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Abstract—As the largest source code repository, GitHub
has played a vital role in modern social coding ecosystem to
generate production software. Despite the apparent benefits of
such social coding paradigm, its potential security risks have
been largely overlooked (e.g., malicious codes or repositories
could be easily embedded and distributed). To address this
imminent issue, in this paper, we propose a novel framework
(named GitCyber) to automate malicious repository detection
in GitHub at the first attempt. In GitCyber, we first extract
code contents from the repositories hosted in GitHub as the
inputs for deep neural network (DNN), and then we incorporate
cybersecurity domain knowledge modeled by heterogeneous
information network (HIN) to design cyber-guided loss function
in the learning objective of the DNN to assure the classification
performance while preserving consistency with the observa-
tional domain knowledge. Comprehensive experiments based
on the large-scale data collected from GitHub demonstrate
that our proposed GitCyber outperforms the state-of-the-arts
in malicious repository detection.
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I. INTRODUCTION

With the broad scale proliferation of connected devices
and systems expected to reach billions by 2025 [1], soft-
ware has played a vital role in the increasingly connected
cyberspace that permeates people’s everyday lives. In recent
years, the number of software has increased exponentially,
whose market has grown into a multi-billion dollars in-
dustry [2]. Unlike conventional software development pro-
cess where developers significantly rely on code handbooks
to create software from scratch, more and more software
products are now created with the support from a highly
interoperable and collaborative social coding platforms such
as GitHub, which is the largest source code repository
hosting more than 100 million software projects maintained
by over 40 million registered developers [3]. Within the
modern software programming ecosystem, developers can
reuse libraries or adapt existing ready-to-use projects to
expedite software development. However, the popularity
and openness of such social coding environment not only
attract developers to contribute legitimate software but also
attackers to disseminate malicious codes [4]. For example,

as shown in Figure 1, malicious repositories that are in-
tentionally hosted in GitHub by attackers could be directly
forked by other developers; on the other hand, recent studies
[5]–[7] have shown that the interplay between GitHub and
other social media platforms is more active than we had
thought (i.e., malicious repositories hosted in GitHub could
easily disseminated through online programming discussion
platforms such as Stack Overflow or social media platforms
such as Reddit to generate the production software).

Figure 1: Attacks performed by using malicious repositories.

To maintain a productive yet secure ecosystem against
malicious attacks, GitHub provides a security bug bounty
site for code vulnerability reporting [8] as well as two
products CodeQL and LGTM for semantic code analysis
[9]. Nevertheless, such security policy is limited and merely
code content-based analysis may not be sufficient to address
those social coding security-related concerns. To enhance
the security of modern software programming ecosystem
against malicious attacks, there is apparent and urgent need
to develop novel methodologies that can automate malicious
repository detection in GitHub. Although there have been
several studies on social coding platforms, such as inse-
cure/toxic code snippet detection in Stack Overflow [10],



Figure 2: System overview of GitCyber.

user behavior/influence analysis in GitHub [11], interplay
across platforms [7], to the best of our knowledge, the topic
of automatic detection of malicious repositories in GitHub
has not yet been studied in the open literature so far.

To address the imminent issue above, in this paper, we
propose a novel framework to automate malicious repository
detection in GitHub at the first attempt. An innovative
insight brought by this work is to empower deep neural
network (DNN) with observational cyber-guided knowledge
modeled by structural heterogeneous information network
(HIN). To this end, we first extract content-based features
from the code repositories hosted in GitHub as the inputs for
DNN. Although DNN based models have achieved tremen-
dous success in various applications [12]–[14], one of the
concerns regarding such black-box learning frameworks is
the lack of interpretability of its classifications with respect
to the known observational domain knowledge [15]. As the
moral says “man is known by the company he keeps”, in
addition to code contents, a repository’s legitimacy may
be judged by the social information that it associates with
in the modern coding platform [4]. How can we represent
such knowledge leveraging the social coding properties (e.g.,
a malicious repository could be always associated with
other malicious ones, and vice versa) and incorporate it
into the DNN based learning framework? To answer this
question, we introduce a structural HIN and present meta-
path based approach to model neighborhood relations among
code repositories hosted in GitHub; then, we incorporate the
knowledge encoded by repositories’ neighborhood relations
to design cyber-guided loss function in the learning objec-
tive of the DNN to assure the classification performance
while preserving consistency with the observational domain
knowledge. We develop a system named GitCyber (shown
in Figure 2) integrating our proposed method for malicious
repository detection in GitHub. The major contributions of
this work are summarized below:

• We proposes a novel cyber-guided DNN (i.e., CyberDNN)
with the design of cyber-guided loss function in the learn-
ing objective, to ensure the classification performance of

DNN while retaining consistency with the observational
domain knowledge.

• In addition to code contents, we elegantly represent the
domain knowledge by leveraging the social coding prop-
erties. Neighborhood relations among code repositories
in GitHub are decoded by structural HIN and meta-
path based method. The proposed solution provides a
natural yet innovative way for cyber-guided knowledge
representation.

• Comprehensive experiments based on large-scale data
collected from GitHub demonstrate the performance of
our developed system GitCyber in malicious repository
detection, by comparisons with the state-of-the-arts and
popular commercial security products. The source codes
and benchmark datasets will be made publicly available
after the review.

II. PROPOSED METHOD

In this section, we introduce our proposed method of
cyber-guided DNN for malicious repository detection in
GitHub in detail.

A. Content-based Repository Representation

A GitHub repository’s legitimacy largely depends on the
code contents which provide critical information about its
functionality and intention. In order to represent a repository
by using the content information, we first extract all the
tokens from each of its source code files. These tokens are
the high-level specifications of code behaviors, which can
reflect the intent and goal as they often contain the important
semantic information. For example, if the token of “coin-
hive” occurs in a source code file, the intent of its associated
repository could be related to cryptocurrency mining. We
further select a subset tokens, defined as malicious-oriented
keywords, by (1) calculating its repository frequency, and
(2) measuring the difference of its distribution between
malicious and benign repositories:

‖1(∀r 3 t)‖1 > ε and
‖1(∀r+ 3 t)‖1
‖1(∀r− 3 t)‖1

> δ, (1)



where t means a token, the indicator function 1 takes
a value of 1 if the judgment is true and 0 otherwise,
r = r+∪r−, r+ (r−) denotes malicious (benign) repository.
By applying Eq. (1), we filter out tokens and obtain the
related malicious-oriented keywords (i.e., in this work, based
on our data collection described in Section III-A, we obtain
2,900 malicious-oriented keywords). The top ten malicious-
oriented keywords are “didoptOut, CoinHive, miner, authed-
mine, anonymous, threads, credentials, coin, hive, wss”. To
comprehensively describe any given repository, instead of
directly representing it as a feature vector of these extracted
keywords, we build a knowledge graph where nodes repre-
sent repositories and keywords, edges among nodes denote
whether a keyword occurs in a repository. The constructed
knowledge graph is able to capture the global co-occurrences
between repositories and keywords explicitly. To reduce
high computational cost for graph mining, we exploit graph
embedding technique DeepWalk [16] for node representation
learning, which consists of random walk generation and
skip-gram model. The learned low-dimensional repository
representation can be directly feed to a DNN framework for
malicious repositories detection.

B. Cyber-guided Deep Neural Network

To detect the malicious repositories, besides content
features directly extracted from source files, the relation-
ships among different repositories (e.g., two repositories are
hosted by the same user in GitHub) could provide important
information to determine the legitimacy of the repositories
[17]–[19]. More specifically, a repository’s legitimacy can
be inferred by its neighbors in the social coding platform:
a repository with more malicious neighbors holds a higher
possibility of being malicious, and vice versa. As discussed
above, the prediction by a DNN model using content-
based features only may lack consistency or interpretability
with respect to this observational knowledge. How can we
represent such knowledge and further incorporate it into a
DNN learning framework? To solve this problem, in this
work, we propose a novel framework (named CyberDNN),
in which we model the domain knowledge by using a
structural HIN and meta-path based approach and then we
formulate the represented domain knowledge into a cyber-
guided loss function in the learning objective for the DNN
classifier.
Domain Knowledge Modeled by HIN. The interoperable
and collaborative properties of Github enlighten us to lever-
age the following five social coding relationships to assist
with the representation of the observational knowledge:
• R1: user-fork-repository relation denotes a user either

proposes changes to other developer’s repository or uses
the repository as a starting point for further development;

• R2: user-comment-repository relation describes whether a
user posts a comment, question, or prop on a pull request’s
conversation tab;

Figure 3: Network schema and meta-paths for HIN

• R3: user-star-repository relation means a user stars a
repository, denoting his/her interest to keep track of the
repository;

• R4: user-contribute-repository relation describes if a user
contributes to a repository;

• R5: repository-have-file relation denotes if a repository
includes a source code file.

The multi-typed entities (i.e., user, repository, file) and
relations (i.e., R1-R5) can be concisely modeled by a HIN. A
heterogeneous information network (HIN) [20] is defined
as a graph G = (V, E) with an entity type mapping φ: V →
A and a relation type mapping ψ: E → R, where V denotes
the entity set and E is the relation set, A denotes the entity
type set and R is the relation type set, and the number of
entity types |A| > 1 or the number of relation types |R| > 1.
The network schema [20] for network G, denoted as TG =
(A,R), is a graph with nodes as entity types from A and
edges as relation types from R. Based on the definitions,
the network schema designed for our application is shown
in Figure 3.(a).

In order to precisely and concretely define the neighbors
of a repository in the social coding platform, we propose to
utilize the concept of meta-path built on HIN to characterize
such neighborhood relation. That is, if two repositories can
be connected via a meta-path, they will be regarded as
each other’s neighbor. Formally, a meta-path [20] P is a
path defined on the network schema TG = (A,R), and is
denoted in the form of A1

R1−−→ A2
R2−−→ ...

RL−−→ AL+1,
which defines a composite relation R = R1 · R2 · . . . · RL

between types A1 and AL+1, where · denotes relation
composition operator, and L is length of P . Based on the
network schema shown in Figure 3.(a), we design eight
meaningful meta-paths (i.e., PID1-PID8 shown in Figure



3.(b)), which define the neighborhood relationships from

different views. For example, PID1: repository
fork−1

−−−−−→
user

fork−−−→ repository denotes a neighborhood relation
of two repositories if they are forked by the same user.
We use a real-world example discovered in GitHub for
further illustration: the user “Don****” in GitHub forks
several malicious cryptocurrency mining repositories; by
examining the repositories hosted by this user, we find that
he/she may be a mail system developer who embeds codes
from his/her forked repositories to his/her own developed
software (i.e., injecting cryptocurrency mining service to
mine Monero cryptocurrency). Another meth-path PID5:

repository
have−−−→ file

have−1

−−−−−→ repository depicts that two
repositories are regarded as neighbors if they both include
the same source file (e.g., a third-party library). Based on
the large-scale data collected from GitHub, we annotate a
benchmark dataset which includes 3,729 repositories (i.e.,
1,492 are malicious, 2,237 are benign) with 53,648 source
files related to 3,303 users. The benchmark dataset is an-
notated by anti-malware experts leveraging the results from
VirusTotal [21] which consists of more than 70 anti-malware
scanning tools. Resting on this dataset, as shown in Figure 4,
guided by the eight designed meta-paths (i.e., PID1-PID8),
we observe that the more malicious repositories the node
(i.e., repository) neighbors the higher probability the node
is classified as malicious, and vice versa. This observation
further demonstrates the rationale and validity of using meta-
paths built on HIN to define a repository’s neighborhood
relations.

By using meta-path to decode the neighborhood relations
among code repositories in GitHub, given two repositories i
and j, we formally define the observational domain knowl-
edge, termed cyber-guided principle, as following:(

Pr(i)− Pr(j)
)
·
(
f(p+i , p

−
i )− f(p+j , p

−
j )
)
> 0, (2)

where Pr is the probability of a repository being predicted as
malicious by a DNN model, p+i (p−i ) denotes the probability
of repository i’s malicious (benign) neighbors guided by
a specific meta-path, f(.) measures the difference between
these two probabilities (i.e., p+i and p−i ).
Cyber-guided Loss Function. To preserve the consistency
of the represented domain knowledge, for any given pair
of repositories, i and j, if their predicted probabilities from
the DNN using content-based representations dissatisfy the
cyber-guided principle (Eq. (2)), a violation of this principle
should be considered as a regularizer to be added to the
learning objective. We regard this regularizer as cyber-
guided loss, which is formulated as:

Lcyb =
M∑

m=1

f(p+i,m, p
−
i,m)− f(p+j,m, p

−
j,m), (3)

where M is the number of designed meta-path, p+i,m (p−i,m)
denotes repository i’s malicious (benign) neighbors under

Figure 4: 1-order repository-repository neighborhood relations un-
der different meta-path schemes (i.e., PID1-PID8).

the m-th meta-path. Then, given the dataset D to be the
form of D = {xi, yi}ni=1 of n repositories, where xi ∈ Rd

is the representation of repository i learned from Section
II-A, yi is its class label (yi ∈ {+1,−1}, +1: malicious, -1
benign), by incorporating the cyber-guided loss (Eq. (3)), the
learning objective for our proposed CyberDNN is formulated
as:

arg min
θ
L+ λΩ(θ) + λcybLcyb, (4)

L =
1

n

n∑
i=1

(yi − ŷi)2, (5)

ŷi = DNNθ(xi), (6)

Ω(θ) = ‖W‖2, (7)

where L is the empirical loss of the DNN model (i.e., mean
squared error in our case), ŷ is the predicted label from
the DNN, θ = {W,b} represents the set of weight and
bias parameters across all hidden and output layers, Ω(θ)
is the L2 regularization, Lcyb is the designed cyber-guided
loss, λ and λcyb are the hyper-parameters determining the
importance of regularization and cyber-guided loss.



III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we fully evaluate the performance of
our proposed method for malicious repository detection in
GitHub, by comparison with baseline methods and other
popular commercial anti-malware products.

A. Experimental Setup

Data Collection and Annotation. With the population of
cryptocurrency [22], in this work, we aim to investigate
those repositories relevant to blockchain and cryptocurrency
hosted in GitHub. Based on a set of designed cryptocurrency
related keywords (e.g., Bitcoin, coin, mine, etc.), we develop
a crawling tool to collect the open source repositories
containing these keywords as well as the corresponding
users’ profiles from GitHub through Oct. 15, 2019 till Nov.
31, 2019: 4,178 GitHub repositories hosted by 3,689 users
have been collected and preprocessed. In order to obtain
the ground truth, we apply a two-step mechanism: (1) The
collected repositories are first uploaded to VirusTotal [21]
consisting of more than 70 anti-malware scanning tools
to validate their legitimacy. Since there is a limit of file
size in VirusTotal (i.e., 200 MB), we manually remove 449
oversize repositories. (2) Based on the scanned results from
VirusTotal, we then ask anti-malware experts for further
analysis to obtain the final annotated dataset containing
3,729 repositories (i.e., 1,492 are malicious, 2,237 are be-
nign) with 53,648 source files related to 3,303 users. Based
on the extracted features and designed network schema, the
constructed HIN has 60,677 nodes (i.e., 3,726 nodes with
type of repository, 3,303 nodes with type of GitHub user,
53,648 nodes with type of source file) and 81,097 edges
including relations of R1-R5. To quantitatively validate the
performance, we use the measures shown in Table I.

Table I: Performance indices of malicious repository detection.

Indices Description

TP # of repositories correctly classified as malicious
TN # of repositories correctly classified as benign
FP # of repositories mistakenly classified as malicious
FN # of repositories mistakenly classified as benign
ACC (TP + TN)/(TP + TN + FP + FN)
F1 2 ∗ Precision ∗Recall/(Precision+Recall)
TPR TP/(TP + FN)
FPR FP/(FP + TN)

Baseline Methods. We first evaluate the performance of
our proposed GitCyber for malicious repository detection
by comparison with the following baseline methods:
• BoW-DNN: This method first represents each repository

as a bag-of-words feature vector based on the tokens
extracted using Eq. (1), and then feeds the feature vector
into a generic 5-layer DNN.

• BoW-SVM: This method replaces DNN in BoW-DNN
with Support Vector Machine (SVM) as the detection
module.

• Git-DNN: Instead of directly using bag-of-words as the
feature vectors for repositories, this model applies the
method introduced in Section II-A to learn the low-
dimensional repository representations as the inputs fed
to the DNN;

• Git-SVM: Similar to the setting of Git-DNN, it replaces
the DNN model with SVM;

• M2V-DNN: We enhance the HIN described in Section
II-B by incorporating the repository’s content informa-
tion, i.e., adding extracted keywords as entities and then
applying metapath2vec [23] for repository representation
learning. The learned representations are then fed to the
DNN for training and prediction.

• M2V-SVM: This method replaces DNN in M2V-DNN by
SVM as the classifier.

Commercial Security Products. We further validate the
performance of our developed GitCyber by comparisons
with other security products such as LGTM (a semantic
code security analysis tools provide by GitHub) and over
70 popular anti-malware products which are integrated in
VirusTotal [21].
Hyper-parameters. The experimental studies are conducted
under the environment of Ubuntu 16.04 operating system,
plus Intel i9-9900k CPU, GeForce GTX 2080 Ti Graphics
Cards and 64 GB of RAM. All DNN models are imple-
mented using the Keras package [24] with a batch size of
1000 and a maximum number of epochs of 100,000. The
value of λ is set to 1 in all experiments. Other parameters
include the dimension of node embedding d = 128, neigh-
borhood size w = 5, iteration time epoch = 5 for skip-gram
model. For SVM, we apply sklearn.svm with RBF kernel
in our experiments and the penalty is empirically set to 16
while other parameters are set by default. To facilitate the
comparisons, we use 10-fold cross validations.

Table II: Comparisons with different baseline methods

Method ACC F1 TPR FPR

BoW-DNN 0.8172 0.7721 0.7740 0.1507
BoW-SVM 0.8305 0.7810 0.7553 0.1632

Git-DNN 0.8546 0.8143 0.7970 0.1354
Git-SVM 0.8649 0.8267 0.8056 0.1296

M2V-DNN 0.8842 0.8495 0.8170 0.1221
M2V-SVM 0.8945 0.8704 0.8263 0.1158

GitCyber 0.9146 0.8893 0.8663 0.0892

B. Comparisons and Analysis

Based on the above dataset, we first show the perfor-
mances of GitCyber and all the baseline methods introduced
above in malicious repository detection. The experimental
results are illustrated in Table II. From the results, we
observe that:



• BoW-based method (i.e., BoW-DNN and BoW-SVM)
using the traditional bag-of-words as feature vectors ob-
tains the worst detection performance, which shows such
representation fails to depict the higher-level semantics in
malicious repository detection.

• M2V-DNN and M2V-SVM which incorporate the repos-
itory’s content information with domain knowledge (for-
mulated as the neighborhood relations among repositories)
achieve better outcomes than the models merely consider-
ing content information, such as Git-DNN and Git-SVM.
This demonstrates that the domain knowledge helps the
performance of malicious repository detection.

• Our proposed system GitCyber which applies cyber-
guided loss to regularize the learning objective of tradi-
tional DNN model significantly outperforms all baseline
methods. This shows the superiority of using the obser-
vational domain knowledge in the learning objective for
improving generalization performance.

Table III: Comparisons with other commercial security products.

Method Version ACC F1 TPR FPR

LGTM - 0.6799 0.5696 0.6498 0.6199

Antiy-AVL 3.0.0.1 0.8971 0.8526 0.7431 0.1717
Avast 18.4.3895.0 0.9073 0.8705 0.7779 0.1484
AVG 18.4.3895.0 0.9129 0.8796 0.7940 0.1377
Avira 8.3.3.8 0.8671 0.8021 0.6722 0.2190
BitDefender 7.200 0.9035 0.8631 0.7592 0.1609
ClamAV 0.102.0.0 0.8521 0.7780 0.6468 0.2360
Comodo 31649.000 0.8899 0.8590 0.8375 0.1086
Cyren 6.2.2.2 0.9003 0.8584 0.7545 0.1641
DrWeb, 7.0.41.7240 0.9137 0.8819 0.8040 0.1310
Emsisoft 2018.12.0.1641 0.9014 0.8596 0.7538 0.1645
FireEye 29.7.0.0 0.9006 0.8583 0.7518 0.1658
Fortinet 5.4.247.0 0.8917 0.8441 0.7318 0.1793
F-Prot 4.7.1.166 0.8599 0.7890 0.6542 0.2311
F-Secure 12.0.86.52 0.8617 0.7928 0.6602 0.2271
GData 25.23778 0.9073 0.8714 0.7839 0.1444
Ikarus 0.1.5.2 0.9076 0.8712 0.7806 0.1466
Jiangmin 16.0.100 0.7752 0.6698 0.5692 0.2879
Kaspersky 15.0.1.13 0.8939 0.8506 0.7538 0.1645
MAX 2019.9.16.1 0.9033 0.8627 0.7585 0.1614
Mcafee 6.0.6.653 0.8695 0.8057 0.6756 0.2168
Microsoft 1.1.16500.1 0.8711 0.8413 0.8528 0.0983
NANO-AV 1.0.134.24859 0.9070 0.8734 0.8007 0.1332
Rising 25.0.0.24 0.9057 0.8668 0.7659 0.1565
Sophos 4.98.0 0.8438 0.7578 0.6100 0.2606
Zillya 2.0.0.3933 0.7998 0.6673 0.5010 0.3335

GitCyber - 0.9146 0.8893 0.8663 0.0892

We then evaluate the detection performance of our de-
veloped GitCyber in comparisons with twenty-five popular
commercial anti-malware products. From Table III, we can
see that GitCyber yields the highest accuracy, F1-measure
, True positive rate (TPR) and False positive rate (FPR)
in the detection of cryptocurrency-related malicious repos-
itory. To put this into perspective, GitCyber achieves a
2% accuracy improvement in comparison with Kaspersky
and 4% with Mcafee. This again demonstrates that our
developed framework GitCyber can significantly improve

the detection performance in real world data as it not only
takes the repository’s content into consideration, but also
incorporates the domain knowledge into the DNN-based
learning framework for regularization.

Figure 5: Parameter sensitivity, stability and scalability

C. Parameter Sensitivity, Stability and Scalability

In this set of experiments, we first conduct the sensitivity
analysis of how different choices of parameters (i.e., vector
dimension d and neighborhood size w) will affect the
performance of GitCyber in malicious repository detection.
From the results shown in Figure 5.(a), we observe that
the performance tends to be stable once d reaches around
150; similarly, from Figure 5.(b) we can see that the perfor-
mance inclines to be stable when w increases to 5. Overall,
GitCyber is not strictly sensitive to these parameters and
is able to reach high performance under a cost-effective
parameter choice. We then further evaluate the scalability of
GitCyber. Figure 5(c) shows the running time of GitCyber
with different sizes of the dataset, which illustrates that the
running time is quadratic to the number of samples. When
dealing with more data, approximation or parallel algorithms
can be developed. We also run experiments using the default
parameters with different number of threads (i.e., 1, 4, 8, 12,
16), each of which utilizes one CPU core. Figure 5(d) shows
the speed-up of GitCyber deploys multiple threads over the
single-threaded case, which shows that the model achieves
acceptable sub-linear speed-ups as the line is close to the



optimal line. For stability evaluation, Figure 5(e) shows the
overall receiver operating characteristic (ROC) curves of
GitCyber based on the 10-fold cross validations; it achieves
an impressive 0.857 average TP rate at the 0.095 average FP
rate for malicious repository detection. From the results and
analysis above, GitCyber is efficient, scalable and stable for
practical use.

IV. RELATED WORK

There have been many works on knowledge discovery
from social coding platforms [7], [25]. However, most of
these works only focus on code semantics and user behav-
iors, but rarely address the issue of coding security analysis.
The only exceptions appear to be [29] and [10], which both
exploit code content-based information to detect code clones
in social coding platform. Though those research results
are promising, they fail to consider domain knowledge
in solving the related problems. Different from existing
works, in this paper, we take the domain knowledge (i.e.,
social coding properties) into consideration for malicious
repository detection.

HIN is proposed to model different types of entities and
relations and has been applied to various applications, such
as scientific publication network analysis [20], [30], health
intelligence [31], [32] and cybersecurity [33]–[38]. Several
measures (e.g., meta-path [20], [39], meta-structure [40],
[41], meta-graph [42], [43]) have already been proposed for
relevance computation over HIN entities. Different from the
existing works, in this paper, we first model the cybersecurity
domain knowledge by using HIN and the concept of meta-
path and then we incorporate the represented knowledge as
cyber-guided loss to devise the DNN. The proposed cyber-
guided DNN framework is able to preserve the consistency
of predictions with observational domain knowledge to
assure the detection performance.

V. CONCLUSION

To address the imminent code security issues in social
coding platforms, in this paper, we propose a cyber-guided
DNN framework, named GitCyber, to automate malicious
repository detection in GitHub. We bring a new insight to
empower deep neural network with observational knowl-
edge. In GitCyber, we first learn the content-based repre-
sentations of the code repositories hosted in GitHub; and
then we introduce a structural HIN and the concept of meta-
path to model the observational domain knowledge encoded
by social coding properties (i.e., a malicious repository
is always associated with malicious ones in the social
coding platform, and vice versa); finally, we incorporate
the represented domain knowledge to design the cyber-
guided loss to regularize the learning objective in the DNN
model to assure the detection performance. Comprehensive
experiments based on the annotated repositories hosted in

GitHub demonstrate the performance of our developed sys-
tem GitCyber in malicious repository detection, by compar-
isons with the baseline methods and the popular commercial
security products.
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