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ABSTRACT: We develop a scaling theory and perform
molecular dynamic simulations of weakly interacting coacervates
with electrostatic interaction energy per charge less than thermal
energy kT. Such liquid coacervates formed by oppositely charged
polyelectrolytes can be asymmetric in charge density and number
of charges per chain. We predict that these coacervates form
interpenetrating solutions with two correlation lengths and two
qualitatively different types of conformations of polyelectrolytes
with lower and higher charge densities, which are analogous to
chain conformations in quasi-neutral and in polyelectrolyte
solutions, respectively. Weaker charged chains are attracted to
and adsorbed on stronger charged chains forming a screening
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“coat” around the stronger charged polyelectrolytes. Salt added at lower concentrations screens the repulsion between stronger
charged chains, thereby reducing the thickness of the screening coat and resulting in the nonzero net polymer charge in the
coacervate. At higher salt concentrations salt screens the attraction between oppositely charged chains, decreasing the
coacervate concentration and its polymeric charge density. Thus, we predict a nonmonotonic salt concentration dependence of
polymeric charge density for asymmetric coacervates. A phase diagram for a mixture of oppositely charged polyelectrolytes at
various compositions is proposed for different salt concentrations.

1. INTRODUCTION

Mixing oppositely charged polyelectrolytes often results in
phase separation into a dense phase, called a coacervate, and a
dilute solution, containing isolated chains and sometimes small
clusters of oppositely charged chains, called complexes.
Coacervates consisting of oppositely charged polyelectrolytes
are encountered in nature' and used in food,”® pharmaceut-
ical,”” and other industries.””® Even though coacervates
formed by mixing oppositely charged polymers have been
extensively studied experimentally” "® over many decades,
there is still no satisfactory description of their structure on a
molecular level. Prior theoretical studies of symmetric
coacervates include the Voorn—Overbeek model'*'> combin-
ing Flory—Huggins with Debye—Hiickel theories to incorpo-
rate fluctuations in concentrations of charges. Although this
model ignores the connectivity of charges on the chains, its
predictions are in qualitative agreement with experiment. The
effect of connectivity of charges on density fluctuations within
the one-loop random phase approximation (RPA) was
performed by several groups.m_w This approximation assumes
that polymers are weakly perturbed from their ideal Gaussian
conformations, and it is therefore applicable only for
symmetric weakly charged polyelectrolytes. Zhang and
Shklovskii® mapped out a phase diagram for various salt
concentrations, describing the behavior of coacervates and
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complexes formed by oppositely charged chains with all
monomers charged and interacting with each other upon
contact with electrostatic energy ~kT, where k is Boltzmann
constant and T is absolute temperature. Another proposed
mechanism is coacervation driven by the release of condensed
counterions.”' ~* Complexation of oppositely charged poly-
electrolytes has also been investigated by Monte Carlo”* and
molecular dynamics simulations™ which demonstrated the
formation of different polyelectrolyte complexes accompanied
by the counterion release. The field-theoretic simulation
methods”*™*® made it possible to study complexation and
coacervation in symmetric polyelectrolytes with large fluctua-
tions, accounting for inhomogeneities in the polymer
concentration. At high concentrations, these methods yield
results similar to those obtained within the one-loop
approximation.

In this work, we present a scaling theory of the structure of
coacervates formed in a solution of polyanions mixed with
polycations, containing a different density of charges along
polyanion and polycation contours, various charge stoichio-
metries, and salt concentrations. We demonstrate that chain

Received: September 25, 2018
Revised:  October 31, 2018

Published: November 20, 2018

DOI: 10.1021/acs.macromol.8002059
Macromolecules 2018, 51, 9572—9588


pubs.acs.org/Macromolecules
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.8b02059
http://dx.doi.org/10.1021/acs.macromol.8b02059

Macromolecules

conformations in coacervates can significantly deviate from
ideal (Gaussian) in the case of large asymmetry in charge
density along polyanion and polycation chain contours. We
also generalize the coacervation theory of Shklovskii and co-
workers”’ by accounting for polymer flexibility and describing
the detailed structure of coacervate and complexes on length
scales smaller than the correlation length.

In section 2 we briefly review chain conformations in
solutions of positively or negatively charged polyelectrolytes
before they are mixed together. In this section, we also review
the scaling results for symmetric polyelectrolyte mixtures of
polyanions and polycations. In section 3 we develop scaling
theory of weak (liquid) coacervates of oppositely charged
polyelectrolyte chains. The effect of salt on weak coacervates
and the phase diagram of the solution of oppositely charged
polyelectrolytes is described in section 4. The details of
molecular dynamics simulations are presented in section S.
The main results are summarized and discussed in section 6.

2. REVIEW OF POLYELECTROLYTE SOLUTIONS AND
SYMMETRIC MIXTURES OF OPPOSITELY CHARGED
POLYELECTROLYTES

Polyelectrolytes are polymers containing ionizable groups that
can dissociate upon dissolution in polar solvents, leaving
charges on polymer chains and counterions in solutions.*
2.1. Review of Chain Conformations in Polyelectro-
lyte Solutions. A polyelectrolyte chain in a dilute solution can
be described at the scaling level as a stretched array of the so-
called electrostatic blobs.””*” An electrostatic blob is a section
of a polyelectrolyte whose energy of electrostatic interaction
with an adjacent chain section of similar size and charge is on
the order of thermal energy kT. The average number of
monomers in an electrostatic blob of a polycation is denoted
by g, with the fraction f, of them charged. The charge of an
electrostatic blob of this polycation is ef,g,,, and its size in a 6-
solvent is D,, ~ b.g, 12, where b, is the Kuhn length31 of the
polycation and e is the elementary charge (see Figure 1). The

polyanion polycation

D, =D,

Figure 1. Conformations of a polyanion and a polycation in dilute
solutions (top) and in a mixture of symmetric oppositely charged
polyelectrolytes (bottom).

approximately equal sign “~” denotes scaling equality up to a
coefficient on the order of unity. The electrostatic energy of
repulsion between neighboring blobs of a polycation is

(ef+ge+)2

~ kT
8bge+1/2

(1)

From the definition of the Bjerrum length I;, the distance at
which two elementary charges in a solvent with dielectric
constant ¢ interact with thermal energy ¢*/(el) = kT, one can
express the number of monomers
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of an electrostatic blob for a polycation in a @-solvent in terms
of the dimensionless ratio of the Bjerrum length, Iz, and the
Kuhn length, b,, of the polycation
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(4)
Similarly, the number of monomers in and the size of an
electrostatic blob of a polyanion in a 6-solvent is obtained from
the above equations by replacing “+” with “—”

g ~ (u_f_z )—2/3 (5)
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~ b (uf?)3 (6)

and denoting the dimensionless ratio of Bjerrum and Kuhn
lengths for the polyanion by u_ = Iz/b_. We consider here
polyelectrolytes in a @-solvent, while the results for a good
solvent are summarized in Appendix A.

A typical conformation of polyanion chains with N_ > g,
monomers in a dilute solution without added salt is a linear
array of N_/g,_ electrostatic blobs*”** due to the long-range
electrostatic repulsion (see Figure 1). The contour length of
this array is equal to the end-to-end distance of the
polyelectrolyte chain in a dilute salt-free 6-solution

b2N_
D

e—

N

~D — =~

8-

L

(7)

up to the logarithmic corrections.”””” The conformations of
these chains in salt-free semidilute polyanion solutions are
linear arrays of electrostatic blobs on length scales up to
correlation length, defined as the average distance between the
nearest monomers on neighboring chains

(8)

where g_ is the number of monomers per correlation volume of
size £_. The charge ef g of the polyelectrolyte section of size
£_ is completely compensated by counterions within this
correlation volume, so that the semidilute solution is on
average electroneutral on this correlation length scale £_ as
well as on larger length scales. A polyanion chain on larger
length scales is a random walk of stretched chain sections of
size &_ with root-mean-square end-to-end distance””*°

R_~¢&(N_/g )'? ©)

The correlation length £_ of a semidilute polyelectrolyte 6-

solution decreases with increasing polymer concentration c_
29,30
as

£ (b ) 2 (u Ay (10)

The osmotic pressure of a polyelectrolyte solution is positive
and is dominated by counterions. For salt-free solutions, it is
on the order of kT per counterion—the van’t Hoff law II =
kTc_f_. The properties of dilute and semidilute solutions of
polycations are similar to the corresponding polyanion
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solutions (replace “—” by “+” in the above equations). At
higher concentrations of polycations

G > oy b+_3(”+f+2 )1/3 (11)
the correlation length of the polyelectrolyte solution is smaller
than the size of the electrostatic blob. Such solutions are called
quasi-neutral with chain conformations almost ideal on all
length scales in -solvents.

2.2. Review of Symmetric Mixtures of Oppositely
Charged Polyelectrolytes. We consider coacervates formed
by complexation of oppositely charged polyelectrolytes in a 0-
solvent for uncharged backbones, while the results for a good
solvent are presented in Appendix A. In this section, we briefly
discuss scaling predictions for symmetric polyelectrolyte
mixtures of polyanions and polycations, which are analogous
to symmetric block polyampholytes.** >* By symmetric, we
mean polyelectrolytes with the same electrostatic blob size D,,
= D,_ and, therefore, the same number density of charges along
the array of electrostatic blobs of polyanions and polycations,

Y, = y_, where
1/3
) (12)

fe._

D
and the same expression for y, with “=” replaced by “+”. Note
that symmetric coacervates could have different degrees of
polymerization of polycations and polyanions N, # N_ and
different polymeric charges N,f, # N_f_. We require
symmetry of electrostatic blob sizes and of the resulting line
charge densities eq 12, but not necessarily of the degrees of
polymerization of chains. The electrostatic blobs, which repel
the same sign neighboring blobs with energy kT, attract the
oppositely charged blobs of the same size and charge
magnitude with energy kT. This attraction of oppositely
charged blobs in a solution of oppositely charged polyelec-
trolytes leads to their precipitation into a coacervate (Figure
1).

In the absence of salt, the coacervate has to be electroneutral
with the same number density of positive and negative charges.
Even though there is the same number of positive and negative
blobs in the coacervate, the oppositely charged blobs are more
likely to be close to each other because of lower electrostatic
energy and higher statistical weight of these configurations.
The resulting net attraction is balanced by the short-range
repulsion (three-body in a @-solvent or two-body in a good
solvent) that stabilizes coacervate at equilibrium concentration
and zero osmotic pressure, corresponding to the dense packing
of electrostatic blobs. Note that the monomer number density
of polyanions and polycations in a symmetric coacervate could
be different as long as the number density of monovalent
charges is the same

f
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f+ge+ ~ 1 2 1.2
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f+ E+ = = y+slB

(13)

with the same equilibrium concentration of charges as in each
of the blobs. Thus, the monomer concentrations of polycations
and polyanions are reciprocally proportionally to the fractions
of charged monomers on the chainsT,/c_ = f_/f, and will only
be the same if the fractions of charged monomers are identical

fo=f~
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3. WEAK (LIQUID) COACERVATES

Consider the asymmetric coacervate with different number
densities of charges along the chains y, # y_. For definiteness,
we assume that polyanions have higher linear charge number
density along the array of their electrostatic blobs eq 12 than

polycations
> (14)

In this case, polyanions create a higher electric field (see Figure
2a) that attracts polycations and forces them to adsorb on a

Figure 2. (a) The electric field (arrows show its lines) around the
stronger charged polyanion attracts polycations. (b) A polycation coat
around a polyanion is stabilized by the steric repulsion between its
monomers. (c) The polycation coat of a polyanion is also
electrostatically attracted to a neighboring polyanion. In addition,
neighboring coats are stitched together in an asymmetric coacervate
by bridges of polycation chains (thick black curves).

polyanion forming a screening coat around it (Figure 2b). The
attraction of polycations within this coat to the polyanion is
stabilized by the short-range (three-body in a 6-solvent or two-
body in a good solvent) repulsion between polycations.

The coacervate can be divided into cells consisting of
stronger charged polyanions at their centers and compensating
coats of weaker charged polycations. Each such cell is overall
electroneutral, and therefore the electric field at the boundary
between neighboring cells is zero. Nevertheless, these cells
attract each other electrostatically. Because electrostatic
interactions decay with the distance between charges, the
attraction of a polyanion to the coat of the neighboring cell at
typical distance k&_ < &_ is stronger than its repulsion from the
polyanion in the center of this cell at the distance £_, where
1/2 < k < 1. In addition to this electrostatic attraction, there is
an attraction between neighboring cells induced by the
entropic elasticity of polycations bridges stretched between
regions of the attractions of neighboring polyions. Therefore,
the neighboring coats are stitched together by shared
polycation chains, different parts of which are attracted to
the corresponding polyanions (see Figure 2c). Both electro-
static attraction and bridging are compensated by the short-
range repulsion between and within polycation coats and thus
result in the overall zero osmotic pressure of the coacervate.

The unique property of asymmetric coacervates formed by
oppositely charged polyelectrolytes with unequal charge
densities y, < y_ is that they form two interpenetrating
polymeric liquids characterized by two corresponding
correlation length: &, for polycations and &_ for polyanions.
The correlation length of the polycation “coat” around
polyanions, &,, is determined by the local balance of
electrostatic attraction of polycations to polyanions and
short-range repulsion between polycations. The average
distance between sections of neighboring polyanions, the
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correlation length &_, is the thickness of the polycation coat at

which the electroneutrality of the coacervate is established.
In salt-free solution we distinguish two cases sketched in

Figure 3: (a) The semidilute case for long polyanions with the

polyanion D, D, <D, polycation D,

' I "N

higher charge density

e

— lower charge density

I)L’- < §+< I)U+< é:.

Figure 3. Conformations of a polyanion and a polycation in dilute
solutions and in a mixture of asymmetric oppositely charged
polyelectrolytes: (a) double-semidilute coacervate with L_ > £_ and
(b) dilute—semidilute coacervate with L_ < £_.

length L_ of the arrays of their electrostatic blobs (eq 7) larger
than correlation lengths £_, resulting in the coacervates with
overlapping polyanion chains, is considered in section 3a. We
will show that this case corresponds to L_ > D,_(D,,/D,_)"’®
in a O-solvent (see eq 25). (b) The dilute case for shorter
polyanions with L_ < £_, discussed in section 3b, corresponds
to coacervates with spherically symmetric compensating coats
on length scales between L_ and £_.

Note that we distinguish these two cases based on the size
L_ (eq 7) of polyanion chains with higher charge density in
dilute salt-free polyelectrolyte solution relative to the
polyanion correlation length £_ of coacervate and not to the
polycation size, which can be either larger or smaller than L_.
For simplicity, we assume that both polyanions and
polycations have the same Kuhn length, b, = b_ = b, and
therefore dimensionless ratios of Bjerrum to Kuhn lengths are
also the same, u, = u_ = ly/b = u.

3a. Weak (Liquid) Coacervates with Long Stronger
Charged Polyelectrolytes: Double-Semidilute Inter-
penetrating Solution. If the stronger charged polymer
(say polyanion) is much larger than its electrostatic blob L_ >
D,_, the electric field around it felt by the polycation screening
coat has cylindrical symmetry (see Figure 2a). The electro-
static energy of attraction between a polyanion with f N_
charges and its compensating polycation coat of equal and
opposite total charge and thickness £_ < L_ is

E ~ kTly f N_ In(£_/&,) (15)

Here £, is a minimal radius of the polycation coat to be
described in more details below (see eq 20). Expression 15 can
be interpreted as the energy Q*/(2C) of a cylindrical capacitor
of thickness £_ with the charge Q = ¢f N_ and the capacitance
C =~ eL_/In (e£_/&,). This attraction is balanced by the
osmotic repulsive energy of the polycation coat containing
f-N_ compensating charges and therefore f N_/f, monomers
in the coat volume L_¢_* with the average polycation
concentration in the coacervate ¢, ~ f_N_/(f,L_£_*). The
osmotic free energy of repulsion between polycations
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compensating the charge of a single polyanion in volume
L_£ % in a G-solvent with the third virial coefficient ~b° is
b4 f 5/3 N

4

FAE (16)

Here we used relation 7 between L_ and N_. Minimizing the
sum of electrostatic (eq 15) and osmotic (eq 16) free energies
per polyanion

E, ~ kTb'G (L_¢ %) ~ kT

b4 f_2/3

g
+ 5 4f3u2/3
- I+

F=FE+E,~kIf N_|lgy In|==
S
(17)
with respect to £_, one obtains the width of the coat—the
polyanion correlation length

1/12
D
~ bijs_ﬂt ik DH_[ ot
£ D_

1/8
& ) forL_> &

(18)

Here we used eqs 3 and 6 for D,, and D,_. The average
polycation number density in the coacervate is

1/2,1/6_ 1/3
N LT (D
TToLe?r T b’ ~ D, (D

1/4
] forL_> &

(19)
Our prediction in eq 19 is verified by the coarse-grained
molecular dynamics simulations of @-coacervates formed by
asymmetric oppositely charged polyelectrolytes (see section 6
for the details of the simulations). In Figure 4 we plot ¢,0°/

1 T

2.
>
O
R\
: N 2:/(/3
S~ 0402008 |75/
N 9
-
o g@g q f=3/61
+ g O f=4/61
© &5 A gt
2 5/ f=6/61
N &> f=1161
0.1 T T

Figure 4. Number density ¢, of polycation monomers in a coacervate
normalized by f,!/2/c°, where f, is the fraction of charged polycation
monomers and ¢ is the Lennard-Jones length (eq 47), as a function of
normalized Bjerrum length Iy/6. Coacervates are formed by mixing
polyanions containing N_ = 101 monomers per chain (fraction f_ =
1/2 of them charged) with polycations containing N_ = 61 monomers
per chain and charge fraction f,, as indicated in the figure legend.

£,//* as a function of normalized Bjerrum length /o, where &
is the simulation monomer size. The plot confirms the scaling

model prediction that the ratioT,/ f+1/ 2

collapses the simulation
data onto a master curve (see eq 19) for polycations with
different fractions of charged monomers f, between 3/61 and
7/61 for the same fraction f = 1/2 of charged monomers
along the polyanions. This master curve is well fit by the power
law function (dashed line in Figure 4) ¢,6°/f,"/* = 0.6(ly/5)"*.
The slope 0.4 of the master curve on the double-logarithmic
plot is slightly larger than its asymptotic value 1/3 predicted by

12 o ZB1/3f 1/6b_10/3 ~ lB1/3'

the scaling model ¢, /f,
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The number of monomers g, in the correlation volume &,*
of the polycation coat is determined by the close-packing
condition, g, ~¢,&,%. Conformations of polycation chains on
the length scales up to this correlation length are Gaussian, g,
~ (&,/b)? since the correlation length &, is smaller than the
size of the electrostatic blob D,,, and the polycation solution is
in a quasi-neutral regime with ¢, > ¢,, (see eq 11). Equating
these expressions for g,, we find that the corresponding
correlation length is reciprocally proportional to the concen-
tration, as expected in the quasi-neutral regime in a f-solvent’’

1/4
LS 2 e S Dy
gb® WY Dy (20)

where we used expression 19 forc,. For this equilibrium value
of the monomer concentration ¢ =~ %, the energy of the
electrostatic attraction of the polycation section of the size &,
containing f,g, positive charges to the polyanion with linear
charge number density y_ is on the order of thermal energy
kTlgy_f.g, ~ kT. These polycation sections of size &, sterically
repel each other with the energy kTb% ¢, ~ kT.
The average concentration of positive charges in the

asymmetric coacervate is

1/4

] (21)

I f.8, 1 (
c, =~ >~
+F 3 /21 §/2
S Iy "Dy

Note that for symmetric coacervate with D, = D,_ this
equation for the concentration of charges reduces to eq 13.

The sizes of electrostatic blobs D,, of polycations and D,_ of
polyanions determine the multiscale structure of the
asymmetric f-coacervate

)1/8

with three important length scales. The smallest length scale
D,_ is related to the strongest interactions—intramolecular
electrostatic repulsions of charges along the polyanions. The
next length scale—the correlation length of the polycation
coat, £,—corresponds to the balance of electrostatic attraction
of polycations to polyanions and short-range nonelectrostatic
repulsion between polycations. The largest length scale, £_, is
the distance between polyanions at which the electroneutrality
of the coacervate is achieved.

Thus, asymmetric liquid coacervate consists of two inter-
penetrating polymer solutions, each with its own correlation
length and qualitatively different chain conformations (Figure
Sa). These conformations are similar to conformations of pure
polyanion and pure polycation solutions with corresponding
polymer concentrationsc, and c_. Higher charge density chains
(polyanions) with L_ > £_ adopt the conformations similar to
polymer conformations in semidilute polyelectrolyte solutions.
This observation is supported by a good agreement between
structure factors of polyanions in the coacervates and in the
pure polyanion solutions (see Figure Sb).

The largest of the three scales we are discussing in eq 22 is
the correlation length of polyanions that determines the
position of the maximum of the polyanion structure factor S(q)
at wavevector q =~ 1/£_ (see Figure Sb). Different sets of data
in this figure correspond to different strengths of electrostatic

D

e+

D

e—

D,

D

e—

D_<¢ = De+(£

e+

1/4
] <D, < = De+[

forL_ > &_ (22)
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b)

Figure S. (a) Conformations of polyanions, shown by blue lines, in
the coacervate (left) are analogous to their conformations in solutions
of only polyanions (right) at the same concentrations. (b)
Comparison of the structure factors S(q) of polyanions in coacervates
(symbols) and in semidilute solutions (lines) with the same polyanion
concentration c_ for various values of the Bjerrum length . Polyanion
chains contain N_ = 101 monomers each with charge fraction f_ =
51/101, while polycation chains contain N, = 61 monomers each with
charge fraction f, = 7/61. See eq SO for the details of the S(q)
calculation.

interactions, characterized by the Bjerrum length I;. Increasing
the strength of the electrostatic attraction requires a stronger
short-range repulsion between polycations to balance this
attraction at higher concentrations of a thinner coat. The
corresponding decrease of the coat thickness £_ with the
Bjerrum length I predicted by eq 18 can be seen in Figure Sb
as a shift in the position of the maximum of the structure factor
S(q) to higher wavevectors q ~ 1/&_.

On length scales smaller than the correlation length &,
polyanion conformations in both coacervates and semidilute
polyelectrolyte solutions are linear arrays of electrostatic blobs
of size D,_ (see the lower set of points in Figure 6 with a slope
approaching —1 with increasing Bjerrum length). On length
scales larger than the correlation length &_, polyanion
conformations both in coacervates and in semidilute
polyelectrolyte solutions are random walks with chain size

1

P(q)

0.01 4

0.005

Figure 6. Form factors (see eq 51) of polycations for different values
of Bjerrum length I (upper sets of points, solid line is their best fit by
the Debye function, see eq 52) with N, = 61 monomers per chain and
charge fraction f, = 7/61 and of polyanions (lower sets of points) with
N_ = 101 monomers per chain and charge fraction f_ = 51/101.
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N 1/2
R_=~ f_(—_) ~ bN_”z[

9/16
] forL_> &
8

(23)

where g_ is the number of polyanion monomers in the
correlation volume £_3

D D

e— e—

D 9/8
g~ ge_i ~ ge_[i) forL_ > &
(24)

The validity of this semidilute description requires polyanions
in coacervates to be above the overlap with each other, N_ >
g_, which is the same condition as L_ > £_ corresponding to

N_/g_=L_/D_>(D,/D.)" (25)
Note that polyanion chain size becomes that of a random walk
R_ ~ bN_'? in symmetric O-coacervates with D,, = D,_ but
increases in asymmetric coacervates with the asymmetry factor
D../D,_ (see eq 23).

Because both intra- and intermolecular electrostatic
repulsions between polycations are too weak to affect their
conformations, the polycation form factor can be approximated
by the Debye function (see upper sets of points and solid line
in Figure 6). Thus, polycations adopt random conformations
on all length scales in a f-coacervate with chain size

R, =~ bN,'? (26)
as expected for the quasi-neutral solution withc, > c,.

The similarity between polyanions in coacervates and
polyelectrolyte solutions extends beyond chain conformations.
Salt-free polyelectrolyte solutions have a characteristic peak in
the structure factor S(q). Stronger charged polyanions in the
coacervate exhibit similar strong correlations manifested in
their structure factor (see Figure 7). The role of lower charge
density chains (polycations) in the coacervate is similar to the
role of counterions in polyelectrolyte solutions—to screen the
charge of strongly charged chains. The difference between the
polyelectrolyte solutions and the coacervates is that the
behavior of free counterions is dominated by their entropy,

and therefore the osmotic pressure of salt-free polyelectrolyte
solutions is ~kT per counterion.”” The compensating charges
in the coacervates reside on the lower charge density chains
with significantly reduced translational entropy. The short-
range nonelectrostatic repulsion between the weaker charge
density polycations compensates their electrostatic attraction
to the stronger charge density polyanions and reduces the
osmotic pressure of the coacervate to zero. This inter-
penetrating double-semidilute coacervate structure is unique
and leads to a number of unusual thermodynamic and dynamic
mechanical properties.

Note that the above scaling picture is approximate and
ignores a weak variation of the polycation concentration with
distance r from the polyanion. Indeed, the charges on
polycations adjacent to a polyanion partially screen its electric
field and polycations at a larger distance r away from the
polyanion feel a weaker electrostatic attraction toward it. This
weaker attraction at larger distances requires a weaker
stabilizing short-range repulsion between polycations and
correspondingly lower concentration c,(r). Thus, the concen-
tration of screening polycation coat is expected to slowly
decrease with the distance r from the polyanion™ (see Figure
7). This figure also demonstrates that increasing the electro-
static attraction with the Bjerrum length Iy results in the
polycation coat with a higher concentration c,(r) and stronger
short-range repulsion.

In Appendix B we calculate the concentration profile c,(r) of
polycations by solving the Poisson equation for the depend-
ence of electrostatic potential around a polyanion on the
distribution of polycation charges ef,c, (r) and by balancing the
electrostatic and short-range osmotic forces on polycation
segments. We show that this concentration profile of
polycations around the oppositely charged rod can be
approximated by

[In(&_/r)I*
1+ 0.95[In(& /)
where c, is the average concentration of polycations estimated

by the scaling model (eq 19). This prediction (lines in Figure 7
with the fitting parameters presented in Table 1) agrees well

C+(”) =G
(27)

1

o

Figure 7. Concentration profile c,(r) in polycation screening coat as a
function of distance r from a polyanion rod with unit charge density f_
= 1. The fraction of polycation charge monomers is f, = 0.07.
Different symbols correspond to different values of the Bjerrum length
Iy. The solid lines are best fits to the data by eq 27 in the distance
range 20 < r < 60. The fitting parameters are listed in Table 1. The
resulting dependence of £_ on lz/o (symbols) and its theoretical
prediction _ ~ (Iz/6)™'/> (dashed line) are shown in the inset.
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Table 1. Average Concentration ¢, of Polycations and
Correlation Length &€_ of Polyanions Obtained from the Fits
of Eq 27 to the Simulation Data Presented in Figure 7

ly/o T, [07] ¢ [o]
0.5 0.089 + 0.002 107 £ 02
1.0 0233 + 0.004 8.02 + 0.11
2.0 0.410 + 0.008 6.94 + 0.09

with the results of coarse-grained molecular dynamics
simulations of M, = 33 polycation chains consisting of N, =
41 monomers each with a low fraction of charged monomers f,
= 3/41 adsorbed on a fully charged (f_ = 1) rodlike polyanion
containing 99 charged monomers (symbols in Figure 7) in a
simulation box with size L = 996 equal to the length of the
linear array of 99 monomers and with periodic boundary
conditions in the direction of this array, thus forming an
infinite straight line of negative charges.

3b. Weak (Liquid) Coacervates with Short Strongly
Charged Polyelectrolytes: Dilute—Semidilute Solution.
The polyanions with the contour length L_ of the linear array
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of electrostatic blobs (eq 7) smaller than the correlation length
£_ do not overlap with each other. The symmetry of the
electric field around each of these polyanions becomes
spherical on the length scales L_ < r < £_ (Figure 3b). The
energy of the electrostatic attraction between a polyanion with
the net charge ¢f N_ and the polycation screening coat of
thickness £_ with a charge of the same magnitude and opposite
sign is

b (28)
This electrostatic attraction of polycations to polyanion is
balanced by the short-range repulsion between polycations.

The free energy of three-body repulsion between f N_/f,
polycation monomers with an average concentration

E ~ —kT

G ~fN_/(f,&) (29)
in the screening volume E3is
3.7 3
E, ~ kTbg ¢ ~ kaé%N——é
A (30)

where b° is the third virial coefficient in a @-solvent.
Minimization of the free energy per polyanion

lfljild_
£ fi (31)

with respect to £_ results in the size of the screening coat—the
polyanion correlation length

F=E+E£MT@N)Z—?+

1/

fN_
flu

.
Substituting this expression for polyanion correlation length
into eq 29 for polycation concentration, we find

?+ ~ b—3u3/5(N_f+2f_)2/5

& =b

forL_ < &
(32)

(33)

In Appendix B we show that the balance of electrostatic
attraction of polycations to the polyanion and the short-range
three-body repulsion leads to the polycation concentration

profile
(uf f N

forL_<r<¢&
/2572

¢ (r) = (34)
in the outer spherical region of the screening coat. The
symmetry of the electric field at shorter distances from a
polyanion r < L_ is still cylindrical and the structure of the
polycation coat around a polyanion at these smaller length
scales is similar to the case described above eq 27 with the
average polycation density ¢, =~ b™3f,"*f_ 43 (eq 19).

4. LIQUID COACERVATES IN THE PRESENCE OF SALT

Addition of salt screens the electrostatic interaction on the
length scale of Debye screening length

1/2

= (87lye,)” (35)

where ¢, is the concentration of a monovalent salt (e.g., NaCl).
In the presence of salt, the net charge of polyions does not
have to be zero. Below we start from describing coacervates
with optimal composition, at which the Gibbs free energy per
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unit volume of polycations and polyanions are equal ¢, f.p, =

C_f_p_. Here u, and u_ are polycation and polyanion chemical

potentials per charge, and ¢, and ¢c_ are concentrations of
polycations and polyanions in the coacervate.

4.1. Low Salt Concentrations. At low salt concentrations
with large Debye length rp > £_, the salt practically does not
affect the coacervate structure. This low salt regime
corresponds to salt concentrations

3/2,-1/6
VA

c.<c g~
s 5,1
b3u1/3

(36)
In this regime, the optimal composition corresponds to
electroneutral coacervate with equal concentrations of charges
of polycations and polyanions, fc, = fc_, and equal chemical
potentials per charge, y, = u_.

4.2. Intermediate Salt Concentrations. At intermediate
salt concentrations in an asymmetric coacervate with
intermediate Debye radius &, < rp < &_, salt ions screen
repulsion on length scales larger than the Debye length,
whereas attraction predominates on a smaller length scale £, <
rp. Therefore, the thickness of the polycation coat & decreases
with increasing salt concentration from its salt-free value &_
(see Figure 8a). The charge g} of polycations in the correlation

L

Figure 8. Charged chain conformations in asymmetric coacervate
with long polyanion chains L_ > £_ at salt concentrations: (a) ¢, < ¢,
< ¢, in the intermediate salt regime with &, < rp, < £_and (b) ¢, > ¢,
in the high salt regime with r, < &,.

cell with size &' also decreases with increasing salt
concentration and is smaller than the charge g of a polyanion
in this cell by the factor g/q* =~ (& /£_)? < 1. Here d = 2 fora
cylindrically symmetric cell with L_ > & and d = 3 for a
spherically symmetric cell with L_ < &. The attraction force
between polyanion charge q° and the polycations in the
neighboring cell with the charge g at the effective distance k&*
< & is Iyqiq/(kE)? exp(—kE /rp). The repulsion force
between polyanions in neighboring cells Ig(q%)*/(&5)?
exp(—&/rp) is weaker than the attraction force as long as
the cell size & is logarithmically larger the Debye screening
length, & 2 rp In(E_/rp).

Below, we drop the logarithmic corrections and limit our
discussion to the scaling relations. Within this approximation
the correlation length &% decreases with increasing salt
concentration from its salt-free value £_ (see eq 18)
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&

for ¢ <

£~
~

ro & () /* for 61 <¢<cy

(37)

(see Figure 9). Here the upper boundary ¢, of the
intermediate salt concentration regime corresponds to the

Cs,l Cs,h
Figure 9. Salt concentration dependence of the Debye length rp
(solid black line), polyanion correlation length & (solid blue line),
and polycation correlation length &, (solid red line) in an asymmetric

coacervate with long polyanion chains, L_ > &_.

Debye radius on the order of polycation correlation length, rp
~ &, (eq 20):

f J_l /3

vPul’?

1/2

L

£, (38)

The coacervate structure is determined by the balance of
attraction of polycations to polyanions and steric repulsion
between polycation chains. This balance is unaffected by the
salt at distances from polyanions shorter than the Debye
screening length. Therefore, in the intermediate salt regime,
the coacervate structure at these length scales r < rp around
polyanion is almost the same as in the salt-free case.

Polycation chains are Gaussian in a 6-solvent since their
intramolecular electrostatic repulsion on the scale &, is weaker
than kT. Their concentration profile depends on whether
Debye length is smaller or larger than the size L_ of polyanions
in a dilute salt-free polyelectrolyte solution (eq 7):

4.2.a. Coacervates with a Long Stronger Charged
Polyelectrolyte, L_ > &_ in the Intermediate Salt Regime.
In this regime, polyanions overlap with each other since their
size is larger than their correlation length &°. Polyanion
conformations in such a coacervate are similar to conforma-
tions of the same polyanions in the semidilute polyelectrolyte
solution with the same concentration c_ (see section 3a). The
salt screens both repulsion and attraction between charged
chains, thereby reducing the separation between polyanions to
the Debye length rp. The polycation concentration in the
coacervate remains almost the same as in the salt-free case (see
eq 19) due to unchanged interactions on the length scales
smaller than the Debye length. The correlation length &, of
polycations is also unaffected by the salt as long as it is smaller
than the Debye screening length rp in the intermediate salt
concentration regime (see Figure 9).

The net charge of chains inside the optimal coacervate is no
longer zero and is controlled by the polyanion charges. The
number density of polyanion charges is the net charge f N_ of
one chain divided by the volume per chain L_rp” Using eq 7,

~

Cs,h = 5,1
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we find that it increases linearly with salt concentration c; (see

Figure 10)

D_
2 2

by

™

2/3,1/3
=u f_ G

fe

ate; < ¢ <g¢y (39)

[ <13
h
| c;l,)l

Figure 10. Salt concentration dependence of the coacervate
concentration ¢ =~ ¢, (red lines) and number density of charges on
chains fc_ — fc, (green lines) in the optimal asymmetric coacervate
(log—log scales). Dashed and dotted lines correspond to longer and
shorter polyanions with L_ > &_and ¢ < ¢;and L_ < &_and ¢ > ¢,
respectively.

c; cs,h

4.2.b. Coacervates with a Short Stronger Charged
Polyelectrolyte, L_ < &£_, in the Intermediate Salt Regime.
This intermediate salt regime can be divided into two
subregimes. The first subregime with L_ < rp < £_ corresponds
to dilute/semidilute coacervate with nonoverlapping poly-
anions. With increasing salt concentration, the separation
between polyanions is reduced to the Debye length rp,. In this
subregime polymer conformations and the structure of the
coacervate are similar to those in the salt-free case (see section
3). The polycation concentration c,(r), eq 19, in a cylindrical
zone &, < r < L_ close to the polyanion is almost uniform and
decreases with distance r from the polyanion, eq 34, in the
outer spherical zone for L_ < r < rp. In this first subregime with
L_<rp <& ("< < c*with ¢B = ¢ *3(c*)"S and ¢
(ILL_*)7") the coacervate concentration is dominated by
polycations in the outer spherical zone and increases with
salt concentration as ¢, =~ c,(rp) (see Figure 10):

B b—3u3/5(f+2f_N_)2/5
G~
b_g/4L13/4(f+f_N_)1/chl/4 for c:f;h <c¢<c

(40)

sph
~ for ¢ < Co
¢~

where eq 34 was used.

The total charge of all chains is dominated by polyanions
and increases with increasing salt concentration c,, approaching
the charge of polyanions at high salt concentration. The
density of total charge on chains increases with salt
concentration as f¢_ = f_ N_/rp* (see Figure 10):

b_3u3/5f+9/5 (]‘_N_)Z/5 for ¢ < cssﬁh

f_N_(ZBCS)3/2

~

fe
h *
for ' <¢<q
(41)
In the second intermediate salt subregime, the Debye length is

shorter than the polyanion size, £, < rp < L_, and polyanions
overlap with each other forming double-semidilute coacervate
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discussed in section 4.2.a. The salt dependence of polymer
concentration and of the net charge on chains in this
subregime is the same as in double-semidilute coacervates
(see section 4.2 and eq 39).

4.3. High Salt Regime with ¢; > ¢,;. In the high salt
regime with ¢; > ¢, the screening length is smaller than the
correlation length of polycations, rp < £,, and the structure of
the optimal coacervate for both cases with longer (L_ > &)
and shorter (L_ < £_) stronger charged polyanions is identical.
In this high salt regime, electrostatic attraction between
polycation and polyanion sections of size rp, is weaker than kT.
Therefore, the interaction between positively and negatively
charged chains within coacervate can be described as an
effective two-body attraction between elementary charges with
a negative second virial coefficient: Iyrp”. This virial coefficient
determines the free energy density kTlyrp*(fic,)(foc_) of
electrostatic attraction between positive charges with concen-
tration f,c, and negative charges with concentration f c_. This
free energy is on the order of thermal energy kT on the scale of
polyanion correlation length &

leBrDZfJ_ ¢ (&) ~ kT

The attraction between polycations and polyanions is
stabilized by the third virial repulsion between polycations
with energy density kT/(&)* and two-body intermolecular
repulsion between polyanions kT/(&£2)3, which are on the same
order of magnitude in the optimal coacervate. Therefore, the
correlation lengths of both polycations and polyanions within
the optimal coacervate are the same

bt

s
3/2,1/2
L

(42)

E El v £

ate > ¢y
(43)

(see Figure 9).

The structure of the optimal coacervate is the dense packing
of correlation blobs of size £ Half of these blobs contain
polycation sections, while the other half contain polyanion
sections. This structure on the scale of the correlation length is
similar to the structure of the “scramble egg” symmetric
coacervate with equal charge densities (see ref 36).
Conformations of polycations are Gaussian in a @-solvent for
uncharged backbone for both asymmetric and symmetric
coacervates. Polyanion conformations are Gaussian for
symmetric coacervates while they are non-Gaussian in
asymmetric coacervates and depend on salt concentration.

The conformations of polyanions in an asymmetric
coacervate in the high salt regime with Debye length r < &,
are similar to conformations of the same chains in the
polyelectrolyte solution with the same salt and polymer
concentration.”” Polyanion conformations in both cases for
rp > D,_ can be described as a linear array of electrostatic blobs
of size D,_ on length scales up to the Debye screening length
rp and as a self-avoiding walk of Debye volumes on length
scales between rp and the correlation length & On length
scales larger than &, polyanion conformations in both
asymmetric coacervate and polyelectrolyte solution are random
walks of correlation volumes.

At even higher salt concentration with Debye screening
length smaller than polyanion electrostatic blob size, rp < D,_,
polyanions are ideal on scales larger than the correlation blob &
(eq 43) as well as on length scales smaller than the size & =~
D, %/rp® of the thermal blob. The conformations are self-
avoiding walks of thermal blobs of size &1 on intermediate
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length scales, £ < r < . Note that the thermal blob size &
increases proportionally to the salt concentration similarly to
the correlation length & (eq 43). This implies, that the range of
the self-avoiding behavior {/&; ~ (f_/f+)3/2 is independent of
salt concentration. In the optimal symmetric coacervate with f,
= f_, the size of the thermal blob is on the order of the
correlation length, £ =~ &, and both polycations and
polyanions are Gaussian in a @-solvent. Also note that linear
dependence of the correlation length on salt concentration & ~
¢, is valid for both high salt subregimes with Debye screening
length D, < rp < &, and rp < D,_ only for Flory exponent v =
3/5. In Appendix C we show that the salt dependence of the
screening length is slightly modified for v = 0.588.

The concentration of coacervate is dominated by poly-
cations in all salt regimes. In the double-semidilute regime with
L_ > £_ the concentration of the optimal coacervate is

b_3u1/3(f+3f_)1/6 for ¢ <¢
T~

+4

1
bE, b_6(f+3f_ )1/2(:5_1 for ¢ > ¢, (

~

T
44)

It is almost salt independent in both low and intermediate salt
regimes for ¢, < ¢, with Debye length rp, > £,. In the high salt
regime for ¢, > ¢,j, with 7, < £,, salt screens attraction between
polyanions and polycations and the coacervate concentration
decreases reciprocally with increasing salt concentration (see
eq 44 and Figure 10).

The polyanion concentration ¢c_ varies nonmonotonically
with salt concentration ¢, and is lower than the polycation
concentration:

—3,1/3£3/2,-5/6
buw for ¢ <¢

2 -2
C_=u /3f_ /365

for 61 < ¢ <cy

b 6f+2cs ! for ¢ >¢ (45)
The net number density of charges on chains in the optimal
coacervate is nonzero and is dominated by the stronger
charged polyanions f¢_ — fc, =~ fc_ at salt concentrations
above ¢, This charge density varies nonmonotonically with
salt concentration: it increases linearly with ¢, in the
intermediate salt regime (see eq 39) and decreases reciprocally
with increasing salt concentration c; in the high salt regime (see
Figure 10). This nonmonotonic behavior disappears for the
optimal symmetric coacervate with f, = f_ because there is no
intermediate salt regime with &, < rp < £_, since £, ~ £_. The
net charge density on chains in the symmetric coacervate
decreases reciprocally with salt concentration.

In the case of shorter polyanions with L_ < £_, there is an
additional salt dependence regime for Debye screening length
rp > L_, corresponding to polyanion chains below their
overlap. In this regime at a salt concentration ¢, < ¢} ~
(IL_*)"", the correlation cell has spherical symmetry with the
coacervate concentration and the net charge increasing as 1 /4
and 3/2 powers of salt concentration, respectively (eqs 40 and
41); see the dotted lines in Figure 10.

4.4, Generalized Shklovskii Phase Diagram. In the
above sections, we studied coacervate with optimal composi-
tion, corresponding to equal Gibbs free energy per unit volume
of polycations and polyanions, ¢, f,u, = c_f p_. Oppositely
charged polyelectrolytes are often mixed with the stoichiom-
etry different from the optimal one. Below we describe the
states of such mixtures at different total number fractions of
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polycation monomers ¢ = /(¢ + ) and various salt

concentrations ¢, (see phase diagram in Figure 11). The thick

Figure 11. Phase diagram of a mixture of oppositely charged weakly
interacting polyelectrolytes. The horizontal axis is the number fraction
of polycation monomers in solution ¢ = ¢/ (¢ + ). The left
vertical axis is salt concentration ¢, whereas the right vertical axis
(pointing down) is the corresponding Debye length. The thick black
lines (¢)" and ¢0”) are the phase boundaries between two-phase region,
containing coacervate (denoted by orange sediment in cartoons), and
single-phase regions, containing dilute chains, denoted by red and
blue lines, and complexes containing chains of both signs. The
complexes exist only in regions between outside thin blue lines (¢,
and ¢!) and inside red dashed lines. The green dotted line (¢*")
corresponds to the optimal coacervate composition.

black lines on this diagram separate a two-phase region from a
single-phase region. The dense phase in the two-phase region
is the coacervate. Therefore, the thick lines are the boundaries
between states with and without the coacervate. The dilute
phase could consist of either only free chains or a mixture of
free chains and complexes—small aggregates of oppositely
charged polyelectrolytes. The complexes can be found in the
regions between thin blue lines and red dashed lines in the
phase diagram and, thus, can exist in both single- and two-
phase regions. The single-phase region outside the red dashed
line corresponds to a homogeneous mixture of free polyanion
and polycation chains with attraction electrostatic energy
between them less than kT.

At the green dotted line, the coacervate has an optimal
composition with concentrations equal to the total concen-
trations of the mixture, T, = ¢" and T_ = ¢ In the low-salt
solutions, ¢; < ¢, the concentrations of polyanion and
polycation charges in the optimal coacervate are the same,
fic, =fc_, corresponding to the number fraction of polycation
monomers ¢, = f_/(f, + f_) (see low vertical part of the green
dotted line in Figure 11). At higher salt concentrations ¢, > ¢,
in the optimal coacervate, the total charge of the stronger
charged chains (polyanions) is higher than the charge of the
weaker charged chains (polycations). In the high-salt regime, c
> ¢,y from eqs 44 and 45 the ratio of polyanion and polycation
charges in the optimal coacervate reaches its maximal value,
F2/(F%) = (f/£)" corresponding to gy, = fV2/(f,"" +
f-/2) (upper vertical part of the green dotted line in Figure
11). At intermediate salt concentrations c; < ¢, < c,j, using eqs
44 and 45, we find that the green dotted line, corresponding to
the optimal coacervate composition, is a hyperbola

—(i - 1] for g, < b= < ¢,

¢ (46)
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This prediction is for double-semidilute coacervates with L_ >
£_, while for a coacervate with shorter polyanions, L_ < &_,
there is an additional regime with spherical symmetry and a
slightly different shape of the green dotted curve, ¢, ~ ¢ [f_/
f(1/¢ = 1)]*5 for B < ¢, < .

In the presence of salt, the coacervate can exist even in
mixtures with the composition ¢*" different from the optimal
coacervate composition (dotted green line in Figure 11). In
such mixtures, the coacervate composition deviates from the
optimal composition, ¢**, described above, and in the absence
of complexes (between thin blue lines in Figure 11, for ¢, < ¢
< ¢@!) the coacervate composition coincides with the total
mixture composition, ¢ = ¢* (see the green line in Figure 12).

¢/\

"
c XV

¢Opt

¢ gL $oPpL ¢ ot

Figure 12. Dependence of the number fraction of polycation
monomers ¢ in the coacervate on total number fraction ¢ in the
mixture.

At larger deviations of the coacervate composition from the
optimal one (between thin blue and thick black lines in the
phase diagram, for ¢’ < ¢ < ¢, and ¢! < ¢ < ¢") the
coacervate coexists with complexes. The composition of the
coacervate in this part of the two-phase region of the phase
diagram is the same as its composition at the thin blue line in
Figure 11 at the same salt concentration; see two horizontal
blue lines ¢ = ¢, and ¢ = ¢! in Figure 12. The coacervate
dissolves at the boundary of the two-phase region (thick black
lines ¢’ and ¢”), and the composition of complexes inside the
two-phase zone (between thin blue and thick black lines in the
phase diagram, for ¢’ < ¢ < ¢, and ¢! < ¢ < ¢") is given by
its value at the phase boundary (thick black line ¢’ or ¢”) at
the same salt concentration. The relative fractions of polymers
in the coacervate and in complexes is determined by the lever
rule.”® The shapes and the locations of boundaries of these
regimes (thin blue and thick black lines in Figure 11) are
obtained by equating chemical potentials of polyanions per
negative charge in the coacervate and in the complex, p<™P*
p_, and similar equality for polycations, pu<™P'e
Appendix D for details).

The red dashed line in phase diagram corresponds to the
condition at which the attraction energy per chain is on the
order of entropic free energy gain per chain upon dissociation
of complexes into individual chains. Note that in the limit of
symmetric (with fractions of charged monomers f, = f_ ~ 1)
strongly interacting (with interaction parameter u & 1) chains,
the details of the molecular structure of the polymer chains are
not important, and the phase diagram in Figure 11 approaches
the diagram obtained in ref 20.

= p, (see
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5. MOLECULAR DYNAMICS SIMULATIONS

The molecular dynamics simulations were performed using the
bead—spring model.” All beads had mass m and diameter ¢
and interacted with each other via the truncated and shifted
Lennard-Jones (L]) potential

12 6 12 6
4 o o o
wllf - -] =
UL_](V) = r r e .
0, r>,
(47)

where the cutoff distance r, = 2.56 and the L] parameter &;; =
0.30kT corresponds to the #-solvent for uncharged polymers.
Beads along the chains were connected by the additional
unbreakable finitely extensible nonlinear elastic (FENE)
potential Ugpng(r)

1 ¥
Upeng(r) = _EKROZ ln(l - F]

0 (48)

Here K = 30¢y,/ ¢ is the spring constant, and R, = 1.5¢ is the
maximum bond length.

Each polyanion chain consisted of N_ = 101 beads with the
fraction of charged monomers f = 51/101 and therefore
contained n_ = 51 negatively charged beads. Polycation chains
consisted of N, = 61 monomers each and contained #n,
between 3 and 7 positively charged beads corresponding to
fractions of charged monomers f, = 3/61, 4/61, 5/61, 6/61,
and 7/61. Charged monomers were monovalent and evenly
spaced along the chain backbones with both ends of each chain
charged. The periodic simulation box contained M_ = 20
polyanion chains for n, = 3, 4, 5, 6 and M_ = 21 polyanion
chains for n, = 7. The number M, of polycation chains was
determined by the overall electroneutrality condition of the
simulation box M, = M_n_/n, in the range between 153 < M,
< 340.

The simulations were performed with an implicit solvent
modeled by a dielectric medium with the dielectric constant &.
All charged beads interacted with each other via the
unscreened Coulomb potential

zz;
r (49)

where z; is the charge valence of the ith particle (+1 for positive
and —1 for negative beads). The Bjerrum length 5 determines
the strength of the electrostatic interactions and was varied in
the interval 0.016 < Iz < 200. The electrostatic interactions
between all charges in the simulation box and all of their
periodic images were computed by the particle mesh Ewald
(PME) al§orithm implemented in the LAMMPS software
packages.*”** All stochastic molecular dynamics simulations*'
were performed using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) parallel MD code.*”
The equations of motion were integrated using the velocity-
Verlet algorithm with a time step 6t = 0.017y;, where the
Lennard-Jones time is 7;; = (mO'Z/eLJ)l/ 2, For all simulations,
the constant temperature was maintained by weakly coupling
the system to a Langevin heat bath*’ with a damping constant
[' = 1.0m/7. The coacervate phase of oppositely charged
polyelectrolytes was simulated by setting the osmotic pressure
to zero. The Berendsen barostat was used to simulate the
equilibrium coacervate at constant pressure p = 0.** Initial

Ucoul(r) = kTl
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states for chains was chosen from the ensemble of self-avoiding
random walk configurations within a periodic cubic box with
boundary length L. The approach to equilibrium was
quantified by monitoring the relaxation of end-to-end vectors
of chains as well as the fluctuations of the volume of the
coacervates. The duration of the equilibration after the
coacervate volume reached its final value was chosen to be
2—10 relaxation times of the end-to-end vectors of chains. The
structure factor of polyanions at wavevector q was calculated as

1
$(9) = L{e(@e(-q)) (50)
where the Fourier transform of the monomer concentration
profile ¢(q) = YN, exp(ig-r,), with monomer coordinates r;
for all polyanion chains in the periodic simulation box, and the
brackets (---) denote the ensemble average over chain
conformations.
The form factor of a chain was calculated as

P = (X

i)j

sin(qrxj)

qr;;

(s1)
where 7;; is the distance between ith and jth chain monomers.
Form factors of polycations were fitted by the Debye function

(see Figure 6)

2
P(q) = =(e¢ -1
(9) % (e +Q) (52)

with Q = qZRg2 resulting in the mean square radius of gyration
2 =217 + 050 in good agreement with Rg2 = 20.66%
obtained directly from the chain coordinates.

6. CONCLUSIONS

We presented a scaling theory of the structure of liquid
coacervate formed by oppositely charged polyelectrolytes with
electrostatic interaction energy between two elementary
charges less than the thermal energy kT. We consider relatively
weakly charged polyelectrolytes with the line density of charges
below the counterion condensation threshold, y < yy = 1/I5. In
the case y > yy, the counterion condensation results in
saturation of the effective line density of charges at the
Manning value yy. In either case, mixing of weakly interacting
polyelectrolytes does not lead to a counterion release upon
formation of liquid coacervates because electrostatic energy per
charge is less than thermal energy kT. The intramolecular
electrostatic interactions in dilute solutions of only polyanions
or only polycations are described by the so-called electrostatic
blobs of size D,_ or D,,, respectively (see the upper part of
Figure 1). Sections of a polyelectrolyte chain of size equal to
the electrostatic blob size repel neighboring sections of the
same chain with electrostatic energy on the order of kT.
Conformations of polyanion or polycation chains in their
respective dilute solutions before mixing with no added salt
can be described as linear arrays of their corresponding
electrostatic blobs of size D,_ or D,,. Mixing of oppositely
charged polyelectrolytes can result in (i) single-phase
homogeneous solution containing charged complexes and/or
isolated chains or (ii) two-phase solutions with a coacervate
and a dilute phase containing complexes and/or isolated
chains.

The structure of the coacervate formed upon mixing
polyanion and polycation solutions is determined by the
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balance of electrostatic attraction between oppositely charged
polyelectrolytes and short-range repulsion. In the symmetric
case with D,_ = D,, = D,, the coacervate is a dense packing of
these electrostatic blobs with neighboring oppositely charged
blobs of size D, attracting each other with energy on order kT
(see the lower right part of Figure 1). This attraction is
stabilized by the short-range nonelectrostatic repulsion with
energy on the same order kT between all chain sections of size
D,
In an asymmetric case with stronger intramolecular
electrostatic repulsion within the polyanion, D, < D,,, the
structure of the coacervate is more complex. Such a coacervate
is characterized by two correlation lengths, £, and &, of
polycations and polyanions, respectively (eqs 20 and 18).
Conformations of both positive and negative polyions in
coacervates are similar to their conformations in their
respective solutions containing polyelectrolytes of only one
sign, with the same concentrations (¢, and ¢_) and the same
correlation lengths (&, and £_) as in the coacervate. Because
the polycation correlation length &, is smaller than its
electrostatic blob size, D,,, the corresponding polycation
solution with chains of only one sign is quasi-neutral and is
analogous to a semidilute solution of uncharged polymers with
correlation length &£, with ideal chain conformations in a 6-
solvent. The polyanion correlation length £_ is larger than its
electrostatic blob size, D,_, resulting in its stretched
conformations on length scales between its electrostatic blob
size D,_ and correlation length £_ due to strong intramolecular
repulsion, similar to their conformations in pure polyanion
solutions (see Figure S).

Weaker charged polycation chains adsorb on stronger
charged polyanions forming screening “coats” around them.
The electrostatic attraction of polycations to polyanions is
balanced by the short-range repulsion between sections of
polycations of size £, with energy on the order of thermal
energy kT. This short-range repulsion between polycations is
stronger than the electrostatic repulsion between them, since
&, < D,,.

The attraction of polycations to a polyanion slowly decreases
in strength with increasing distance from the polyanion within
the polycation “coat”, resulting in a slow (logarithmic)
decrease of coat concentration (see eqs 27 and B4a—B7a).
The thickness of this coat is the interpolyanion correlation
length &£_, and in the salt-free mixtures, it is determined by the
length scale at which the polycation “coat” compensates the
polyanion charge. This compensating polycation coat of
coacervates plays the role of counterions of semidilute
polyanion solution with the essential difference of negligible
translational entropy and important short-range interpolyca-
tion repulsion balancing electrostatic attraction and reducing
the osmotic pressure of coacervates to zero (see Figure S). The
order of interactions from strongest to weakest corresponding
to the order of length scales from shortest to largest is D,_ < &,
<D, <&

Key predictions of our scaling model, such as (i) the
dependence of polycation concentration ¢, in the optimal
coacervate on the fraction f, of polycation monomers that are
charged (Figure 4), (ii) an equivalence of the structure factors
of polyanions in the coacervate and in the semidilute
polyelectrolyte solution with the same concentration ¢_
(Figure S), (iii) ideal conformations of weakly charged
polycations and stretched conformations of strongly charged
polyanions in the coacervate, obtained from their form factors
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(Figure 6), and the concentration profile in polycation
screening coat around strongly charged polycation (Figure
7), were confirmed by the molecular dynamics simulations.

The coacervate can be isolated from the supernatant, and
the coacervate concentration can be increased by partially
removing (evaporating) the solvent. In this case, both
polyanion and polycation concentrations increase proportion-
ally to each other, while the corresponding correlation lengths
are not proportional to each other. The polyanion correlation
length &_ is reciprocally proportional to the square root of the
coacervate concentration, &_ ~ 1/+/T, whereas the polycation
correlation length £, decreases reciprocally with coacervate
concentration, £, ~ 1/¢. This implies that the ratio of the two
correlation lengths &_/&, increases as the square root of
coacervate concentration, thereby increasing the coacervate
asymmetry.

At low salt concentrations with Debye length longer than
polyanion correlation length (for r, > £_), the structure of the
coacervate is almost the same as in the salt-free case. For
intermediate salt concentration with Debye length between the
two correlation lengths, &, < rp, < £_, the thickness of the
polycation coat is reduced and becomes on the order of the
Debye radius rp. The coacervate concentration is dominated
by polycations, and in the high salt regime, it decreases
inversely proportionally with increasing salt concentration.

The net charge of the chains of such optimal coacervate in
the presence of salt is no longer zero and approaches the net
charge of polyanions with decreasing the Debye length. The
net charge density of chains in the coacervate varies
nonmonotonically with salt concentration. It is almost zero
at low salt concentrations ¢, < ¢, increases linearly with ¢, in
the intermediate salt regime, ¢;; < ¢; < ¢, and decreases
reciprocally with increasing salt concentration ¢, in the high salt
regime, ¢, > ¢, (see Figure 10).

The above predictions for asymmetric coacervate structure
and qualitatively different chain conformations of polyanions
and polycations (see Figures S and 6) can be tested by
scattering experiments. The overall coacervate structure factor
can be directly measured by small-angle X-ray scattering, while
the form factors of polyanions and polycations can be obtained
by small-angle neutron scattering using the index matching
technique.” The predicted dependence of the coacervate
concentration on fractions f, and f_ of charged monomers can
be experimentally tested either by varying pH for weak
polyelectrolytes or by synthesizing and measuring concen-
trations of strong polyelectrolytes with different charge
fractions. This dependence is predicted to be different for
relatively long and short polyanion chains (eqs 19 and 33).

B APPENDIX A. GENERAL SOLVENT

Below we present main results obtained for general scaling
exponent v describing different solvent conditions for un-
charged backbone. The case v = 1/2 corresponds to a 6-
solvent, described in detail in the main text with the same
equation numbers, and the case v = 0.588 describes the
corresponding athermal solvent:

g, = (uf2y"e™ (2)
D= b+(“+f+2 ey (3a)
g = (u_f_Z)—l/(Z—b) (54)
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D_ b (ufy/C (6a)
L~ b_l/DN_/De_l/y—l (7a)
£~ (b_f_)_l/z(u_f_z )—(l—v)/(2(2—v)) (10a)
¢ =D, (D_/D,)"? (202)
f+?+ ~ lB_1/213e+_5/2(1)e—/1)e+)(3y_1)/2 (212)
ob® = [f (Fu) O for L > & (199)
£ ~D,(D,/D ) forL_> & (18a)

D_<é& =D, (D_/D)"? <D, <&

~D,(D,/D)* ™ * forL_> & (222)
R_~bNYX(D,/D_ PP forL_> & (23a)
g =g (D/DY* " forL_>¢ (24a)

5_ ~ b(N_f_ )(2—3u)/(4—3u)u—(3y— 1)/(4—3p)f+—3y/(4—3y)

for L_< & (32a)

B APPENDIX B. POLYCATION CONCENTRATION
PROFILE

Consider a single polyanion surrounded by a polyanion coat.
In case of cylindrical symmetry (d = 2), a long polyanion with
length L_ > £_ is modeled as a uniformly charged cylinder of
radius ry =~ D,_ with linear charge density y_. In case of
spherical symmetry (d = 3), a short polyanion with length L_ <
£_ is modeled as the charge ey_L_ inside a sphere of radius r,
~ L_. The electrostatic potential ¢(r) in the polycation coat, at
ro < r < &_, is determined by the Poisson equation

d2¢+d—1%_4ﬂ

— —ef.c
dr’ r o dr e+t (B1)
within the mean-field approximation. The boundary condition
at the charged cylindrical surface at r = r; is
d 2
A
drl, ¢ (B2)

The density c, of polycation monomers is found by minimizing
the free energy which has both electrostatic and osmotic
contributions. In the case of 6-solvent, the osmotic part
accounts for the three-body repulsion between monomers, and
the c,-dependent contribution to the free energy is

/ (= + o, p)e, + kTHe, ] &r (5

The chemical potential y in eq B3 takes into account the
normalization of the density c, of polycation monomers with
their total numer N = [c, d*. Minimizing this free energy
with respect to c,, we find the dependence of monomer
concentration c,(r) of polycations on the electrostatic potential

$(r):
c (r) = 11_3[/48(1')/kT]1/2 (B4)

The electrochemical potential p,(r) = u + ef,p(r) and the
monomer concentration c,(r) decay to zero at distance r > £_
outside the polycation coat.

In the case of cylindrical symmetry d = 2, we are looking for
the solution of eqs B1 and B4 in the form

kT -
P(r) = —(4mu)’ b3 [m(é)}

e r (BS)
where the dimensionless function y,(x), which determines the
dependence of the polycation monomer density on the
distance r from the polyanion, is the solution of the equation
2,2
d)zxz(x) =z (x)e™™. Its analytical expression can be found in
two limits x << 1 and x >> 1 (near the surface of the polycation
coat and away from it). Joining these solutions for x ~ 1, we
can approximate the solution for all x > 0 by

2
X

2(x) = 12(1 + ax®?) (B6)

The constant a ~ 0.95 is determined from the best fit of the
numerical solution of this equation by the function y,(x) given

S — d=2
— -
= . N \
) up \ \
. <
S e R
= (] \
= 0011 =X \ \
0.001 . '
0.1 1 \
r/é '
0.001 . — :
0.001 0.01 0.1 1
/&

Figure 13. Numerical solution for the concentration profile ¢, (r) ~
Ja[In(E_/r)] (solid line) in the salt-free regime for d = 2 and its
approximation by eq B6 (dotted line). Inset: numerical solution for
the function y;(r/E_) (solid line) and its approximation by eq B6c
(dotted line) in the case of spherical symmetry d = 3.

in eq B6 (see Figure 13). Substituting this solution into the
boundary condition (B2), we get

S/4, 1/4 —1/4, —3/4
L=y uf, (B7)

Generalizing the above consideration for the case of a general
solvent with scaling exponent v, we find

e (r) = b7lf ()1 (B4a)
1/(2-3v)
wo-sforsc)
e r (BSa)
Q- &
)(Z(x) h 6v 1+ ax® (B6a)

~ }2730/2,1-30/2 (1-30)/2,=3v/2
S by TR T (B7a)
Here, the exponent v = 1/2 in the case of a @ solvent, and v =
0.588 in the case of a good solvent.
In the case of spherical symmetry (d = 3) the solution of eqs
B1 and B4 for a @-solvent is
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_ kT 21-4,35 5 2
D) = —(4m b g (/) (559

The dimensionless function y;(x) is determined by the

d?_ 2
equation %xz(x) = )(S(x)xl/ *, an approximate solution of
which is
(1 - x)z 1+ ax
x(x) = ————

12

l1+a (B6c)

with constant a =~ 0.35 (see the inset in Figure 13).
Substituting eqs BSc and B6c into the boundary condition
B2, we reproduce eq 32 for £_ and eq 34 for the concentration
profile c,(r).

B APPENDIX C. HIGH SALT REGIME

Salt ions screen electrostatic interaction at the length scale of
the Debye radius rp, (eq 35). Charged polymers with their ion
clouds can be represented in the high salt regime ¢, > ¢,;, = (f-/
f.)"%c,; (see eqs 36 and 38) by chains of effectively neutral
blobs of size r, (see Figure 8b). The electrostatic interaction
energy between polycation blobs of size r, < £, is less than kT
in the high salt regime. Therefore, polycations have Gaussian
statistics in a @-solvent on all length scales including the scale
of the correlation length &, ~ bg, "% The number of polycation
monomers g, on this length scale is determined by the close-
packing condition of correlation blobs, g, ~ c,&,>. Solving
these two equation, we find the relation between the
polycation concentration ¢, and the correlation length &, for
the quasi-neutral polyelectrolyte regime in a 8-solvent

1
Ve,

This dependence was used in the derivation of eq 44. Stronger
charged polyanions repel each other, and their statistics
depends on the ratio between the Debye radius (eq 35) and
the electrostatic blob size (eq 6). Below, we consider two
cases:

¢

<4

(C1)

High Salt Regime 1 with ¢, < ¢; < ¢;; = ¢, f_/f,

In this case D,_ < rp < £,, and polyanion chains have excluded
volume statistics on length scales r, < r < £_ larger than the
Debye length but smaller than the correlation length & ~
rp(g_/gp)"- Here g_ and gp =~ g,_(rp/D,_) (eq 7 for the
segment of g, monomers) are the number of polyanion
monomers inside the correlation and Debye volumes,
respectively. Because different correlation volumes do not
overlap with each other, the polyanion concentration is
determined by the dense packing condition of the correlation
volumes:

T g JE3 (C2)

Substituting the expression for the number of monomer units

i)
p D_\rn b L6») (C3)
we find the polyanion concentration
_ D
A (e
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Substituting eqs C1 and C4 into eq 42 for the attraction energy
between polycations and polyanions with £ ~ £_ ~ £,, we find
the correlation length

f ~ bu—(3—5u)/(6(1—u))(fJ 1/3)—u/(1—y)(b3c )(31/—1)/(2(1—b))

forc , <c¢ <c¢y, (Cs)
High Salt Regime 2 with ¢, > ¢,; = ¢, ,f /f,

In this case, the Debye length is smaller than the electrostatic
blob of polyanions, rp < D,_. The electrostatic energy of gp, =
rp>/b* monomers of the polyanion blob of radius rp is ep =~
kTly(gpf-)*/rp = kT(rp/D,_)* and is smaller than thermal
energy kT for rp < D,_. A chain segment of the thermal blob
size £7 > rp with the number of monomers gp = &;*/b* is
Gaussian, and its energy er = ep(gr/gp)"/? is on the order of
kT. Here (gr/gp)"/? is the number of pair contacts with energy
ep of electrostatic blobs on the length scale of the thermal blob
size £r. From this condition, € ~ kT, we find the number of
monomers, gr = D,_%/(b*rp*) > g,_, and the size, &1 =~ bg;!/? ~
D,*/rp* > D,_, of the thermal blob. On larger length scales,
the polyanion has excluded volume statistics and the
correlation length becomes

&= éi(g /g

Substituting this expression into eq C2, we find the average
polyanion concentration

fore, > ¢, (C6)

D 3\2-1/v

e—

_ 1
= bl/yé;_S—l/u ( erz

Substituting eqs C1 and C7 into eq 42, we find the correlation
length

fore, > ¢,

(C7)

5 ~ 5 ~ 6+ ~ b4f —D/(I—I/)f (31/—2)/(1—D)C (CS)
_ A i A

For the value of Flory exponent v = 3/5, both expressions C$

and C8 become identical to eq 43. For v = 0.588, the exponent

0.927 of the ¢, dependence of correlation length in eq C5 only

slightly differs from its Flory value of unity.

B APPENDIX D. CHEMICAL POTENTIALS AND
PHASE DIAGRAM

The unique feature of mixtures of oppositely charged
polyelectrolytes is the existence of stable complexes consisting
of chains of opposite charges. Below we assume that the charge
of the polyanion chain significantly exceeds the charge of the
polycation chain, N_f_ > N, f,. Consider a complex consisting
of a single polyanion chain with N_f_ elementary charges and
n polycation chains with g, = nN,f, elementary charges. The
structure of the complexes is determined by the condition of
the equality of polyions chemical potentials in the coexisting
phases. In general, the chemical potential per charge is defined
as the energy of moving a unit charge to infinity. Because the
charges of the complex can be removed only with the
corresponding chains, this definition requires a substantial
refinement:

The polycation chemical potential is

ﬂ:omplex — aFcomplex(q+)/aq+ (D])
where Fcomplex(q ,) is the free energy of the complex. Because
there is only one polyanion chain per complex, its “removal to
infinity” leads to a decrease in the number k of complexes by
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unity. To define the polyanion chemical potential, consider the
difference of free energies of configurations of k + 1 complexes
with g} positive charges and k complexes with g, charges:

(k + 1)Fcomplex(q;) _ kFcomplex(q+) (DZ)

These configurations have the same total number of positive
charges, (k + 1)q.. = kq,, and the difference of N_f_ negative
charges. Dividing eq D2 by N_f, in the limit k > 1, we find
the polyanion chemical potential per unit negative charge:

complex _
F®™%(q,)
N_f

Low Salt Regime with ¢; < ¢;,

In this case, the charge with concentration ¢, f, — T_f_
distributed in the volume V of the coacervate, and its free
energy density is

F/V ~ kTl (5f,

complex

qp

complex __

(D3)

= Tf )+ KT ly In(E2/E,),

(D4)
where Iyrp” is the effective second virial coefficient, and the
second term in eq D4 is the energy of attraction of polycation
coat with the radius & ~ £_ to the polyanion (see eq 15 and
Figure 2b). Differentiating the free energy of the coacervate
(D4) with respect to the number of charges, n, = V¢, f, and n_
= Ve_f_, we find its chemical potentials

Ho= kTZBrDZ(Q_f;_ -af)
po= kTl (Gf, — ©f ) + kTly_ In(E2/€,)

Now, consider the cylindrically shaped complex with the
diameter &, the length L_, and occupying the volume V =~
L_(&.)* (see Figure 14). The free energy of such a complex

(Ds)

™

\rns

Seaas st .‘éﬁi&;.
W W‘t\'e‘ -‘! D e-

|

2

Figure 14. Cylindrically shaped complex.

with polycation charge g, ~T,f,V is the sum F*™!* = F. + F,
+ Fs of the Coulomb F, volume Fy, and surface Fg terms:

min(L_, rp)

ly 2
F. ~ kTL—_(q+ —Nf ) e ,
Fy, ~ kTVe_f Iy In(é} Fy~ o0l L_
S+ (D6)

~

Here o kT/E? is the surface tension. The chemical
potentials of the complex are obtained by substituting this free
energy into eqs D1 and D2.

Below we describe the equilibrium of the coacervate and
dilute phase of complexes. Equating the corresponding
chemical potentials of the coexisting phases, we find that the
Coulomb and the surface contributions are on the same order,
F¢ ~ Fg, and that the charge of the complex is

9586

min(L_ ,

ot )
_ ~ n D
q, N_f =~=+L (leB/l a2 )

The charge density of the coacervate, coexisting with the
min(L_,

complexes is
1/2
) ]
&

The sign (—) describes the left region between thick black and
thin blue lines in Figure 11, and the sign (+) describes the
corresponding right region. The charge of each of these
complexes (eq D7) is respectively lower and higher than the
chain charge per polyanion in the coacervate.

At the blue lines in the phase diagram in Figure 11 the
concentration of the polyions in the coacervate is the same as
the total concentrations, ¢, = € and c_ = ¢ Substituting
these equalities into eq D8, we find the number fraction of
polycation monomers at the lower part of these two lines:

(D7)

o_

1
of —°f ~+—
CANCAS Z[sz

(D8)

ol i)
2 &
2 . 1/2
¢C/, ~ l + %(ln mm(L_, rD)]
2 & (D9)

The fraction of complexes in the dilute phase is increasing
upon approaching the thick black lines on the phase diagram in
Figure 11 from the two-phase side, while the fraction of
coacervate is decreasing and disappears at the phase boundary.
At this line, the fraction of polycation charge of the complex is
the same as the total fraction of polycation charges in the
mixture

9, _ =
Nfoef
Substituting g, from this equation into eq D7, we find the

number fraction of polycation monomers on the boundary
between one- and two-phase regions on the phase diagram:

(D10)

, L1 min(L_, rp) 12

ol [t

¢ ~ 1 + (In_min(L—’ ) ]_1/2
2 & (D11)

Intermediate Salt Regime with ¢;; < ¢; < ¢,

The diameter & of the optimal polycation coat in the
coacervate (see Figure 8a) can be estimated in this case, from
the minimum of the free energy of L_/&’ correlation cells with
size &% :

~ kTl, (g2)” )* E/m 4 9.:9- e—kéj/rp}
L_ kL_ (D12)
with polyanion charge of the complex ¢ =~ y_L_ and

polycation charge g} ~ ¢, f,(&)’L_, giving £ ~ 2(1 — k)rp
In (£_/rp). Expanding this free energy near this minimum, we
find within the quadratic approximation
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- 2(14k) 55
AF ~ leBL_}/_Z[é—D) ( =

_ gopt ]2
)

L (200
= k(2] G, - gy

(D13)

This expression replaces the first term in eq D4 for the case of
intermediate salt concentration. The resulting phase bounda-
ries in Figure 11 in this regime can be approximated by the
vertical lines.

High Salt Regime with ¢; > ¢,
All the results obtained in Appendix C for this regime can also
be derived from a minimum of the coacervate free energy:
F/V = —kTlyf f cyc_ + kTb%,” + kT /&3 (D14)
The first term is the energy of attraction of polyanions and
polycations with the second virial coefficient Iyrp* per charge
(see eq 42), the second term is the energy of steric three-body
repulsion of polycations, and the last term is the energy of the
effective repulsion of polyanions. Here we use this free energy
to describe a coacervate with non-optimal structure. Because
the structure of the complexes in this region is rather
complicated and lies beyond the scope of this work, it will
be described elsewhere. The qualitative behavior of the phase
boundaries in this region is shown by the dashed line in Figure
11.
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