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ABSTRACT: A scaling theory is developed for the motion of a
polymer-tethered nanoparticle (NP) in an unentangled polymer
melt. We identify two types of scaling regimes depending on the
NP diameter d and the size of a grafted polymer chain (tail) R;.
In one type of regime, the tethered NP motion is dominated by
the bare NP, as the friction coeficient of the tails is lower than
that of the less mobile particle. The time dependence of the mean
square displacement (MSD) of the tethered NP (Ar*(t)) in the
particle-dominated regime can be approximated by (Ar*(t))y... for
the bare NP. In the other type of regimes, the tethered NP motion
is dominated by the tails when the friction coeflicient of the tails
surpasses that of the particle at times longer than the crossover time 7*. In a tail-dominated regime, the MSD (Ar(¢)) ~
(AP(t) Ypare only for t < 7. (Ar*(t)) of a single-tail NP for t > 7* is approximated as the MSD (Ar*(t)),,; of monomers in a free
tail, whereas (Ar*(t)) of a multitail NP for ¢ > 7* is approximated as the MSD (Ar*(t)),, of the branch point of a star polymer.
The time dependence of (Ar*(t)) in a tail-dominated regime exhibits two qualitatively different subdiffusive regimes. The first
subdiffusive regime for ¢ < 7* arises from the dynamical coupling between the particle and the melt chains. The second
subdiffusive regime for t > 7* occurs as the particle participates in the dynamics of the tails. For NPs with loosely grafted chains,
there is a Gaussian brush region surrounding the NP, where the chain strands in Gaussian conformations undergo Rouse
dynamics with no hydrodynamic coupling. The crossover time 7* for loosely grafted multitail NPs in a tail-dominated regime
decreases as the number of tails increases. For NPs with densely grafted chains, the tails are hydrodynamically coupled to each
other. The hydrodynamic radii for the diffusion of densely grafted multitail NPs are approximated by the sum of the particle and

tail sizes.

1. INTRODUCTION

The mobility of particles in a polymeric viscoelastic medium is
important to a broad range of applications, including the
particle-based microrheology studies of polymer solutions* and
melts,”° the fabrication and processing of nanoparticle polymer
composites,”® and the design of drug carriers moving through
cells and extracellular matrices.” In many cases, the particles are
sticky to the surrounding chains due to the attractive
interactions between the particles and polymers. For instance,
nanoparticles often stick to the polymers in nanocompo-
sites,"”"" and viruses and pathogens adhere to mucin molecules
in the mucus defending human airways and gastrointestinal
tract.'> The attraction between particles and polymers leads to
either reversible or permanent adsorption of polymers to the
particles.""* The adsorbed chains tend to retard the motion of a
sticky particle with respect to that of a nonsticky particle. This
has ramifications for the applications relying on the mobility of
particles.

In this paper we present a theoretical description of the
motion of polymer-tethered nanoparticles (NPs) in an
unentangled polymer melt. We consider a NP either with a
single polymer chain (tail) or with multiple chains (tails)
permanently end-grafted onto it. The grafted chains and the
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matrix chains in the melt are assumed to be chemically identical.
We also assume that there is no adsorption of either grafted
chains or matrix chains onto the nanoparticles. Although a
single-tail NP rarely occurs in experiments, it serves as a
prototype model for the study of how tethered polymers affect
NP motion. The research of polymer-tethered NPs provides the
first step toward understanding how NP motion is affected by
the adsorption layer resulting from the attraction between NPs
and surrounding polymers, as the adsorption layer can be
mapped to a combination of tails and loops.'*~"”

We demonstrate that the motion of a tethered NP in a
polymer melt is determined by the competition between the
dynamics of the bare NP in the polymer melt and the dynamics
of the tethered polymer chains. The theory in this paper is based
on the previous scaling theories of the mobility of a nonsticky
NP in a polymer melt'®"” and of polymer dynamics.”’ Through
the comparison of the motion of the bare NP and the dynamics
of tethered polymer chains, we distinguish particle-dominated
and tail-dominated scaling regimes. In a particle-dominated
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Figure 1. (a) Schematic illustration of a NP (blue sphere) with a tethered polymer tail (red line) in a melt of unentangled polymers (green lines). The
NP diameter is d. The size of a melt chain is R, while the size of the tail is Ry;. (b) Scaling regimes in the (d,R,,;) parameter space for the mobility of a

single-tail NP in an unentangled polymer melt.

regime, a tethered NP moves as a bare NP, while the effects of
the tethered tails on NP motion can be neglected. In a tail-
dominated regime, the motion of a tethered NP is not
significantly affected by the tails below a crossover time but is
dominated by the tails above the crossover time. Section 2
presents the theory for a single-tail NP in an unentangled
polymer melt. Section 3 deals with a multitail NP in an
unentangled polymer melt. Summary of the results and
concluding remarks are in Section 4.

2. NP WITH A SINGLE TAIL

We first consider a NP with a grafted polymer chain (a tail)
diffusing in an unentangled polymer melt, as illustrated in Figure
la. The diameter of the NP is d, and its mass is m. Kuhn lengths
of the grafted chain and of the melt chains are both b. The
number of Kuhn segments in the tail is Ny, while the number of
Kuhn segments per melt chain is N. The root-mean-square end-
to-end size of a melt chain is R &% bN'/% The root-mean-square
end-to-end size of the tail Ry ~ bN;"/? for N,; < N? obeying
the ideal random-walk statistics. A longer tail with N > N is
expected to swell in the melt, and Ry ~ bN(N/N?)*5,
corresponding to a self-avoiding random-walk conformation of
chain sections each containing N> Kuhn segments.”’ Through-
out the paper, we ignore any order-unity prefactors while
focusing on the scaling relations and use the sign % to indicate
equality on the scaling level.

The diffusion coeflicient D quantifies the mobility of a single-
tail NP. According to the Stokes—Einstein relation, D is related
to the friction coeflicient

kyT
¢ (1)
in which kg is the Boltzmann constant, and T is the absolute
temperature. We determine the friction coefficient { on the basis
of the previous scaling theories for the friction coeflicients {},,.
of a bare NP without the tail'®'” and ,,; of a free tail without the

particle.20 For the diffusion of a bare NP in an unentangled
polymer melt

dy dy
”o(z) = Co(z)

RY RY(d
7]0(;) d=~ CO(Z) (Z) for d >R (2)

where 7, is the monomeric viscosity, and {, = #yb is the
monomeric friction coefficient. A small bare NP with b < d < R

D

for b<d<R

~
bare ™
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does not experience the viscosity ~noN =~ 1,(R/b)* of the
polymer melt, but only an effective viscosity ~n,(d/b)*
corresponding to polymer chain sections whose sizes ~d. In
contrast, a large bare NP with d > R experiences the full polymer
melt viscosity &1, independent of d. For the diffusion of a free
tail in an unentangled polymer melt

RV
CoNwil ® Co( ;ﬂ) for b <R,y < Nb
Ctail ~
goNz(&) for R,..,> Nb
Nb tail (3)

i is proportional to the number of monomers N, in the tail if
the melt chains screen the hydrodynamic coupling between
sections of the tail with b < Ry < Nb. {,y for a longer tail with
Rii > Nb scales with the size of the tail R,; due to the
unscreened hydrodynamic coupling between sections of the
tail.*® For R,; > Nb, the friction of the tail ¢,y & {,N*(R,y/Nb)
~ (NP *N*S resulting from the hydrodynamic coupling is
smaller than {,y & { N, without hydrodynamic coupling, and
thus is a more favorable way of energy dissipation.

Since the bare NP is dynamically coupled to a wake of size ~d
in the melt surrounding the particle, adding a small tail with R,y
< d to the wake does not significantly change the motion of the
particle with respect to that of the bare NP. As a result, the
friction coefficient { of the single-tail NP with Ry < d is
approximated as (.. of a bare NP, and the mobility of the single-
tail NP is dominated by the particle with D & kgT/} e If Ry >
d, a significant portion of the tail is beyond the wake surrounding
the particle. The friction coefficient of the single-tail NP is
approximated as

Z: ~ é’bare + Ctail (4)

where {},... and {,,; are given in eq 2 and eq 3, respectively. The
diffusion coefficient for a single-tail NP is

kT
é’bare + é’tail (5)

If (it < Cpar the diffusion of the particle is not significantly
affected by the tail, as the tail with a smaller friction coefficient is
more mobile than the particle. Therefore, D is approximated as
the diffusion coefficient for the bare NP

k;T
D= == ~ D bare

bare

for é‘tail < Z:b are

(6)
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If {,; is comparable to (.., the effects of the tail on the
diffusion of the particle cannot be ignored. The expression in eq
S can be used to approximate D. If {4 > (..., the diffusion of
the single-tail NP is controlled by the tail that has a higher
friction coeflicient. As a result, D is approximated as the diffusion
coefficient for the free tail

D= kB—T

tail

for é’tail > {bare

tail (7)
For R > d, the two friction coeflicients {; and {y,,. are
compared to determine if the diffusion of a single-tail NP is
controlled by the particle with D3 > Dy,.. or by the tail with D
< Dp,.- Whether the combined friction coefficient { (eq 4) for a
single-tail NP is dominated by (. or {,; depends on d and R
In the parameter space (d,R,;), the boundary line with ¢, ~
Chare Separates the regions where the diffusion of the single-tail
NP is controlled by the particle and the tail, respectively. The
boundary line is

b
bNY 2(5)1/2
b

d

d 3/2 d 1/2
b(—) ~ d(i) for b<d <R~ bN'/?

Rtail ~

for R<d<bN

for d > bN
(8)

Note that the particle and the sections of the tail are
hydrodynamically coupled for R, > d > bN. The friction
coefficient of the single-tail NP { is approximated as {, as the
size or the hydrodynamic radius of the tail is larger than that of
the particle. The mobility of the single-tail NP is dominated by
the tail with D = kgT/& -

On time scales shorter than the onset of terminal diffusion, the
motion of a single-tail NP is quantified by the time dependence
of its mean square displacement (MSD) (Ar*(t)). For Ry < d,
the motion of the particle is not significantly affected by the
attached tail, and therefore (Ar*(t)) is approximated as the MSD
of a bare NP {Ar(t) )pue For Ry > d, the MSD

kT . kg T ;

Z:(t) Z»"’bare(t) + Z-:tail(t) (9)
where the time-dependent effective friction coefficient {(t)
includes £, .(t) for the bare NP and ¢, ;(t) for a chain section of

g(t) monomers that move coherently with each other on time
scale t. Similar to eq 6 and eq 7 for terminal diffusion

kT
max{Gy,o(t), Cn(t) }
kT
Cpare(t)
kT
Ctail(t)

(Ar(1)) ~

(AF(1)) ~

t= <Ar2(t)>bare for Ctail(t) < gbare(t)

[ <Ar2(t)>tai[ for gtail(t) > Cbare(t)

(10)
In Appendix A, we present the scaling results for (Ar*(£) e
(egs A1, A2, and A.6) and (Ar*(t))w (eqs A.7—A.10).
(AP () Ypare and (Ar*(£) ) are compared to identify different
scaling regimes for the motion of a single-tail NP with R,; > d in
an unentangled polymer melt.
As shown in Figure 1b, there is a particle-dominated regime
below the blue solid line, where both the terminal diffusion of
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the single-tail NP and the motion prior to the diffusion are
controlled by the particle with (Ar*(£)) & (Ar*(t))pye- In the
particle-dominated regime, the tail does not significantly affect
the particle dynamics at all time scales. There are five different
tail-dominated regimes depending on the NP size d and the tail
size Ry, In each regime, there is a crossover from the particle-
dominated motion at shorter time scales to the tail-dominated
motion as t increases. At the crossover time 7%, { Ar*(7%) ) ,e &
(AP (7)) . For regimes I-1V, the friction coefficients ¢y, (7*)
for the bare NP and {;(z*) for the chain section of g(7*)
coherently moving monomers are comparable to each other.
The results of 7* for the five tail-dominated regimes are listed in
Table 1 and plotted as a function of d in Figure 2. At time scales

Table 1. Crossover Time 7* for a Single-Tail NP in an
Unentangled Polymer Melt

regimes I and II

T A 7o(d/b)®

regimes III and IV
TI"?I,IV ~ To(d/b)z(R/b)4

regime V

7 ~ 1,N(d/b)?

S
>

d

b zb  R=bN*2 bN/z bN
Figure 2. Dependence of the crossover time 7* (see Table 1 and Table
2) on the particle diameter d for a single-tail NP (green upper line) and
a NP loosely grafted with 1 < z < N'? tails (blue lower line) in an
unentangled polymer melt.

shorter than 7%, the single-tail NP motion is controlled by the
particle. The single-tail NP behaves as a bare NP with (Ar(t)) ~
(AP () Ypare < (A7*(£))ai- The time dependence of {Ar*(£) Ypare
is (Ar*(£) Ypare ~ £ for the ballistic particle motion at time scales
shorter than the ballistic time 7y, (Ar*(t))yue ~ t/* for the
subdiffusive motion resulting from the coupling to the Rouse
dynamics of the melt chains at time scales between 7, and the
diffusion time 7, and {Ar*(t) e ~ t for the diffusive particle
motion at time scales between 7, and 7*. The three distinctive
time dependences of (Ar*(t)) for t < 7* are sketched in Figure 3
for the five regimes. At time scales longer than 7%, the dynamics
of the tail dominates the single-tail NP motion. The particle
follows the tail dynamics, and (Ar*(t)) ~ (Ar*())a <
(AP (t)Ypare For regimes I and III with b < R,y < bN, the
particle participates in the Rouse dynamics of the tail with
(Ar(t)) ~ t/* at time scales between 7* and the Rouse time
Tre and then diffuses with (Ar*(£))yy ~ t for t > 75, The
subdiffusive motion with (Ar?(t)) ~ t2 occurs in two time
ranges, as shown in Figure 3a. The first one for 7, (") < t <
74 (74"™) results from the coupling between the NP motion and
the Rouse dynamics of surrounding polymers in the melt. The
second one in 7§ (7f;) < t < Ty arises from the Rouse relaxation
modes of the tail. For regimes II, IV, and V with R34 > bN, the
motion of the tail changes from Rouse dynamics with (Ar*(t))
~ 12 to Zimm dynamics with (Ar*(£) ) ~ £/3 at the crossover

DOI: 10.1021/acs.macromol.8b02138
Macromolecules 2019, 52, 1536—1545


http://dx.doi.org/10.1021/acs.macromol.8b02138

Macromolecules

<ar’(t)> a  <ar(t)> b
1 Ryqi> BN 1
Ry < bN g2
tail
REu 2
I P b2\
/!
v A
YT T W T T Ther T T WEYT T T T Tt

Figure 3. Time dependence of the MSD {Ar*(t)) of a single-tail NP in an unentangled polymer melt for (a) regimes I and III and (b) regimes I, IV,

and V in Figure 1b.

time 71. Whether a particle participates in the Rouse dynamics of
such a long tail depends on whether 7* is smaller than 7. As
shown in Figure 3b, a particle in regime II or IV participates in
the Rouse dynamics for 7ji(z}) < t < 7r and then the Zimm
dynamics for 71 < t < 7, whereas a particle in regime V only
participates in the Zimm dynamics for 73 < t < 7 3. The single-
tail NP finally diffuses with (Ar*(£)) ~ (Ar*(t))y ~ t for t >
77,4 The details of the calculation of (Ar*(t)) and the features
of (Ar*(t)) for different regimes are presented in Appendix A.

3. NP WITH MULTIPLE TAILS

A NP with multiple grafted chains is illustrated in Figure 4a. The
conformations of the tails grafted to the NP are similar to the

Figure 4. (a) Schematic illustration of a NP (blue sphere) with z > 1
grafted tails (red lines) in a melt of unentangled polymers (green lines)
with N monomers per chain. The NP diameter is d. The size of a melt
chain is R &~ bN'/2, while the size of the tail is R,,;. The multitail NP in
(a) is mapped to a star polymer in the same melt, as illustrated in (b).
The number of arms in the star is z. The size of the star is Ry, & Ry
The red sphere in (b) indicates the inner region of the star with
diameter ~d.

conformations of the arms in the outer part (the part excluding
the inner region of size ~d) of a star polymer in the same melt, as
shown in Figure 4b. Previously, scaling theories”' ~** have been
developed to describe the static properties of an isolated star
polymer with z arms and N, monomers per arm dissolved in a
melt of chemically identical linear chains with N monomers per
chain. Below we first briefly review the existing theories for the
conformations of star polymers and then develop a new scaling
theory for the mobility of a multitail NP on the basis of mapping
a multitail NP to a star polymer.

According to the scaling theories, the radius and the
structure of a star polymer in a melt depend on the number of
arms z and the number of monomers N, per arm, as shown in
Figure 5. For a loosely branched star with 1 < z < N'/? arms, the
radius of the star

21-24
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Figure S. Locations of different regions in (a) a loosely branched star
polymer with 1 < z < N'/?arms and (b) a densely branched star polymer
with z > N'/2 arms in a linear polymer melt with N'monomers per chain.
In both scenarios, only a star consisting of sufficiently long arms with
the number of monomers per arm N, > N*z!/ contains all the sketched
regions. The structure of a dry core is illustrated in (c), where filled
circles and black thick lines indicate the monomers and backbones,
respectively. The conformations of chain sections in the Gaussian
brush, swollen brush, and Daoud—Cotton brush are illustrated in (d—
f), respectively. The filled circle in (d) indicates the dry core surrounded
by the Gaussian brush. For each type of brush, the strand belonging to
one arm is highlighted by the black thick line. Dashed circles in (e, f)
indicate the correlation blobs with sizes growing along the radial axis.
Magenta dashed circles in (e, f) indicate the correlation blobs of the arm
highlighted by the black solid line. Multiple chain strands exist in a
correlation blob of a swollen brush, and the correlation blobs of
different strands overlap, as illustrated in (e). By contrast, only one
chain strand occupies a correlation blob of a Daoud—Cotton brush, as
illustrated in (f). In a correlation blob, the excluded volume interaction
of a chain strand with other strands at the same length scale is on the
order of thermal energy kyT.

b(zN,)"/? for N, <z*

Rstar ~ bNal/Z for 252 < Na < (N/Z)2

bN2S(z/N)S for N, > (N/z)* (11)
If the arms are short with N, < 27 the star is dry with almost no
mixing with the melt chains; that is, the volume fraction of
monomers belonging to the star ~1. The arms of the dry star and
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the arm strands in the dry core of a larger star are stretched with
respect to their ideal Gaussian sizes. The stretching is due to the
steric hindrance between all the arms originating from the same
branch point, as illustrated in Figure Sc. The radius of the dry
star Ry, ~ (zN,)'3. If 22 < N, < (N/z)?, the star consists of a
brush corona surrounding a dry core of size &bz, which contains
z* monomers per arm. Chain segments in the brush corona
adopt ideal random-walk conformations, as the excluded volume
interactions between the arms are almost screened by the melt
chains. Such a Gaussian brush with R, ~ N,"/? is illustrated in
Figure 5d. If the arms are long with N, > (N/z)? the brush
corona covering the dry core contains an inner Gaussian brush
and an outer brush, where chain segments adopt swollen
conformations. The size of the Gaussian brush region ~bN/z,
which corresponds to (N/z)* monomers per arm. The overall
star radius Ry, ~ N,¥*(z/N)"/5. For (N/z)? < N, < N*2'/?, there
are multiple chain sections of Gaussian conformations in a
correlation blob of a swollen brush, as shown in Figure Se.
Multiple chain sections are required to make the overall
excluded volume interaction of a chain strand in a correlation
blob ~kzT, because the excluded volume interactions are
partially screened by the melt chains. For N, > N’z'/2, there is
also a swollen brush with multiple chain sections per correlation
blob at intermediate distances bN/z < r < bNz'/* from the
branch point. However, each correlation blob at r > bNz!/2
contains only one chain section, as shown in Figure Sf. The chain
section in a blob adopts a swollen conformation, as the blob size
E(r) = r/2"* is larger than the thermal blob size ~bN for r >
bNz'/%. The brush structure for r > bNz'/? can be described using
the model proposed by Daoud and Cotton.”’ The Daoud—
Cotton brush corona only exists in a star polymer with N, >
N?z'/2 The locations of different regions along the radial axis of
a loosely branched star with sufficiently long arms are shown in
Figure Sa. For a densely branched star with z > N'/? the radius of
the star

b(zN)"? for N, < z'/2N°/*

~
star

bN,**(z/N)"* for N, > z'/>N*/* (12)
If the arms are short with N, < z'/2N*/4, the star is dry with R, ~
(2N,)"/3. If the arms are long with N, > z"/*N*/%, the star consists
of a dry core surrounded by a brush corona. The size of the core
~bz'*NY4, corresponding to z'/>N** monomers per arm, while
the overall star radius Ry, ~ N,¥*(z/N)'5. As in a loosely
branched star, the Daoud—Cotton brush exists in a densely
branched star only for N, > N’z"/% The locations of different
regions along the radial axis of a densely branched star with N, >
N?2z'/? are shown in Figure Sb. Unlike the brush corona of a
loosely branched star, the brush corona of a densely branched
star does not contain a Gaussian brush region. There is no
intermediate range of N, for which the star contains a dry core
and a Gaussian brush corona, because the screening by the melt
chains is not strong enough to reduce the overall exclude volume
interaction between all densely branched arms below k3T per
arm.

We develop a scaling theory for the motion of a multitail NP in
an unentangled polymer melt by considering a star polymer with
zarms and arm length N, &~ N,; in the same melt (see Figure 4).
Similar to the motion of a single-tail NP, the motion of a
multitail NP is significantly affected by the tails only if R,y > d.
Therefore, below we only describe the motion of a multitail NP
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with R,,; > d. The motion of a multitail NP with R,,; < d can be
approximated as that of a bare NP.

3.1. Loosely Grafted Tails with 1 < z < N2, If the grafted
tails are short with d < Ry < bz, a multitail NP corresponds to a
dry star polymer. The size of this multitail NP ~ R, ~
bN,*z'”* (see eq 11 for a dry star with N, < z%). As
demonstrated in Appendix B, although the position of the
particle fluctuates under the confinement of the grafted dry tails,
the motion of the multitail NP can be approximated as that of a
larger particle with diameter ~#R,,; in the matrix of melt chains.
This tail-dominated regime with d < Ry < bz is indicated as
regime VI of the (d,R,,;) parameter space in Figure 6.

Reqir Tail Dominated
bN VIII} 1II v \Y% 1
bN/z — Pl
bN3/4 1.7 11
bN3/4/zl/2 - 1/2
vi| -
A/
be |1 3/2% Pparticle Ddmindted
b L+
b bz R=bNV/2 bN/z bN d

Figure 6. Scaling regimes in the (d,R,;) parameter space for the
mobility of a NP with 1 < z < N'/? tails in an unentangled polymer melt.
Blue solid and dashed lines indicate the boundaries between tail-
dominated regimes and the particle-dominated regimes for a multitail
NP and a single-tail NP (also Figurelb), respectively. Red solid lines
indicate the boundaries between different tail-dominated regimes for a
multitail NP.

A multitail NP with intermediate tail size in the range
max{d,bz} < Ry < bN/z corresponds to a star polymer
consisting of a dry core and a Gaussian brush corona. The size of
the multitail NP is &R & bNy;"/? (see eq 11 for a star with z* <
N, < (N/z)*).If d < bz, the multitail NP motion is controlled by
the tails, as the particle and the dry portions of the tails move
together as a larger particle with diameter ~bz. This corresponds
to regime VII in Figure 6. The MSD of the multitail NP in this
regime is (Ar*(t)) & (b*/z)(t/7,)"/* for t < 7yz* (substitute R,y
by bz in eq B.1). Note that 7,z* is the Rouse time of a segment
containing z*> monomers in the dry core of a star polymer. At
times longer than 7,z*, (Ar*(t)) is approximately the same as
(AP (t) )5 Of the branch point of a Gaussian star. If d > bz, the
tails do not contain any dry portions. Whether the multitail NP
motion is controlled by the particle or the tails in the Gaussian
brush depends on the competition of the friction coefficients of
the bare particle and the tails. The friction coeflicient of the bare
particle (... is given in eq 2. The friction coeflicient of the tails
~2l where (o R (oNuy & (o(Rga/b)” is the friction
coefficient of a single tail undergoing Rouse dynamics. The
friction coeflicients for individual tails are additive due to the
absence of hydrodynamic coupling between the tails. The
overall friction coefficient of the multitail NP is approximated as

1<z<N/"

< bN/z

for and

C ~ Cbare + z€tail

bz<d<R (13)

{ is dominated by the larger of the two contributions {y,.. and
2l In the parameter space (d,R.;), the boundary line
separating the regions where the diffusion of a multitail NP is

tail
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dominated, respectively, by the particle and the Gaussian brush
is

b (d)?
1—/2(—) for zb<d< R~ le/Z
z b

bN”Z(

~
tail ™~

d

1/2
Bp Z) for R<d<bN/z

(14)

as indicated by the blue solid line in Figure 6. Two regimes,
which are indicated as regimes I and III in Figure 6, exist in the
tail-dominated region with bz < d < R,; < bN/z. Regimes I and
III for multitail NP motion are similar to their counterparts for
single-tail NP motion (see Figure 1b). The time dependence of
(Ar*(t)) is similar to that in the corresponding regime for single-
tail NP motion (Figure 3a). However, the crossover time 7* for
multitail NP motion is reduced with respect to the
corresponding 7* for single-tail NP motion, as shown in Table
2 and Figure 2. The earlier crossover to the tail-dominated

Table 2. Crossover Time 7* for a NP Loosely Grafted with 1 <
z < N'2 Tails in an Unentangled Polymer Melt

regimes I and II

oy = 1o(d/b)%/2*

regimes III and IV
T & 7o(d/b)*(R/b)*/2*

regime V
5 ~ 1oN(d/b)3/z

motion reflects the enhanced friction coeflicient of multiple tails
compared to that of a single tail. For t > 7%, the multitail NP
MSD (Ar%(t)) is approximately equal to the MSD {Ar*(t) ), of
the branch point of a Gaussian star polymer.

For sufficiently long tails with R,; > max{d,bN/z}, a multitail
NP corresponds to a star polymer consisting of a dry core, an
intermediate Gaussian brush, and an outer brush corona
(“hairy” NP). The size of the multitail NP is ~R,; =~
bN;>*(z/N)"S (see eq 11 for a star with N, > (N/2)?). In a
star polymer with arms forming either a swollen brush corona
(Figure Se) or a Daoud—Cotton brush corona (Figure Sf)
covering a swollen brush, hydrodynamical coupling between the
arms affects the branch point motion for t above the Rouse time
~7,(N/z)* of a strand in the Gaussian brush. In particular, the
arms are hydrodynamically coupled for the terminal diffusion of
the star. Likewise, a multitail NP with R,; > max{d,bN/z}
diffuses in the melt with the NP and the tails hydrodynamically
coupled. The hydrodynamic radius of the multitail NP can be
approximated by the sum of R, and d, which is dominated by
Ry > d. The multitail NP experiences the melt viscosity #,N, as
its size ARy > bN/z is larger than the melt chain size R ~ bN"/%
The diffusion coefficient of the multitail NP is D ~ kgT/
(7oNRy,;1)- There are four regimes in the tail-dominated region
with Ry > bN/z, which are indicated as regimes II, IV, V, and
VIII in Figure 6. Regimes II, IV, and V for multitail NP motion
are similar to their counterparts for single-tail NP motion (see
Figure 1b for the regimes and Figure 3b for the sketch of
(A7*(t))). However, the crossover time 7* is reduced as shown
in Table 2 and Figure 2. The time for the crossover from Rouse
dynamics to Zimm dynamics of the hydrodynamically coupled
tails is also reduced from 7; & 7,N* for a single tail to
7r ~ 7o(N/z)* which is the Rouse time of a chain segment
containing (N, /z)* monomers in the Gaussian brush (Figure
5d). In regime VIII, the particle with d < bz and the dry portions
of the tails move as a larger particle with diameter ~bz, and thus
the multitail NP motion is controlled by the tails. As in regime
VII, the multitail NP MSD (Ar2(t)) = (b*/z)(t/7,)"/? for t <
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752", At time scales above 7,z*, (Ar*(t)) is approximately the
same as (Ar*(t) )y, of the branch point of the corresponding star
polymer.

3.2. Densely Grafted Tails with z> N'/2. If the grafted tails
are short with d < Ry < bz"/>N'/#, a densely grafted multitail NP
corresponds to a dry star in the same melt (see eq 12 for N, <
Z"2N3/%). The multitail NP motion is similar to that in regime VI
for loosely grafted multitail NPs (see Figure 6). It is controlled
by the tails, as the particle and the dry tails move together as a
larger particle with diameter ~R.;. More detailed analysis is
presented in Appendix B. The MSD of a multitail NP before the
terminal diffusion in this regime is given in eq 2.

A densely grafted multitail NP with long tails of size Ry >
max{d,bz'/?N'/*} corresponds to a star consisting of a dry core
and a brush corona (either a swollen brush or Daoud—Cotton
brush covering a swollen brush). The particle and the tails are
hydrodynamically coupled for the diffusion of the multitail NP.
The hydrodynamic radius can be approximated by the sum of
the tail size R,,; and the particle size d, and it is dominated by R,
> d. The viscosity experienced by the multitail NP is the melt
viscosity 7N, as Ry > bz'/2N¥* is larger than the melt chain size
R ~ bN'2. The diffusion coefficient is D & kT/(7NR,,)-

Various aspects of the dynamics of grafted nanoparticles in
polymer matrices have been studied experimentally, such as the
effects of temperature,”>*° morphology of particles in
aggregated state,”” and grafted polymer chains.”**’ We compare
the theory developed in this paper with one experimental study
that focused on the effects of grafted polymers.”” In this study,
the center-of-mass diffusion of Fe;O, NPs densely grafted with
poly(methyl methacrylate) (PMMA) chains in an unentangled
PMMA melt was measured using Rutherford backscattering
spectrometry (RBS).” In one set of experiments, Fe;O, NPs
with diameter d = 4.3 nm were grafted with PMMA chains and
dispersed in a melt of PMMA chains with molecular weight M, =
14 kg/mol, which corresponds to N = 26 Kuhn monomers of
size b = 1.53 nm.”” There were three samples with grafting
density ¢ = 0.55, 0.33, and 0.17 chains/nm?. The number of
grafted tails per NP is z = wd*c = 32, 19, and 10, and the
corresponding number of Kuhn monomers per tail is Ny = 30,
39, and 39. We refine the criterion for a loosely grafted NP in a
melt matrix and show that the NPs in all three samples are
indeed not loosely grafted. The criterion z < N'/ for a loosely
grafted NP corresponds to the existence of a Gaussian star with
Ry = bN,? for 22 < N, < (N/z)?, as shown in eq 11. A strand
with less than z* Kuhn monomers from the branch point is
located in the dry core, while a strand with more than (N/z)*
Kuhn monomers from the branch point goes beyond the
Gaussian region and becomes swollen. The expression for the
size of a dry star Ry, ~ b(zN,)"/? for N, < 2> (eq 11) is refined by
considering that the volume of a Kuhn monomer is not b* but
more precisely ba®, where a is the thickness of a Kuhn monomer.
The refined expression is Ry, ~ a*°b'3(zN,)'* for N, <
2*(a/b)*. The refined criterion for the existence of a Gaussian
star is z*(a/b)* < N, < (N/z)? which requires z < (b/a)N"2
Accordingly, the refined criterion for a loosely grafted NP is z <
(b/a)N"2. For the three samples in the experiments, the volume
of a monomer is v = 0.149 nm’, the molecular weight of a
monomer is My = 0.1 kg/mol, the molecular weight of a Kuhn
monomer is My = 0.54 kg/mol, and hence the thickness of a
Kuhn monomer is a = (Myw/Myb)"/? = 0.73 nm. The refined
criterion for loose grafting in the experiments is z < (b/a)N'/* =
11. As a result, the NPs with z = 32 and 19 are densely grafted,
while the NPs with z = 10 are in the crossover from loosely to
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densely grafted regimes. Next we estimate the structure of the
grafted NPs in the experiments. Suppose a strand in the dry layer
surrounding the particle contains x Kuhn monomers; then x
satisfies (47/3)(d/2)® + zx(ba®) = (4n/3)(d/2 + x"*b)>. Note
that the contribution of the particle volume to the dry core
volume is considered. For the NPs with (z,N.;) = (32,30),
(19,39), and (10,39), we obtain x = 0, meaning that the dry core
consists only of the particle. The overall size of a grafted NP is
approximated by the size of a swollen star Ry, & bN,*/>(z/N)"/®
with Na ~ Ntail' For (Z)Ntail) = (32730)) (19;39); and (10;39); the
estimated overall size #12.3, 12.9, and 11.4 nm. Experiments
found that the hydrodynamic radii of the NPs in the three
samples Ry ~ 10 nm.”” This result roughly agrees with the
estimated overall size of the densely grafted NPs, supporting the
scaling description that the hydrodynamic radius Ry; of a densely
grafted NP with Ry > d is dominated by R,;. Note that
hydrodynamic interactions in a semidilute polymer solution are
screened on a length scale comparable to that for the screening
of the intermolecular interactions. The melt chains drain
through the grafted polymer brush on the length scale of the
last correlation blob size {, (see Figure 5). As a result, Ry ~
Rii—Cilosp where C; is a numerical coefficient of order unity.”’'

Below we discuss the extension of the experiments to single-
tail NPs and loosely grafted multitail NPs. Consider an Fe;0,
NP with d = 4.3 nm in a melt of PMMA chains with N = 26 Kuhn
monomers per chain and chain size R & bN'/% = 7.8 nm. A single
grafted PMMA chain would control the motion of the Fe;O,
particle if the grafted chain size Ry > b(d/b)** ~ 7.2 nm or the
number of Kuhn monomers in the chain N,y > 22, according to
eq 8 for a single-tail NP with b < d < R. At Ny = 22, the friction
coeflicients {,,; and {},.. of the PMMA tail and the bare Fe;O,
particle are almost the same. Therefore, the diffusion coeflicient
of a single-tail NP with N,; = 22 is approximately half of that of a
bare NP without the tail. For multiple grafted PMMA chains, the
condition for loose grafting is z < (b/a)N?*=11.1fz= 6 PMMA
chains were loosely grafted to a NP, no PMMA chains are in the
dry core (as in the more densely grafted cases with z = 10, 19,
and 32). The PPMA chains with less than (N/z)* = 19 Kuhn
monomers per chain form a Gaussian brush. There is no
hydrodynamic coupling between the tails in the Gaussian brush,
and the overall friction coeflicient of the tails is 6. For d = 4.3
nm < R = 7.8 nm, the z = 6 chains would control the motion of
the Fe;O, particle if Ry > b(d/b)¥*/2/* ~ 2.9 nm or Ny > 4,
according to eq 14 for a NP grafted with a Gaussian brush. At
Ny = 4, the friction coeflicient of the Gaussian brush 68 is
comparable to that of the bare particle ;. and therefore
reduces the diffusion coefficient of the particle by 50% with
respect to that of the bare particle.

4. CONCLUSIONS

We study the motion of a polymer-tethered NP in a polymer
melt using scaling analysis. For a single-tail NP in an
unentangled polymer melt, the friction coefficient {(¢) for the
single-tail NP includes the contributions {},,..(t) from the bare
NP and {,,;(t) from the tail. The competition between {p,..(t)
and {,;(t) determines whether the single-tail NP motion is
dominated by the bare NP or the tail. In the particle-dominated
regime, {(t) & C(pue(t) > Cua(t), and the mean squared
displacements of the tailed NP (Ar*(t)) is approximated as
(AP (t))pae for the bare NP. In a tail-dominated regime,
(AP (1)) = (Ar*(t) Ypare for t smaller than a crossover time 7*, but
(Ar*(t)) is approximated as the MSD of monomers in the tail
(Arz(t)>tail for t > T*! as g(t) ~ Ctail(t) > Cbare(t) for t > 7. We
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construct a diagram of regimes (Figure 1b) to show the particle-
dominated regime and various tail-dominated regimes in the
parameter space (d,R.;). The tail-dominated regimes differ in
the tail dynamics that controls the single-tail NP motion (see
Figure 3) and the crossover time 7* at which the tail-dominated
motion begins (see Table 1).

The model of a multitail NP in an unentangled polymer melt
can be mapped onto a corresponding star polymer in the same
melt. A Gaussian brush region where chain segments adopt ideal
random-walk conformations exists for loosely grafted tails with 1
<z < N"2 but it is absent for densely grafted tails with z > N/,
For loosely grafted short tails with d < R < bz, a multitail NP
corresponds to a dry star diffusing in the melt with hydro-
dynamic radius ~#R,,;. With intermediate grafted chain size bz <
Ri.1 < bN/z, aloosely grafted multitail NP corresponds to a star
with a dry core (Figure Sc) and a Gaussian brush corona (Figure
5d). Similar to the motion of a single-tail NP, the motion of such
a multitail NP can be in the particle-dominated regime or one of
many tail-dominated regimes in the parameter space (d,R;)
(see Figure 6). If the tails are sufficiently long with R.,; > bN/z, a
loosely grafted multitail NP corresponds to a star with either a
swollen brush corona (Figure Se) or a swollen brush surrounded
by Daoud—Cotton brush corona (Figure 5f). For the diffusion
of such a multitail NP, the particle and the tails are
hydrodynamically coupled. The tails with R,y > d control the
diffusion of the multitail NP, as R,;; dominates the hydro-
dynamic radius approximated by R,y + d. The crossover time 7*
for a tail-dominated regime of multitail NP motion is reduced
with respect to the counterpart for single-tail NP motion (see
Table 2 and Figure 2). For densely grafted tails with z > N'/?,
depending on the grafted chain size, a multitail NP corresponds
to either a dry star or a star consisting of a dry core and a brush
corona with no Gaussian region. In both scenarios, the densely
grafted multitail NP diffuses in the melt with the hydrodynamic
radius R + d, which is dominated by R for R,y > d.

In conclusion, our scaling theory for the mobility of polymer-
tethered NPs in polymer melts demonstrates the interplay
between the dynamics of the bare NP and the dynamics of the
tethered polymer tails. The theory can be extended to polymer-
tethered NPs in entangled polymer melts. As in unentangled
polymer melts, the mobility of tethered particles in entangled
polymer melts is dominated by the lower of the two mobilities:
of the bare particle or of the tails. Bare particles with sizes smaller
than the entanglement mesh size a behave essentially the same as
those in unentangled polymer melts. However, the mobility of
particles is significantly reduced as the particle size exceeds the
tube diameter a of the melt. While sufficiently large particles are
confined by the entanglement network with the mobility
determined by the melt viscosity, particles only moderately
larger than a can diffuse through the hopping mechanism and
exhibit mobility higher than the prediction of the Stokes—
Einstein relation."” For a single-tail NP, the particle participates
in the reptation dynamics of the long tail if the tail has a lower
mobility. For a multitail NP, the mobility of the tails can be
approximated as that of a star polymer undergoing arm
retraction in the same melt. The lower of the mobility of the
bare particle and the corresponding star polymer determines the
mobility of the multitail NP. Detailed theoretical description of
the mobility of tethered NPs in entangled polymer melts will be
presented in a future publication. One can also extend the
present theory to study the mobility of a NP with an adsorption
layer in a polymer melt by describing the adsorption layer as
loops and tails.'*~"” Furthermore, the theory can be generalized
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Figure A.1. (a) MSD {(Ar*(t))pye of a bare NP with d < R (blue solid line) and d > R (magenta dotted line) in a melt of unentangled polymers with
chain size R. (b) MSD (Ar*(t) ),y for monomers in an unattached (free) tail polymer with N,; < N*(green dotted line) and N,,; > N* (red solid line) in

a melt of unentangled polymers with N monomers per chain.

to investigate the motion of a NP with reversibly grafted or
adsorbed polymer chains.

B APPENDIX

A. MSD of a Single-Tail NP in an Unentangled Polymer Melt
The MSD {Ar*(t) Jyae of a bare nonsticky NP in an unentangled
polymer melt has been calculated using scaling theory.'® The
results of (Ar*(t))p,. are shown in Figure A.la. The first scaling
regime

kgT ,

—t° for t< 7y,

2 ~
<Ar (t)>bare ~ m (A.l)

corresponds to the ballistic motion of the bare NP at time scales
shorter than the ballistic time 7, Subsequent scaling regimes
describe the thermal motion of the NP. The subdiftusive regime
with

2 P\ ¢)”
(Ar™(£) Ypure = —ll= for 7, <t<Ty

%o (A2)
results from the coupling between the NP motion and the Rouse
dynamics of the unentangled polymers up to the diffusion time
74. Matching eq A.1 and eq A.2, one obtains the ballistic time as
the crossover time between the ballistic and subdiffusive regime

2/3
Tpal ¥ Tp
otod (A3)
where (, is the monomeric friction coefficient and
&b’
Ty R ——
kgT (A4)

is the monomer relaxation time. The subdiffusion of a NP with b
< d < Ris coupled to the relaxation of chain segments with sizes
up to d, while the subdiffusion of a NP with d > R is coupled to
the relaxation of the entire polymer chain. As a result, the
diffusion time for the onset of Brownian motion of a NP is

JV 4V
TO(E) ~ TR(E) for b<d<R

for b<d<R

Ty~

R (AS)
where 7 & 7,N* = 7,(R/b)* is the Rouse relaxation time of the
polymer melt. The final scaling regime with ¢ > 74 corresponds to
NP diffusion with MSD increasing linearly with time
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3 2
b—(ﬁ) P for b<d<Rr
Nd\d) \ 7,

Pl
Nd\ 7,
The MSD (Ar*(t))u; of monomers in a linear polymer
containing N,y monomers is obtained based on scaling models
for the dynamics of unentangled polymers.” Scaling descrip-
tions of (Ar*(t))y; are presented in Figure A.l1b. A shorter
polymer with Ni,; < N? relaxes by Rouse dynamics, and

<A7’2(t) >bare ~

for d >R
(A6)

< N? and

1/2
<Ar2(t)>tail ~ bz[i] for Ny

To

Ty <t < Ty (A7)

where Ty & 7oNy; is the Rouse time. The shorter polymer
finally diffuses with

2 of t 2 t
<AV (t)>tail ~ Rtail ~ b l\]tail for
TR, tail TR, tail

N,

2
il <N and t > TR tail

(A.8)

A longer polymer with N, > N first relaxes by Rouse
dynamics until 71 & 7,N*, which is the relaxation time of a chain
segment containing N> monomers, and then it relaxes by Zimm
dynamics until the Zimm time 77,y & 7r(Nyy/ N*)°/5. Zimm
dynamics occurs at time scales t > 7, as the hydrodynamic
coupling between sections of the long polymer can no longer be
screened by the shorter melt chains. For the Rouse dynamics and
the subsequent Zimm dynamics, the MSD of monomers is

; 1/2
bz{—] for N, > N’ and
%o
Ty <t<7p
2
<AV (t)>tail ~ 2/3
t
bZNZ[—] for N> N’ and
T
T Tr <t < Tz

(A.9)
Finally, the long polymer diffuses with

6/S
t N t
(Ar¥ (1)) ~ R | — | = b*N?| =2 for
tail tail 2
TZ,tail N TZ,tail

l\]tail > Nz

and  t> 7, (A.10)
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For d < Ry < bN, the MSD (Ar*(t)) of a single-tail NP is
obtained based on the approximation in eq 10. Below we
describe the time dependence of (Ar*(t)) for different tail-
dominated scaling regimes in the (d,R,,;) parameter space (see
Figure 1b).

Regime I: Small NP with b < d < R and Long tail with b(d/b)>*
<Ry < bN (SL). The time dependence of (Ar*(t)) in regime I is
shown by the blue dashed line in Figure 3a. (Ar’(t)) =
(AP(1)pure ~ £ (eq A1) for t < Ty, ~ 12 (eq A2) for 7,y < t <
7h, and ~ t (eq A.6) for 7 < t < 7¥. Subsequently, (Ar*(t)) ~
(A1) ) ~ $/2 (eqA.7) forzf <t< Ty and ~ (eqA8) fort
> TR tail-

Regime IT: Small NP with b < d < R and Very long tail with R, >
bN (SV). The time dependence of (Ar*(t)) in regime Il is shown
by the magenta dashed line in Figure 3b. The crossover time 77
~ ¥ (see Table 1) and the time dependence of (Ar*(t)) for t <
7} in regime IT is identical to that for t < 7} in regime I. Above the
crossover time, (A7 (£)) & (Ar(t) ) ~ t/? and ~ /3 (eq A.9)
for 7} < t < Tr and 7y < t < Ty, respectively. Finally, (Ar*(t)) ~
(AP () )y ~ t (eq A.10) for t > 7,,,5. Compared with regime I,
regime II has an additional time dependence (Ar*(t)) ~ /3,
which is due to the Zimm dynamics of a very long tail with R, 5 >
bN.

Regime III: Large NP with R < d < bN and Long tail with R(d/
b)'> < Ry < bN (LL). The time dependence of (Ar*(t)) in
regime I1II (red solid line in Figure 3a) is similar to that in regime
I (blue dashed line in Figure 3a). One difference between regime
I1I and regime L is that 7' ~ 7y, while 74 & 7 (d/R)* < 73 (see eq
A.S). Another difference is in the d-dependence of the crossover
time, 73 ~ 7,(d/b)*(R/b)*, whereas 7§ ~ 7,(d/b)® (see Table
1).
Regime IV: Large NP with R < d < bN and Very long tail with
Ry > bN (LV). Regime IV and regime II have a similar time
dependence of (Ar*(t)) (see green dotted line and magenta
dashed line in Figure 3b). The differences between regime IV
and regime II are identical to those between regime III and
regime II: (1) 7} ~ 7' & 7 versus 74 ~ 7y &~ 7(d/R)* and (2)
k& 1 & 1o(d/b)*(R/b)* versus tF ~ ¥ & 1,(d/b)°.

Regime V: Very large NP with d > bN and Very long tail with R,
> d (VV). As shown by the cyan solid line in Figure 3b, (Ar*(t))
R (AP (1) Ypue ~ £ (eq A1) for t < Ty, ~t/? (eq A.2) for Ty < t <
74, and ~t (eq A.6) for 7} < t < 73. Above the crossover time 7%,
(AP(1)) = (AP (D) )y ~ £ (eq A9) for 7 < t < 74, and finally
~t (eq A.10) for t > 7. Since the crossover time 7 > 7r, the
tailed NP does not participate in the Rouse dynamics of the tail.
As a result, there is no time range with (Ar*(t)) ~ t"/* for t > 7
in regime V.

B. Motion of a NP Tethered with a Dry Layer in an
Unentangled Polymer Melt

Consider a NP with 1 < z < N"/?1loosely grafted tails and d < Ry
< bz. The grafted layer is dry, as R, is smaller than the dry core
size bz of the corresponding star polymer (see Figure Sa). Below
we show that the mean square fluctuation of the NP under the
confinement of the grafted layer is smaller than the MSD of a dry
sphere with size &R,,; in the matrix of melt chains. As a result,
the motion of the tethered NP is approximated as that of the dry
sphere with size Ry,

Suppose a coherently moving segment of a tail in the dry layer
contains g(t) monomers at time £. The fluctuation of the size of a
segment containing ¢ monomers is r, & bg"/% The relaxation
time of the segment is approximately the time it takes for the
segment with diffusion coefficient ~kzT/({og) to diffuse a

distance comparable to the fluctuation of its size; that is, 7, ~ rgz /
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(ksT/Log) = Tog* As a result, g(t) ~ (t/74)"/% The mean square
fluctuation of the particle confined by the tethered chains is
(AP (1)) ~ bg(t)/z ~ b*(t/7,)"*/z. Note that (Ar*(t)); is
smaller than the MSD (Ar*(t))p,. of a bare NP in the same dry
layer. The viscosity of a melt consisting of chains with g
monomers per chain is 17, & (ksT/b’g)7, % 115g. The effective
viscosity experienced by the bare particle at time scale tis 17,(t) ~
ng(t) ~ no(t/7,)""? and the effective friction coefficient {(t) ~
1) % Co(d/6) (1/5) . As a result, (AP(H)e Lk T/ ()]t
R (6°/d)(t/75)"*. For d < bz, (Ar())uee > b (t/70)"*/2 =
(Ar*(t)), which means the confinement of tethered chains
reduces the mobility of the particle with respect to the bare
particle in the same dry layer.

The MSD of a dry sphere with diameter ®R,,; < bz in the
matrix of melt chains with chain size R & bN'2 > bz is (Ar(t)) dry
~ (b3/Ry) (t/75)"* (see eq A.2) for t < 7y(Ryy/b)* (see eq A.5).
The ratio (Ar*(t))4,/(Ar(t))s & bz/Ryy > 1 for Ry < bz.
Therefore, the MSD of the dry sphere dominates over the mean
square fluctuation of the particle confined by the tethered
chains. Accordingly, we approximate the MSD of the NP with a

loosely grafted dry layer as
; 1/2
b_(L] for
Rtail %

4
Rtail
and t< () 7

(Ar* (1)) ~ (AF(1))gry ~

1<z<N'/

(B.1)

while (Ar*(t)); < (A*(t)) is the internal fluctuation of the
particle position.

Next, consider a NP with z > N'/2 densely grafted tails and d <
Ry < bz">NY4 where bz"/?N'* is the dry core size of the
corresponding star polymer (see Figure Sb). Similar to the result
for a loosely tethered NP, the mean square fluctuation (Ar*(t) ),
~ bX(t/15)/*/z, and it is smaller than (Ar?(t))y,. of the bare
particle in the same dry chains. The MSD of a dry sphere with
diameter ~R,; in the melt chains with chain size R is (Ar(t)) dry
~ (b%/Ry)(t/70)"? (see eq A2) at times smaller than the
diffusion time 74. According to eq A.5, 74~ 7y(Ry/b)* if Ry < R,
whereas 7; & 1z & 7o(R/b)* if R < Ry < bz!/>N'/*. The ratio
(AP (1))ary/ (AP (1)) & (bz/Ryy) > 2/NY* > 1 for Ry <
bz'/>N'* and z > N'/2. As a result, the MSD of the NP with a
densely grafted dry layer is

()"
(AP (1)) = (Arz(t»dry ~ —(—] for z> N'?

tail \ %0

min{R, R} )*
b
with the internal fluctuation of the particle position (Ar*(t)); <

(Ar(D)).
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