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ABSTRACT: A scaling theory is developed for the motion of a
polymer-tethered nanoparticle (NP) in an unentangled polymer
melt. We identify two types of scaling regimes depending on the
NP diameter d and the size of a grafted polymer chain (tail) Rtail.
In one type of regime, the tethered NP motion is dominated by
the bare NP, as the friction coefficient of the tails is lower than
that of the less mobile particle. The time dependence of the mean
square displacement (MSD) of the tethered NP ⟨Δr2(t)⟩ in the
particle-dominated regime can be approximated by ⟨Δr2(t)⟩bare for
the bare NP. In the other type of regimes, the tethered NP motion
is dominated by the tails when the friction coefficient of the tails
surpasses that of the particle at times longer than the crossover time τ*. In a tail-dominated regime, the MSD ⟨Δr2(t)⟩ ≈
⟨Δr2(t)⟩bare only for t < τ*. ⟨Δr2(t)⟩ of a single-tail NP for t > τ* is approximated as the MSD ⟨Δr2(t)⟩tail of monomers in a free
tail, whereas ⟨Δr2(t)⟩ of a multitail NP for t > τ* is approximated as the MSD ⟨Δr2(t)⟩star of the branch point of a star polymer.
The time dependence of ⟨Δr2(t)⟩ in a tail-dominated regime exhibits two qualitatively different subdiffusive regimes. The first
subdiffusive regime for t < τ* arises from the dynamical coupling between the particle and the melt chains. The second
subdiffusive regime for t > τ* occurs as the particle participates in the dynamics of the tails. For NPs with loosely grafted chains,
there is a Gaussian brush region surrounding the NP, where the chain strands in Gaussian conformations undergo Rouse
dynamics with no hydrodynamic coupling. The crossover time τ* for loosely grafted multitail NPs in a tail-dominated regime
decreases as the number of tails increases. For NPs with densely grafted chains, the tails are hydrodynamically coupled to each
other. The hydrodynamic radii for the diffusion of densely grafted multitail NPs are approximated by the sum of the particle and
tail sizes.

1. INTRODUCTION

The mobility of particles in a polymeric viscoelastic medium is
important to a broad range of applications, including the
particle-basedmicrorheology studies of polymer solutions1,2 and
melts,3−6 the fabrication and processing of nanoparticle polymer
composites,7,8 and the design of drug carriers moving through
cells and extracellular matrices.9 In many cases, the particles are
sticky to the surrounding chains due to the attractive
interactions between the particles and polymers. For instance,
nanoparticles often stick to the polymers in nanocompo-
sites,10,11 and viruses and pathogens adhere to mucin molecules
in the mucus defending human airways and gastrointestinal
tract.12 The attraction between particles and polymers leads to
either reversible or permanent adsorption of polymers to the
particles.13,14 The adsorbed chains tend to retard themotion of a
sticky particle with respect to that of a nonsticky particle. This
has ramifications for the applications relying on the mobility of
particles.
In this paper we present a theoretical description of the

motion of polymer-tethered nanoparticles (NPs) in an
unentangled polymer melt. We consider a NP either with a
single polymer chain (tail) or with multiple chains (tails)
permanently end-grafted onto it. The grafted chains and the

matrix chains in the melt are assumed to be chemically identical.
We also assume that there is no adsorption of either grafted
chains or matrix chains onto the nanoparticles. Although a
single-tail NP rarely occurs in experiments, it serves as a
prototype model for the study of how tethered polymers affect
NP motion. The research of polymer-tethered NPs provides the
first step toward understanding how NP motion is affected by
the adsorption layer resulting from the attraction between NPs
and surrounding polymers, as the adsorption layer can be
mapped to a combination of tails and loops.15−17

We demonstrate that the motion of a tethered NP in a
polymer melt is determined by the competition between the
dynamics of the bare NP in the polymer melt and the dynamics
of the tethered polymer chains. The theory in this paper is based
on the previous scaling theories of the mobility of a nonsticky
NP in a polymer melt18,19 and of polymer dynamics.20 Through
the comparison of the motion of the bare NP and the dynamics
of tethered polymer chains, we distinguish particle-dominated
and tail-dominated scaling regimes. In a particle-dominated
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regime, a tethered NP moves as a bare NP, while the effects of
the tethered tails on NP motion can be neglected. In a tail-
dominated regime, the motion of a tethered NP is not
significantly affected by the tails below a crossover time but is
dominated by the tails above the crossover time. Section 2
presents the theory for a single-tail NP in an unentangled
polymer melt. Section 3 deals with a multitail NP in an
unentangled polymer melt. Summary of the results and
concluding remarks are in Section 4.

2. NP WITH A SINGLE TAIL
We first consider a NP with a grafted polymer chain (a tail)
diffusing in an unentangled polymer melt, as illustrated in Figure
1a. The diameter of the NP is d, and its mass is m. Kuhn lengths
of the grafted chain and of the melt chains are both b. The
number of Kuhn segments in the tail isNtail, while the number of
Kuhn segments per melt chain isN. The root-mean-square end-
to-end size of a melt chain is R ≈ bN1/2. The root-mean-square
end-to-end size of the tail Rtail ≈ bNtail

1/2 for Ntail < N2, obeying
the ideal random-walk statistics. A longer tail with Ntail > N2 is
expected to swell in the melt, and Rtail ≈ bN(Ntail/N

2)3/5,
corresponding to a self-avoiding random-walk conformation of
chain sections each containing N2 Kuhn segments.20 Through-
out the paper, we ignore any order-unity prefactors while
focusing on the scaling relations and use the sign ≈ to indicate
equality on the scaling level.
The diffusion coefficient D quantifies the mobility of a single-

tail NP. According to the Stokes−Einstein relation, D is related
to the friction coefficient ζ

ζ
≈D

k TB
(1)

in which kB is the Boltzmann constant, and T is the absolute
temperature. We determine the friction coefficient ζ on the basis
of the previous scaling theories for the friction coefficients ζbare
of a bare NPwithout the tail18,19 and ζtail of a free tail without the
particle.20 For the diffusion of a bare NP in an unentangled
polymer melt
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where η0 is the monomeric viscosity, and ζ0 ≈ η0b is the
monomeric friction coefficient. A small bare NP with b < d < R

does not experience the viscosity ≈η0N ≈ η0(R/b)
2 of the

polymer melt, but only an effective viscosity ≈η0(d/b)2
corresponding to polymer chain sections whose sizes ≈d. In
contrast, a large bare NP with d > R experiences the full polymer
melt viscosity≈η0N independent of d. For the diffusion of a free
tail in an unentangled polymer melt
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ζtail is proportional to the number of monomersNtail in the tail if
the melt chains screen the hydrodynamic coupling between
sections of the tail with b < Rtail < Nb. ζtail for a longer tail with
Rtail > Nb scales with the size of the tail Rtail due to the
unscreened hydrodynamic coupling between sections of the
tail.20 For Rtail > Nb, the friction of the tail ζtail ≈ ζ0N

2(Rtail/Nb)
≈ ζ0Ntail

3/5N4/5 resulting from the hydrodynamic coupling is
smaller than ζtail ≈ ζ0Ntail without hydrodynamic coupling, and
thus is a more favorable way of energy dissipation.
Since the bare NP is dynamically coupled to a wake of size≈d

in the melt surrounding the particle, adding a small tail with Rtail
< d to the wake does not significantly change the motion of the
particle with respect to that of the bare NP. As a result, the
friction coefficient ζ of the single-tail NP with Rtail < d is
approximated as ζbare of a bare NP, and themobility of the single-
tail NP is dominated by the particle with D ≈ kBT/ζbare. If Rtail >
d, a significant portion of the tail is beyond the wake surrounding
the particle. The friction coefficient of the single-tail NP is
approximated as

ζ ζ ζ≈ +bare tail (4)

where ζbare and ζtail are given in eq 2 and eq 3, respectively. The
diffusion coefficient for a single-tail NP is

ζ ζ
≈

+
D

k TB
bare tail (5)

If ζtail ≪ ζbare, the diffusion of the particle is not significantly
affected by the tail, as the tail with a smaller friction coefficient is
more mobile than the particle. Therefore, D is approximated as
the diffusion coefficient for the bare NP

ζ
ζ ζ≈ ≈ ≪D

k T
D forB

bare
bare tail bare

(6)

Figure 1. (a) Schematic illustration of a NP (blue sphere) with a tethered polymer tail (red line) in a melt of unentangled polymers (green lines). The
NP diameter is d. The size of a melt chain is R, while the size of the tail is Rtail. (b) Scaling regimes in the (d,Rtail) parameter space for the mobility of a
single-tail NP in an unentangled polymer melt.

Macromolecules Article

DOI: 10.1021/acs.macromol.8b02138
Macromolecules 2019, 52, 1536−1545

1537

http://dx.doi.org/10.1021/acs.macromol.8b02138


If ζtail is comparable to ζbare, the effects of the tail on the
diffusion of the particle cannot be ignored. The expression in eq
5 can be used to approximate D. If ζtail ≫ ζbare, the diffusion of
the single-tail NP is controlled by the tail that has a higher
friction coefficient. As a result,D is approximated as the diffusion
coefficient for the free tail

ζ
ζ ζ≈ ≈ ≫D

k T
D forB

tail
tail tail bare

(7)

For Rtail > d, the two friction coefficients ζtail and ζbare are
compared to determine if the diffusion of a single-tail NP is
controlled by the particle withDtail >Dbare or by the tail withDtail
< Dbare. Whether the combined friction coefficient ζ (eq 4) for a
single-tail NP is dominated by ζbare or ζtail depends on d and Rtail.
In the parameter space (d,Rtail), the boundary line with ζtail ≈
ζbare separates the regions where the diffusion of the single-tail
NP is controlled by the particle and the tail, respectively. The
boundary line is
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Note that the particle and the sections of the tail are
hydrodynamically coupled for Rtail > d > bN. The friction
coefficient of the single-tail NP ζ is approximated as ζtail, as the
size or the hydrodynamic radius of the tail is larger than that of
the particle. The mobility of the single-tail NP is dominated by
the tail with D ≈ kBT/ζtail.
On time scales shorter than the onset of terminal diffusion, the

motion of a single-tail NP is quantified by the time dependence
of its mean square displacement (MSD) ⟨Δr2(t)⟩. For Rtail < d,
the motion of the particle is not significantly affected by the
attached tail, and therefore ⟨Δr2(t)⟩ is approximated as theMSD
of a bare NP ⟨Δr2(t)⟩bare. For Rtail > d, the MSD

ζ ζ ζ
⟨Δ ⟩ ≈ ≈

+
r t

k T
t
t

k T
t t

t( )
( ) ( ) ( )

2 B B

bare tail (9)

where the time-dependent effective friction coefficient ζ(t)
includes ζbare(t) for the bare NP and ζtail(t) for a chain section of
g(t) monomers that move coherently with each other on time
scale t. Similar to eq 6 and eq 7 for terminal diffusion
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In Appendix A, we present the scaling results for ⟨Δr2(t)⟩bare
(eqs A.1, A.2, and A.6) and ⟨Δr2(t)⟩tail (eqs A.7−A.10).
⟨Δr2(t)⟩bare and ⟨Δr2(t)⟩tail are compared to identify different
scaling regimes for the motion of a single-tail NP with Rtail > d in
an unentangled polymer melt.
As shown in Figure 1b, there is a particle-dominated regime

below the blue solid line, where both the terminal diffusion of

the single-tail NP and the motion prior to the diffusion are
controlled by the particle with ⟨Δr2(t)⟩ ≈ ⟨Δr2(t)⟩bare. In the
particle-dominated regime, the tail does not significantly affect
the particle dynamics at all time scales. There are five different
tail-dominated regimes depending on the NP size d and the tail
size Rtail. In each regime, there is a crossover from the particle-
dominated motion at shorter time scales to the tail-dominated
motion as t increases. At the crossover time τ*, ⟨Δr2(τ*)⟩bare ≈
⟨Δr2(τ*)⟩tail. For regimes I−IV, the friction coefficients ζbare(τ*)
for the bare NP and ζtail(τ*) for the chain section of g(τ*)
coherently moving monomers are comparable to each other.
The results of τ* for the five tail-dominated regimes are listed in
Table 1 and plotted as a function of d in Figure 2. At time scales

shorter than τ*, the single-tail NP motion is controlled by the
particle. The single-tail NP behaves as a bareNPwith ⟨Δr2(t)⟩≈
⟨Δr2(t)⟩bare < ⟨Δr2(t)⟩tail. The time dependence of ⟨Δr2(t)⟩bare
is ⟨Δr2(t)⟩bare ∼ t2 for the ballistic particle motion at time scales
shorter than the ballistic time τbal, ⟨Δr2(t)⟩bare ∼ t1/2 for the
subdiffusive motion resulting from the coupling to the Rouse
dynamics of the melt chains at time scales between τbal and the
diffusion time τd, and ⟨Δr2(t)⟩bare ∼ t for the diffusive particle
motion at time scales between τd and τ*. The three distinctive
time dependences of ⟨Δr2(t)⟩ for t < τ* are sketched in Figure 3
for the five regimes. At time scales longer than τ*, the dynamics
of the tail dominates the single-tail NP motion. The particle
follows the tail dynamics, and ⟨Δr2(t)⟩ ≈ ⟨Δr2(t)⟩tail <
⟨Δr2(t)⟩bare. For regimes I and III with b < Rtail < bN, the
particle participates in the Rouse dynamics of the tail with
⟨Δr2(t)⟩tail ∼ t1/2 at time scales between τ* and the Rouse time
τR,tail and then diffuses with ⟨Δr2(t)⟩tail ∼ t for t > τR,tail. The
subdiffusive motion with ⟨Δr2(t)⟩ ∼ t1/2 occurs in two time
ranges, as shown in Figure 3a. The first one for τbal

I(τbal
III) < t <

τd
I(τd

III) results from the coupling between the NP motion and
the Rouse dynamics of surrounding polymers in the melt. The
second one in τI*(τIII* ) < t < τR,tail arises from the Rouse relaxation
modes of the tail. For regimes II, IV, and V with Rtail > bN, the
motion of the tail changes fromRouse dynamics with ⟨Δr2(t)⟩tail
∼ t1/2 to Zimm dynamics with ⟨Δr2(t)⟩tail ∼ t2/3 at the crossover

Table 1. Crossover Time τ* for a Single-Tail NP in an
Unentangled Polymer Melt

regimes I and II regimes III and IV regime V

τI,II* ≈ τ0(d/b)
6 τIII,IV* ≈ τ0(d/b)

2(R/b)4 τV* ≈ τ0N(d/b)
3

Figure 2.Dependence of the crossover time τ* (see Table 1 and Table
2) on the particle diameter d for a single-tail NP (green upper line) and
a NP loosely grafted with 1 < z < N1/2 tails (blue lower line) in an
unentangled polymer melt.
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time τT.Whether a particle participates in the Rouse dynamics of
such a long tail depends on whether τ* is smaller than τT. As
shown in Figure 3b, a particle in regime II or IV participates in
the Rouse dynamics for τII*(τIV*) < t < τT and then the Zimm
dynamics for τT < t < τZ,tail, whereas a particle in regime V only
participates in the Zimm dynamics for τV* < t < τZ,tail. The single-
tail NP finally diffuses with ⟨Δr2(t)⟩ ≈ ⟨Δr2(t)⟩tail ∼ t for t >
τZ,tail. The details of the calculation of ⟨Δr2(t)⟩ and the features
of ⟨Δr2(t)⟩ for different regimes are presented in Appendix A.

3. NP WITH MULTIPLE TAILS
ANP with multiple grafted chains is illustrated in Figure 4a. The
conformations of the tails grafted to the NP are similar to the

conformations of the arms in the outer part (the part excluding
the inner region of size≈d) of a star polymer in the samemelt, as
shown in Figure 4b. Previously, scaling theories21−24 have been
developed to describe the static properties of an isolated star
polymer with z arms and Na monomers per arm dissolved in a
melt of chemically identical linear chains with N monomers per
chain. Below we first briefly review the existing theories for the
conformations of star polymers and then develop a new scaling
theory for the mobility of a multitail NP on the basis of mapping
a multitail NP to a star polymer.
According to the scaling theories,21−24 the radius and the

structure of a star polymer in a melt depend on the number of
arms z and the number of monomers Na per arm, as shown in
Figure 5. For a loosely branched star with 1 < z < N1/2 arms, the
radius of the star
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If the arms are short with Na < z2, the star is dry with almost no
mixing with the melt chains; that is, the volume fraction of
monomers belonging to the star≈1. The arms of the dry star and

Figure 3. Time dependence of the MSD ⟨Δr2(t)⟩ of a single-tail NP in an unentangled polymer melt for (a) regimes I and III and (b) regimes II, IV,
and V in Figure 1b.

Figure 4. (a) Schematic illustration of a NP (blue sphere) with z > 1
grafted tails (red lines) in a melt of unentangled polymers (green lines)
with N monomers per chain. The NP diameter is d. The size of a melt
chain is R ≈ bN1/2, while the size of the tail is Rtail. The multitail NP in
(a) is mapped to a star polymer in the same melt, as illustrated in (b).
The number of arms in the star is z. The size of the star is Rstar ≈ Rtail.
The red sphere in (b) indicates the inner region of the star with
diameter ≈d.

Figure 5. Locations of different regions in (a) a loosely branched star
polymer with 1 < z <N1/2 arms and (b) a densely branched star polymer
with z >N1/2 arms in a linear polymer melt withNmonomers per chain.
In both scenarios, only a star consisting of sufficiently long arms with
the number of monomers per armNa >N

2z1/2 contains all the sketched
regions. The structure of a dry core is illustrated in (c), where filled
circles and black thick lines indicate the monomers and backbones,
respectively. The conformations of chain sections in the Gaussian
brush, swollen brush, and Daoud−Cotton brush are illustrated in (d−
f), respectively. The filled circle in (d) indicates the dry core surrounded
by the Gaussian brush. For each type of brush, the strand belonging to
one arm is highlighted by the black thick line. Dashed circles in (e, f)
indicate the correlation blobs with sizes growing along the radial axis.
Magenta dashed circles in (e, f) indicate the correlation blobs of the arm
highlighted by the black solid line. Multiple chain strands exist in a
correlation blob of a swollen brush, and the correlation blobs of
different strands overlap, as illustrated in (e). By contrast, only one
chain strand occupies a correlation blob of a Daoud−Cotton brush, as
illustrated in (f). In a correlation blob, the excluded volume interaction
of a chain strand with other strands at the same length scale is on the
order of thermal energy kBT.
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the arm strands in the dry core of a larger star are stretched with
respect to their ideal Gaussian sizes. The stretching is due to the
steric hindrance between all the arms originating from the same
branch point, as illustrated in Figure 5c. The radius of the dry
star Rstar ∼ (zNa)

1/3. If z2 < Na < (N/z)2, the star consists of a
brush corona surrounding a dry core of size≈bz, which contains
z2 monomers per arm. Chain segments in the brush corona
adopt ideal random-walk conformations, as the excluded volume
interactions between the arms are almost screened by the melt
chains. Such a Gaussian brush with Rstar ∼ Na

1/2 is illustrated in
Figure 5d. If the arms are long with Na > (N/z)2, the brush
corona covering the dry core contains an inner Gaussian brush
and an outer brush, where chain segments adopt swollen
conformations. The size of the Gaussian brush region ≈bN/z,
which corresponds to (N/z)2 monomers per arm. The overall
star radius Rstar∼Na

3/5(z/N)1/5. For (N/z)2 <Na <N
2z1/2, there

are multiple chain sections of Gaussian conformations in a
correlation blob of a swollen brush, as shown in Figure 5e.
Multiple chain sections are required to make the overall
excluded volume interaction of a chain strand in a correlation
blob ≈kBT, because the excluded volume interactions are
partially screened by the melt chains. For Na > N2z1/2, there is
also a swollen brush with multiple chain sections per correlation
blob at intermediate distances bN/z < r < bNz1/2 from the
branch point. However, each correlation blob at r > bNz1/2

contains only one chain section, as shown in Figure 5f. The chain
section in a blob adopts a swollen conformation, as the blob size
ξ(r) ≈ r/z1/2 is larger than the thermal blob size ≈bN for r >
bNz1/2. The brush structure for r > bNz1/2 can be described using
the model proposed by Daoud and Cotton.21 The Daoud−
Cotton brush corona only exists in a star polymer with Na >
N2z1/2. The locations of different regions along the radial axis of
a loosely branched star with sufficiently long arms are shown in
Figure 5a. For a densely branched star with z >N1/2, the radius of
the star
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If the arms are short withNa < z
1/2N3/4, the star is dry withRstar∼

(zNa)
1/3. If the arms are long withNa > z

1/2N3/4, the star consists
of a dry core surrounded by a brush corona. The size of the core
≈bz1/2N1/4, corresponding to z1/2N3/4 monomers per arm, while
the overall star radius Rstar ∼ Na

3/5(z/N)1/5. As in a loosely
branched star, the Daoud−Cotton brush exists in a densely
branched star only for Na > N2z1/2. The locations of different
regions along the radial axis of a densely branched star withNa >
N2z1/2 are shown in Figure 5b. Unlike the brush corona of a
loosely branched star, the brush corona of a densely branched
star does not contain a Gaussian brush region. There is no
intermediate range of Na for which the star contains a dry core
and a Gaussian brush corona, because the screening by the melt
chains is not strong enough to reduce the overall exclude volume
interaction between all densely branched arms below kBT per
arm.
We develop a scaling theory for themotion of amultitail NP in

an unentangled polymer melt by considering a star polymer with
z arms and arm lengthNa≈Ntail in the same melt (see Figure 4).
Similar to the motion of a single-tail NP, the motion of a
multitail NP is significantly affected by the tails only if Rtail > d.
Therefore, below we only describe the motion of a multitail NP

with Rtail > d. The motion of a multitail NP with Rtail < d can be
approximated as that of a bare NP.

3.1. Loosely Grafted Tails with 1 < z < N1/2. If the grafted
tails are short with d < Rtail < bz, a multitail NP corresponds to a
dry star polymer. The size of this multitail NP ≈ Rtail ≈
bNtail

1/3z1/3 (see eq 11 for a dry star with Na < z2). As
demonstrated in Appendix B, although the position of the
particle fluctuates under the confinement of the grafted dry tails,
the motion of the multitail NP can be approximated as that of a
larger particle with diameter ≈Rtail in the matrix of melt chains.
This tail-dominated regime with d < Rtail < bz is indicated as
regime VI of the (d,Rtail) parameter space in Figure 6.

A multitail NP with intermediate tail size in the range
max{d,bz} < Rtail < bN/z corresponds to a star polymer
consisting of a dry core and a Gaussian brush corona. The size of
the multitail NP is≈Rtail≈ bNtail

1/2 (see eq 11 for a star with z2 <
Na < (N/z)

2). If d < bz, the multitail NP motion is controlled by
the tails, as the particle and the dry portions of the tails move
together as a larger particle with diameter≈bz. This corresponds
to regime VII in Figure 6. The MSD of the multitail NP in this
regime is ⟨Δr2(t)⟩ ≈ (b2/z)(t/τ0)

1/2 for t < τ0z
4 (substitute Rtail

by bz in eq B.1). Note that τ0z
4 is the Rouse time of a segment

containing z2 monomers in the dry core of a star polymer. At
times longer than τ0z

4, ⟨Δr2(t)⟩ is approximately the same as
⟨Δr2(t)⟩star of the branch point of a Gaussian star. If d > bz, the
tails do not contain any dry portions. Whether the multitail NP
motion is controlled by the particle or the tails in the Gaussian
brush depends on the competition of the friction coefficients of
the bare particle and the tails. The friction coefficient of the bare
particle ζbare is given in eq 2. The friction coefficient of the tails
≈zζtail, where ζtail ≈ ζ0Ntail ≈ ζ0(Rtail/b)

2 is the friction
coefficient of a single tail undergoing Rouse dynamics. The
friction coefficients for individual tails are additive due to the
absence of hydrodynamic coupling between the tails. The
overall friction coefficient of the multitail NP is approximated as

ζ ζ ζ≈ + < <

< < <

z z N

bz d R bN z

for 1 and

/
bare tail

1/2

tail (13)

ζ is dominated by the larger of the two contributions ζbare and
zζtail. In the parameter space (d,Rtail), the boundary line
separating the regions where the diffusion of a multitail NP is

Figure 6. Scaling regimes in the (d,Rtail) parameter space for the
mobility of a NP with 1 < z <N1/2 tails in an unentangled polymer melt.
Blue solid and dashed lines indicate the boundaries between tail-
dominated regimes and the particle-dominated regimes for a multitail
NP and a single-tail NP (also Figure1b), respectively. Red solid lines
indicate the boundaries between different tail-dominated regimes for a
multitail NP.
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dominated, respectively, by the particle and the Gaussian brush
is
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as indicated by the blue solid line in Figure 6. Two regimes,
which are indicated as regimes I and III in Figure 6, exist in the
tail-dominated region with bz < d < Rtail < bN/z. Regimes I and
III for multitail NP motion are similar to their counterparts for
single-tail NP motion (see Figure 1b). The time dependence of
⟨Δr2(t)⟩ is similar to that in the corresponding regime for single-
tail NP motion (Figure 3a). However, the crossover time τ* for
multitail NP motion is reduced with respect to the
corresponding τ* for single-tail NP motion, as shown in Table
2 and Figure 2. The earlier crossover to the tail-dominated

motion reflects the enhanced friction coefficient of multiple tails
compared to that of a single tail. For t > τ*, the multitail NP
MSD ⟨Δr2(t)⟩ is approximately equal to the MSD ⟨Δr2(t)⟩star of
the branch point of a Gaussian star polymer.
For sufficiently long tails with Rtail > max{d,bN/z}, a multitail

NP corresponds to a star polymer consisting of a dry core, an
intermediate Gaussian brush, and an outer brush corona
(“hairy” NP). The size of the multitail NP is ≈Rtail ≈
bNtail

3/5(z/N)1/5 (see eq 11 for a star with Na > (N/z)2). In a
star polymer with arms forming either a swollen brush corona
(Figure 5e) or a Daoud−Cotton brush corona (Figure 5f)
covering a swollen brush, hydrodynamical coupling between the
arms affects the branch point motion for t above the Rouse time
≈τ0(N/z)4 of a strand in the Gaussian brush. In particular, the
arms are hydrodynamically coupled for the terminal diffusion of
the star. Likewise, a multitail NP with Rtail > max{d,bN/z}
diffuses in the melt with the NP and the tails hydrodynamically
coupled. The hydrodynamic radius of the multitail NP can be
approximated by the sum of Rtail and d, which is dominated by
Rtail > d. The multitail NP experiences the melt viscosity η0N, as
its size≈Rtail > bN/z is larger than the melt chain size R≈ bN1/2.
The diffusion coefficient of the multitail NP is D ≈ kBT/
(η0NRtail). There are four regimes in the tail-dominated region
with Rtail > bN/z, which are indicated as regimes II, IV, V, and
VIII in Figure 6. Regimes II, IV, and V for multitail NP motion
are similar to their counterparts for single-tail NP motion (see
Figure 1b for the regimes and Figure 3b for the sketch of
⟨Δr2(t)⟩). However, the crossover time τ* is reduced as shown
in Table 2 and Figure 2. The time for the crossover from Rouse
dynamics to Zimm dynamics of the hydrodynamically coupled
tails is also reduced from τT ≈ τ0N

4 for a single tail to
τT ≈ τ0(N/z)

4, which is the Rouse time of a chain segment
containing (N/z)2 monomers in the Gaussian brush (Figure
5d). In regime VIII, the particle with d < bz and the dry portions
of the tails move as a larger particle with diameter ≈bz, and thus
the multitail NP motion is controlled by the tails. As in regime
VII, the multitail NP MSD ⟨Δr2(t)⟩ ≈ (b2/z)(t/τ0)

1/2 for t <

τ0z
4. At time scales above τ0z

4, ⟨Δr2(t)⟩ is approximately the
same as ⟨Δr2(t)⟩star of the branch point of the corresponding star
polymer.

3.2. Densely Grafted Tails with z >N1/2. If the grafted tails
are short with d < Rtail < bz

1/2N1/4, a densely grafted multitail NP
corresponds to a dry star in the same melt (see eq 12 for Na <
z1/2N3/4). Themultitail NPmotion is similar to that in regime VI
for loosely grafted multitail NPs (see Figure 6). It is controlled
by the tails, as the particle and the dry tails move together as a
larger particle with diameter ≈Rtail. More detailed analysis is
presented in Appendix B. The MSD of a multitail NP before the
terminal diffusion in this regime is given in eq 2.
A densely grafted multitail NP with long tails of size Rtail >

max{d,bz1/2N1/4} corresponds to a star consisting of a dry core
and a brush corona (either a swollen brush or Daoud−Cotton
brush covering a swollen brush). The particle and the tails are
hydrodynamically coupled for the diffusion of the multitail NP.
The hydrodynamic radius can be approximated by the sum of
the tail size Rtail and the particle size d, and it is dominated byRtail
> d. The viscosity experienced by the multitail NP is the melt
viscosity ηN, as Rtail > bz1/2N3/4 is larger than the melt chain size
R ≈ bN1/2. The diffusion coefficient is D ≈ kBT/(ηNRtail).
Various aspects of the dynamics of grafted nanoparticles in

polymer matrices have been studied experimentally, such as the
effects of temperature,25,26 morphology of particles in
aggregated state,27 and grafted polymer chains.28,29 We compare
the theory developed in this paper with one experimental study
that focused on the effects of grafted polymers.29 In this study,
the center-of-mass diffusion of Fe3O4 NPs densely grafted with
poly(methyl methacrylate) (PMMA) chains in an unentangled
PMMA melt was measured using Rutherford backscattering
spectrometry (RBS).29 In one set of experiments, Fe3O4 NPs
with diameter d = 4.3 nm were grafted with PMMA chains and
dispersed in amelt of PMMA chains withmolecular weightMw =
14 kg/mol, which corresponds to N = 26 Kuhn monomers of
size b = 1.53 nm.30 There were three samples with grafting
density σ = 0.55, 0.33, and 0.17 chains/nm2. The number of
grafted tails per NP is z = πd2σ = 32, 19, and 10, and the
corresponding number of Kuhn monomers per tail is Ntail = 30,
39, and 39. We refine the criterion for a loosely grafted NP in a
melt matrix and show that the NPs in all three samples are
indeed not loosely grafted. The criterion z < N1/2 for a loosely
grafted NP corresponds to the existence of a Gaussian star with
Rstar ≈ bNa

1/2 for z2 < Na < (N/z)2, as shown in eq 11. A strand
with less than z2 Kuhn monomers from the branch point is
located in the dry core, while a strand with more than (N/z)2

Kuhn monomers from the branch point goes beyond the
Gaussian region and becomes swollen. The expression for the
size of a dry star Rstar≈ b(zNa)

1/3 forNa < z
2 (eq 11) is refined by

considering that the volume of a Kuhn monomer is not b3 but
more precisely ba2, where a is the thickness of a Kuhnmonomer.
The refined expression is Rstar ≈ a2/3b1/3(zNa)

1/3 for Na <
z2(a/b)4. The refined criterion for the existence of a Gaussian
star is z2(a/b)4 < Na < (N/z)2, which requires z < (b/a)N1/2.
Accordingly, the refined criterion for a loosely grafted NP is z <
(b/a)N1/2. For the three samples in the experiments, the volume
of a monomer is v = 0.149 nm3, the molecular weight of a
monomer is M0 = 0.1 kg/mol, the molecular weight of a Kuhn
monomer is Mk = 0.54 kg/mol, and hence the thickness of a
Kuhn monomer is a = (Mkv/M0b)

1/2 = 0.73 nm. The refined
criterion for loose grafting in the experiments is z < (b/a)N1/2 =
11. As a result, the NPs with z = 32 and 19 are densely grafted,
while the NPs with z = 10 are in the crossover from loosely to

Table 2. Crossover Time τ* for a NP Loosely Grafted with 1 <
z < N1/2 Tails in an Unentangled Polymer Melt

regimes I and II regimes III and IV regime V

τI,II* ≈ τ0(d/b)
6/z2 τIII,IV* ≈ τ0(d/b)

2(R/b)4/z2 τV* ≈ τ0N(d/b)
3/z
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densely grafted regimes. Next we estimate the structure of the
grafted NPs in the experiments. Suppose a strand in the dry layer
surrounding the particle contains x Kuhn monomers; then x
satisfies (4π/3)(d/2)3 + zx(ba2) = (4π/3)(d/2 + x1/2b)3. Note
that the contribution of the particle volume to the dry core
volume is considered. For the NPs with (z,Ntail) = (32,30),
(19,39), and (10,39), we obtain x = 0, meaning that the dry core
consists only of the particle. The overall size of a grafted NP is
approximated by the size of a swollen star Rstar≈ bNa

3/5(z/N)1/5

withNa≈Ntail. For (z,Ntail) = (32,30), (19,39), and (10,39), the
estimated overall size ≈12.3, 12.9, and 11.4 nm. Experiments
found that the hydrodynamic radii of the NPs in the three
samples RH ≈ 10 nm.29 This result roughly agrees with the
estimated overall size of the densely grafted NPs, supporting the
scaling description that the hydrodynamic radius RH of a densely
grafted NP with Rtail > d is dominated by Rtail. Note that
hydrodynamic interactions in a semidilute polymer solution are
screened on a length scale comparable to that for the screening
of the intermolecular interactions. The melt chains drain
through the grafted polymer brush on the length scale of the
last correlation blob size ζlast (see Figure 5). As a result, RH ≈
Rtail−Cζζlast, where Cζ is a numerical coefficient of order unity.31

Below we discuss the extension of the experiments to single-
tail NPs and loosely grafted multitail NPs. Consider an Fe3O4
NPwith d = 4.3 nm in amelt of PMMA chains withN = 26Kuhn
monomers per chain and chain size R≈ bN1/2 = 7.8 nm. A single
grafted PMMA chain would control the motion of the Fe3O4
particle if the grafted chain size Rtail > b(d/b)3/2 ≈ 7.2 nm or the
number of Kuhn monomers in the chain Ntail > 22, according to
eq 8 for a single-tail NP with b < d < R. At Ntail = 22, the friction
coefficients ζtail and ζbare of the PMMA tail and the bare Fe3O4
particle are almost the same. Therefore, the diffusion coefficient
of a single-tail NP withNtail = 22 is approximately half of that of a
bare NPwithout the tail. For multiple grafted PMMA chains, the
condition for loose grafting is z < (b/a)N1/2 = 11. If z = 6 PMMA
chains were loosely grafted to a NP, no PMMA chains are in the
dry core (as in the more densely grafted cases with z = 10, 19,
and 32). The PPMA chains with less than (N/z)2 = 19 Kuhn
monomers per chain form a Gaussian brush. There is no
hydrodynamic coupling between the tails in the Gaussian brush,
and the overall friction coefficient of the tails is 6ζtail. For d = 4.3
nm < R = 7.8 nm, the z = 6 chains would control the motion of
the Fe3O4 particle if Rtail > b(d/b)3/2/z1/2 ≈ 2.9 nm or Ntail > 4,
according to eq 14 for a NP grafted with a Gaussian brush. At
Ntail = 4, the friction coefficient of the Gaussian brush 6ζtail is
comparable to that of the bare particle ζbare and therefore
reduces the diffusion coefficient of the particle by 50% with
respect to that of the bare particle.

4. CONCLUSIONS
We study the motion of a polymer-tethered NP in a polymer
melt using scaling analysis. For a single-tail NP in an
unentangled polymer melt, the friction coefficient ζ(t) for the
single-tail NP includes the contributions ζbare(t) from the bare
NP and ζtail(t) from the tail. The competition between ζbare(t)
and ζtail(t) determines whether the single-tail NP motion is
dominated by the bare NP or the tail. In the particle-dominated
regime, ζ(t) ≈ ζbare(t) > ζtail(t), and the mean squared
displacements of the tailed NP ⟨Δr2(t)⟩ is approximated as
⟨Δr2(t)⟩bare for the bare NP. In a tail-dominated regime,
⟨Δr2(t)⟩≈ ⟨Δr2(t)⟩bare for t smaller than a crossover time τ*, but
⟨Δr2(t)⟩ is approximated as the MSD of monomers in the tail
⟨Δr2(t)⟩tail for t > τ*, as ζ(t) ≈ ζtail(t) > ζbare(t) for t > τ*. We

construct a diagram of regimes (Figure 1b) to show the particle-
dominated regime and various tail-dominated regimes in the
parameter space (d,Rtail). The tail-dominated regimes differ in
the tail dynamics that controls the single-tail NP motion (see
Figure 3) and the crossover time τ* at which the tail-dominated
motion begins (see Table 1).
The model of a multitail NP in an unentangled polymer melt

can be mapped onto a corresponding star polymer in the same
melt. A Gaussian brush region where chain segments adopt ideal
random-walk conformations exists for loosely grafted tails with 1
< z < N1/2, but it is absent for densely grafted tails with z > N1/2.
For loosely grafted short tails with d < Rtail < bz, a multitail NP
corresponds to a dry star diffusing in the melt with hydro-
dynamic radius ≈Rtail. With intermediate grafted chain size bz <
Rtail < bN/z, a loosely grafted multitail NP corresponds to a star
with a dry core (Figure 5c) and a Gaussian brush corona (Figure
5d). Similar to the motion of a single-tail NP, the motion of such
a multitail NP can be in the particle-dominated regime or one of
many tail-dominated regimes in the parameter space (d,Rtail)
(see Figure 6). If the tails are sufficiently long with Rtail > bN/z, a
loosely grafted multitail NP corresponds to a star with either a
swollen brush corona (Figure 5e) or a swollen brush surrounded
by Daoud−Cotton brush corona (Figure 5f). For the diffusion
of such a multitail NP, the particle and the tails are
hydrodynamically coupled. The tails with Rtail > d control the
diffusion of the multitail NP, as Rtail dominates the hydro-
dynamic radius approximated by Rtail + d. The crossover time τ*
for a tail-dominated regime of multitail NP motion is reduced
with respect to the counterpart for single-tail NP motion (see
Table 2 and Figure 2). For densely grafted tails with z > N1/2,
depending on the grafted chain size, a multitail NP corresponds
to either a dry star or a star consisting of a dry core and a brush
corona with no Gaussian region. In both scenarios, the densely
grafted multitail NP diffuses in the melt with the hydrodynamic
radius ≈Rtail + d, which is dominated by Rtail for Rtail > d.
In conclusion, our scaling theory for the mobility of polymer-

tethered NPs in polymer melts demonstrates the interplay
between the dynamics of the bare NP and the dynamics of the
tethered polymer tails. The theory can be extended to polymer-
tethered NPs in entangled polymer melts. As in unentangled
polymer melts, the mobility of tethered particles in entangled
polymer melts is dominated by the lower of the two mobilities:
of the bare particle or of the tails. Bare particles with sizes smaller
than the entanglementmesh size a behave essentially the same as
those in unentangled polymer melts. However, the mobility of
particles is significantly reduced as the particle size exceeds the
tube diameter a of the melt. While sufficiently large particles are
confined by the entanglement network with the mobility
determined by the melt viscosity, particles only moderately
larger than a can diffuse through the hopping mechanism and
exhibit mobility higher than the prediction of the Stokes−
Einstein relation.19 For a single-tail NP, the particle participates
in the reptation dynamics of the long tail if the tail has a lower
mobility. For a multitail NP, the mobility of the tails can be
approximated as that of a star polymer undergoing arm
retraction in the same melt. The lower of the mobility of the
bare particle and the corresponding star polymer determines the
mobility of the multitail NP. Detailed theoretical description of
the mobility of tethered NPs in entangled polymer melts will be
presented in a future publication. One can also extend the
present theory to study the mobility of a NP with an adsorption
layer in a polymer melt by describing the adsorption layer as
loops and tails.15−17 Furthermore, the theory can be generalized
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to investigate the motion of a NP with reversibly grafted or
adsorbed polymer chains.

■ APPENDIX

A. MSD of a Single-Tail NP in an Unentangled Polymer Melt
TheMSD ⟨Δr2(t)⟩bare of a bare nonsticky NP in an unentangled
polymer melt has been calculated using scaling theory.18 The
results of ⟨Δr2(t)⟩bare are shown in Figure A.1a. The first scaling
regime

τ⟨Δ ⟩ ≈ <r t
k T
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t t( ) for2
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B 2
bal (A.1)

corresponds to the ballistic motion of the bare NP at time scales
shorter than the ballistic time τbal. Subsequent scaling regimes
describe the thermal motion of the NP. The subdiffusive regime
with
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results from the coupling between the NPmotion and the Rouse
dynamics of the unentangled polymers up to the diffusion time
τd. Matching eq A.1 and eq A.2, one obtains the ballistic time as
the crossover time between the ballistic and subdiffusive regime
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where ζ0 is the monomeric friction coefficient and
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is the monomer relaxation time. The subdiffusion of a NP with b
< d < R is coupled to the relaxation of chain segments with sizes
up to d, while the subdiffusion of a NP with d > R is coupled to
the relaxation of the entire polymer chain. As a result, the
diffusion time for the onset of Brownian motion of a NP is
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where τR ≈ τ0N
2 ≈ τ0(R/b)

4 is the Rouse relaxation time of the
polymer melt. The final scaling regime with t > τd corresponds to
NP diffusion with MSD increasing linearly with time
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The MSD ⟨Δr2(t)⟩tail of monomers in a linear polymer
containing Ntail monomers is obtained based on scaling models
for the dynamics of unentangled polymers.20 Scaling descrip-
tions of ⟨Δr2(t)⟩tail are presented in Figure A.1b. A shorter
polymer with Ntail < N2 relaxes by Rouse dynamics, and
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where τR,tail ≈ τ0Ntail
2 is the Rouse time. The shorter polymer

finally diffuses with
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A longer polymer with Ntail > N2
first relaxes by Rouse

dynamics until τT≈ τ0N
4, which is the relaxation time of a chain

segment containing N2 monomers, and then it relaxes by Zimm
dynamics until the Zimm time τZ,tail ≈ τT(Ntail/N

2)9/5. Zimm
dynamics occurs at time scales t > τT, as the hydrodynamic
coupling between sections of the long polymer can no longer be
screened by the shorter melt chains. For the Rouse dynamics and
the subsequent Zimm dynamics, the MSD of monomers is
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Finally, the long polymer diffuses with
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Figure A.1. (a) MSD ⟨Δr2(t)⟩bare of a bare NP with d < R (blue solid line) and d > R (magenta dotted line) in a melt of unentangled polymers with
chain size R. (b)MSD ⟨Δr2(t)⟩tail for monomers in an unattached (free) tail polymer withNtail <N

2(green dotted line) andNtail >N
2 (red solid line) in

a melt of unentangled polymers with N monomers per chain.
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For d < Rtail < bN, the MSD ⟨Δr2(t)⟩ of a single-tail NP is
obtained based on the approximation in eq 10. Below we
describe the time dependence of ⟨Δr2(t)⟩ for different tail-
dominated scaling regimes in the (d,Rtail) parameter space (see
Figure 1b).
Regime I: Small NP with b < d < R and Long tail with b(d/b)3/2

<Rtail < bN (SL). The time dependence of ⟨Δr2(t)⟩ in regime I is
shown by the blue dashed line in Figure 3a. ⟨Δr2(t)⟩ ≈
⟨Δr2(t)⟩bare ∼ t2 (eq A.1) for t < τbal, ∼ t1/2 (eq A.2) for τbal < t <
τd
I , and ∼ t (eq A.6) for τd

I < t < τI*. Subsequently, ⟨Δr2(t)⟩ ≈
⟨Δr2(t)⟩tail∼ t1/2 (eq A.7) for τI* < t < τR,tail and∼ t (eq A.8) for t
> τR,tail.
Regime II: Small NP with b < d < R and Very long tail with Rtail >

bN (SV). The time dependence of ⟨Δr2(t)⟩ in regime II is shown
by the magenta dashed line in Figure 3b. The crossover time τII*
≈ τI* (see Table 1) and the time dependence of ⟨Δr2(t)⟩ for t <
τII* in regime II is identical to that for t < τI* in regime I. Above the
crossover time, ⟨Δr2(t)⟩ ≈ ⟨Δr2(t)⟩tail ∼ t1/2 and ∼ t2/3 (eq A.9)
for τII* < t < τT and τT < t < τZ,tail, respectively. Finally, ⟨Δr2(t)⟩≈
⟨Δr2(t)⟩tail ∼ t (eq A.10) for t > τZ,tail. Compared with regime I,
regime II has an additional time dependence ⟨Δr2(t)⟩ ∼ t2/3,
which is due to the Zimm dynamics of a very long tail with Rtail >
bN.
Regime III: Large NP with R < d < bN and Long tail with R(d/

b)1/2 < Rtail < bN (LL). The time dependence of ⟨Δr2(t)⟩ in
regime III (red solid line in Figure 3a) is similar to that in regime
I (blue dashed line in Figure 3a). One difference between regime
III and regime I is that τd

III≈ τR, while τd
I ≈ τR(d/R)

4 < τR (see eq
A.5). Another difference is in the d-dependence of the crossover
time, τIII* ≈ τ0(d/b)

2(R/b)4, whereas τI* ≈ τ0(d/b)
6 (see Table

1).
Regime IV: Large NP with R < d < bN and Very long tail with

Rtail > bN (LV). Regime IV and regime II have a similar time
dependence of ⟨Δr2(t)⟩ (see green dotted line and magenta
dashed line in Figure 3b). The differences between regime IV
and regime II are identical to those between regime III and
regime II: (1) τd

IV ≈ τd
III ≈ τR versus τd

II ≈ τd
I ≈ τR(d/R)

4 and (2)
τIV* ≈ τIII* ≈ τ0(d/b)

2(R/b)4 versus τII* ≈ τI* ≈ τ0(d/b)
6.

Regime V: Very large NP with d > bN and Very long tail with Rtail
> d (VV). As shown by the cyan solid line in Figure 3b, ⟨Δr2(t)⟩
≈ ⟨Δr2(t)⟩bare∼ t2 (eq A.1) for t < τbal,∼t1/2 (eq A.2) for τbal < t <
τd
V, and ∼t (eq A.6) for τdV < t < τV*. Above the crossover time τV*,
⟨Δr2(t)⟩≈ ⟨Δr2(t)⟩tail∼ t2/3 (eq A.9) for τV*< t < τZ,tail and finally
∼t (eq A.10) for t > τZ,tail. Since the crossover time τV* > τT, the
tailed NP does not participate in the Rouse dynamics of the tail.
As a result, there is no time range with ⟨Δr2(t)⟩ ∼ t1/2 for t > τV*
in regime V.
B. Motion of a NP Tethered with a Dry Layer in an
Unentangled Polymer Melt
Consider a NP with 1 < z <N1/2 loosely grafted tails and d < Rtail
< bz. The grafted layer is dry, as Rtail is smaller than the dry core
size bz of the corresponding star polymer (see Figure 5a). Below
we show that the mean square fluctuation of the NP under the
confinement of the grafted layer is smaller than theMSD of a dry
sphere with size ≈Rtail in the matrix of melt chains. As a result,
the motion of the tethered NP is approximated as that of the dry
sphere with size ≈Rtail.
Suppose a coherently moving segment of a tail in the dry layer

contains g(t) monomers at time t. The fluctuation of the size of a
segment containing g monomers is rg ≈ bg1/2. The relaxation
time of the segment is approximately the time it takes for the
segment with diffusion coefficient ≈kBT/(ζ0g) to diffuse a
distance comparable to the fluctuation of its size; that is, τg≈ rg

2/

(kBT/ζ0g) ≈ τ0g
2. As a result, g(t) ≈ (t/τ0)

1/2. The mean square
fluctuation of the particle confined by the tethered chains is
⟨Δr2(t)⟩f ≈ b2g(t)/z ≈ b2(t/τ0)

1/2/z. Note that ⟨Δr2(t)⟩f is
smaller than the MSD ⟨Δr2(t)⟩bare of a bare NP in the same dry
layer. The viscosity of a melt consisting of chains with g
monomers per chain is ηg ≈ (kBT/b

3g)τg ≈ η0g. The effective
viscosity experienced by the bare particle at time scale t is ηg(t)≈
η0g(t) ≈ η0(t/τ0)

1/2, and the effective friction coefficient ζ(t) ≈
ηg(t)d≈ ζ0(d/b)(t/τ0)

1/2. As a result, ⟨Δr2(t)⟩bare≈ [kBT/ζ(t)]t
≈ (b3/d)(t/τ0)

1/2. For d < bz, ⟨Δr2(t)⟩bare > b2(t/τ0)
1/2/z ≈

⟨Δr2(t)⟩f, which means the confinement of tethered chains
reduces the mobility of the particle with respect to the bare
particle in the same dry layer.
The MSD of a dry sphere with diameter ≈Rtail < bz in the

matrix of melt chains with chain sizeR≈ bN1/2 > bz is ⟨Δr2(t)⟩dry
≈ (b3/Rtail)(t/τ0)

1/2 (see eq A.2) for t < τ0(Rtail/b)
4 (see eq A.5).

The ratio ⟨Δr2(t)⟩dry/⟨Δr2(t)⟩f ≈ bz/Rtail > 1 for Rtail < bz.
Therefore, the MSD of the dry sphere dominates over the mean
square fluctuation of the particle confined by the tethered
chains. Accordingly, we approximate the MSD of the NP with a
loosely grafted dry layer as
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while ⟨Δr2(t)⟩f < ⟨Δr2(t)⟩ is the internal fluctuation of the
particle position.
Next, consider a NP with z >N1/2 densely grafted tails and d <

Rtail < bz1/2N1/4, where bz1/2N1/4 is the dry core size of the
corresponding star polymer (see Figure 5b). Similar to the result
for a loosely tethered NP, the mean square fluctuation ⟨Δr2(t)⟩f
≈ b2(t/τ0)

1/2/z, and it is smaller than ⟨Δr2(t)⟩bare of the bare
particle in the same dry chains. The MSD of a dry sphere with
diameter≈Rtail in the melt chains with chain size R is ⟨Δr2(t)⟩dry
≈ (b3/Rtail)(t/τ0)

1/2 (see eq A.2) at times smaller than the
diffusion time τd. According to eq A.5, τd≈ τ0(Rtail/b)

4 ifRtail <R,
whereas τd ≈ τR ≈ τ0(R/b)

4 if R < Rtail < bz1/2N1/4. The ratio
⟨Δr2(t)⟩dry/⟨Δr2(t)⟩f ≈ (bz/Rtail) > z1/2/N1/4 > 1 for Rtail <
bz1/2N1/4 and z > N1/2. As a result, the MSD of the NP with a
densely grafted dry layer is
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with the internal fluctuation of the particle position ⟨Δr2(t)⟩f <
⟨Δr2(t)⟩.
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