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ABSTRACT
The fast evolving and deadly outbreak of coronavirus disease (COVID-
19) has posed grand challenges to human society. To slow the spread
of virus infections and better respond with actionable strategies
for community mitigation, leveraging the large-scale and real-time
pandemic related data generated from heterogeneous sources (e.g.,
disease related data, demographic data, mobility data, and social
media data), in this work, we propose and develop a data-driven
system (named 𝛼-Satellite), as an initial offering, to provide real-
time COVID-19 risk assessment in a hierarchical manner in the
United States. More specifically, given a location (either user input
or automatic positioning), the system will automatically provide
risk indices associated with the specific location, the county that
location is in and the state as a whole to enable people to select
appropriate actions for protection while minimizing disruptions to
daily life to the extent possible. In 𝛼-Satellite, we first construct an
attributed heterogeneous information network (AHIN) to model
the collected multi-source data in a comprehensive way; and then
we utilize meta-path based schemes to model both vertical and hor-
izontal information associated with a given location (i.e., point of
interest, POI); finally we devise a novel heterogeneous graph neural
network to aggregate its neighborhood information to estimate the
risk of the given POI in a hierarchical manner. To comprehensively
evaluate the performance of 𝛼-Satellite in real-time COVID-19 risk
assessment, a set of studies are first performed to validate its utility;
based on a real-world dataset consisting of 6,538 annotated POIs,
the experimental results show that 𝛼-Satellite achieves the area
of under curve (AUC) of 0.9378, which outperforms the state-of-
the-art baselines. After we launched the system for public tests, it
had attracted 51,190 users as of May 30. Based on the analysis of
its large-scale users, we have a key finding that people from more
severe regions (i.e., with larger numbers of COVID-19 cases) have
stronger interests using the system for actionable information. Our
system and generated benchmark datasets have been made publicly
accessible through our website1.

1https://COVID-19.yes-lab.org/
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1 INTRODUCTION
Coronavirus disease (COVID-19) [29] is an infectious disease caused
by a new virus that had not been previously identified in humans;
this respiratory illness (with symptoms such as a cough, fever and
pneumonia) was first identified during an investigation into an
outbreak in Wuhan, China in December 2019 and is now rapidly
spreading in the United States and globally. The novel coronavirus
and its deadly outbreak have posed grand challenges to human soci-
ety. As of May 30, 2020, there have been 1,810,300 confirmed cases
and 105,283 reported deaths in the United States; and the World
Health Organization (WHO) characterized COVID-19 - infected
more than 6,166,000 people with more than 372,000 deaths in at
least 188 countries - a global pandemic. It is believed that the novel
coronavirus emerged from an animal source, but it is now rapidly
spreading from person-to-person through various forms of contact.
According to the Centers for Disease Control and Prevention (CDC)
[5], the coronavirus seems to be spreading easily and sustainably in
the community - i.e., community transmission which means people
have been infected with the virus in an area, including some who
are not sure how or where they became infected.

The challenge with community transmission is that carriers
are often asymptomatic and unaware that they are infected and
through their movements within the community they spread the
disease. According to the CDC, before a vaccine or drug becomes
widely available, community mitigation, which is a set of actions
that persons and communities can take to help slow the spread of
respiratory virus infections, is the most readily available interven-
tions to help slow transmission of the virus in communities [6]. A
growing number of areas reporting community transmission would
represent a significant turn for the worse in the battle against the
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novel virus; this points to an urgent need for expanded surveil-
lance so we can better understand the spread of COVID-19 and thus
better respond with actionable strategies for community mitigation.

Unlike the 1918 influenza pandemic [3] where the global scope
and devastating impacts were only determined well after the fact,
COVID-19 history is being written daily, if not hourly, and if the
right types of data can be acquired and analyzed there is the po-
tential to improve self awareness of the risk to the population and
develop proactive (rather than reactive) interventions that can halt
the exponential growth in the disease that is currently being ob-
served. Realizing the true potential of real-time surveillance, with
this opportunity comes the challenge: the available data are uncer-
tain and incomplete while we need to provide actionable strategies
objectively with caution and rigor - i.e., enabling people to select
appropriate actions to protect themselves while minimize disrup-
tions to daily life to the extent possible - to mitigate the negative
effects of COVID-19 on public health, society, and the economy.

To address the above challenge, leveraging our long-term experi-
ences in combating widespread malware attacks using data-driven
techniques [11, 14, 15, 31–34], in this work, we propose to utilize
the large-scale and real-time pandemic related data generated from
heterogeneous sources to develop a data-driven system to provide
real-time COVID-19 risk assessment in a hierarchical manner in
the United States for community mitigation at the first attempt.
More specifically, given a location (either user input or automatic
positioning), the system will automatically provide risk indices
associated with the specific location, the county that location is
in and the state as a whole to enable people to select appropriate
actions for protection while minimizing disruptions to daily life.
The framework of our proposed and developed system (named 𝛼-
Satellite) is shown in Figure 1. In 𝛼-Satellite, (1) we first develop a
set of tools to collect and preprocess the large-scale and real-time
data related to COVID-19 from multiple sources (including disease
related data, demographic data, mobility data, and social media
data); (2) we then construct an attributed heterogeneous informa-
tion network (AHIN) to model the collected multi-source data in a
comprehensive way; (3) based on the constructed AHIN, we utilize
meta-path based schemes to model both vertical and horizontal
information associated with a given location (i.e., point of interest,
POI); and finally (4) we devise a novel heterogeneous graph neural
network (GNN) to aggregate its neighborhood information to esti-
mate the risk of the given POI in a hierarchical manner. The major
contributions of our work can be summarized below:

• Novel heterogeneous graph architecture for abstract representation.
To provide real-time COVID-19 risk assessment for any given
location (i.e., POI), in this work, we collect the large-scale and
real-time data from multiple sources: i) disease related data (i.e.,
up-to-date county-based coronavirus related data) from official
public health organizations (e.g., WHO, CDC, state and county
government websites) and digital media; ii) demographic data
from the United States Census Bureau; iii) mobility data that
estimates how busy an area is in terms of traffic density; and iv)
social media (i.e., Reddit) data. To model the multi-source data
in a comprehensive manner, we present a novel heterogeneous
graph architecture, i.e., AHIN which is capable of consisting mul-
tiple types of entities and relations, for abstract representation.

• Heterogeneous GNN for real-time COVID-19 risk assessment. Based
on the constructed AHIN, for any given POI, we propose an inno-
vative heterogeneous GNN to integrate both vertical information
(i.e., the information associated with its related county and state)
and horizontal information (i.e., the traffic transmissions from
its neighborhood areas) for real-time COVID-19 risk assessment.

• The developed system and generated benchmark datasets have been
made publicly accessible to help combat COVID-19. Based on a
real-world dataset consisting of 6,538 annotated POIs, 𝛼-Satellite
achieves the area of under curve (AUC) of 0.9378, which outper-
forms state of the arts in real-time COVID-19 risk assessment;
we also perform a set of case studies to comprehensively validate
its utility of COVID-19 risk estimations. After we launched the
system for public tests, as of May 30, it had attracted 51,190 users.
Based on the analysis of POI queries from the anonymized users,
we have a key finding that people from more severe regions (i.e.,
with larger numbers of COVID-19 cases) have stronger interests
using the system for actionable information.

2 RELATED WORK
There have been many works on using data-driven and machine
learning techniques to help combat COVID-19. For example, in
the biomedical domain, [7, 21, 28] use deep learning methods for
COVID-19 pneumonia diagnosis and genome study; while [24, 30]
develop learning-based models to predict severity and survival for
patients. Another research direction is to utilize public accessible
data to help the estimation of infection cases or forecast the COVID-
19 outbreak [13, 16, 22]. However, many of the existing works are
with focus on Wuhan China. The deadly outbreak of COVID-19
in the United States calls for novel computational models to help
combat the pandemic; there has no work on real-time COVID-
19 risk assessment to assist with community mitigation by far.
To meet this urgent need and to bridge the research gap, in
this work, by advancing capabilities of artificial intelligence (AI)
and leveraging the large-scale and real-time pandemic related data
generated from heterogeneous sources, we propose and develop a
data-driven system to provide real-time COVID-19 risk assessment
in a hierarchical manner in the United States at the first attempt to
help combat the fast evolving COVID-19 pandemic.

3 PROPOSED METHOD
In this section, we will introduce our proposed method for real-time
COVID-19 risk assessment in a hierarchical manner in detail, which
is integrated in our developed system 𝛼-Satellite.

3.1 Data from Heterogeneous Sources
Realizing the true potential of real-time surveillance requires identi-
fying the proper data sources, based on which we can devise models
to extract meaningful and actionable information for community
mitigation. Since relying on a single data source for estimation
and prediction often results in unsatisfactory performance, we de-
velop a set of tools to collect and parse the large-scale and real-time
data related to COVID-19 from multiple sources. We describe the
collected data and their representations in detail below.
A1: disease related data. We collect the up-to-date county-based
coronavirus related data including the numbers of confirmed cases,
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Figure 1: System architecture of 𝛼-Satellite for real-time COVID-19 risk assessment. In 𝛼-Satellite, (a) we first collect the large-
scale and real-time data related to COVID-19 from heterogeneous sources; and then (b) we construct an AHIN to model the
collected multi-source data in a comprehensive way; finally (c) we devise heterogeneous GNN to aggregate both vertical and
horizontal information from its neighborhood areas to estimate the risk of the given POI in a hierarchical manner.

new cases, deaths and the fatality rate, from i) official public health
organizations such as WHO, CDC, state and county government
websites, and ii) digital media with real-time updates of COVID-19
(e.g., 1point3acres [1]). For a given area, its related COVID-19 pan-
demic data will be represented by a numeric feature vector a1. For
example, as of May 30, 2020, Cuyahoga county at Ohio (OH) state
has had 4,369 confirmed cases, 51 new cases, 226 deaths and 5.2% fa-
tality rate, which can be represented as a1 =< 4369, 51, 226, 0.052 >.
We denote this collected dataset as DB1, which includes the data
from 50 states, Washington, D.C., Puerto Rico and 3,209 counties
on a daily basis from Feb. 28, 2020 to date.
A2: demographic data. The United States Census Bureau provides
the demographic data including basic population, business, and ge-
ography statistics for all states and counties. The demographic
information may contribute to the risk assessment of an associated
area: for example, as older adults may be at higher risk for more
serious complications from COVID-19 [4], the age distribution of a
given area can be considered as an important input. In this work,
for a given area, we mainly consider its associated county’s demo-
graphic data, including the estimated population, population den-
sity (i.e., number of people per square kilometer), age distribution
(i.e., percentage of people over 65 year-old) and gender distribution
(i.e., percentage of females). For example, given an area associated
with Cuyahoga county at OH, its obtained demographic data are:
Cuyahoga county at OH with population of 1,235,072, population
density of 1,389, 18.2% people over 65 year-old, and 52.3% females,
which will be represented as a2 =< 1235072, 1389, 0.182, 0.523 >.
We have made the dataset (denoted as DB2) publicly available in-
cluding information of estimated population and population density
for 3,209 counties, 50 states, Washington, D.C. and Puerto Rico.
A3: mobility data. Given a specific location (either user input or
automatic positioning), a mobility measure that estimates how busy
the area is in terms of traffic density will be retained from location

service providers (i.e., Google Maps), which is represented by five
degree levels [1,5] (the larger the busier). The data (denoted asDB3)
including the Global Positioning System (GPS) coordinates for 3,209
counties, 50 states as well as Washington, D.C. and Puerto Rico
have been made publicly accessible.
A4: social media data. As users in social media are likely to dis-
cuss and share their experiences of COVID-19, the data from social
media may contribute complementary knowledge such as public
perceptions towards COVID-19 in the area they associate with. In
this work, we initialize our efforts with the focus on Reddit, as it
provides the platform for scientific discussion of dynamic policies,
announcements, symptoms and events of COVID-19. In particu-
lar, we consider i) three subreddits with general discussion (i.e.,
r/Coronavirus, r/COVID19 and r/CoronavirusUS); ii) four region-
based subreddits (i.e., r/CoronavirusMidwest, r/CoronavirusSouth,
r/CoronavirusSouthEast and r/CoronavirusWest); and iii) 48 state-
based subreddits (i.e., Washington, D.C. and 47 states). To analyze
public perceptions towards COVID-19 for a given area (note that all
users are anonymized for analysis using hash values of usernames),
we first exploit Stanford Named Entity Recognizer [12] to extract
the location-based information (e.g., county, state), and then utilize
NLTK tool [2] to conduct sentiment analysis (i.e., negative, neu-
tral or positive). More specifically, negative indicates less aware or
pessimistic of COVID-19, while positive denotes well aware or opti-
mistic of COVID-19. For example, with the analysis of the post by a
user (with hash value of “CF***6”) in subreddit of r/CoronaVirusPA
on March 14, 2020: “I live in Montgomery County, PA and everyone
here is acting like there’s nothing going on.”, the location-related
information of Montgomery county and Pennsylvania state (i.e.,
PA) can be extracted, and a public perception towards COVID-19 in
Montgomery county at PA can be learned (i.e., negative indicating
less aware of COVID-19). Another example post of “As coronavirus
spreads, northwest Louisiana prepares for its arrival” indicates a
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positive signal. After performing the automatic sentiment analy-
sis based on the collected posts associated with a given area from
Reddit, the public perceptions towards COVID-19 in this area will
be represented by a normalized value (i.e., [0,1], the larger value
the more aware or optimistic). Such automatically extracted knowl-
edge will be incorporated into the risk assessment of the related
area, which may also help inform and educate about the science
of coronavirus transmission and prevention. We have crawled and
analyzed 54,881 posts by 16,689 users in Reddit associated with
536,996 comments by 60,962 users on the discussion of COVID-19
from Feb. 17, 2020 to date (denoted as DB4).

After extracting the above features, we concatenate and normal-
ize them as an attributed feature vector 𝑎 attached to each given
area for representation, i.e., 𝑎 = 𝑎1 ⊕ 𝑎2 ⊕ 𝑎3 ⊕ 𝑎4. We zero-pad the
elements if the data are not available.

3.2 AHIN Construction
To comprehensively describe a given area for real-time COVID-19
risk assessment, besides the above extracted attributed features,
we also consider following higher-level semantics and the rich
relations among different areas.
R1: vertical relation. Based on the severity of COVID-19 and
the available resources as well as the impacts to their residents,
different states may have different policies, strategies and orders
responding to COVID-19. Accordingly, given an area, we extract
its administrative affiliation in a hierarchical manner, including the
state-include-county and county-include-city relations [25].
R2: horizontal relation. For a given area, we also consider the
estimated traffic transmissions from other states/counties to its
associated state/county for risk estimations (i.e., in our applica-
tion, we consider the top ten traffic transmissions from outside
states/counties). The up-to-date traffic transmission data are ob-
tained from PlaceIQ [8] in the way that among smartphones that
pinged in a given state/county today, the share of those devices
pinged in each state/county at least once during the previous 14
days. Figure 2.(a) shows examples of top ten traffic transmissions
to Idaho (ID) and OH states on May 30, 2020 respectively.

Figure 2: (a) R2: Traffic transmission. (b) Network schema.

Given the rich semantics and complex relations extracted above,
it is important to model them in a proper way so that different
relations among different types of entities can be better and easier
handled. To solve this problem, we introduce AHIN to model them,
which is able to be composed of different types of entities associated
with attributed features and different types of relations. We first
present the concepts related toAttributed Heterogeneous Information
Network (AHIN) [18]: Let T = {𝑇1, ...,𝑇𝑚} be a set of𝑚 entity types,
X𝑖 be the set of entities of type 𝑇𝑖 and 𝐴𝑖 be the set of attributes
defined for entities of type 𝑇𝑖 . An AHIN is defined as a graph G =

(V, E,A) with an entity type mapping 𝜙 :V → T and a relation
type mapping𝜓 : E → R, whereV =

⋃𝑚
𝑖=1 X𝑖 denotes the entity set

and E is the relation set, T denotes the entity type set and R is the
relation type set, A =

⋃𝑚
𝑖=1𝐴𝑖 , and |T | + |R| > 2. Network Schema

[18]: The network schema of an AHIN G is a meta-template for
G, denoted as a directed graph TG = (T ,R) with nodes as entity
types from T and edges as relation types from R.

In this work, we have three types of entities (i.e., state, county
and POI, |T | = 3), two types of relations (i.e., R1 and R2, |R | = 2),
and each entity is attached with an attributed feature vector 𝑎 as
described in Section 3.1. Based on the definitions above, the network
schema of AHIN in our application is shown in Figure 2.(b).

3.3 Heterogeneous GNN for Risk Assessment
Based on the constructed AHIN, to comprehensively integrate both
vertical and horizontal information for COVID-19 risk assessment,
we first exploit the concept of meta-path [26] to formulate the
relatedness among different areas. A meta-path P is a path defined
on the network schema TG = (T ,R), and is denoted in the form

of 𝑇1
𝑅1−−→ 𝑇2

𝑅2−−→ ...
𝑅𝐿−−→ 𝑇𝐿+1, which defines a composite relation

𝑅 = 𝑅1 · 𝑅2 · . . . · 𝑅𝐿 between types 𝑇1 and 𝑇𝐿+1, where · denotes
relation composition operator, and 𝐿 is the length of P. Based on
the definition, Figure 3.(a) shows our designed meta-paths (i.e.,
P1-P3). For example, P1 of 𝑐𝑜𝑢𝑛𝑡𝑦

𝑡𝑟𝑎𝑛𝑠𝑖𝑡−−−−−−→ 𝑐𝑜𝑢𝑛𝑡𝑦
𝑖𝑛𝑐𝑙𝑢𝑑𝑒−−−−−−→ 𝑃𝑂𝐼

denotes that, to estimate the risk of a specific POI, we not only
consider the information from itself, but also the information from
its related county and nearby counties (i.e., top ten counties with
highest traffic transmissions to its related county).

Figure 3: Heterogeneous GNN for risk assessment.

Given a node (i.e., POI) in the constructed AHIN, guided by
the above designed meta-paths, we propose a heterogeneous GNN
(shown in Figure 3.(c)) to aggregate its neighborhood information
for real-time COVID-19 risk assessment, which is a three-step learn-
ing model: i) meta-path guided neighbor search, ii) information
propagation and aggression, and iii) multi-view fusion.
Meta-path guided neighbor search. To find neighbors of a node
(i.e., POI) in the constructed AHIN, we first define k-order neigh-
bors in AHIN : Given an AHIN G = (V, E,A), let 1-order neigh-
bors of a node 𝑣𝑖 ∈ V be N1 (𝑣𝑖 ) so that N1 (𝑣𝑖 ) = {𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗 ) ∈
E}; then, 𝑘-order neighbors N𝑘 (𝑣𝑖 ) of a node 𝑣𝑖 (𝑘 > 1) can be
denoted as N𝑘 (𝑣𝑖 ) = {N1 (𝑣𝑧) \ N (𝑘−2) (𝑣𝑖 ), 𝑣𝑧 ∈ N (𝑘−1) (𝑣𝑖 )}.
In our application, given a meta-path P, for each node 𝑣𝑖 with
type of POI, we will retrieve its 1-order and 2-order neighbors,
denoted as N1

P (𝑣𝑖 ) and N2
P (𝑣𝑖 ) respectively. For example, given

the meta-path of P1, as shown in Figure 3.(b), the 1-order neigh-
bor of POI1 is N1

P1(POI1)={county-1} and its 2-order neighbors are
N2

P1(POI1)={county-2,county-3,county-4}.
Information propagation and aggregation. For each given node
𝑣𝑖 with type of POI, after obtaining its 1-order neighbors N1

P (𝑣𝑖 )
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and 2-order neighbors N2
P (𝑣𝑖 ) guided by a specific meta-path, we

further consider the heterogeneity of AHIN to aggregate its neigh-
borhood information for real-time COVID-19 risk assessment. More
specifically, the information propagated from one node to another
would associate with the type of relation between these two nodes.
Therefore, we first introduce a relation-specific transformation
R ∈ R𝑑×𝑑 for each relation type in the AHIN, where 𝑑 denotes the
dimension of attributed feature vectors attached to the nodes. For
each node 𝑣 𝑗 inN1

P (𝑣𝑖 ), we then propose the following mechanism
for information propagation and aggregation:

E𝑣𝑗 = 𝜎
(
W(EN(𝑣𝑗 ) + E𝑣𝑗 ) + b

)
, (1)

EN(𝑣𝑗 ) =
∑

𝑣𝑧 ∈N2
P (𝑣𝑖 )

𝑤𝑣𝑧𝑣𝑗R𝜓 (𝑣𝑧 ,𝑣𝑗 )E𝑣𝑧 , (2)

where E𝑣𝑗 and E𝑣𝑧 are embeddings of node 𝑣 𝑗 and 𝑣𝑧 respectively
which can be initialized by their attached attributed feature vectors,
𝜎 is the activation function (i.e., LeakyReLU [19] in this work),
𝜓 (𝑣𝑧 , 𝑣 𝑗 ) and𝑤𝑣𝑧𝑣𝑗 denote the type and weight of relation between
node 𝑣𝑧 and 𝑣 𝑗 respectively. In this way, Eq. (2) propagates the
information from 𝑣𝑖 ’s 2-order neighbors in N2

P (𝑣𝑖 ) to each of its
1-order neighbor 𝑣 𝑗 in N1

P (𝑣𝑖 ) in terms of relation type𝜓 (𝑣𝑧 , 𝑣 𝑗 );
and Eq. (1) aggregates 𝑣 𝑗 ’s embedding E𝑣𝑗 with the information
EN(𝑣𝑗 ) propagated from its neighbors. Similarly, the embedding of
node 𝑣𝑖 with type of POI can be learned by:

E𝑣𝑖 = 𝜎
(
W′(EN(𝑣𝑖 ) + E𝑣𝑖 ) + b′

)
, (3)

EN(𝑣𝑖 ) =
∑

𝑣𝑗 ∈N1
P (𝑣𝑗 )

𝑤𝑣𝑗 𝑣𝑖R𝜓 (𝑣𝑗 ,𝑣𝑖 )E𝑣𝑗 . (4)

Multi-view fusion. By applying the above proposed information
propagation and aggregation method, given a specific meta-path,
we are able to generate embedding of each node 𝑣𝑖 with type of
POI. As different meta-paths depict the relatedness over nodes
in the AHIN in different views. To this end, based on the three
designed meta-paths (i.e., P1-P3), we propose to concatenate the
corresponding embeddings to obtain the fused embedding E𝑣𝑖 :

E𝑣𝑖 =⊕3
𝑘=1E

P𝑘
𝑣𝑖 . (5)

After applying the proposed heterogeneous GNNmodel, we then
feed each node (i.e., POI) embedding E𝑣𝑖 to a classifier consisting of
three-layer Multilayer Perceptron (MLP) to train the model, where
the loss function is designed as:

L =
∑
𝑣𝑖 ∈Y

𝐽 (𝑦𝑣𝑖 , 𝑦𝑣𝑖 ) + 𝛾 | |Θ| |22, (6)

where 𝐽 measures the cross-entropy loss between the annotated
POI with label of 𝑦𝑣𝑖 and prediction score of 𝑦𝑣𝑖 , and | |Θ| |22 is the
L2-regularizer for preventing over-fitting. The estimated risk index
of 𝑦𝑣𝑖 is in the range of [0,1] (i.e., the larger value the higher risk).

4 EXPERIMENTAL RESULTS AND ANALYSIS
To meet the critical need to act promptly and deliberately in this
rapidly changing situation, we have deployed our system 𝛼-Satellite
for public tests (https://COVID-19.yes-lab.org). Given a POI (either
user input or automatic positioning), the developed system will
automatically provide real-time COVID-19 risk indices associated
with the POI, the county that POI is in and the state as a whole

to enable people to select appropriate actions for protection while
minimizing disruptions to daily life. After we launched our system
for public tests onApril 20,𝛼-Satellite had attracted 51,190 users
as of May 30. We describe our publicized benchmark datasets and
the experimental results and analysis below.

4.1 Experimental Setup
Generated datasets and deployed system for public use. As
described in Section 3.1, we have developed a set of tools to collect
and parse the large-scale and real-time data related to COVID-19
from multiple sources, including disease related data, demographic
data, mobility data, and social media (i.e., Reddit) data. We have
made our collected and proprocessed datasets (i.e., DB1-DB4) pub-
licly available through our website (https://COVID-19.yes-lab.org).
Based on DB1-DB4, we construct an AHIN for COVID-19 risk as-
sessment, which consists of 9,799 nodes (i.e., 52 nodes with type
of state, 3,209 nodes with type of county, 6,538 nodes with type
of POI) and 42,357 edges (i.e., 9,747 edges with relation type of R1,
32,610 edges with relation type of R2).
Environmental and Parameter Settings. The experiments are
conducted in Ubuntu 19.10 operating system, plus two Intel i9-
9900k, 4-way SLI GeForce RTX 2080 Ti Graphics Cards and 64 GB
of RAM. We use Adaptive Moment Estimation (Adam) to optimize
our model with learning rate of 0.005, and set epochs to 2000.
Evaluation Metrics. To quantitatively assess performances of dif-
ferent methods in COVID-19 risk estimations, we perform ten-fold
cross validations and use the measures of precision, recall, accuracy
(ACC), F1 and AUC (i.e., area under receiver operating characteristic
(ROC) curve) for evaluations.

4.2 Utility of 𝛼-Satellite for Risk Assessment
We first evaluate the utility of our system 𝛼-Satellite for real-time
COVID-19 risk assessment through a set of studies.
Study 1: real-time risk index of a given POI. Given a specific
POI (either user input or automatic positioning by Google Maps),
the developed system will automatically provide its related risk
index (i.e., ranging from [0,1], the larger number indicates higher
risk and vice versa) associated with the public perceptions towards
COVID-19 in this area (i.e., ranging from [0,1], the larger number
denotes more aware or optimistic and vice versa), demographic
density (i.e., the number of people per square kilometer in its re-
lated county), and traffic status (i.e., ranging from [1,5], the larger
number means heavier traffic and vice versa). Figure 4.(a) shows an
example: given the POI of 10900 Euclid Ave, Cleveland, OH 44106
(denoted as 𝑃𝑂𝐼1), the risk index provided by the system was 0.720
indicating relatively high risk (i.e., demographic density of 1,389,
and traffic status of 2) at 2:06pm EDT on May 31, 2020. Meanwhile,
the risk indices of corresponding county and state are also shown
in a hierarchical manner: Cuyahoga county with risk index of 0.792,
risk percentile of 100 in the state denoting highest risk among all
the counties in OH, and public perception of 0.514; OH state with
risk index of 0.730, risk percentile of 72 in the country denoting
relatively high risk among all the states in the U.S., and public
perception of 0.506. If users input POIs in the search bar such as
“grocery stores near me”, then the system will display the nearby gro-
cery stores using Google Maps application programming interface
(API) and automatically provide related indices which may vary
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Figure 4: Comparisons of risk estimations on different dates (given the same POI) and in different states (given the same time).

due to multiple factors such as traffic statuses, POI types, etc. Given
any POI, the provided risk indices in a hierarchical manner could
assist people with community mitigation (i.e., selecting appropriate
actions for protection while minimizing disruptions to daily life.
Study 2: comparisons of risk indices on different dates. In
this study, given the same location of 𝑃𝑂𝐼1, we examine how the
generated risk indices change over time. Figure 4.(b) shows the
comparison results on different dates at the time of 2:06pm EDT,
from which we have the following observations: (1) in general, its
risk indexes increased over days from March 8, 2020 (i.e., 0.131) to
May 31, 2020 (i.e., 0.720), as the confirmed cases in its related county
(i.e., Cuyahoga county) and its related state (i.e., OH) continued
to grow; (2) after the first three case were confirmed in Cuyahoga
county at OH on March 9, there was a sharp rise of risk index
compared with March 8 (from 0.131 to 0.314); (3) the risk growth
rates relatively slowed down after the public health and executive
orders were issued in responses to COVID-19: the government
declared a state of emergency on March 14, ordered Ohio bars and
restaurants to close on March 15 and issued a stay-at-home order
on March 22; (4) there has not yet dramatic growth of risks after
the reopening of businesses since May 1 till May 31.
Study 3: comparisons of risk indices in different areas. In this
study, given the same time, we compare the risk indices of differ-
ent POIs in different states. Figure 4.(c) shows the risk percentiles
of all states at 2:06pm EDT on May 31. For examples, New York
(NY) is with 100 percentile, OH - 72 percentile, Florida (FL) - 55
percentile, Arizona (AZ) - 22 percentile, and South Dakoda (SD) -
2 percentile; Figure 4.(a) gives examples of risk indices of specific
POIs in these states for illustration. The comparisons of POIs in dif-
ferent states indicate that the risk indices are positively correlated
to the numbers of confirmed cases in general but also associated
with other complicated factors such as fatality rate, demographics,
traffic transmissions, public perceptions, etc.

4.3 Systematic Evaluation of 𝛼-Satellite
In this study, we systematically evaluate the performance of 𝛼-
Satellite for real-time risk assessment. We launched our system for
beta test on April 20 and asked a group of users (e.g., professors,
students and staff in the university, editors, clinicians and company

employees) to use our system and annotate their query POIs (i.e.,
either relatively low risk (denoted as RL-risk) or relatively high
risk (denoted as RH-risk)). As of May 30, we got 6,992 annotated
POIs; by excluding the ones with conflicted annotations (i.e., POIs
with different labels), we finally obtained 6,538 annotated POIs
as the ground-truth (i.e., 2,201 POIs labeled as RL-risk and 4,337
labeled as RH-risk). Figure 5.(a) shows the results with different
settings, from which we can see that: (1) for different meta-paths,
P1 and P2 encoding traffic transmission information perform better
than P3; (2) 𝛼-Satellite with the combination of three meta-paths
(P1-P3) outperforms individual one in COVID-19 risk assessment;
(3) 𝛼-Satellite utilizing AHIN representations performs better than
merely using augmented features (denoted as Augment, that is,
given a POI, we concatenate its attributed features with the fea-
tures of its associated county and state); and finally (4) 𝛼-Satellite
using relation-specific transformation in the proposed heteroge-
neous GNN - which differentiates different types of relations in the
AHIN - obtains better results than the method (denoted as Variant)
that simply treats each type of relation equally in the information
propagation and aggregation process. Figure 5.(b) illustrates that
𝛼-Satellite achieves an impressive AUC of 0.9378.

Figure 5: Systematic evaluation of real-time risk assessment.

4.4 Comparisons with Baselines
In this section, we evaluate the performance of𝛼-Satellite in COVID-
19 risk assessment by comparisons with the state-of-the-art base-
lines, including network embedding methods (i.e., DeepWalk, meta-
path2vec), and GNN-based models (i.e., GCN, GAT, RGCN, MEIRec).
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• DeepWalk [20] performs truncated randomwalk and skip-gram
model for node embeddings in homogeneous network.

• metapath2vec [9] learns latent HIN representations by per-
forming meta-path guided random walk and skip-gram model.

• GCN [17] is a semi-supervised graph convolutional network
that averages the neighbors’ embeddings with linear projection.

• GAT [27] is a graph attention network model that aggregates
information of neighbors via self-attention mechanism.

• RGCN [23] is designed for heterogeneous graph and considers
different relations between nodes for information aggregation.

• MEIRec [10] is a heterogeneous GNN that merely propagrates
and aggregates information of meta-path guided neighbors.
For the methods of DeepWalk and metapath2vec, since they are

incapable of dealing with the attributes attached to the nodes, we
concatenate the attributed feature vector with the learned node em-
bedding for each node, which is fed to a classifier with three-layer
MLP for training and prediction. For GNN-based models that are
designed for homogeneous network (i.e., GCN, GAT), we first trans-
form the AHIN to the corresponding homogeneous graph based on
each meta-path, and then apply GCN and GAT on each homoge-
neous graph. Here we test all the meta-paths for GCN and GAT, and
report the best performances. The comparison results are shown
in Table 1, from which we can see that: (1) generally, GNN-based
models (i.e., GCN, GAT, RGCN and MEIRec) which combine the
node attributes and structural information in a more comprehen-
sive manner yield better performances than network embedding
methods (i.e., DeepWalk, metapath2vec); (2) among GNN-based
models, RGCN and MEIRec are designed for heterogeneous graph,
which could preserve richer semantic information and thus obtain
better results than GCN and GAT; (3) our proposed 𝛼-Satellite con-
sistently outperforms all baselines in terms of precision, recall, ACC,
F1 and AUC. The reason behind this is that, compared with RGCN
and MEIRec, 𝛼-Satellite leverages both of their advantages: it first
explores meta-path schemes to retrieve neighbors of the nodes, and
then considers different semantics of different types of relations for
neighborhood information propagation and aggregation.

Table 1: Comparisons with baselines.

Method Precision Recall ACC F1 AUC
DeepWalk 0.7120 0.9328 0.8572 0.8076 0.8840

metapath2vec 0.7364 0.9399 0.8714 0.8258 0.8952
GCN 0.7529 0.9441 0.8807 0.8377 0.9036
GAT 0.7526 0.9449 0.8808 0.8379 0.9044
RGCN 0.7830 0.9526 0.8974 0.8595 0.9146
MEIRec 0.7816 0.9530 0.8969 0.8588 0.9175

𝛼-Satellite 0.8380 0.9595 0.9239 0.8947 0.9378

4.5 Analysis of Large-scale Users
After we launched 𝛼-Satellite to the public for beta test on April 20,
it had attracted 51,190 users as of May 30. We have also received
a lot of good feedback from users in terms of the ease of use and
its utility for COVID-19 risk estimations, for examples:
• “I am on the Executive Leadership team of a group of 225 dental
practices across the United States. I live in Cleveland and saw your

tool profiled in Crain’s Cleveland Business. I would like to get access
to your tool, as this could be a valuable tool for our clinicians.”

• “We’d love to test out the site and give some feedback. Thanks for
putting together this tool. It’s much needed and I hope will help
curb transmission here in NEO.”

• “I read with great interest the fact that you released the risk cal-
culator and I looked into it. I think it can be very beneficial for
us, especially for clinical decisions, such as which procedures we
should do, when to open the Dental School, etc. Thank you so much
for doing this, it is great work.”
The experimental results and user feedback both demonstrate

the effectiveness of our system. In this study, based on Google
Analytics platform and zip codes of user query POIs (i.e., all the data
are anonymized and there are not privacy concerns or issues), we
perform further analysis of the distribution of 47,946 users (93.66%)
from United States who visited our system during April 20-May 31.
Figure 6 illustrates the geo-distributions of the users, from which
we have following observations: (1) The system has attracted the
users across all the states in the country. (2) The state of OH has
largest number of users (i.e., 38,636 users accounting for 80.58%),
which may be because people know our system mainly through
local media releases. (3) The top ten states with largest numbers
of users are listed in the table, eight out of which (as highlighted
in the table) are the ones with largest numbers of COVID-19 cases.
We further analyze the correlation between user and COVID-19
case distributions. Figure 7 shows the more severe regions with
larger numbers of COVID-19 cases (both at state and county levels)
the more 𝛼-Satellite users. This indicates that people from more
severe regions (i.e., with larger numbers of COVID-19 cases) might
have stronger interests using our system to assist with actionable
strategies for community mitigation.

Figure 6: The geo-distributions of 𝛼-Satellite users.
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Figure 7: 𝛼-Satellite user vs. COVID-19 case distributions.

5 CONCLUSION
To track the emerging dynamics of COVID-19 pandemic in the
United States, leveraging the large-scale and real-time data gener-
ated from heterogeneous sources, we have developed a data-driven
system (named 𝛼-Satellite) to provide real-time COVID-19 risk as-
sessment in a hierarchical manner to assist people with actionable
information for community mitigation. To comprehensively eval-
uate the performance of 𝛼-Satellite in real-time COVID-19 risk
assessment, a set of studies are first performed to validate its utility;
based on a real-world dataset consisting of 6,538 annotated POIs,
the experimental results show that 𝛼-Satellite achieves the area
of under curve (AUC) of 0.9378, which outperforms state of the
arts. After we launched the system for public tests on April 20, it
had attracted 51,190 users as of May 30. Based on the analysis of
its large-scale users, we have a key finding that people from more
severe regions (i.e., with larger numbers of COVID-19 cases) have
stronger interests using the system for actionable information. In
the further work, we will continue our efforts to expand the data
collection and enhance the system to help combat the pandemic.
Our developed system and generated benchmark datasets have
been made publicly accessible through our website.
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