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ABSTRACT

Genome architecture is a complex, multidimensional property of an organism defined by the
content and spatial organization of the genome’s component parts. Comparative study of entire
genome architecture in model organisms is shedding light on mechanisms underlying genome
regulation, evolution, and diversification; but such studies require costly analytical approaches
which make extensive comparative study impractical for most groups. However, lower-cost
methods that measure a single architectural component (e.g., distribution of one class of repeats)
have potential as a new data source for evolutionary studies insofar as that measure correlates
with more complex biological phenomena, and for which it could serve as part of an explanatory
framework. We investigated copy number variation (CNV) profiles in ribosomal DNA (rDNA)
as a simple measure reflecting the distribution of rDNA subcomponents across the genome. We
find that signatures present in rDNA CNV profiles strongly correlate with species boundaries in
the breve species group of Bembidion, and vary across broader taxonomic sampling in
Bembidion subgenus Plataphus. Profiles of several species show evidence of re-patterning of
rDNA-like sequences throughout the genome, revealing evidence of rapid genome evolution
(including among sister pairs) not evident from analysis of traditional data sources such as multi-
gene data sets. Major re-patterning of rDNA-like sequences has occurred frequently within the
evolutionary history of Plataphus. We confirm that CNV profiles represent an aspect of genomic
architecture (i.e., the linear distribution of rDNA components across the genome) via
fluorescence in-situ hybridization. In at least one species, novel rDNA-like elements are spread
throughout all chromosomes. We discuss the potential of copy number profiles of rDNA, or
other repeats, as a low-cost tool for incorporating signal of genomic architecture variation in

studies of species delimitation and genome evolution.
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Genome architecture is a complex, multidimensional property of an organism (Lynch and
Walsh 2007). At the highest levels, genome architecture comprises the spatial organization and
content of a genome’s component parts. A genome’s spatial organization encompasses both the
relative linear organization within chromosomes of different sequence types, as well as the
spatial layout of the genome within the nucleus; the latter is largely driven by DNA-binding
protein interactions (Zalensky 1998; Lynch and Walsh 2007; Di Pierro et al. 2017; MacPherson
et al. 2018). The component parts of a genome belong to classes of sequences (e.g., coding,
intergenic, repetitive, telomeric, centromeric, origins of replication), which themselves have their
own regional architecture defined by their subcomponents (e.g., the abundance and organization
of specific repeats, exon/intron layout), and their interactions with different classes of DNA-
binding proteins and protein complexes. Thus, overall genome architecture arises from a multi-
tiered network of DNA-DNA and DNA-protein interactions within the nucleus as constrained by
the genome’s linear organization, and the details of that architecture are central to genome
stability, DNA repair, gene regulation, DNA replication, and many other processes (Lynch and
Walsh 2007).

The re-patterning of architectural components is increasingly identified as a driver of
genome evolution and speciation (Kazazian 2004; Feschotte 2008; Biémont 2010; Hall et al.
2016). For example, rapid expansion of specific transposable elements (Stankiewicz and Lupski
2002; Kapusta et al. 2017), expansion and contraction of protein-coding gene families (Koonin
2009), and changes to methylation signatures that affect chromatin structure and gene expression
(Madlung et al. 2002; Di Pierro et al. 2017) are all examples of changes within a single
component of genome architecture driving genome differentiation and phenotypic evolution

among lineages.
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Research that could benefit from a comparative study of genome architectures can be
very costly. Documenting the entire genome architecture of a single specimen is challenging as it
entails mapping both the genomic position of sequence classes, and their interactions within and
among other classes of sequences and protein classes, a process that requires a combination of
costly analytical approaches (e.g., whole-genome sequencing and annotation, HI-C, CHiP Seq,
cytogenetic experiments) (Pinkel et al. 1988; Consortium 2002; Krzywinski et al. 2009; Di
Pierro et al. 2017); extending this to the multiple specimens and multiple species needed for
evolutionary studies can make the research prohibitively expensive.

However, for some research questions in evolutionary genomics, low-cost measures of
one component of the genomic architecture might fortuitously provide a signal that captures key
aspects of the architecture and offer a powerful lens to understand evolutionary history. The
usefulness of any simple, one-dimensional measure of something as complex as genome
architecture will depend upon how much that measure correlates with more complex biological
phenomena, and for which it could serve as part of an explanatory framework.

In this study, we explore whether the copy number variation (CNV) profile in ribosomal
DNA (rDNA), a simple measure reflecting the distribution and abundance of rDNA
subcomponents across the genome, is correlated with current and past patterns of gene flow
within a suite of species. Our study system is the Bembidion breve species group, a small group
of closely related ground beetle (Carabidae) species living in montane areas of western North
America. In a previous study, we found preliminary evidence that substantial CNV within
sequences of rDNA, easily measured through low-coverage genome sequencing, is present
across some species in the group (Sproul and Maddison 2017). The copy number (CN)

differences between species were sufficiently large as to suggest variation in rDNA repeats could
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account for genome-scale differences in repeat content between closely related species. For
example, in one specimen of Bembidion laxatum, 0.6% of all reads obtained through whole-
genome shotgun sequencing mapped to the rDNA cistron (the tandemly repeated region of
rDNA containing 18S and 28S genes). In contrast, for a specimen of B. lividulum (a species
extremely similar morphologically to B. laxatum, Fig. S1), an astounding 16.9% of all genomic
reads obtained mapped to the rDNA cistron — the vast majority mapping to a region of the
internal transcribed spacers (ITS) and 28S rRNA gene; that region showed dramatic CN inflation
relative to other rDNA regions (e.g., the 18S rRNA gene just a few thousand bases upstream).
This suggested that patterns of CNV in rDNA could be a simple measure of an aspect of
genomic architecture providing insight into genome evolution and speciation, and could be
strongly correlated with species boundaries.

Ribosomal DNA occurs in tandem arrays in the highly transcribed nucleolar organizing
regions of the genome, with clusters often appearing on more than one chromosome (McClintock
1934; White 1977; Schwarzacher and Wachtler 1993). However, numerous studies document the
transfer of rDNA fragments from nucleolar organizing regions into heterochromatin (tightly
packed, gene-poor, repeat-rich DNA) where they can undergo extensive multiplication, and
subsequent sequence divergence from functional rDNA (McClintock 1934; White 1977,
Schwarzacher and Wachtler 1993; Martins et al. 2006; Raskina et al. 2008; Nguyen et al. 2010;
Cioffi and Bertollo 2012; Iwata-Otsubo et al. 2016). These mobilized fragments of rDNA can be
thought of as newly birthed, rDNA-like repetitive elements that effectively become new satellite
DNAs. Mobilization of rDNA has been documented using cytogenetic methods in many groups
including plants (Raskina et al. 2004; Qi et al. 2015; Ding et al. 2016; Wang et al. 2016), fish

(Martins et al. 2006; Da Silva et al. 2012; Symonova et al. 2013, 2017), protists (Gong et al.
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2013), insects (Cabral-de-Mello et al. 2010, 2011; Nguyen et al. 2010; Panzera et al. 2012;
Palacios-Gimenez and Cabral-de-Mello 2015), bivalves (Pérez-Garcia et al. 2014), and mammals
(Sotero-Caio et al. 2015), and is regarded as strong evidence of rapid rearrangements over short
time scales (Jiang and Gill 1994; Raskina et al. 2004, 2008). Mobilization of such multicopy
gene families into heterochromatic regions is thought to be mediated through processes such as
retrotransposon activity (Dimitri et al. 1997; Dimitri and Junakovic 1999; Symonova et al. 2013;
de Bello Cioffi et al. 2015) and ectopic recombination (Nguyen et al. 2010).

Here we investigate patterns of rDNA CNV profiles in the breve group at two levels: the
variation across specimens within species, and the variation among species. We focus our efforts
on sequence-based evidence derived from low-coverage whole-genome sequencing data, but also
validate sequence-based patterns using cytogenetic approaches. We survey the distribution of
rDNA profile variation across the broader taxonomic group that contains the breve group
(subgenus Plataphus of Bembidion). As part of our investigation in the breve group, we outline a
simple approach to visualizing differences in the distribution of rDNA using copy number
profiles generated by mapping reads to a reference and comparing the signatures resulting from
copy number variation across specimens. Development of additional sequence-based approaches
to detect variation in components of genomic architecture that can be easily and inexpensively
measured from any specimen has potential to add clarifying signal to studies in species

delimitation and genome evolution.
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METHODS

Overview

We investigated patterns of CNV within the ribosomal cistron across a framework of
species recently delimited using evidence from molecular, morphological, and geographic data in
Sproul and Maddison (2017). For each of the nine recognized breve group species (Fig. S1), we
selected 3—8 specimens from across the species’s geographic range to test whether signatures
observed in rDNA profiles were variable among, and stable within, putative species boundaries.
We generated rDNA profiles by obtaining low-coverage whole-genome sequencing data and
mapped reads for each specimen to a 14 kilobase (kb) outgroup reference sequence of the rDNA
cistron of Bembidion aeruginosum. We chose B. aeruginosum as our phylogenetic studies (see
below) indicate it is the sister group of the remaining breve group species. We conducted
parameter sensitivity analysis for generating profiles, studied the effect of reference bias,
compared profiles obtained from males and females, explored stability of profiles across varying
read depth, tested whether profiles could be obtained from targeted sequencing workflows (i.e.,
hybrid capture), and searched for patterns correlated with geography or phylogenetic patterns
within species.

We used fluorescence in situ hybridization (FISH) to test the assumption that regions
showing inflated copy number (CN) in rDNA profiles represent mobilization events in which
fragments of rDNA have spread to new loci throughout the genome. We further validated
patterns observed in rDNA profiles, and explored variation in repeats outside of rDNA, by
conducting analysis of repetitive genomic elements using RepeatExplorer (Novak et al. 2010,

2013). We tested for broader taxonomic variation in rDNA profiles by generating profiles for 41
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species of the subgenus Plataphus, the clade that contains the breve group. Our methods are

explained in more detail below, and in Supplementary Materials.

rDNAProfile Variation in the breve Species Group

We imported paired-end reads into CLC Genomic Workbench v9.5.3 (CLC Bio, referred
to below as CLC GW), reads that failed to pass Illumina’s chastity filter were removed during
import. We trimmed reads (quality score limit = 0.05; maximum ambiguous bases per read = 2)
and excluded adapter sequences in CLC GW. We randomly down-sampled trimmed reads to 10
million per specimen, so that downstream analyses for all samples had a standardized number of
input reads. We mapped trimmed reads to a ~14 kb reference sequence of the rDNA cistron
obtained from a de novo assembly of reads from Bembidion aeruginosum using the ‘Map Reads
to Reference’ tool in CLC GW (match score = 3, mismatch = 4, insertion cost = 3, deletion cost
= 3, length fraction = 0.85, similarity fraction = 0.85). We chose read mapping parameters
following a sensitivity analysis in which we repeated read mapping across a range of parameter
settings using four representative samples. Additional methods used for the parameter sensitivity
analysis, for screening mapped reads for contaminants and assembly artifacts, and for obtaining
the rDNA reference sequence are provided in Supplementary Materials, Figures S2—3, and Table
S3. Following read mapping, we removed duplicate mapped reads in CLC GW.

We visualized the pattern of coverage depth resulting from read mapping by generating
graphs of read pileups in CLC GW. These graphs of coverage depth form the initial visual
component of rDNA profiles presented here (Fig. 1). We enhanced these graphs by converting

read depth to copy number (see Supplementary Materials), and applying a color ramp in Adobe
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[lustrator to indicate the magnitude of copy number differences within the profile. We applied
the color ramp such that the color of all rDNA profiles shown here indicates copy number
relative to the maximum value observed (206,239 copies, B. lividulum 5013) throughout all of
the profiles (Figs. 1-2).

We note that the approach used to generate rDNA CNV profiles described above relies
on CLC GW, which is commercial software with proprietary algorithms. However, we also
validated our workflow using open source algorithms for generating CNV profiles using freely
available software tools. In this approach we indexed the Bembidion aeruginosum rDNA
reference sequence and mapped Illumina reads in Bowtie2 v3.2.4.2 (Langmead and Salzberg
2012) using the ‘bowtie2-build’ command. We used SAMtools v1.9 (Li et al. 2009) to convert
read mapping output to BAM format, sort and index the resulting BAM files using the ‘sort’ and
‘index’ functions, and generate a table of read depth at each position using the ‘depth’ function
with flags ‘—a’ to retain 0-value positions, and ‘—d=0’ to avoid capping coverage values at 8000.
We generated rDNA profiles in R v3.5.1 (R Core Team 2013) by reading in the table of read
depth values using the ‘read.table’ command and making a barplot of coverage values using the

‘barplot’ function, which produces a plot that can be saved as a vector file.

Evaluating rDNA profile variation within and among species

We mapped rDNA profiles obtained for all breve group specimens onto the tree used to
infer species boundaries by Sproul and Maddison (2017) in order to determine the extent of
rDNA profile variation among species, and whether distinctive features in rDNA profiles (e.g.,
position of regions showing CN inflation, and the magnitude of inflation in those regions) within

a species showed stable signatures across individuals sampled from diverse geographic localities.
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We conducted within- and between-species analysis of rDNA profile shape by testing for
correlation in coverage depth patterns across the rDNA cistron for all breve group specimens.
Using the BAM files from which we generated rDNA profiles, we calculated coverage depth at
each position across the rDNA cistron for each sample using the “depth” command in SAMtools
v1.9 (Li et al. 2009). In this way, we converted each profile into ~14K point depth estimates, one
at each position along the reference sequence to which reads were mapped. We then calculated
Spearman’s rank correlation coefficient (or Spearman’s rho, denoted ‘p’) for pairwise
comparisons of all breve group specimens. Spearman’s rho is a nonparametric measure of rank
correlation, which in this case is measuring the degree of similarity in the variable of coverage
depth for each rank (or position) across the rDNA cistron between two samples. We calculated
Spearman’s rho and generated a histogram of rho values for all pairwise comparisons in R v3.5.1
(R Core Team 2013).

We classified rDNA profiles based on the presence of CN inflation within the rDNA
cistron as follows: “high” CN inflation (profiles in which maximum CN > 20-fold higher than
baseline CN); “moderate” CN inflation (maximum CN > 10-19.99-fold higher than baseline
CN); “low” CN inflation (maximum CN > 3-9.99-fold higher than baseline CN); and “lacks”

CN inflation (maximum CN < 3-fold higher than baseline CN).

Cytogenetic Mapping of Ribosomal DNA

We performed FISH experiments with three breve group species, using FISH probes to
target regions of 18S and 28S rDNA that vary in copy number within and among species. We
performed tissue dissection and fixation following Larracuente and Ferree (Larracuente and

Ferree 2015), and conducted FISH using protocols that combined steps from Larracuente
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(Larracuente 2017) and Symonova et al. (Symonova et al. 2015). We confirmed results using
multiple probe synthesis and post-hybridization wash strategies, and with multiple fluorophores.

Additional details of FISH methods are provided in Supplementary Materials and Table S4.

RESULTS

rDNA Profile Variation in the breve Species Group

An overview of methods used to generate and display rDNA profiles shown here is
provided in Figures 1 and 2.

Ribosomal DNA CNYV profiles generated from the breve species group showed species-
specific signatures of variation across the group (Fig. S3). Five of nine species showed unique
regions with inflated CN (i.e., 3—100+ fold CN increase) relative to the rest of the rDNA cistron
(Fig. 3, Table S2). Two species (Bembidion lividulum and B. breve) showed high CN inflation,
two species (B. geopearlis, and B. testatum) showed moderate CN inflation, and one species (5.
saturatum) showed low CN inflation (Fig. S3, Table S2). Although profiles for the remaining
four species (B. ampliatum, B. laxatum, B. oromaia and, B. vulcanix) lacked CN inflation,
species-specific signatures were still evident in the pattern of regions with reduced read mapping
coverage (e.g., the position of valleys in the rDNA profiles), as well as minor peaks (e.g., peaks
less than 3-fold higher than the baseline CN). This variation is primarily due to species-specific
patterns of sequence divergence and indel location relative to the reference sequence (Fig. S3).

Species-specific signatures observed in rDNA profiles were highly stable across multiple
individuals of each species sampled from various geographic localities (Fig. 3 and S5-S22). In

particular, the boundaries (i.e., the exact position in the rDNA cistron) of regions showing
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inflated CN were stable within species, and across varying read mapping parameters (Figs. 3 and
S2). Within regions showing CN inflation, maximum CN was somewhat variable within species,
most notably in B. lividulum and B. testatum, which both showed greater than 3.5-fold variation
in maximum CN across specimens (Tables S2 and S9; Figs. S5 and S12).

Spearman’s rho showed very strong correlation of CNV profile shape, as measured by
read depth patterns across the rDNA cistron, for within-species comparisons (average p of all
within-species comparisons = 0.966, SD = 0.032; range of average p = 0.933-0.998) (Figs. 4 and
S23, Table S9). The strength of correlation for between-species comparisons varied widely
(average p of all between-species comparison = 0.347, SD = 0.306). Correlation in comparisons
for which one or both species showed CN inflation was generally low (average p = 0.263, SD =
0.251), and moderate to strong in specimens of species which both lacked CN inflation (average
p=0.7883, SD =0.035, range p = 0.674-0.873), but not so strong as between-species correlation
(Figs. 4 and S23, Table S9).

Pairwise comparisons that included a rDNA profile obtained from a female specimen
consistently showed rho values that were as high or higher than male-male pairwise comparisons
(Figs. S5-S13, Table S10). Similarly, comparisons in which one profile was obtained from our
hybrid capture workflow had rho values within the range of variation seen in profiles generated
using our standard approach (Figs. S5-S13, Table S10). Profiles generated from the same
specimen using 10 million, 5 million, and 1 million reads were all nearly identical (Fig. S23).

The average total fraction of reads mapping to the 14 kb outgroup reference sequence
ranged from an average of 1.07% (SD = 0.2%, n = 7) in B. ampliatum to 14.7% (SD = 2.8%, n =

8) in B. lividulum (Table S2).
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Ribosomal DNA profiles for the two specimens of unknown taxonomic status that are
currently classified under B. saturatum lacked a broad region of CN inflation present in all B.
saturatum specimens, and accordingly showed only moderate correlation in profile shape with
B. saturatum specimens (average p = 0.580, SD = 0.043) (Fig. 4).

Among specimens of B. [ividulum we noted minor variation in profile shape (i.e., copy
number) within the inflated region; this variation was consistent with phylogenetic position and
geographic locality of the specimens sampled (Figs. 5, S5, and S14). We noted minor variation
in other species (e.g., B. saturatum), but this did not show obvious correlation with phylogenetic

or geographic patterns (Figs. S6 and S15).

Cytogenetic Mapping of Ribosomal DNA

Patterns observed in fluorescence in-situ hybridization (FISH) experiments corroborated
our hypothesis that copy number inflation of specific regions within the rDNA cistron is due to
mobilization of rDNA, and can represent substantial variation in location and abundance of
rDNA-like repeats across the genome. In all species, hybridization with probes targeting rDNA
regions lacking CN inflation (18S in B. lividulum, 18S and 28S in B. vulcanix, and 28S in B.
testatum) produced two strong FISH signals, whereas hybridization with probes designed in CN
inflated regions (marked 28S inflation in B. /ividulum, and slight 18S inflation in B. testatum)
showed more than two FISH signals (4-5 loci in B. testatum, and many loci in B. lividulum)
(Figs. 6, 7 and S25). In B. lividulum, sufficient tissue and replicate squashes were available to
confirm the distribution of FISH signals on condensed, well-spread chromosomes. Uninflated
18S rDNA mapped to two chromosomes, whereas markedly inflated 28S rDNA showed FISH

signals on portions of all 24 chromosomes (Fig. 7). Based on known position of
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euchromatin/heterochromatin boundaries in Bembidion chromosomes in meiotic chromosomes
(Maddison 1986), the pattern of FISH signals we observe suggests that much of the mobilized
28S rDNA-like sequences are concentrated in heterochromatic regions of chromosomes and
frequently absent on euchromatic tails (Fig. S26).

The fluorescence patterns seen in B. testatum chromosomes were the same whether the
sequences of the 28S probes matched those of B. lividulum or B. testatum. Similarly, the
fluorescence patterns seen in B. [ividulum chromosomes were the same whether the sequences of

the 28S probes matched those of B. lividulum or B. testatum.

Cluster Analysis of Repetitive DNA

Cluster analysis of genomic repeats corroborated general patterns observed in rDNA
profiles within the breve group. Bembidion lividulum had an average of 21 clusters containing
rDNA hits whereas none of the species that lacked CN inflation had more than four clusters with
rDNA hits. Beyond rDNA, the composition of major repeat categories was somewhat variable
below the species level, though some species-specific trends were evident (Figs. S5-S13). For
example, clusters of simple repeats (e.g., satellite DNA) were consistently more abundant in B.
ampliatum specimens than in other species (Fig. S7), whereas clusters of Class I transposable
elements (TEs) were notably abundant in B. breve (Fig. S8). Female specimens of all species
lacked (or had reduced) Class II TEs compared to male specimens of the same species (Figs. S5—
S13). B. lividulum showed variation in major repeat categories and superfamilies of Class I and
Class II TEs that followed geographic and phylogenetic patterns similar to rDNA profiles of the

same specimens (Fig 5).

rDNA Profile Variation across Bembidion (Plataphus)
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We found evidence in rDNA profiles that TDNA mobilization is widely distributed across
the subgenus Plataphus (Fig. 8). Seventeen of 41 non-breve group Plataphus specimens showed
CN inflation, with four species showing high inflation, seven with moderate inflation, and six
with low inflation (Fig. 8, Table S8). Five of the ten major clades in the subgenus had one or
more species with CN inflation in rDNA profiles (Fig. 8).

The distribution of rDNA profile variation across the subgenus Plataphus showed two
general phylogenetic patterns. We observed strongly discordant profile signatures between sister
groups, suggesting rapid divergence of CNV profiles among species that show little divergence
in other genomic regions (e.g., sequence divergence of single-copy genes). There were eight
instances in which rDNA profiles from a given species showed rDNA regions with greater than
10-fold increase in maximum copy number relative to the same region in their sister taxon (or
one or more species in their sister group) (Fig. 8, Table S2).

In contrast, in some regions of the phylogeny, small clades shared similar patterns of
inflation. For example, all species sampled from the planiusculum group showed inflation at the
same ITS region, though the degree of inflation varied across species in the group, and two
species showed additional regions of CN inflation in 18S (Fig. 8). In addition, three species
within the curtulatum group showed inflation within a conserved region of 28S, though the
magnitude and pattern of inflation across that region varied among species (Fig. 8). We did not

observe cases in which signatures of inflation persisted across larger, older clades.

DISCUSSION

Comparative study of genome architecture across individuals and species has potential to

illuminate new mechanisms underlying the complexity and diversity of life (Lynch and Walsh
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2007), yet mapping of whole genome architecture in most groups remains a technical and
financial challenge. In this study, TDNA CNYV profiles provide an example of how a simple
measure of one component of genome architecture can offer clarifying signal to evolutionary
studies. In the breve group, rDNA profiles provide clean signal that is highly correlated with
species boundaries (Figs. 3-4) in a complex group of very similar species, for which a multi-year
study of individual gene trees, multi-gene analyses, and morphological characters was previously
required for delimiting species (Sproul and Maddison 2017).

Initially, we found the consistency of rDNA profile signatures within species to be
surprising given that repetitive DNA is known to be dynamic even at the sub-population level
(West et al. 2014). In fact, aspects of our analyses supported the dynamic nature of repeats below
the species level. For example, in our cluster analysis we observed substantial within-species
variation in profiles of overall repeat abundance across major repeat categories. Although some
species-specific patterns were evident (e.g., increased simple repeats in B. ampliatum and
increased Class I TEs in B. breve; Figs. S7T-S8), patterns of overall repeat abundance are not
diagnostic of species boundaries in most cases (Figs S5-S13). Our analysis of Class I & II TE
abundance in B. lividulum showed a similar pattern of variability below the species level (Fig. 5).
Even within rDNA profiles, the maximum copy number of inflated rDNA regions showed
greater than 3-fold variation within species (Table S2), likely due to expansion and contraction
of mobilized arrays as a result of unequal exchange (Szostak and Wu 1980; Charlesworth et al.
1994; Eickbush and Eickbush 2007). Despite this within-species variation in absolute copy
number, our results demonstrate that by using a common reference sequence to generate a copy
number profile of a specific repeat, it is possible to cut through the noise caused by the dynamic

nature of repeats and view a condensed summary of evolutionary events (e.g., sequence
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divergence, indel accumulation, and repeat mobilization) that provides a stable signal
informative to studies at the species level. In some cases, these events have minimal impact on
the structure of the genome as a whole (e.g., sequence divergence, indel accumulation, or minor
mobilization events as in Fig. S3). But in other cases, they represent the re-patterning of a major
repetitive component of the genome (e.g., the degree of rDNA mobilization in B. lividulum, B.
breve, B. haruspex, and B. sp.nr. curtulatum “Idaho”) (Figs. 6-8, and S26), and a simple measure
of that component can add strong evidence regarding species boundaries that is not evident in
more commonly considered data sources such as gene-tree analysis of individual genes. Our
findings add to the growing body of literature that uses low-coverage sequence data and novel
approaches to extract signal of genome-scale variation (West et al. 2014; Dodsworth et al. 2015;
Denver et al. 2016; Lower et al. 2017), and highlights repeats as an underdeveloped source of
signal for evolutionary studies (Dodsworth et al. 2015).

Cytogenetic mapping of rDNA demonstrated that patterns of CN inflation observed in
rDNA profiles correspond to re-patterning of the abundance and relative position of rDNA-like
sequences throughout the genome (Figs. 6, 7 S25-26). This finding validates our hypothesis that
rDNA CNV profiles summarize one aspect of genomic architecture in that they can identify
repeat regions that contribute to variation in the relative linear position of repeat arrays across
chromosomes. Linear patterning of genomic components is central to determining DNA-DNA
and DNA-protein interactions in the nucleus, and empirical studies have demonstrated that shifts
in the abundance and position of blocks of repeats alter patterns of chromatin formation (e.g.,
heterochromatin/euchromatin boundaries), gene expression, and phenotypes (Wallrath and Elgin
1995; Lemos et al. 2010; Elgin and Reuter 2013), and are hypothesized to be a mechanism that

underlies reproductive isolation of some recently diverged lineages (Ferree and Barbash 2009;
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Feliciello et al. 2014; Hall et al. 2016). The relative importance that shifts in one repeat class
might have on entire genomic architecture is expected to vary widely among repeats and
organisms, and cannot be inferred from a CNV profile. However, surveys of such variation can
serve to identify new model systems for study, and efficiently direct efforts of more costly
approaches to investigate the role of repeat architecture on genome evolution and speciation.
Our FISH analysis also establishes a link between rDNA profiles and the results of many
cytogenetic studies across the tree of life that document rDNA movement as a driver of genome
evolution over short time scales (Raskina et al. 2008; Panzera et al. 2012; Gong et al. 2013;
Symonova et al. 2013; Sember et al. 2015), and demonstrates a low-cost, sequence-based
measure to visualize this long-studied source of variation. Although our sequence-based
approach lacks fine-scale details (such as locations within chromosomes) provided by
cytogenetic mapping techniques, it has the advantage that it can be applied to any specimen for
which DNA sequences can be obtained, including specimens with old and ancient DNA (Fig.
S27). Because DNA sequencing projects can be designed for increasingly high throughput, CNV
profiles of rDNA, or profiles of other repeats, have excellent potential as a tool for identifying
genomic components that contribute to genome-scale variation across groups, including in
groups that lack pre-existing genomic resources (e.g., annotated reference genomes).
Phylogenetic sampling of rDNA profiles across 50 species in the subgenus Plataphus
showed that rDNA mobilization events have been relatively common in the recent evolutionary
history of the group (Figs. 3 and 8). We did not detect IDNA mobilization events deeper in the
phylogeny of Plataphus, but we expect older events would be undetectable by our methods. If
earlier mobilizations did occur, they would now be invisible to our read-mapping approach if

mobilized rDNA escapes concerted evolution with functional rDNA clusters, and diverges
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sufficiently. This observation is consistent with cytogenetic studies on the distribution of rDNA
that include broad taxonomic sampling (Nguyen et al. 2010; Cabral-de-Mello et al. 2011;
Sember et al. 2015; Wang et al. 2016). Thus, our inferred number of mobilization events is a
lower bound, and the true number of mobilization events in the history of Plataphus could well
be higher. However, the fact that regions showing CN inflation are highly stable across
individuals within species (Fig. 3) suggests that IDNA mobilization events are sufficiently rare
as to allow for fixation of the signature across individuals within species (likely facilitated
through concerted evolution among mobilized clusters), but sufficiently common as to frequently
show different patterns between closely related species. Our finding of eight instances of sister-
group pairs that differ strongly in rDNA profile features indicates that genomic differentiation
through re-patterning of rDNA-like sequences has occurred frequently and rapidly within
Plataphus. We see no obvious biological pattern (e.g., life history traits, patterns of habitat use)
that could explain the differential patterns between sister taxa. Rather, given that rDNA
mobilization has been observed in many eukaryotic groups, we hypothesize that some highly-
conserved intra-genomic process can give rise to rDNA mobilization somewhat stochastically.
Of particular interest for future investigation is the potential role of non-LTR retrotransposons
(e.g., R elements) that interrupt rDNA units at insertion sites that are highly conserved across
eukaryotes (Eickbush and Eickbush, 2007). The genomic restructuring of rDNA-like sequences
has been hypothesized in other taxa to drive speciation (Raskina et al. 2004; Symonova et al.
2013), and this could have played a role in the diversification of Bembidion subgenus Plataphus.
The highly stable nature of rDNA profile shape within species, together with the pattern of
dramatic variation in rDNA profiles between species, provides a strong visual illustration of the

paradox that although rDNA is one of the most highly conserved fractions of the eukaryotic
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genome, it can be simultaneously a hypervariable driver of genome evolution (Raskina et al.

2008; Gibbons et al. 2014; Malone 2015).
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FIGURE CAPTIONS

Figure 1. Flowchart illustrating the steps used to generate rDNA profiles from short-read sequencing
data.

Figure 2. A comparison of rDNA profiles shown with relative vs. fixed scales on the y-axis for two
specimens: (a) Bembidion laxatum (5086), and (b) B. lividulum (3486). Profiles on the left are scaled
relative to 50,000 copies, and the same profiles on the right constrained to the same maximum height. We
use the latter scaling strategy throughout the paper to simplify visual display of rDNA profiles. (¢) To
emphasize differences in CN that are less apparent in profiles that are scaled to a uniform height, we
applied a standardized color ramp to all rDNA profiles included in this study such that any region

with >20K copies = red, >15K copies = orange, >10K copies = yellow, >5K copies = green, and <2.5K
copies = blue.

Figure 3. The tree used to infer species boundaries of the breve species group (adapted from Sproul and
Maddison (2017), Fig. 7) with rDNA profiles. Terminal taxa are colored by inferred species. IDNA
profiles for several specimens of each species are shown to the right of the terminals. One to two profiles
for some species (e.g., Bembidion lividulum and B. ampliatum) were excluded to facilitate visual display;
however, all profiles not shown corroborate patterns evident in the figure. Profiles for two
morphologically distinct specimens suspected of belonging to cryptic lineages in Sproul and Maddison
(2017) are indicated by gray stars. All profiles generated are shown in Figs. S5-S13. Branch length is
proportional to relative divergence with scale bars indicating 0.01 units.

Figure 4. A histogram of rho values summarizing the results of the correlation analysis between rDNA
profiles of specimens, with comparisons within and between species indicated.

Figure 5. Summary of data obtained from Bembidion lividulum specimens including rDNA profiles,
repeat content of Class I & II TE superfamilies, and a map of western North America showing sampling
localities of the sampled breve group specimens. Localities with specimens belonging to Clade 1 are
shown by circles, while localities with specimens belonging to Clade 2 are shown by stars. Large circles
and stars (outlined in red) indicate localities from which we obtained rDNA profiles.

Figure 6. FISH signals obtained by cytogenetic mapping of tDNA in Bembidion lividulum and B.
vulcanix. (a) FISH signals resulting from hybridization of 18S probes to B. lividulum nuclei; (b) FISH
signals resulting from hybridization of 28S probes to B. lividulum nuclei; (c) FISH signals resulting from
hybridization of 18S probes to B. vulcanix nuclei; (d) FISH signals resulting from hybridization of 28S
probes to B. vulcanix nuclei. Ribosomal DNA profiles for B. lividulum and B. vulcanix are shown below
their respective FISH images with the position of either 18S or 28S FISH probes indicated by pink boxes
and arrows.

Figure 7. FISH signals obtained by cytogenetic mapping of rtDNA in Bembidion lividulum. (a) FISH
signals resulting from hybridization of 18S probes to condensed chromosomes (b) FISH signals resulting
from hybridization of 28S probes to condensed chromosomes. Ribosomal DNA profiles for B. lividulum
are shown below FISH images with the position of either 18S or 28S probes indicated by green boxes and
arrows.

Figure 8. Maximum likelihood tree of Bembidion subgenus Plataphus, the subgenus containing the breve
species group, with rDNA profiles for many species. The species groups discussed in the text are
indicated with colored bars and text to the right of rDNA profiles. Species with regions in rDNA profiles
that differ >10-fold in copy number relative to the same region in a sister species, or one or more species
in their sister group, are indicated with a gray circle.
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