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Abstract— The fast evolving and deadly outbreak of
coronavirus disease (COVID-19) has posed grand chal-
lenges to human society. To slow the spread of virus
infections and better respond for community mitigation,
by advancing capabilities of artificial intelligence (AI) and
leveraging the large-scale and up-to-date data generated
from heterogeneous sources (e.g., disease related data,
demographic, mobility and social media data), in this work,
we propose and develop an AI-driven system (named α-
Satellite), as an initial offering, to provide dynamic COVID-
19 risk assessment in the United States. More specifically,
given a point of interest (POI), the system will automatically
provide risk indices associated with it in a hierarchical
manner (e.g., state, county, POI) to enable people to select
appropriate actions for protection while minimizing disrup-
tions to daily life. To comprehensively evaluate our system
for dynamic COVID-19 risk assessment, we first conduct
a set of empirical studies; and then we validate it based
on a real-world dataset consisting of 5,060 annotated POIs,
which achieves the area of under curve (AUC) of 0.9202. As
of June 18, 2020, α-Satellite has had 56,980 users. Based
on the feedback from its large-scale users, we perform
further analysis and have three key findings: i) people from
more severe regions (i.e., with larger numbers of COVID-19
cases) have stronger interests using our system to assist
with actionable information; ii) users are more concerned
about their nearby areas in terms of COVID-19 risks; iii) the
user feedback about their perceptions towards COVID-19
risks of their query POIs indicate the challenge of public
concerns about the safety versus its negative effects on so-
ciety and the economy. Our system and generated datasets
have been made publicly accessible via our website1.

Index Terms— AI System, Heterogeneous Data, Dynamic
COVID-19 Risk Assessment, Community Mitigation.

I. INTRODUCTION

Coronavirus disease (COVID-19) [1] is an infectious disease
caused by a new virus that had not been previously identified
in humans; this respiratory illness (with symptoms such as
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a cough, fever and pneumonia) was first identified during an
investigation into an outbreak in Wuhan, China in December
2019 and is now rapidly spreading globally. The novel coron-
avirus and its deadly outbreak have posed grand challenges to
human society. As of June 18, 2020, there have been 2,212,968
cases and 119,638 reported deaths in the U.S.; and the World
Health Organization (WHO) characterized COVID-19 - that
has infected more than 8,410,000 people with more than
450,000 deaths in at least 188 countries - a global pandemic.

It is believed that the novel virus which causes COVID-
19 emerged from an animal source, but it is now rapidly
spreading from person-to-person through various forms of
contact. According to the Centers for Disease Control and
Prevention (CDC) [2], the coronavirus seems to be spreading
easily and sustainably in the community - i.e., community
transmission which means people have been infected with
the virus in an area, including some who are not sure how
or where they became infected. An example of community
transmission that caused the outbreak of COVID-19 in King
county at Washington (WA) state is shown in Fig.1.

Fig. 1. An example of community transmission that caused an outbreak.

The challenge with community transmission is that carriers
are often asymptomatic and unaware that they are infected and
through their movements within the community they spread
the disease. According to the CDC, before a vaccine or drug
becomes widely available, community mitigation, which is a
set of actions that persons and communities can take to help
slow the spread of respiratory virus infections, is the most
readily available interventions to help slow transmission of the
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virus in communities [3]. A growing number of areas reporting
community transmission would represent a significant turn for
the worse in the battle against the novel coronavirus; this
points to an urgent need for expanded surveillance so we
can better understand the spread of COVID-19 and thus better
respond with actionable strategies for community mitigation.

Unlike the 1918 influenza pandemic [4] where the global
scope and devastating impacts were only determined well after
the fact, COVID-19 history is being written daily, if not hourly,
and if the right types of data can be acquired and analyzed
there is the potential to improve self awareness of the risk to
the population and develop proactive interventions. Realizing
the true potential of real-time surveillance, with this opportu-
nity comes the challenge: the available data are uncertain and
incomplete while we need to provide actionable strategies with
caution and rigor - i.e., enabling people to select appropriate
actions for protection while minimize disruptions to daily life
to the extent possible. To address this challenge, leveraging our
long-term experiences in combating and mitigating widespread
malware attacks using AI-driven techniques [5]–[8], in this
work, we propose and develop an AI-driven system to provide
dynamic COVID-19 risk assessment at the first attempt to help
combat the fast evolving pandemic by using large-scale and
up-to-date data generated from heterogeneous sources. More
specifically, given a point of interest (POI), the developed
system will automatically provide risk indices associated with
it in a hierarchical manner (e.g., state, county, POI) to assist
people with actionable information for community mitigation.

The framework of our proposed and developed system
(named α-Satellite) is shown in Fig.2. In α-Satellite, (1) we
first develop a set of tools to collect and preprocess the large-
scale and up-to-date data related to COVID-19 from multiple
sources; and then (2) we construct an attributed heterogeneous
information network (AHIN) to model the collected multi-
source data in a comprehensive way; (3) based on the con-
structed AHIN, to address the challenge of limited data that
might be available for learning (e.g., social media data to
learn public perceptions towards COVID-19 in a given area
might not be sufficient), we propose a conditional generative
adversarial net (cGAN) to gain the public perceptions towards
COVID-19 in each given area; finally (4) we utilize meta-
path based schemes to model both vertical and horizontal
information associated with a given area, and devise a novel
heterogeneous graph auto-encoder (GAE) to aggregate infor-
mation from its neighborhood areas to estimate the risk of the
given area in a hierarchical manner. The major contributions
of our work can be summerized as followings:
• Novel heterogeneous graph architecture. To provide dy-

namic COVID-19 risk assessment for any given area (i.e.,
POI), we collect the large-scale and up-to-date data from
multiple sources: i) disease related data (i.e., up-to-date
county-based coronavirus related data); ii) demographic
data from the United States Census Bureau; iii) mobility
data that estimates how busy an area is in terms of
traffic density; and iv) social media (i.e., Reddit) data. To
model the multi-source data in a comprehensive manner,
in this work, we present a novel heterogeneous graph
architecture, i.e., AHIN, for abstract representation.

• AHIN enrichment by cGAN. In the constructed AHIN,
there might be missing values of attributed features (e.g.,
limited social media data to learn public perceptions
towards COVID-19 for a given area). To address this
issue, we propose a cGAN for synthetic data generation
for public perception learning to enrich the AHIN.

• Heterogeneous GAE for dynamic COVID-19 risk assess-
ment. Based on the enriched AHIN, for any given area,
we propose an innovative heterogeneous GAE to integrate
both vertical information (i.e., information associated
with its related city, county and state) and horizontal in-
formation (i.e., information from its neighborhood areas)
for dynamic COVID-19 risk assessment.

• The developed system and generated benchmark datasets
have been made publicly accessible. We first evaluate our
system α-Satellite through a set of empirical studies; and
then we validate it based on a real-world dataset con-
sisting of 5,060 annotated POIs, which achieves the area
of under curve (AUC) of 0.9202. As of June 18, it has
had 56,980 users with the feedback from 7,348 of them.
Based on the analysis of its large-scale user feedback,
we have three key findings: i) people from more severe
regions (i.e., with more COVID-19 cases) have stronger
interests using our system for actionable information; ii)
users are more concerned about their nearby areas in
terms of COVID-19 risks; iii) user feedback about their
perceptions towards COVID-19 risks of their query POIs
indicate the challenge of public concerns of safety versus
its negative effects on society and the economy.

II. RELATED WORK

There have been many works on using AI and machine
learning techniques to help combat COVID-19. In the biomed-
ical domain, based on the image data (e.g., computed to-
mography (CT) and X-ray scans), extensive deep learning-
based approaches [9]–[18] have been proposed to assist with
COVID-19 diagnosis, prognosis and treatment. In pharmaceu-
tical research area, there have been ample research studies
[19]–[24] to investigate COVID-19 pharmaceuticals. For ex-
ample, Google DeepMind [19] applies the proposed protein
structure prediction system (i.e., AlphaFold) to predict the
structures of several proteins associated with COVID-19 based
on the corresponding amino acid sequences. Another research
direction is to utilize social media and/or bibliometric data to
help combat COVID-19 [25]–[30]. For example, [25] proposes
to analyze Twitter data to understand the perceptions of
COVID-19 outbreak across time and countries. Although the
results are encouraging, the studies of using computational
models to combat COVID-19 in the U.S. are scarce and there
has no work on dynamic COVID-19 risk assessment for any
given POI to assist with community mitigation by far. To
meet this urgent need and to bridge the research gap, in
this work, by advancing capabilities of AI and leveraging the
large-scale and up-to-date data generated from heterogeneous
sources, we propose and develop an AI-driven system, named
α-Satellite, to provide dynamic COVID-19 risk assessment in
a hierarchical manner at the first attempt to help combat the
fast evolving COVID-19 pandemic.
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Fig. 2. System architecture of α-Satellite for dynamic COVID-19 risk assessment. In α-Satellite, (a) we first collect and preprocess large-scale
and up-to-date data from heterogeneous sources; and then (b) we construct an AHIN to model the multi-source data in a comprehensive way; later
(c) we devise a cGAN to enhance the public perceptions towards COVID-19 to enrich the constructed AHIN; finally (d) we utilize meta-path based
schemes to model both vertical and horizontal information associated with a given area, and devise heterogeneous GAE to aggregate information
from its neighborhood areas to estimate the risk of the given area in a hierarchical manner.

III. PROPOSED METHOD

In this section, we will introduce our proposed method
for dynamic COVID-19 risk assessment in detail, which is
integrated in our developed system α-Satellite.

A. AHIN Built from Heterogeneous Sources
Realizing the true potential of real-time surveillance re-

quires identifying the proper data sources, based on which
we can devise models to extract meaningful and actionable
information for community mitigation. Since relying on a
single data source for estimation and prediction often results
in unsatisfactory performance, we develop a set of tools to
collect and parse the large-scale and up-to-date data related to
COVID-19 from multiple sources. We describe the collected
data and their representations in detail below.
A1: disease related data. We collect the up-to-date county-
based coronavirus related data including the numbers of con-
firmed cases, new cases, deaths and the fatality rate, from
i) official public health organizations such as WHO, CDC,
state and county government websites, and ii) digital media
with nearly real-time updates of COVID-19 (e.g., 1point3acres
[31]). For a given area, its related COVID-19 data will be
represented by a numeric feature vector a1. For example, as
of June 18, 2020, Cuyahoga county at Ohio (OH) state has had
5,336 cases, 65 new cases, 319 deaths and 6.0% fatality rate,
which can be represented as a1 =< 5336, 65, 319, 0.060 >.
A2: demographic data. The United States Census Bureau
provides the demographic data including basic population,
business, and geography statistics for all states and counties,
and for cities and towns with more than 5,000 people. The
demographic information may contribute to the risk assess-
ment of an associated area: for example, as older adults
may be at higher risk for more serious complications from
COVID-19 [32], [33], the age distribution of a given area
can be considered as an important input. In this work, given

a specific area, we mainly consider its associated city’s (or
town’s) demographic data, including the estimated popula-
tion, population density (i.e., number of people per square
kilometer), age distribution (i.e., percentage of people over
65 year-old), gender distribution (i.e., percentage of females),
median individual income, and education (i.e., percentage with
degrees of college or above). For example, given Cleveland
at OH, its obtained demographic data are: Cleveland with
population of 383,793, population density of 13,227, 13.5%
people over 65 year-old, 51.8% females, median individual
income of 18,387 and 46.1% population above 25-year old
with degrees of college or above, which will be represented
as a2 =< 383793, 13227, 0.135, 0.518, 18387, 0.461 >.

A3: mobility data. Given a specific area (either user input or
automatic positioning), a mobility measure that estimates how
busy the area is in terms of traffic density will be retained
from location service providers (i.e., Google Maps), which is
represented by five degree levels [1,5] (the larger the busier).

A4: social media data. Users in social media are likely
to discuss and share their experiences of COVID-19, which
may contribute complementary knowledge such as public
perceptions towards COVID-19. In this work, we initialize our
efforts with the focus on Reddit, as it provides the platform
for scientific discussion of dynamic policies, announcements,
symptoms and events of COVID-19. In particular, we consider
i) three subreddits with general discussion (i.e., r/Coronavirus,
r/COVID19 and r/CoronavirusUS); ii) four region-based
subreddits (i.e., r/CoronavirusMidwest, r/CoronavirusSouth,
r/CoronavirusSouthEast and r/CoronavirusWest); and iii) 48
state-based subreddits (i.e., Washington, D.C. and 47 states).
To analyze public perceptions towards COVID-19 for a given
area (note that all users are anonymized for analysis using hash
values of usernames), we first exploit Stanford Named Entity
Recognizer [34] to extract the location-based information (e.g.,
county, city), and then utilize tools such as NLTK [35] to



4 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2020

conduct sentiment analysis (i.e., negative, neutral or positive).
More specifically, negative indicates less aware or pessimistic
of COVID-19, and vice versa. For example, with the analysis
of a user post in subreddit of r/CoronaVirusPA on March 14,
2020: “I live in Montgomery County, PA and everyone here
is acting like there’s nothing going on.”, the location-related
information of Montgomery county and Pennsylvania state
(i.e., PA) can be extracted, and a public perception towards
COVID-19 in Montgomery county at PA can be learned
(i.e., negative indicating less aware of COVID-19). Another
example post of “As coronavirus spreads, northwest Louisiana
prepares for its arrival” indicates a positive signal. After
performing the sentiment analysis based on the Reddit posts
associated with a given area, the public perceptions towards
COVID-19 in this area will be represented by a normalized
value (i.e., [0,1], the larger value the more aware or optimistic).

After extracting the above features, we concatenate and
normalize them as an attributed feature vector a attached to
each given area for representation, i.e., a1 = a1⊕a2⊕a13⊕
a4. We zero-pad the elements if the data are not available.

To comprehensively describe a given area for dynamic
COVID-19 risk assessment, besides the above extracted at-
tributed features, we further consider higher-level semantics
and the rich relations among different areas.
R1: administrative affiliation. According to the severity of
COVID-19, the available resources and impacts to the resi-
dents, different states may have different policies, strategies
and orders responding to COVID-19. Accordingly, given an
area, we extract its administrative affiliation in a hierarchical
manner. Particularly, we acquire the state-include-county and
county-include-city relations from City-to-County Finder [36].
R2: geospatial relation. We also consider the geospatial rela-
tions between a given area and its neighborhood areas. More
specifically, given an area, we retain its k-nearest neighbors
at the same hierarchical level by calculating the euclidean
distances based on their global positioning system (GPS)
coordinates obtained from Google Maps and Wikipedia [37].

Given the rich semantics and complex relations extracted
above, it is important to model them in a proper way so that
different relations can be better and easier handled. To solve
this problem, we introduce AHIN to model them, which is
able to be composed of different types of entities associated
with attributed features and different types of relations.

Definition 1: Attributed Heterogeneous Information Net-
work (AHIN) [38]: Let T = {T1, ..., Tm} be a set of m entity
types, Xi be the set of entities of type Ti and Ai be the set of
attributes defined for entities of type Ti. An AHIN is defined as
a graph G = (V, E ,A) with an entity type mapping φ: V → T
and a relation type mapping ψ: E → R, where V =

⋃m
i=1 Xi

denotes the entity set and E is the relation set, T denotes the
entity type set and R is the relation type set, A =

⋃m
i=1Ai,

and |T |+|R| > 2. Network Schema [38]: The network schema
of an AHIN G is a meta-template for G, denoted as a directed
graph TG = (T ,R) with nodes as entity types from T and
edges as relation types from R.

In this work, we have four types of entities (i.e., nation,
state, county and city, |T | = 4), two types of relations (i.e.,
R1 and R2, |R| = 2), and each entity is attached with an

attributed feature vector a as described above. Based on the
definitions, the network schema of AHIN is shown in Fig.3.

Fig. 3. The designed network schema of AHIN in our work.

B. AHIN Enrichment by cGAN
Although the constructed AHIN can model the complex and

rich relations among different entities attached with attributed
features, it faces a challenge that there may be missing values
of attributed features attached to entities in the AHIN because
of limited data that might be available for learning. More
specifically, given an area, there may not be sufficient social
media (i.e., Reddit in this work) data to learn the public
perceptions towards COVID-19 in this area. For example, for
the state of Vermont, as of June 18, 2020, in its corresponding
subreddit r/CoronavirusVT, there only have been 19 posts by
15 users discussing the virus. To address this issue, we propose
to exploit cGANs [39] for synthetic (virtual) data generation
for public perception learning to enrich the AHIN.

Different from traditional GANs [40], a cGAN is a condi-
tional model extended from GANs, where both the generator
and discriminator are conditioned on some extra information.
Here, we exploit cGAN for synthetic post vector generation.
In our designed cGAN, given an area where Reddit data are
limited or not available, the condition composes of: the disease
related feature vector in this area a1, its related demographic
feature vector a2 and its GPS coordinate denoted as o.

Fig. 4. The devised cGAN for synthetic post latent vector generation.

As shown in Fig.4, the generator in the devised cGAN aims
to incorporate the prior noise pz(z) with conditions of a1, a2
and o as the inputs to generate synthetic posts represented by
latent vectors; in the discriminator, real post representations
obtained by using doc2vec [41] or generated synthetic post
latent vectors along with conditions of a1, a2 and o are fed
to a discriminative function. Both generator and discriminator
could be a non-linear mapping function, such as a multi-
layer perceptron (MLP). The generator and discriminator play
the adversarial minimax game formulated as the following
minimax problem:

min
G

max
D

V (D,G) = Ep∼pdata(p)[logD(p|a1,a2,o)]

+ Ez∼pz(z)[log(1−D(G(z|a1,a2,o)))].
(1)



YANFANG YE et al.: α-SATELLITE: AN AI-DRIVEN SYSTEM AND BENCHMARK DATASETS FOR DYNAMIC COVID-19 RISK ASSESSMENT IN THE U.S. 5

The generator and discriminator are trained simultaneously:
adjusting parameters for generator to minimize log(1 −
D(G(z|a1,a2,o))) while adjusting parameters for discrimina-
tor to maximize the probability of assigning the correct labels
to both training examples and generated samples.

After applying cGAN for synthetic post latent vector gener-
ation, we exploit a deep neural network (DNN) with five fully-
connected layers and one softmax layer to learn the public
perceptions towards COVID-19 in this area. More specifically,
we first use doc2vec to obtain the representations of real posts
collected from Reddit and feed them to train the DNN model;
and then given a generated synthetic post latent vector, we use
the trained model to gain its related perception of COVID-19.

C. Dynamic COVID-19 Risk Assessment
To estimate the COVID-19 risk of a given area, it may not

be sufficient if only considering its vertical information (e.g.,
information associated with its related city, county and state);
the horizontal information (i.e., information from its neighbor-
hood areas) will also be important inputs. To comprehensively
integrate both vertical and horizontal information, we propose
to exploit the concept of meta-path [42] to formulate the
relatedness among different areas in the constructed AHIN.

Definition 2: Meta-path [42]: A meta-path P is a path
defined on the network schema TG = (T ,R), and is denoted
in the form of T1

R1−−→ T2
R2−−→ ...

RL−−→ TL+1, which defines a
composite relation R = R1 · R2 · . . . · RL between types T1
and TL+1, where · denotes relation composition operator, and
L is the length of P .

Based on the above definition, Fig.5.(a) shows our designed
meta-paths (i.e., P1-P3). For example, P1 of county include−−−−−→
city

near−−−→ city denotes that, to estimate the risk of a
specific city, we not only consider the city itself, but also the
information from its related county and nearby cities.

Fig. 5. The designed meta-paths and proposed heterogeneous GAE.

Given a node (i.e., area) in the constructed AHIN, guided by
its corresponding meta-path scheme (i.e., city level guided by
P1, county level guided by P2, and state level guided by P3),
to aggregate the information propagated from its neighborhood
nodes, we propose a heterogeneous graph auto-encoder (GAE)
model to achieve this goal. The designed heterogeneous GAE
model consists of an encoder and a decoder: the encoder
aims at encoding meta-path based propagation to a latent
representation, and the decoder will reconstruct the topological
information from the representation.
Encoder. We here exploit attentive mechanism [43]–[45] to
devise the encoder: it will first iteratively search the meta-path
based neighbors N (v) for each node v, and then each node

will attentively aggregate information from its neighbors. To
learn the importance of information from neighborhood nodes,
we first present each relation type r ∈ R in the constructed
AHIN by Rr ∈ R|a|×|a|, where |a| denotes the dimension of
the attributed feature vector; and then the attentive weight β
of node u (the neighbor of v) indicates the relevance of these
two nodes measured in terms of the space Rr, that is,

βr(v, u) = aTvRrau, (2)

where av and au are the attributed feature vectors attached
to node v and u. We further normalize the weights across all
the neighbors of v by applying softmax function:

β̃r(v, u) =
exp(βr(v, u))∑

u′∈N (v) exp(βr(v, u
′))
. (3)

Then, the neighbors’ representations can be formulated as
the linear combination:

aN (v) =
∑

u∈N (v)

β̃r(v, u)au, (4)

where the weight β̃r(v, u) denotes the information propa-
gated from u to v in terms of relation r. Finally, we aggregate
v’s representation av and its neighbors’ representations aN (v)

by:

av = avg(av + aN (v)). (5)

Decoder. The decoder is used to reconstruct the network
topological structure [46]: based on the latent representations
generated from the encoder, the decoder is trained to predict
whether there is a link between two nodes in the constructed
AHIN. More specifically, the objective is to minimize the
following reconstruction loss:

L = −
∑
v∈V

∑
u∈V
Ev,u log(σ(a>u av)), (6)

where Ev,u denotes the link between node v and u in AHIN,
σ(x) = 1/(1 + ex) is the sigmoid function. We then perform
stochastic gradient descent for the training.

To this end, leveraging latent representations learned from
the heterogeneous GAE, the risk index of a given area is
calculated as:

Idx(v) =

|a|∑
i=1

γiav(i), (7)

where γi is the adjustable parameter that can be specified by
human experts, which denotes the importance of i-th element
in av (e.g., the case numbers, population density, age distribu-
tion, mobility measure, etc.) in the rapidly changing situation.
More specifically, during different phases, the importance of
different factors could be different. For example, compared
with the stage of issuing stay-at-home order, the factor of
mobility measure may overweight each of the other individual
elements for dynamic risk assessment of a given POI after
reopening. The risk index Idx(v) will be normalized in the
range of [0,1] (i.e., the larger value the higher risk).
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

To meet the critical need to act promptly and deliberately
in this rapidly changing situation, we have deployed our sys-
tem α-Satellite for public test (https://COVID-19.yes-lab.org).
Given a POI (either user input or automatic positioning), the
developed system will automatically provide dynamic COVID-
19 risk indices associated with it in a hierarchical manner (e.g.,
state, county, POI) to enable people to select appropriate ac-
tions for protection while minimizing disruptions to daily life.
After we launched our system for public test, as of June 18,
α-Satellite has had 56,850 users. We describe our publicized
benchmark datasets as well as the experimental results and
analysis based on the large number of user feedback below.

A. Benchmark Datasets for Public Use
As described in Section III-A, we have collected and parsed

the large-scale and up-to-date data related to COVID-19 from
multiple sources. We describe each dataset in detail below,
which has been made publicly available via our website.
DB1: disease related dataset. We have collected the up-
to-date county-based coronavirus related data including the
numbers of confirmed cases, new cases, deaths and the fatality
rate, from official public health organizations (e.g., WHO,
CDC, state and county government) and digital media with
nearly real-time updates (e.g., 1point3acres). It includes the
data from 50 states, Washington, D.C., Puerto Rico and 3,208
counties on a daily basis from Feb. 28, 2020 to date.
DB2: demographic and mobility dataset. We parse the
demographic data collected from the United States Census
Bureau in a hierarchical manner: for each city, county or state
in the U.S., the data includes its estimated population, popula-
tion density (e.g., number of people per square kilometer), age,
gender, income and education distributions. We have made the
demographic and mobility dataset publicly available including
the information of estimated population, population density,
and GPS coordinates for 31,140 cities, 3,208 counties, 50
states as well as Washington, D.C. and Puerto Rico.
DB3: social media data from Reddit. In this work, we
initialize our efforts on social media data with the focus of
COVID-19 public perception analysis on Reddit. In particular,
we have collected and analyzed 48 state-based subreddits (i.e.,
Washington, D.C. and 47 states). By the date, we have crawled
and automatically analyzed 59,170 posts by 17,539 users on
Reddit associated with 593,365 comments by 65,337 users
on the discussion of COVID-19 from Feb. 17, 2020 to date.
Along with these data, this publicized dataset also includes
the sentiment analysis result of each post and comment.
DB4: constructed AHIN. Based on our designed AHIN
network schema (shown in Fig.3), the constructed AHIN has
34,401 nodes (i.e., 1 node with type of nation, 52 nodes with
type of state, 3,208 nodes with type of county, 31,140 nodes
with type of city) and 103,243 edges (i.e., 34,400 edges with
relation type of R1 and 68,843 edges with relation type of R2).

B. Evaluation of COVID-19 Risk Assessment
In this section, we comprehensively evaluate the perfor-

mance of our developed system α-Satellite for dynamic
COVID-19 risk assessment through a set of studies.

Study 1: risk index of a given area. Given a POI (either
user input or automatic positioning by Google Maps), the
developed system will automatically provide its related risk
index (i.e., ranging from [0,1], the larger number indicates
higher risk and vice versa) along with the public perceptions
towards COVID-19 in this area (i.e., ranging from [0,1], the
larger value denotes more aware or optimistic and vice versa),
demographic density (i.e., the number of people per square
kilometer in its related county), and traffic status (i.e., ranging
from [1,5], the larger the heavier traffic and vice versa).
Fig.6.(a) shows an example: given the POI of 10900 Euclid
Ave, Cleveland, OH 44106 (denoted as POI 1), the risk index
provided by the system was 0.758 indicating relatively high
risk (i.e., demographic density of 1,389, and traffic status of
2) at 2:06pm EDT on June 18, 2020. Meanwhile, the risk
indices of its corresponding county and state are also shown
in a hierarchical manner: Cuyahoga county with risk index of
0.793, risk percentile of 100 in the state denoting highest risk
among all the counties in OH, and public perception of 0.477;
OH state with risk index of 0.726, risk percentile of 70 in
the country denoting above medium-level of risk in the U.S.,
and public perception of 0.503. The provided risk indices of
a given area could enable people for actionable information.
Study 2: comparisons of risk indices on different dates. In
this study, given the same area of POI 1, we examine how the
generated risk indices change over time. Fig.6.(b) shows the
comparison results on different dates at the time of 2:06pm
EDT, from which we have the following observations: (1)
in general, its risk indexes increased over days from Mar.
8, 2020 (i.e., 0.131) to June 18, 2020 (i.e., 0.758), as the
confirmed cases in its related county (i.e., Cuyahoga county)
and its related state (i.e., OH) continued to grow; (2) after
the first three case were confirmed in Cuyahoga county at
OH on Mar. 9, there was a sharp rise of risk index compared
with March 8 (from 0.131 to 0.314); (3) the risk growth rates
relatively slowed down after the public health and executive
orders were issued in responses to COVID-19: the government
declared a state of emergency on Mar. 14, ordered Ohio bars
and restaurants to close on Mar. 15 and issued a stay-at-home
order on Mar. 22; (4) there has not yet dramatic growth of risks
after the reopening of businesses since May 1 till mid-June.
Study 3: comparisons of risk indices at different areas. In
this study, given the same time, we examine how the generated
risk indices change over areas. When a user inputs the POIs
in the search bar such as “grocery stores near me”, the system
will display the nearby grocery stores using Google Maps
application programming interface (API) and automatically
provide the associated indices. For example, using the same
time in the first study, Fig.6.(a) shows nearby grocery stores
of POI 1 and their related risk indices, from which we can
see that the indices of nearby areas (i.e., POI 2-4) might vary
due to multiple factors such as traffic statuses, POI types, etc.
Study 4: comparisons of different counties and states.
In this study, we compare the indices of different counties
and states given the same time. Using the time in the first
study, Fig.6.(c)-(d) show examples of comparisons. More
specifically, at county-level, using OH state as an example, we
choose the counties with top five largest numbers of confirmed
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Fig. 6. Risk index of a given area (i.e., POI 1) and comparisons of the risk indices on different dates, in different counties and states in the US.

cases on June 18 for comparisons and Fig.6.(c) shows the
risk indices are related with multiple factors (e.g., public
perceptions, demographic distributions, fatality rates, infor-
mation from nearby counties) rather than the case numbers
only. Fig.6.(d) shows the risk percentiles of all states, whose
comparisons also demonstrate the similar conclusion.

Study 5: systematical evaluation of α-Satellite for dynamic
risk assessment. In this study, we systematically evaluate the
performance of our system for dynamic risk assessment. After
we launched our system for public test, we have asked a group
of users (e.g., professors, students and staff in the university,
editors, clinicians and company employees in OH) to use our
system and annotate their query POIs (i.e., labeled as either
relatively low risk (denoted as RL-risk) or relatively high risk
(denoted as RH-risk)). As of June 18, we got 5,535 annotated
POIs; by excluding the ones with conflicted annotations, we
finally obtained 5,060 annotated POIs to build the ground-truth
(i.e., 3,312 POIs labeled as RL-risk and 1,748 RH-risk). In the
experiments, we empirically set the threshold ζ as 0.650 (i.e.,
if the risk index Idx(v) ≤ ζ, then the POI will be marked as
RL-risk; otherwise, RH-risk). Based on the real-world dataset
consisting of 5,060 annotated POIs, we use the widely-used

metrics of accuracy (ACC), F1 measure and the area under
curve (i.e., AUC) to quantitatively validate its performance. We
first investigate the effectiveness of each extracted feature (a1:
disease related data, a2: demographic data, a3: mobility data,
a4: social media data) and the cGAN module. From Table
I, we can see that: (1) adding each type of feature helps the
performance of α-Satellite; (2) incorporating cGAN module
into α-Satellite yields better results (ID5 vs. ID4), since cGAN
enriches the AHIN by enhancing robust latent representations
for accessing public perceptions towards COVID-19. Fig.7.(a)
plots the training losses of generator and discriminator in
cGAN, which demonstrates the training stability of cGAN. To
further evaluate the system, we also compare it with the long
short-term memory (LSTM) network. For LSTM, we consider
the past 14-day data of a given POI as the input to train a
prediction model (i.e., with five fully connected layers and one
softmax layer). The results in Table I (ID5 vs. ID6) show that
α-Satellite outperforms LSTM, which achieves an impressive
AUC of 0.9202 (as shown in Fig.7.(b)). The reason behind this
is that, for any given POI, α-Satellite not only considers its
vertical information but also aggregates the information from
its neighborhood areas (i.e., horizontal information).
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During the public test of the system, we have receiving a
number of good feedback from users in terms of the ease of
use and its utility for COVID-19 risk assessment, such as:
“Thanks for putting together this tool. It’s much needed and I
hope will help curb transmission here in NEO.”“I am on the
Executive Leadership team of a group of 225 dental practices
across the United States. ... I would like to get access to test
your tool, as this could be a valuable tool for our clinicians.”
The experimental results and user feedback both demonstrate
the effectiveness of our system for COVID-19 risk assessment.

TABLE I
SYSTEMATICAL EVALUATION OF α-SATELLITE.

Method ID Setting ACC F1 AUC

α-Satellite

1 a1 0.8098 0.7690 0.8435
2 a1-a2 0.8368 0.7935 0.8638
3 a1-a3 0.8646 0.8252 0.8875
4 a1-a4 0.8934 0.8585 0.9110
5 a1-a4, cGAN 0.9120 0.8797 0.9202

LSTM 6 a1-a4, cGAN 0.8705 0.8320 0.8919

Fig. 7. The evaluation of α-Satellite for COVID-19 risk assessment.

C. Analysis of User Queries and Feedback
After we launched our system α-Satellite for public test,

it has had 56,980 users as of June 18, 2020. In this section,
based on Google Analytics platform and zip codes of user
query POIs (i.e., all the data are anonymized), we perform
further analysis of user queries and feedback.
Analysis 1: user distribution. In this study, based on Google
Analytics platform, we analyze the distribution of 50,514 users
from the U.S. who have visited our system. Fig.8 illustrates the
geo- and demographic distributions of the users, from which
we have following observations: (1) The system has attracted
the users across all the states in the country; the top group of
users are 25-34 years old (i.e., 23.92%) followed by the group
of 55-64 years old (i.e., 19.59%), while males are relatively
more than females. (2) The state of OH has largest number of
users (i.e., 38,948 users accounting for 77.10%), which may be
because people know our system mainly through local media
releases. (3) The top ten states with largest numbers of users
are listed in the table, eight out of which (as highlighted in the
table) are the ones with largest numbers of COVID-19 cases.
We further analyze the correlation between user and COVID-
19 case distributions. Fig.9 shows the more severe regions with
larger numbers of COVID-19 cases (both at state and county
levels) the more α-Satellite users. The observation indicates

that people from more severe regions (i.e., with larger numbers
of COVID-19 cases) might have stronger interests using our
system to assist with actionable information.

Fig. 8. The geo- and demographic distributions of α-Satellite users.

Fig. 9. The correlation between user and COVID-19 case distributions.

Analysis 2: user query POI distribution. After we launched
the system for public test, among 50,514 users from the
U.S., we got the feedback from 7,348 users in terms of their
perceptions towards 9,048 query POIs. We further analyze the
distributions of these POIs queried by users. From Fig.10.(a),
we can see that 6,182 users (84.13%) only query one POI
while 1,136 users (15.87%) query more than one POI. Based
on the zip codes of query POIs, Fig.10.(b) shows that users
are more interested in or concerned about their nearby areas
(i.e., the overlaps indicate the percentages of users query the
POIs within the same regions): 95.55% users query the POIs
in the same states where they are; taking users in OH as
an example, 96.86% of them query the POIs in the state of
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OH. We also perform the analysis at county level: 90.91%
users in Cuyahoga county at OH query the POIs in the same
county (i.e., Summit with 83.53% and Lorain with 82.65%
respectively). Fig.10.(c) illustrates the distribution of the top
ten types of user query POIs (i.e., a POI can be with multiple
types, such as Walmart can be with types of store and grocery),
which shows that: people are more interested in or concerned
about premise (e.g., particular building) that accounts for
45.35% and street address that is with 20.09%, followed by
prominent local entity (e.g., airport), political (e.g., city hall),
store (e.g., drug/food store), restaurant, grocery, health (e.g.,
hospital), transit station and finance (e.g., company).

Fig. 10. The distributions of user query POIs.

Analysis 3: user feedback in terms of perceptions towards
risks of query POIs. Our launched system enables users to
provide their feedback in terms of their perceptions towards
COVID-19 risks of their query POIs at five degree levels
(i.e., extremely low risk, low risk, medium risk, high risk,
and extremely high risk). Using the same dataset in the above
analysis, based on the zip codes of user query POIs, we further
investigate how users perceive the risk levels of their query
POIs. In this study, we categorize the feedback of risks into
three groups: low risk (including extremely low and low risks),
medium risk, and high risk (including high and extremely high
risks). Fig.11.(a) shows that, for all the feedback from 7,348
users related to 9,048 query POIs across the country, 45.59%
are ranked as low risk while 41.03% are ranked as high risk;
Fig.11.(b) and (c) illustrate similar distributions at the state and
county levels respectively. From the analysis, we can see that
a large portion of users do not regard COVID-19 as a serious
risk while another large portion of users consider it as highly
risky. This finding would indicate the difficult situation human
society is currently facing - i.e., assuring people’s safety and
public health while mitigating the negative effects of COVID-
19 on society and the economy is truly challenging.

V. DISCUSSION

In the above experiments, we first evaluate our developed
system α-Satellite for dynamic COVID-19 risk assessment
through a set of empirical studies; and then we validate it
based on a real-world dataset consisting of 5,060 annotated
POIs, which achieves an impressive AUC of 0.9202. After we
launched our system for public test, as of June 18, it has had

Fig. 11. The distributions of user perceptions about risks of query POIs.

56,980 users with the feedback from 7,348 of them. Based
on the analysis of anonymized user feedback, we have three
key findings: (1) People from more severe regions (i.e., with
larger numbers of COVID-19 cases) have stronger interests
using our system to assist with actionable strategies. (2) Users
are more concerned about their nearby areas and the top types
of POIs users queried are premise and street address followed
by prominent local entity, political, store, restaurant, grocery,
health, transit station and finance. (3) The user feedback in
terms of their perceptions towards COVID-19 risks of their
query POIs indicate the challenge of public concerns about
safety versus its negative effects on society and the economy;
as more and more places start to re-open, the situation could
be more challenging. By advancing capabilities of AI and
leveraging the large-scale and up-to-date data generated from
heterogeneous sources, our proposed and developed system α-
Satellite provides dynamic COVID-19 risk assessment to the
public at the first attempt. After we launched the system for
public test, the large number of its users indicate the high
demand from the public for effective computational tools to
assist people with actionable information.

VI. CONCLUSION

To track the emerging dynamics of COVID-19 pandemic in
the U.S., in this work, we collect and model heterogeneous
data from a variety of different sources, devise algorithms
to use these data to train and update the models to predict
the risks at hierarchical levels, and thus help provide action-
able information to users for community mitigation. More
specifically, given a POI, our developed system α-Satellite
will automatically provide risk indices associated with it in
a hierarchical manner to enable people to select appropriate
actions for protection while minimizing disruptions to daily
life. The system and generated benchmark datasets have been
made publicly accessible through our website. To compre-
hensively evaluate α-Satellite for dynamic COVID-19 risk
assessment, we first conduct a set of empirical studies; and
then we validate it based on a real-world dataset consisting
of 5,060 annotated POIs, which achieves the AUC of 0.9202.
Based on the analysis of its large-scale users (56,980 users
by June 18) and their feedback, we have three key findings
as discussed above. The discovered knowledge indicates the
challenge of assuring people’s safety while mitigating the
negative effects of COVID-19 on society and the economy.
In the future work, we plan to expand the data collections
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(e.g., traffic transmission data, Twitter data) and extend our
model (e.g., introducing the series model to the original model)
to improve its performance for risk estimations. We will
continue releasing our datasets and system updates to facilitate
researchers and practitioners to combat COVID-19 together.
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