L988 1 SPEPPI I €B[B60HP S81 13 (44 (44 1c 8T (44 STBOLIOTLITOVOBESOLIIOTOIO6LOTLE | SET
YL YL 44 (514 [43 LT 1TS969G6T9EISTPPILITITOIP69986LSP | 81 CLl 6¢ €€ 8¢ 81 L1 27P99896°40°980°3€98A4 T LIPYO9. | YET
6S 0¢ (44 6¢ 194 0T 9E666°816°98q999[98ySeEIRYO[OTP | €81 671 S6 SL L 1L SL LIY9SYITPBOYO6LSOISET6SAISILI99® | €€1
118 €¢ 9T 1T L €l 9LTITEYPSTASEC08PYITIPSYYYLILLPP | T8I 129 80Y. ge¢ 6S¢ 6CC 8¢CC qeyTHITeTELERII6ETPSBOISBIQTITIR 43
SL 143 6C 9C Sl Sl 968qCL0¥2990JOP1 S L219¢P9IBEAPHOP 181 S¢ 84 [43 6T L1 61 PeSATI060LY0BI I LTYL860729¢89)8S® | T€1
(475 s oY 09 86¢ 143 6197YL1065°695°8SL29J9C0BSILITIP | 081 £0¢ 8L 98 6S [1)4 6C JPT16EPEOYPO08SI08AI06°139LI09918 o€l
0o (014 e 8¢ 9 L1 0T°¥PTAITYIESICTLII9Q9IOTPI6®P | 6L S 33 54 YT ST jd! £EJ9LYq198JBETP610E80CIPOECYYOV® | 6C1
YL YL 09 8y [43 LT LT9SYYATLII6990988LOLOIOPTPOLOP | 8LI 8 69 sS or 34 Ly 9TOLSEIBEBLBIREIYY [HBLI2AYOVYE | 8T
s¢ 9¢ 13 8¢ L1 Ll 819196J0Pqeeq9qI 1 19J9PTPCI0ELPLP | LLI €< 44 €C 4 0¢ 0T O9BP6TAPETOPYIPJ0919e2¢aIPyqeee | LT
49 8y (44 194 (44 w PIOEITY68YLOYSS8ILIEIPCAIILITTLP | 9LT S6 S1 1T €C ! 4! qeeo8}o98LPLIC6YPEPOI0IS8EI68LTE | 9T
9¢ 44 £3 |§3 81 0T €eTQITPOYESSE6869S 1 €PSYLJREOYP | SLI €8 9L 14 (44 [1)4 194 9C€1°018899089L269J60€9SBOLYSTE | STI
[44! (514 [£3 0¢ LT §3 990836 199699L8BI[9999CC09JV68BEP | PLI 94! 6S 6¢ 8¢ 9¢ 6¢ BIE6LISYLBITSOIOPOBOIOTITLOSIATPG | ¥TI
YL 143 14 4 Sl Sl 0L336L9PLPIPSIPIIT6SCBBAT8YPITP | €LI wl 8¢l 601 oy Y6 L6 0€EeTHIAS8OPELIO0666EBTIERIETYO6 | €T
69¢ €l 1] € S € JTPBTSIIOPSEOVTYOCETBATSPILYITP | CLI LS (44 54 8¢C 81 L1 9685962195 1J998P9CS8ICISTLRYLAL6 | TTI
L8S 143 €C 8¢ jd! jd! 9999210J88PIYO9LIFBEIVE]IG BT P 1L1 9L e LT 9T ST Sl 99VILIELIILOBYRI668BI8L6TB6C2PI6 121
23 8T jd! 9 6 9 Go19858SSOPYITIPIPLYSHEEISSPOA0P | OLI €8 6S Ly 8y 139 Ly 69SP8S0JBI6YPST9996€95 1170896 | 0TI
Sel 8¢ 8¢ LY 33 8¢ C9899LT 1BOITIOIY 1 LIPOYERAYLBOP 691 6 69 129 8y 129 8 87C1868668959°8L8YP6TLAYO08CH6 | 611
LT1 Y4 66 69 99 0L 1TS398917299¢. B9 S8LASEBTOYOYOP | 891 43 43 LT Y4 S1 Sl 9GPITPEPTLS 18IS EV6Y668B21ITIE6 811
59 [1)4 £3 8¢C 81 Ll $098T9SPPYSEALEBII0VOELIESTSPIIO | LI] L8S e €¢ 8T ! jd| TIPOTOLTLIYPA6SLIYOEIAASPYRIOE6 | LI
43 143 St 6T | jd| YRS GEISOVITRYEA86S 1 LTV LIO9P 991 43 [43)44 9T | Sl J81OBIPSO10B8I99CI8IYSI090BECES 911
33 81 jd! 9 8 9 0091379599€ILAPOC IV LTEIVTTBOTCO | S91 €8 e 9T St Sl Sl ByO8CBLPOTI6260PIPIVYOLY6SEIACT6 | STI
oIl 54 9¢ 8¢C 54 6C L8V LBOYRYLTI8II8YO19IS9IE6PEAY | ¥91 0L €€ 9T 9T | Sl BRQOLIT LY9BPIBT SOVY8LOYHIAOT06 jdi!
LTl 4! 66 0L 99 0L 9176939968999 1J5°6J2¥STyLLY092 €91 061 Lyl 3741 (131 (41! €01 LOPE06BI6J6PBI66898TL8ELY8YOII8 | €11
59 Oor [43 8¢ 81 Ll BYYTYPLY9SISTLBOA0BSOPEITPIBLEO | T9T (43} 8¢S 6¢ 6¢ 9¢ 6¢ 1S099PE9PI008EILS6BLIPTPILI6IPS | TII
16 Iy 6¢ 8¢ (44 6¢ OP6I9ETT 8B [20982LOPII[SBPTI T8 191 YL YL IS 8 (43 LT 8EGIB[ICR/8LIN6SHEI0T168ELOBIPS Il
99 [1)4 £3 LT 81 Ll ¥98J2JA0¥CH8ITR0TOEYTELYA89S9€80 | 091 99¢ €9 0S 8¢ [1)4 LE SLPPPTSTIOTA9EIPOPHLELPTIRII698 | 011
59 (014 £3 8¢C 81 Ll POYEIy98ITSLIA00S [2689PTETIRI080 | 681 6C 6T €C St L 8 990°78899E LPYPO11BIL901J2¥PJq8 | 601
LTE 14 e 33 L jd! YLTAEST 12011 L6°VIOOPIETLO26169° | 8S1 LS 9¢ 6¢ LT L1 L1 088J0¥2LLI9SIPS6EB1CLB69EISI0PI8 | 801
6L 143 e 9T ST Sl 696S81CSLA0YO0PILISPIEOPY0IOE9 | LST 88 69 8y Ly 129 8 96°5£60965£8CSL09°CY1€9J89°PP868 | LOI
L8S 143 LT LT jd! jd! 660°26J972998CCJCOPLECOBITYIEESD | 9S1 9¢ or 514 LT 8T L1 1997199980°9CCP20SPIPI8I8TOBIOC98 | 901
LET 118} 98 L8 78 4] 991J8P1JOV8I86LILIT2SPY06I80P8EY | SCT 143 e LT 9C ST Sl LOEBY999YLSBAqYSTOTOBSPISTLLIOSS | SOT
0cl SL 09 8¢S [43 ¥S QYIESBOTIOPTLY8TSOELYIO68ESTI9EO | ST 33 61 9 9 6 9 BOTTIPE8IILETIOVTYTLLETIOLERATS | Y01
19 0s Iy 54 (44 1§74 689961 £8EPLOISIBSEEQ8L096PSBCED | €61 LST 65 8Y 6¢ 9¢ 6¢ BOLYEITO9ES90LYOTLIR01291T299918 | €01
9 134 6T LT T 8¢ TJSEBIYETROJAPPYICIELTLISLASBT | TSI 59 (014 T 8T 81 L1 9TYOP80OP928IOPYTPTO610J9TIT1OPBPL | T01
6C1 €l 0l L 8 8 PLOLILYYRILTTTEPIELIFBI]98Y9 LTI 161 98 33 8¢ 8¢C Ll Ll 99CTO99CIL [BOOEIYOETPIBPIOSLOLL 101
dINd | 90104-X | ++ooyon) | uemeped | oqeH | ooyon) SAN ail dINd | 99104-X | ++ooyon) | uemeped | oqeH | ooyon) SAN ail

16

15y 33 C 8¢ 91 L1 ¥£99§8899°PPIGIL YIS 6VIF8BYO9118 00€ It 0C SI Sl €l 14 29 1IEYTIBEEBPILYHLOSIGIO0PIZISE 0s¢T
S9¢ 981 8¥1 vl 9 (44! 08°1°90BIPYITSO6IEY T 11E8LIPLSIES 66¢ L 91 S1 9¢ S1 S1 POPYTLILYYAA96LEIT SYYOSeACEIVeYE | 61T
08¢ a4 |§3 33 Y4 0¢ 6P062099T7S8E6SBICQILEII 1669978 | 86T 14y 33 0¢ 8¢ Ll Ll L3S9PYPHOY8BTIVI TI9ELILSIRIBOYE 8¢
[4Y 33 LT LT Ll Ll 172369971 €1 19670086L8B6099°7S8208 | L6T [4Y |§3)44 6l 91 0T VLeETPYRYIVO6ITTI9LI99POQI6TIeEE LYT
8 194 33 e 81 1c J998SEIEI216POBCBISPPTI6RITOITAL | 96T 89 4 (014 8¢ 1€ 8¢ IPYTTLOJPIL0620BAE2Y0I6LBITQTI EE 9T
67 133 6T 4 1 6C BYPIIQIPPLEIILEIT691PP2002SIL6L S6¢ 9 LT 1 0T 8 8 Be6 1 8TIYPPRYIL6IETCA99BI €90LECE | SPT
9 (44 [43 8¢ LT L1 LO03LTLBPYEAIE6VITBEOYPIIOIORIBL | $6T 129 194 13 [43 8T 1 06CS9LIBI LSTTA0BYIHOPSI69B0V69C | 7T
69 149 9 54 9¢ 143 ££696CL06ST89LIT38FO190BELSEA8L | €6C 54} 18 S9 8¢ Ly (4 £69€J067995°188q£8.9999688£°6L9C | €¥T
6S 194 9C Y4 (44 9C 2132911299968 L099ECOTELEIATELL 67 661 194 69 99 44 6C PT16989901TP16L9IP8PLRIIPRICIOT | THT
[0)43 99T o8¢ T8¢ 081 SIc LOLY6YP66997Y8TS86E8Y6LOCTEASOLL | 16T 8¢ hd! 9C YT cl €l 0IPYEIPYSIPI6616PETOE0FBYLSS66T 844
14y 0T 54 6T Ll 81 0€POI®I1298€PI669°117009T2C2980I9L | 06T c8 8 99 €9 94 67 90JLE8YLIIPABI9I8IPIBELSI0LESHT [1)44
434 £0¢ 91 ¥8¢ S1 jd| 6799C90LEPLPIOBIITET £69I99CTIEL 68¢ 00¢ 80¢ 91 S0¢ 6Cl jad! LPPBEIEOIISO66ECBIO6LSBSERYTIPTOC | 6£C
98 or 1€ 6C 81 81 6PT8P9668L29998qeJ£TEI8ISOI0ITL 88¢ LS 6¢ 1€ 8¢ 81 L1 BJLTPPILTOB0999S91T66P2918TSBST 8¢C
98¥ 8¢ [44 YT L 8 JATrI6Y9rL6BP0IEIE8SY 1693691961 L L8T 1L €C 9C 9T SI Sl L0689CIPLOVOECY I SALIBIOBA98PBICT | LET
811 6C 91 0T S 11 9CBAIYEYBITAIOSSSSPLIEEOL8OTIOIL | 98T 8¢ 09¢ 143 1493 80¢ 2143 29€989eCe [P981J0CO87IAP6I20LET 9¢C
84 6C €T 81 SI 61 PE19ES TP8IPTEOEB6PPIOPEISPISEPOL | S8C 98 8 (43 Ly Sy 14 9TPPYS81CI9S8PPYTS9BIBS69S0919¢€C | SE€T
99 44 23 LT €C 8¢ 18178990831 q98CqI8806898790°90L | ¥8C Lyl 43 LT (44 L €l 6LEI8ETI0LILYELIGBIICO6610SLOTT | ¥ET
%43 1344 Y61 99¢ 0S1 €61 O0V8PSPYPSSSTOP8TILEEIEITIIOLRSOL | €8T SS9 Sov 61y v LOY. 67¢ JJ86P99EBINITOYLOYEATI9ATEIOLI T £€C
611 0€ €T 1T 61 L JBZ08C88PTCO0EYSLP6BYLIIABT8I0I9 | T8T S e LT < 0T €C 9J96JBI6E9OLTLLEOGRLBI8IPSILOPA] [4%4
S 6¢ 0¢ 0¢ LT L1 CTOLIPTLAS6TO9APBBIOY6S9SEL80SAP9 | 18T LTT 01 €8 16 68 8L 2651£837S0£696£0876PPP8IP6AJIP | 1€T
VIl €Il 88 69 g9 IS BTSISL699P20LL8PL89999I99€TIAPA9 | 08T 0L 84 LT e Ll 0T 191 PIBL96LI89PIPICY LY TIBI [YSP T 0€T
8¢ 9¢ 8T 8¢ LT 81 26996J9EP2J91206JPJ029L9BI18LTILI 6LC 98 8 (14 Ly 9 8 68PEEELPEO6PIBIT LEROSIBBPIRICPT | 6CC
0¢8 818 S0L 0L 669 S0L 969P8090T29I°9SqLLYBILITEIRIZICI 8LT 9 or 9C 8¢ LT L1 1P9JQRETS TAT8PEII SYERO9EEBPETLB] | 8TT
8 9L 09 (44 Oor 374 8IBLTOLITIOSETESIOESQT L6089 | LLT €9 0€ £€C 6l 91 0T VEBY68SIT [9BBOESPO8IP9990809¢£961 LTC
Ly 43 LT LT ! S1 6BLPI09SIT120LITFLISEIIT968996PS 9LT LSY 0s¢ (013 LEE 90¢ 90¢ 1669991 €PLI239PGEPOBEOETIE609ST | 9TT
59 St 9¢ Ly s¢ 9T LITOSPSLLELSLPI6APILIOYIPSBTRES SLT 07T €81 991 991 (614 67 BOESIBOIPILILPI86F9SSSOVPYYLAY | Y44
0¢l 4y 44 39 S 8 98099L9PPEIT6 [TOYEIBIL(OIRILSERS | VLT 14 0€ T 6l Ll 0T 8996CBPLOTJEIELOYPISELIC6LLISOV] YT
YL 33 €C 9T 8 91 LTPIPOEELO68TIPOCEEEATAL8YOIYRBSS | €LT LS 6¢ 0€ 8¢ 81 L1 ¥089PTI£8961¥6¥099TEITYRASHINET | €TT
(44 6T [44 81 SI 61 CIPYRILIY99ESEYIILEOBEOBBAI688SS | TLT s¢ (44 8¢ LT €T 8¢ PALTIR6BEPB6TOBYO6PEI [BCEE8AISE T (444
c8 9¢ 8¢ 8¢ 91 81 SOV6LOLOTPRIOT6LIBS8IIIEEILTISS | TLT L 1L €L 0L €9 89 96£BOPTSTLOLISAIRIT9S 1898SBOPSTI 17C
S (44 23 8¢ 8T L1 CI9L9LP3BIPITI0I9ISPSEET IPIPPBTS | OLT 98 €C 8T 8¢ 8T 81 9qLBOSTCSE8LSASqRILEBEIBAGTIIONI T 0ZC
€9 (44 L1 LT L1 L1 ¥8L61066718919TTEAOBIOPTOIOISIIS | 69T 8¢l L L L1 01 L 981 7IPPEEIEqITOBTISS8BIO6L080 1 61¢
98y LE 0¢ 0¢ I 4! 89P06939G9¢3 1 LEIPBPYI99I6088991 S 89¢ 0L 91 S1 Y4 0¢ S1 6S6IVPE1IVEBBLILSYOTHO8TROSIPYPO | 81T
¥S1 68 1L <9 68 09 69€15LEJoveySeqPOYESTSAEasSeoIy | LIT 43 €¢ 9T 9T Ll 9T 19T172€1996¢€8L6YLI6E8AVOPISER690 | LIT
98 a4 e [43 T 9T €PYRIL0EI69E 1TLEIB8YOS19098LOF | 99T (44 06 L 68 L9 <L 09Y0LI29L6983L89CH 18391 £L96009C90 91T
134 6T 61 81 91 61 PAI9CISTISTIVIIRI2JBE6EY8YYI69661 §9¢ <9 8¢ Ll 0T L 8 89Q2€JTIE0SHLITTISOTo98L0LPY YO SIc
44 33 1 0T 61 1C 0LY16€9C96P199886£99999¢41999L8Y | ¥9T €99 0€ €T 6l 91 0T YL689998°968 [3STILLBYRLIIIBIGPYO ¥1¢C
6¢1 LT 1 L1 4 L 1€9PE6ELTBETLLABOLEOYO86BBAOPI8Y | £9C 98 44 8¢ LT T 8¢ J0°820%7C¥108999579°91 113 L°995I L0 €Ic
c8 8 L9 (414 9 o T92L996LPPET69°97P68AV699¢y6ESY | 79T 09¢ 06 201 66 6¢ 0L TLLBI66SLLBSTTEAII66ETOTEYIEIL0 | TIT
(43 S¢ (43 LT 91 L1 89LP1¥J95999¥6969OBEITLT6IITORSY 19¢ 8¢l 9¢ 194 LE 143 8¢ 9J16369€95058C99€LT2LIIVPPSELI0 11¢
6S 91 S1 €C S1 Sl 987I9SP6RAYPILYA9I€ASTSOEYTRI8SY | 09T 8L LT 1T §3 €T 1T 6J7EBPLI6I][96€97L£A68S0EV6CELI0 | OIT
34 8¢S St 8¢ 33 6¢ 99999879q/PL0289EPESSPIOCEIBISSY | 6ST 443 69¢ 91T 66¢ 8LI 91¢ 098ST9S8TY169L2YSLYRTI2986J°C€90 | 60T
€99 L6V 90 12y 161 0S¢ 9L91EBHIJ8IT9099€2€°08 189J09LY ST 8¢ (411 9 68 8¢ S 6S L988JE9S189LTOLIT866°7I19999CS0 | 80T
LES 0€ T 61 91 0T POTIBLITPLYOIBIYVLIIYOTTIB68TLLY | LST 0L 133 LT 9T ! St PPI29PTE9q1JPO08I9REECBLIE LPOYO L0T
139 44 33 8¢ 14 6C 01J69PTBII6LIPE 1AV LAVYPPOILEOIE | 9ST 6¢1 9T 0C 8¢ SI L ST 1POTY20580019°9€LYyTHEBBPLLPIE0 | 90T
L1y ey 61¢ LI¢ €re 6l¢ LIS9Y8TPLEOIPTAO]I9BI6J08199899¢ | SST (4 33 8¢ 8¢ 91 L1 896PPEYE8LOPEIBCA0J0BAEL8LOSTAL0 | SOT
VLT 191 611 9Il 09 €01 LTLTYI919P69CLASLTESIPLEOPOV698E | #ST 8 9L & w 6¢ 34 CBSOP696L6C0rS8PE0YI90TSEPPIISED | ¥0T
S8¢ Ive 413 9¢ (49! 1483 L9¥8L9°9LSBE [HI0TY00IOPYSTHYIE 134 0L 43 1974 (424 ! S1 6383969CJOSPEILELIPOT I TS TETOIT0 £0C
8L Sl C 1T €l jd! IPELEIGYIBITEESSIIEPSIPI6A029SE | TST LOI1 9¢ |£3 0¢ 9T £3 q8eSSS1T8BSBBLPYOPEEEILOQRRELTO | TOT
€9 €9 Iy 6¢ 33 6¢ 0J€6JTeLPIYEI09IL980BYIT9SE 16¢ 61¢ 0€ €T 6l 91 0T 96TSYOPYOUBIE]YIEIT]SAPST1999110 | 10T
dINd | 90104-X | ++ooyon) | uemeped | oqeq | ooyon) SAN ail dINd | 90104-X | ++ooyon) | uemeped | oqeq | ooyon) SAN ail

17

69 Sl 9C S¢ jd! S1 £8310£69958LPEY8P8I6ELICYOTIBEH 00¥ 44 S1 4! 9C el jd! £0797998J96£91089C29658L19693°J9 | 0S¢
9 149 [0i% S¢ 1T 9¢ F8q09PIBI98IL LESIIPIIIE06LOSO0H 66¢ 6¢l 9¢ 8¢ LE S¢ 8¢ 9JeIIY0PE]I9C 1 EVALVIPPPYPO9OPTIA | 67¢
99 0¢ YT 1T 8 8 9LP39L999PLLITA06LI09B [86F829°) 86¢ 001 6 <L ¥S 149 59 PEYS6LS0EY10P090964°90899°9SCC%9 | 8¢
€L 13 0¢ 9T jd| Sl LIOPLILSO91®)18BS88PPAII6LSTY LY L6E 0L 91 S1 9T ! Sl 3091 S0T86SYEBTIST918IS999%8q | LyE
8¢CC Y01 Y6 68 88 LL 9€686°96PSCBOPY IPLLIYBOVY81899) | 96€ 54 143 LT €C 0T T SOPIYYOUYIOLIOT19TCAIO8SYBYLIE6D | IVE
9¢ ()4 [43 8¢ 81 81 98998L90°¢25J0LBLIGERBT600176S9P) S6¢ 08¥ [43 4 9C €l | 9JESTTI 1995 L2ISOPIPYIPTPPOCSS8d | Ste
86¢ S8¢ £9¢ €8¢ 33 £9¢ 8LO9169¢6£BYETS02Y89C1697£C9I9°) ¥6¢ LS 6¢ 0¢ LT 81 LT 8P0JOTOSEIPI0986920€8LY80PBESO8] | v¥E
¥S [43 Y4 1 61 (44 CeBEA060YPI21CE91986vY0961781L99F | £6¢ 0Ty 0T 91 ¥8¢ 91 jd! 898EICELEPSIVOLOGILS09ILIEEY0IBST | Ve
U8 0¢ €C 6l 91 0C IPBBEITI616CE0L29981IEBPITOYO6 6t (41! (44 Ll Sl 9 14 L6°11398°079°1Peq18689°13996°99 | ThE
89 6¢ |§3 14 L1 Ll 98L2I0LTEILS LI0OVRLIBIVIVITSICH) 16¢ 29 LT 0T 1T 8 8 9LJS29TOLBT6IT6P6O¥9I990B86PIT 543
891 8¢ < [X4 L 8 9P88 [¥9JPOBILPLBSIEI6 19916 1T198) 06¢ 0L €¢ 0T 54 ! Sl $899JG89LBYOLeOYPYI €ATIEBIOPLLA | OFE
8y LE 6C (44 6l €C JJeLOTB8PIEEILTSTOIELEBOT EEQ6LS 68¢ 98 or |§3 8¢ 81 81 967SAE6LEITILLOOBATSS6°9]9986519 | 6£€
89¢ 8¢ S0¢ £0¢ 881 10T CIIOPE688EPLYORBOEPEQALOBCBIPOL] | 88E 4% 0¢ 0T 6l Ll 0T CISPIIBELYBIOS6SSPI9I8YOCOVECO0] | BEE
91y (454 LTE LIE SIe 61¢ S891B316998PS SOVI¥qeq9PS [¥6J€) L8E 129 (44 9C 8¢ L1 LT 8€JSOQ2BO9I8R[266QVBLE6O6CABY0D | LEE
192 99 0S (49 44 0S BOTI11B09688BATOP6I0E2ITBSS8LOEY 98¢ 84 0¢ €C 61 LT 0T JCIVIT991962¢TJOIPEBPPAOLETEIE0D | 9€€
69 91 Sl S¢ jd! S1 B0680JTELATTT8POPOEPTILERSISEES S8¢ Lyl Pid! L8 98 €8 L8 171P998°95Cy 10BI89JCAPOEB6YOPI® | SEE
Sel 9¢ 8¢ LE 143 8¢ PI942399/JP178€99L.9°709969078904 ¥8¢ €9 194 8¢ LT C 8¢ PeTLET02B]96°930EPIL6LATI6BILTIE | HEC
9¢ a4 8¢ LT €C 8¢C 9JeeqIB9PIE(PT]P]HTOIEE6SBPTHI €8¢ €1 (44 9T 54 44 9T O137999¢€398 1 LOYI981998S [129y 9ee £ee
9¢ 84 [43 |§3 €C 0C 0¥69¥2q1BPIPI81TEIBLEBI6U8IY [8¢ 86¢ LL 8¢S 09 (43 8¢ BO19PqToc8ET8LYT8ovRATIp8qqaqsee | TEE
811 L1 L9 99 9 L9 CEI3LLOY0293YTeYSAILS6IOPBLEIP 18¢ 98 €C 81 6C 61 81 8€6EISYTO69PAPAPS L6921 0LISBIG6E | €€
or e 6C T 81 T 9G969LBSYEITYY6IBIIEBITIEIIT S 08¢ 19 (44 8¢C LT €C 8¢ HrSSP6J609£€09rE8S6CPISAOPILE® | 0EE
€8 oL 374 (44 6¢ 194 7968J9P6TYYTTTLICOVIAIL6°06L8PI2 | 6LE €L 133 (44 4 S1 ST J9S981J0BT9LOYTTPE 195205898988 | 6C¢
9 (44 L1 T 81 Ll 69¢ 197 STPIB19€TITTPTOL109CqIPE2 8LE 54 [43 4 4 4! jd! e18L66B0J 1 719C29BTCITYEESArPYE | 8CTE
0L €9 Sy (614 23 0C COJLEETT8TOEPBTOLIIIS TE0BESYPRS | LLE S8¢ LLT jad! 991 6¢l1 jad! LI960°1SLIYLST9SAAIPYITIBATIOLTE | LTE
€9 197 8¢ LT €C 8¢ J9¥O8S9L1¥PIV069991PSPPOL6SI8° | 9LE 99 6¢ 0¢ LT Ll L1 LPS9BI6YIPAUPSAPSTIRIVYIOVRERELTE | 9TE
€9 Ll Y4 LT 81 Ll 0S6J90€10°379PBE9610SLITI0E [LD SLE 98 €C LT 8¢ 81 81 98937¢60T9€6910PYBY8L2909CSAITe | STE
4514 LE 6T 6¢ 11 ! ®J692I89PS60L98906J9°1CH1SP99IS2 YLE 6¢l 4 <l Ll 0l L ELBPYSLITHOPSEIREYIIEICT 189C€996 | ¥TE
1L 33 9T 4 jd! S1 9y8TIP0¥9SJELOL 1 €BOT 128092912 €LE SS9 661 191 e £0¢ €91 989PIYLLAISLISEPO99RIBTLT18SILA6 [343
861 01 4] 801 98 L9 PIO8TOBYLTE08696C0°LBAISO6LI 112 CLE 8¢ 44 33 33 1 £€C 6888J8P9906SVLBAIYTTI69J0£98996 | TCE
€9 81 L1 8¢ 91 L1 6PILI0EBBYCOCYCOBELIVSAILLPRI6P | TLE 18 SL 194 (44 or 34 9e1qePTSq02L0PERSATRORI1JqE29096 | 1T¢
€9 139 6¢ 6¢ 33 6¢ 9L598969L1¥9J0E2996PO9IPI6T10°TPP | OLE YL L 0L 69 €9 89 JTeS96J18599CqOPTOPI8S88CI6LE86 | 0CE
06¥. 6C (44 ¥C 8 8 YEPPITOSYIAr90r0S 989996 TGS EPIOP 69¢ 9 |54 [43 8¢ 81 81 C1990983998COLEE€BOI0EEEIPTSOPY86 | 61¢
59 6¢ T LT L1 Ll 68L090699¢87L90PS88ALPIAPSO6I TP | 89¢ S¢ 6¢ €e 8¢ Ll L1 Ce8eQYCT8YSE64Y0IPLEAPOS0LPP696 | 81¢
19 w 8¢ LT YT 8¢C 9E€8LOSISSBI[680V68SYELILARIIIPAP | L9E 98 Sy 0¢ 6T 54 0¢ S6190€8556687°CILSPIAPBOTIYT8I196 | LIE
£9¢ 6C C 0T cl 61 CPEOBLBELAEISTYYO90SI8PPA8LYPSAP | 99¢€ SL LT 1T £3 54 1T C9TSTLBEBS6I909BPOST6S0219SC3LE6 | 91¢€
)4y 0¢ €C 61 91 0C TP998YST629S9PSIqBO0E IPSYO999LP | S9¢ 129 6T 1€ LT Ll Ll J97889PBCOPYIITLIQLOJV T I EPLPOEEG | STE
L 23 9T 4 Sl S1 06LTBEqqIB68EYLIEBESYPAPIOBIELP | ¥9¢E 86 ()4 LT 9T €C LT 0¥9890L88890PTP6269PYCeLASYPSIT6 | VIE
1€l 0¢l €01 YL 1L SL CI99€1POISLITLO0OSTIAPLELEITTHO £9¢ 8L 139 184 33 33 33 S€868P96£°1PBE998CA20L0950J8816 | €1¢
LS (1) [43 8¢ 81 81 £908PIAP8YY6BT029SIET0886YPI 9¢ €8 29 LS 29 Ly (44 LY€20S80SBIPI36[9599P60°CV81I8 | TIE
(51474 8¢l L91 891 gel gel 93961 IPTPLLTOPITBORTYLYSEVIPOPO | 19¢ 99 €C 81 6¢ 61 81 PI80¥°9y 18L99L9¢ETIBIGI98T89P8 I1e
€9 (44 L1 LT Ll Ll 99PT16JLB[9981OP6ITLIP1ISERIEPD 09¢ S6 68 1L 0¢ 8y 1S 1689¢Y2LqBPJO8H6PPIOI [JSLBIEPY 0l¢
Sy 43 LT 54 0T T B96899T896LLOILEIOBBAYTSLIOIOBD | 6S€ S0L VLT 1TC 6¢ 691 €91 BLOISOV09E89LBETOVOSLBSREYTI99L8 | 60€
891 8¢ (44 €T 8 8 JTSEPTIVIOE6CABTPLYEITEEPEYO0RYY | 8SE 18 SL 19 w 6¢ 134 6VerET8E8BIGPOI09S IPIYERIEBYCBES | 80E
YL (44 IS P14 6C (44 6PI21PJTBILTYSEE]9TRIT098QITP8O LSE 9Tl 4! LL €L L9 L STPEO0TLTPI2qROR6YL8891J29qEpPyes | LOE
¥S (44 6C 9C 81 Ll UJ2I099¥P9yo0899EPSBTIOCSHIL8 9¢¢ L6 06 s¢ 0S Ly 5y 99JSTLOeEBPPPYI9CI06EPIIPPAIIE68 | 90¢
€8 54 23 8¢ Y4 6T 6C98EVLEEVEAIBYYSESTISO1APPYBERD | SCE 891 0C S1 ¥C L 8 BIBPTBIL6ILBIPIIIqI8IBIBEOPITE6S | SOE
¥S (44 9¢ 8¢ 81 L1 7986178¢L2q0°¢Lqq9e019669°08819° | +5¢ (454 U8} 6 86 [43 68 8LTEOTO0BLLIEYTLITIRIOTTLIOIO988 | Y0E
S6 68 59 0s Ly IS 9¥TOSSOLLPOIPITSY0THETIO6TOS0SD | €6¢ LL 1§74 43 €5 S 8 B1J9969LGTLPRRICOIOESISCIETILS | €0E
scl YTl 66 L9 <9 L 69°SP10J109TI99668TOLS6J2CYSSTHO (433 9¢T 6¢1 LL 8L 1L LL €3946TLOBJOREPTLYLPIILTISSHORLI 0¢
68 LT 43 33 81 1T 6®L811IL6BCTOSEYIII69BILTIE06ED 16¢ YL (44 43 [43 81 1T SLY90ESYOPLI200BS62019919¥C2L368 | 10€
dINd | 99104-X | ++ooyon) | uemeped | oqeq | ooyon) SAN al dINd | 90104-X | ++ooyon) | uemeped | oqeH | ooyon) SAN ail

18

	Introduction
	Motivation
	Design
	Overview
	Memory Pre-planning
	Other PAMA Memory Behavior and Interference with Regular Memory Operations.
	Probability Analysis
	Implementation

	Evaluation
	Experiment Setup
	SPEC2000
	Malware Analysis
	blackTime Distribution

	Related Work
	Conclusion
	References
	Appendix
	Spec2000 Benchmark
	Time Distribution
	Details of Malware Analysis Result

