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ABSTRACT: The structure of neat melts of polymer-grafted
nanoparticles (GNPs) is studied via coarse-grained molecular
dynamics simulations. We systematically vary the degree of
polymerization and grafting density at fixed nanoparticle (NP)
radius and study in detail the shape and size of the GNP
coronas. For sufficiently high grafting density, chain sections
close to the NP core are extended and form a dry layer. Further
away from the NP, there is an interpenetration layer, where the
polymer coronas of neighboring GNPs overlap and the chain
sections have almost unperturbed conformations. To better understand this partitioning, we develop a two-layer model,
representing the grafted polymer around an NP by spherical dry and interpenetration layers. This model quantitatively
predicts that the thicknesses of the two layers depend on one universal parameter, x, the degree of overcrowding of grafted
chains relative to chains in the melt. Both simulations and theory show that the chain extension free energy is nonmonotonic
with increasing chain length at a fixed grafting density, with a well-defined maximum. This maximum is indicative of the
crossover from the dry layer-dominated to interpenetration layer-dominated regime, and it could have profound consequences
on our understanding of a variety of anomalous transport properties of these GNPs. Our theoretical approach therefore
provides a facile means for understanding and designing solvent-free GNP-based materials.
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ver the past few decades, polymer nanocomposites The hybrid nature of GNPs can substantially im}”)rove, for
have gained significant attention due to their wide example, the mechanical, >~ optical,34’35 thermal,*>*” elec-
range of applications in drug delivery,' ™ desalina- trical,’®”” and rheological®®*” properties of a material in
tion,*"® and photonic”® and phononic materials.”'® These comparison to the corresponding bulk polymer or traditional

applications often require a homogeneous dispersion of physically mixed NP/polymer composites. These properties

4—6

nanoparticles (NPs) in the polymer matrix to optimize their
physical properties. In practice, however, such uniform mixing
is difficult to achieve, due to the chemical incompatibility
between the two components. Instead, one often encounters
an undesired aggregation of the (inorganic) NPs in the
(organic) polymer matrix, which can lead to a deterioration of
material properties and mechanical stability of the composite.
Such phase separation can be prevented by grafting the
polymers to the surface of the NPs, that is, turning these two
component systems into effectively one component sys-
tems."' ~'” These hybrid particles, known as polymer-grafted
NPs (GNPs) or hairy NPs, typically exhibit a core—shell
morphology with a hard core and a soft corona. While many
previous theoretical descriptions focused on GNPs mixed with
small molecule solvents,’”*' we are interested in melts of
GNPs where the surrounding medium is composed of other
GNPs. This situation has received significantly less theoretical
attention to date.”” >’
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\ 4 ACS Publications

are controlled by the grafting density of the chains and their
degree of polymerization, the size and shape of the cores, the
interactions between the polymers and the cores, etc. For
example, the elastic moduli of GNP systems can be tuned by
varying the NP loading through the grafting density and/or the
length of the grafted polymers. Even at a fixed NP loading, the
mechanical properties of GNPs depend on their microscopic
details, as was demonstrated in recent experiments and
simulations.*® In that work, significant deviations of the elastic
moduli were observed compared to predictions based on a
simple mean-field description,”® with sparsely grafted GNP
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systems exhibiting higher elastic moduli compared to densely
grafted GNPs.” This enhancement was attributed to the coil-
like conformations of the sparsely grafted chains, which
promoted a higher degree of polymer interpenetration
compared to densely grafted NPs with short chains. It is
thus clear that the microscopic details of GNPs play an
important role in their macroscopic material properties.

In previous experiments and simulations, the phase behavior
of GNPs in neat melts or within polymer matrices was
studied.*' ™" It was found, for example, that GNPs in such
solvent-free conditions exhibit structural transitions from a
simple liquid to a glass forming liquid or from star-polymer-like
to colloid-like behavior with variations of grafted polymer
length and grafting density.*”***’ Recent field-based simu-
lations have shown that GNPs in a homopolymer matrix
exhibit an entropically driven mixing—demixing transition,*®
which was controlled by the core size and the ratio of the
lengths of the free and grafted polymers. In the demixed state,
the GNPs self-assembled into a variety of nanostructures, such
as sheets, wires, and capsules, depending on, for example, the
size and shape of the NPs, grafting density, 1en§th of the
grafted polymers, and intermolecular interactions.” > How-
ever, there is only a small number of studies on pure GNP
melts that focus on the size, shape, and interpenetration of the
polymer coronas of the GNPs on a microscopic level.
Understanding these aspects could elucidate a variety of
anomalous transport properties of these GNP systems.”’

To fill this void, we investigate the structure of neat melts of
GNPs via coarse-grained molecular dynamics (MD) simu-
lations. We systematically vary the degree of polymerization
and grafting density at fixed NP core radius and study in detail
the shape, size, and interpenetration of the polymer coronas
surrounding the NP cores. Further, we analyze the
conformations of the grafted polymers and compare them
with their pure bulk polymer analogs to assess both the effects
of chain grafting and the presence of other GNPs. To
rationalize our simulation results, we introduce a two-layer
model, in which the polymer corona is divided into a dry layer,
that is, the region where almost no monomers from
surrounding GNPs were present, and an interpenetration
layer, which is characterized by a significant overlap between
grafted chains of surrounding GNPs. Sections of grafted chains
belonging to the dry layer are extended, whereas parts in the
interpenetration layer are almost unperturbed. This model
predicts that the thicknesses of the two layers depend on a
single parameter, which essentially describes the degree of
overcrowding of grafted chains compared to unperturbed
chains in a melt. The analytical predictions for the thicknesses
of the dry and interpenetration layers are in excellent
quantitative agreement with our simulation results across a
broad parameter range with the use of a single adjustable
constant.

RESULTS

Two-Layer Model. In our theoretical model, the grafted
layer of a GNP consists of a dry and an interpenetration layer
with thicknesses hy,, and hy,, respectively (see the schematic
shown in Figure 1a). To estimate the overall brush thickness of
the GNPs, h = hy,, + Hiper/2, we consider a single isolated GNP
with a spherical polymer brush. In this case, the volume of the
spherical shell between R and R + h is completely occupied by
all monomers from the grafted chains, and the brush thickness
is simply given by the space-filling condition:
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Figure 1. (a) Schematic representation of the two-layer model,
indicating the NP radius, R, the total radius of the GNP, R,,,, and
the thicknesses of the dry and interpenetration layers, hy,, and
Binters respectively. (b) Voronoi cell (rhombic dodecahedron) for
the fcc packing of spheres. The center of the cell is indicated by O,
and the midpoint of one of the rhombic faces is indicated by P.
The vector from O to P points to the nearest neighbor, and its
length is given by the lattice constant of the fcc crystal, IOP | = a,.
The vector from O to H points to the next-nearest neighbor and

has a length of IOH| = /3/2 a,, while the vector pointing from O

to N has a length of IONI = /2 a,. The sphere (blue dashed line)
with radius R, has the same volume as the Voronoi cell.

4 s _R= 2N
37r[(R+h) R’ Zp W

where R is the radius of the NP, Z = 471'R2pg is the number of
chains grafted to the NP with grafting density p,, N is the
number of Kuhn monomers per grafted chain, and p is the
Kuhn monomer number density (assumed uniform) within the
spherical shell. Thus, the total radius of the GNP is:

3zn )"’
Ryt = (R3 + —)
4rp @
and the brush thickness is given by:
32N
h:Rm—R:(R3+—) -R
4rp 3)

This estimate for h ignores that the actual shape of the polymer
layers at dense packing must correspond to the Voronoi cells
defined by the position of the NPs, for example, a rhombic
dodecahedron for the face-centered cubic (fcc) packing of
spheres (see Figure 1b). In the simulations, the brush thickness
h can be defined in various ways (see Simulations section and
Supporting Information for details). The resulting values for h
are all within 5—10% of each other, and they all vary similarly
with the parameters of the system, namely N and Z (see Table
1). In our simulations, we chose the radially averaged center of
the interpenetration layer to determine the brush thickness,
and we can match the theoretical predictions by introducing an
empirical shape factor, @ = 0.93, that reduces all theoretical
curves for h, hy,, and hye, (see egs 3, 8, and 10) by 7%.

Next, we discuss the interpenetration between the polymer
coronas from neighboring GNPs using the two-layer model.
This model assumes that the dry and interpenetration layers
are spherical and that the overlap between neighboring GNPs
is primarily pairwise. If we further posit that, on average, each
grafted chain has ng, = N — n;,,, Kuhn monomers in the dry
layer and the remaining n;,,., monomers in the interpenetration
layer, then the space-filling condition for the dry layer can be
rewritten by analogy with eq 1:

https://dx.doi.org/10.1021/acsnano.0c06134
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Figure 2. (a, b) Total brush thicknesses h = hg,, + hiyer/2, thickness of the dry layer hy,,, and half thickness of the interpenetration layer h;,/
2 plotted (a) as functions of chain length N at fixed grafting density Py =047 62 and (b) as functions of Py at fixed N = 85. In both cases, R =
7.56 fixed. (c) Reduced thicknesses h;,.,/(2R,,;) and (hdl,y + R)/R,, as functions of x. [(hdl.y + R)/Ryoy + hipger/ (2Ry,,) = 1.] Filled and open
symbols correspond to the data shown in panels (a) and (b), respectively. (d) Volume fraction of the interpenetration layer, ¢;, ., as a
function of x for systems shown in (a, b). In all panels, symbols show our simulation results (initialized from random NP locations), while
solid lines are theoretical predictions of our two-layer model. The dashed lines are the theoretical predictions of the modified model of

Kapnistos et al.>®

Table 1. Brush Thickness of the GNPs“

random fee

Pg, hon h, By h,
N (@) k() (@ (0 68() (0 (o) 6(o)
10 0.47 3.6 2.3 3.4 2.7 2.5 3.4 2.6
15 0.47 4.6 32 44 33 3.3 44 3.0
30 0.47 7.0 S.1 6.7 4.5 5.7 6.8 4.2

85 0.47 124 9.1 11.5 8.2 10.4 11.6 7.1
142 0.47 159 12.0 14.7 10.6 13.7 15.0 8.8
212 0.47 19.3 14.5 17.7 123 16.6 18.1 10.0

85 0.15 6.6 4.0 5.3 9.1 - - -

85 0.25 8.8 6.1 7.8 8.8 - - -

85 0.35 10.7 7.8 9.6 8.8 — — -

85 0.55 13.4 9.9 12.4 8.7 - - -

“Extracted from the average volume of Voronoi cells constructed
around the NPs, h, = [3(V,)/(4%)]"/? — R, from the distance between
nearest neighbors, h,, = r,,/2 — R, and from the peak position &, of
the product of the radial density profiles pp,. The full width at half
maximum 6 of the product py, is also shown. Results are included for
random and fcc lattice starting configurations, as indicated.

4 3 3 Ny
—a[(R+ h — R =272—

An analogous expression can be formulated for the
interpenetration layer, which is equally shared between
neighboring GNPs, by replacing in eq 1 h with hy,,,/2 and R
Wlth R + hdry:

4 3 3 Minter
2R + hyy + h/2)” = (R + by, )’] = z20e
3 [( dry w/2) = ( dry) ] ) )

15507

Here, we have assumed that all grafted chains enter the
interpenetration layer, which is corroborated by our simu-
lations, where 98—100% of the grafted chains had at least one
bead in the interpenetration layer. We can solve eqs 4 and 5
under the assumption that the chain sections in the
interpenetration layer are unperturbed with root-mean-square
end-to-end distance:

hinter = bniil{ezr (6)
where b is the Kuhn length of the polymer. It is important to
note that we can combine eqs 4 and 5, and then the result for
Rdry + Minter/2 is identical to the result for h (see eq 3).

A detailed derivation of the analytical solution of the two-
layer model is provided in the Supporting Information, and
below we will focus on its key results. The main parameter of

our analytical solution is:

mpb*[R® + 3ZN/(4np)]'/? (7)

npb ’R tot

which monotonically decreases with increasing N at fixed Z,
and monotonically increases with increasing Z at fixed N. To
understand the physical basis of this parameter, we consider a
volume R}, in an unperturbed polymer melt. This volume is
occupied by pR},/N,, chains, where N, is defined through
the equation RZ, = N,b%. The number of chains that fill this
volume in an unperturbed melt is thus on the order of pb*R,,
and therefore x is proportional to the ratio of the actual
number of graft chains Z to the number of chains that occupy
the same volume in an unperturbed melt. Hence, x & O(1)
corresponds to an (almost) unperturbed melt, whereas x > 1

https://dx.doi.org/10.1021/acsnano.0c06134
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Table 2. Information about the Simulated Systems”

random fec
pg (67%) N x Nxp N Nxp N p (67) xp
0.47 10 6.88 S50 166,000 32 106,240 0.848 0.312
0.47 15 6.10 50 249,000 32 159,360 0.873 0.237
0.47 30 4.96 S0 498,000 32 318,720 0.895 0.138
0.47 85 3.57 25 705,500 32 903,040 0.910 0.054
0.47 142 3.02 25 1,1786,00 32 1,508,608 0.914 0.033
0.47 212 2.65 25 1,759,600 32 2,252,288 0916 0.023
0.15 85 1.65 S0 450,500 - - 0.877 0.147
0.25 85 2.33 40 598,400 - — 0.897 0.096
0.35 85 2.93 32 671,480 - — 0.906 0.071
0.55 85 3.97 20 659,600 - — 0.913 0.047

“Grafting density Py number of monomers per grafted chain N, overcrowding parameter x, number of NPs Nyp, total number of monomers in the
system N, average monomer density p, and packing fraction of NPs in the system ¢yp. Random and fcc lattice starting configurations led to the

same values for p and ¢yp within our measurement accuracy.

implies that the volume is overcrowded and the grafted chains
are strongly extended.
We can write the analytical solution for A, using the

parameter x as:
i)
(8)

The volume fraction of the interpenetration layer in the GNP
SYStem; ¢inter = (Zninter/p)/(4ﬂRfot/3)) is then given by

=

Hence, both hy/Rio; and ¢y, depend only on the
overcrowding parameter x. The rest of the GNP volume
(fraction) is occupied by the NP core and a dry layer of
extended chains. For R < Ry, — hyye./2, the thickness of the
dry layer is given by:

R —

L4
3

1
1+«

Bier = 3R (1 + 2)|1 —

inter

27
4

14
3

1

x(1 + x)*[1 -
1+x

(binter =

hdry =R hinter/2 (10)
whereas no dry layer exists if R > Ry — hjpe,/2. In the latter
case, our two-layer model breaks down because the polymer
corona is too thin to accommodate even unperturbed melt-like
chains. Further, our theoretical model is physically meaningful
only if there is enough polymer to uniformly fill the interstitial
spaces between the NP cores. We can estimate this lower
bound by considering the volume occupied by the grafted
chains, V.., = ZN/p, and the void space between closely

poly
packed bare NPs, V, = 8(~/8 —27/3)R>. (In an fecc

configuration, a cubic unit cell with edge length 2/2R is
occupied by four spheres with radius R, and hence

Viia = (2v2R)* — 16aR°/3 = 8(~/8 — 27/3)R’.) There-
fore, we consider only cases where the conditions R < R, —
Binger/2 and Vi1, /Vigiq 2 1 are both satisfied.

Figure 2a—d shows a comparison of the theoretical
predictions of h, hyy, Hiper/2, and @y, with the corresponding
simulation results (see Simulations section for details). We
fixed the NP radius to R = 7.50 (o being the diameter of a
monomeric unit) and varied either the chain length N at fixed
grafting density p, = 0.47 6% or varied pg at fixed N = 8S. For
the theoretical calculations, we used the average monomer
number density of our simulations p = 0.9 ¢~ (see Table 2)

tot

15508

and the Kuhn length b = 1.286 of this polymer model.>” Using
instead the actual monomer number density measured in the
simulations (see Table 2) leads to a change in brush
thicknesses smaller than 2% and was therefore disregarded
for simplicity. For these parameters, our two-layer model is
applicable for N 2 7 for GNPs with fixed p, = 0.47 6% and for
Pg 2 0.12 6~ for GNPs with fixed N = 85. In all investigated
cases, the theoretical predictions and simulation results for ,
Raryy and hyy,/2 are in excellent agreement after we multiplied
the theoretical curves by the shape factor a & 0.93 (see Figure
2). For GNPs with fixed grafting density pg = 0.47 6%, both
hary and hiye,/2 increase with increasing N, with hgy, > hipeer/2
for the investigated range of N (see Figure 2a). For GNPs with
fixed chain length N = 85, hy,, increases with increasing py,
while h,,/2 decreases (see Figure 2b). The reduced thickness
of the interpenetration layer, hy,../(2R,,), is a universal
function monotonically decreasing with increasing x, with
Hier/ (2 Ryp) o 7' for large x (see Supporting Information).
Similarly, the normalized sum of dry layer thickness and NP
radius, (hgy + R)/Ryy is a universal function monotonically
increasing with increasing «x (see Figure 2c), with (hdry +R)/
Ry o 1 — x7"! for large x (see Supporting Information). The
volume fraction of the interpenetration layer, ¢, is a
universal function of x which monotonically decreases with
increasing «x (see Figure 2d), with ¢y, o 3x~" for large x (see
Supporting Information). The excellent agreement of the
theoretical curves with the simulation data confirms that the
structures of GNPs of different grafting densities p, and chain
lengths N are identical if they have the same x.

Due to grafting and space-filling constraints, the densely
grafted chains are extended in comparison to unperturbed
polymers in a melt. To quantify this effect, we now consider
the chain extension free energy:

1/3
] R

[R3 +

This chain extension energy is a function of the ratio y = 3ZN/
(47pR®) of the polymer shell volume ZN/p to the NP core
volume 47R3/3:

2
_ 3kgTH 3k T

7 INB*  2Nb

3ZN
4mp

(11)

3T 3Z
Y pRb*

y (1 + ) = 1P

ext

(12)
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where the coefficient 3Z/(Rb%p) is the ratio of the polymer
shell volume ZN/p to the volume of a cone with base area b*N
and height R. If the polymer shell volume is much smaller than
the NP core volume, y < 1, then E,, can be expanded with
respect to y, leading to the planar brush result:

2
pon KT 2y _3kT( 2z
et 47pR*b

87w prz 2 (13)

In the opposite limit, y > 1, the chain extension energy
decreases with increasing N because the layer thickness scales
as h o N'/3;

sph
EL ~

- 2/3
OksT Zy i _ 3kBT( 32 ] N3

87  pRY* 2 4mpb® (14)

Thus, for small polymer to NP volume ratio y < 1, the chain
extension free energy increases as E., & y o« N, while for lar%e
volume ratio y > 1, it decreases as Eo, o y~ /3 o« N7'/3,
Therefore, E., goes through a maximum at

Vo = 6+/3 + 9 ~ 194, corresponding to:

3 3
PR PR
N, = 471(2/3 + 3)~— ~ 81—
This chain length corresponds to a polymer layer thickness:
I = [(63/3 +10)'° — 1IR = 3R (16)

which is only /3 times larger than the NP radius. The value of
the chain extension free energy at this maximum is:

32V3 = 3)kgT Z %
@V3 = ks ~ 0.7ksT—5R

Emax — 3
871 pRb pb (17)

ext

For the case of interest for our simulations, that is, Py = 0.47
6% R =756, and p = 09 673, the theoretically predicted
maximum of E, is located at N, & 93, as shown in Figure 3a.
The simulation result for E,, has a maximum at N, = 85,
which is in good agreement with the theoretical results when
we multiply the latter by the square of the shape factor a* ~
0.86. The maximum of E,, occurs at the same value of the
volume ratio y,. & 19.4, independent of whether the chains
are strongly extended (E&i* > kgT) or not extended at all
(E2¥ < kgT), and is a result of the geometric crossover from a
planar polymer layer around an NP (for small y) to a thick
spherical polymer shell (for large y).

The case of interest for this work corresponds to GNPs that
have a dry layer. It is interesting to note that for such densely
grafted NPs, the spherical-like increase of the overall layer
thickness & o« N'/* can occur while chains are still strongly
extended before GNPs enter the star polymer regime. This
means that the geometric crossover of E,,, between the planar
increase EEM o N and spherical decrease E2! o N7/ is
predicted by the two-layer model with extended polymers over
the wide range of parameter N on both sides of the free energy
maximum. Figure 3a demonstrates that the maximum of E, as
a function of N and the decreasing chain extension free energy
beyond this maximum are features that describe the GNPs of
interest. In contrast, if the grafting density p, (or Z) is varied at
constant chain length N, then E,,, does not show a maximum
but increases monotonically with increasing p, (or Z) instead
(see Figure 3b).

Finally, we want to briefly discuss an alternative model for
the theoretical description of GNPs. Kapnistos et al. proposed

1.6
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Eext
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Figure 3. Chain extension free energy, E,, as a function of (a) N
for fixed p, = 0.47 672 and (b) pg for fixed N = 85. Symbols are
simulation results (initialized from random NP locations), and the
black solid lines indicate the theoretical predictions from the two-
layer model and the modified model of Kapnistos ef al.>®> The
vertical dashed line in (a) indicates the position of the maximum
of the theoretical curve.

a scaling model to study the structure of multiarm star
polymers in a melt,”> which can be adapted to our systems by
including the contribution of the NP core. With this
modification, the expression for the total brush thickness h
becomes identical with our two-layer model given by eq 3, due
to the incompressibility constraint and the conservation of the
total volume. The two approaches differ, however, in the
construction of the interpenetration layer. We assumed in our
two-layer model that all grafted chains enter the inter-
penetration layer, whereas in the theory by Kapnistos et al,
the number of chains in the interpenetration layer increases
with decreasing overcrowding parameter x as Z o Zx~'/>.
Kapnistos et al. obtained the scaling of the interpenetration
layer from the parabolic potential approximating the polymer
layer by a planar brush, which leads to the scaling result Ay,
bN'2x~1/¢, We fitted this expression for hy,, to our simulation
data (see Figure 2), giving a prefactor of § ~ 0.8S.

Despite these differences, we observe that the predictions
from both models for h, hy,,, and h;,/2 are in good agreement
with our simulation results for the investigated range of the
overcrowding parameter 1.5 < x < 7, see Figure 2a,b. The two
models start to deviate for large x (see comparison between the
two approaches in the Supporting Information), for which the
polymer corona becomes more planar (h < R). That regime is,
however, outside of interest of this study. We emphasize that
our simple analytical model for the GNPs provides an excellent
description of h, hyy, hiyen and @iy, across the range of
interest to most experimental situations (see Figures 2 and 3).

Simulations. We consider GNP melts for different values
of the chain length N and grafting density p, at fixed NP radius
R = 7.50. The details of the simulations are provided in the
Methods section. Figure 4 shows snapshots of single GNPs
from these melts for various grafted chain lengths (a) N = 15,
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(a)

Figure 4. Simulation snapshots of a single GNP in a bulk system
with varying chain lengths, (a) N =15, (b) N = 85, and (c) N = 212
at p, = 0.47 672, and with varying grafting densities, (d) py=0.15
% (e) pg =035 672, and (f) pg = 0.55 672 at N = 85. Snapshots
have been taken from the systems initialized from random starting
configurations, and they have been rendered using Visual
Molecular Dynamics v 1.9.3.%%

(b) N = 85, and (c) N = 212 at grafting density pg = 047 o
and for various grafting densities (d) p, = 0.15 6%, (e) p, =
0.35 0% and (f) p, = 0.55 67* at chain length N = 85 for
systems with random starting configurations. In this context,
we empbhasize that, as discussed in the Methods section, the
initial NP locations are at random, which should be contrasted
with an ordered arrangement of initial NP locations on an fcc
lattice, which is also considered in this work (see below). For
fixed grafting density p, = 0.47 672, the overall size of the
GNPs increases with increasing N, as expected. Similarly, for
fixed chain length N = 85, the size of the GNPs increases with
increasing p,. Based on these snapshots, it appears that the
spherical shape of the GNPs becomes increasingly distorted
with the increase of N at fixed p,, whereas the shape of the
GNPs remains almost unaltered for fixed N = 85 and varying
Pg (see Figure 6 and accompanying discussion for a
quantitative analysis of the shape of the GNPs).

The radial distribution functions of the NP centers, g(r), are
presented in Figure S for three different grafted chain lengths
N =15, N =85, and N = 212 at p, = 0.47 6™, initialized from
random NP locations. For all cases, we can see that g(r)
oscillates around one (black horizontal dashed line), indicating
that the NPs have some local structure but are uniformly
dispersed in the matrix of grafted polymers. The first peak of
g(r) at position r,, represents the average separation between
the nearest-neighbor NPs, and r,, shifts to larger distances as N

0605 10 15 20 25 30

rlry,

Figure 5. Radial distribution function, g(r), between centers of
NPs with random starting configurations. The inset shows g(r) for
GNP systems with different grafting densities at a fixed chain
length N = 85. In both plots, the x-axis is scaled with the average
nearest-neighbor distance, r,,.

is increased (see Table 1). Further, the first peak of g(r) is
relatively narrow for N = 15, but it becomes significantly
broader for N = 85 and N = 212 at fixed p,. Since the
(normalized) peak width is characteristic of the rattling of the
GNPs in a “cage”, evidently the degree of GNP localization
decreases with increasing chain length. This behavior can be
rationalized by the increase of the volume fraction occupied by
the interpenetration layer with increasing N, which leads to a
softening of the effective interactions between the GNPs. A
similar behavior is observed in the case of GNPs on the fcc
lattice as well, but there the peaks are overall more pronounced
due to the crystalline long-range order of the GNPs (not
shown here). The inset of Figure S shows g(r) for three
different grafting densities, p, = 0.15 o3 pg =035 6% and Pg
= 055 0> at N = 85, for systems with random starting
configurations. The nearest-neighbor distance r,, increases
with increasing p, (see Table 1), but the (normalized) peak
width is similar for all investigated p,.

To quantify the size distribution of the GNPs, we have
performed a Voronoi tessellation™* around the centers of the
NPs and then computed the (normalized) distributions of the
volume of the Voronoi cells, V,. Figure 6a shows the
distributions for selected N at fixed p, = 0.47 672 for both
the random and ordered starting configurations. The width of
the distributions increases with N, indicating that the
correlation between NPs is becoming weaker with increasing
N. This behavior is consistent with the prediction from our
two-layer model that the volume fraction of the inter-
penetration layer, ¢;,.,, monotonically increases with increas-
ing N at fixed p, (see Figure 2d). The volume distributions in
the systems initialized from the fcc lattice are much more
narrow and show a weaker N-dependence compared to the
random GNP configurations, reflecting the high symmetry of
the fcc lattice. Irrespective of the starting configurations, the
mean value of the distribution, (V,), increases almost linearly
with N. Similar behavior is observed for the GNP systems with
varying p, (or varying Z = 47R’p,) at fixed N = 85. This linear
relationship (V) = (4/3)7R*> + ZN/p = (4/3)nR}, is expected,
because the number of monomers per GNP (and thus the
volume occupied by them) increases linearly with N at fixed Pg
(see inset in Figure 6a) or with p, at fixed N.

The shape of the Voronoi cells and of the corona of the
GNPs is probed via the asphericity parameter, S?, defined as:
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Figure 6. (a) Normalized distributions of the volume of Voronoi cells, V,, of selected GNP systems with Py =047 672, as indicated. The x-
axis is scaled with the mean volume of the Voronoi cells, {V,). Solid colored curves show the results for simulations with random initial
positions, whereas dashed curves represent the same quantity for GNP systems initialized on an fcc lattice (area under the curve normalized
to 0.3 instead of unity for better visualization). The inset presents the average volume of Voronoi cells, (V,), as a function of N. The solid
black line shows (V,) = (4/3)aR%,. (b) Asphericity parameter, S% of the Voronoi cells (S2 solid curves) and of the polymer coronas of the
GNPs (S? dashed curves) as functions of N at fixed Py =047 672 Results from random and fcc lattice starting configurations are shown as

red and blue curves, respectively.
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where 4}, 4, and 4; are the eigenvalues of the gyration tensor
(along the three principle axes) of the vertices of the Voronoi
cell relative to the NP center or of all of the monomers forming
the corona of a GNP with respect to their center of mass. The
value of S is bounded between zero and one. The lower limit
§* = 0 is consistent with spherical symmetry (4, = 4, = 1),
while the upper limit S* = 1 indicates a rod-like shape. In
Figure 6b, we present the average values of the asphericity
parameter for the Voronoi cell (S2) and the polymer corona
(82) as functions of N at fixed p, = 0.47 672 Both S} and S}
increase with N for the GNP systems with random NP starting
configurations, indicating that the polymer coronas are
becoming less spherical. In contrast, S as well as S? increase
much more slowly with N for the fcc starting configurations
and have consistently smaller values compared to the random
initial configurations. (Note that S} = 0 for a rhombic
dodecahedron, which is the Voronoi cell of the fcc lattice.)
Nevertheless, the asphericity parameters remain rather low
throughout, with the largest values of S; ~ 0.15 and S ~ 0.06
for the GNPs with the longest grafts (N = 212) initialized from
random GNP locations. For all GNP systems with varying p,
and fixed chain length N = 85, the values of S} and S? fluctuate
around 0.05 and 0.13 (error is <5%), respectively. Thus, the
polymer coronas are close to spherical, supporting our initial
assumption of the two-layer model.

The observed dependence of our results on the initial
configurations is a strong indicator that the GNP systems have
not reached global equilibrium in our simulations. There are
two qualitatively different time scales that are evidently well
separated from each other. The relaxation of the polymer
brushes and the corresponding equilibration of the NPs within
their nearest-neighbor cages occur at relatively short time
scales, whereas the hopping of NPs between cages and the
eventual diffusion of GNPs take place on much longer time
scales. Indeed, independent experimental rheology measure-
ments of similar GNPs revealed that these cage rearrangements
occur on macroscopic time scales (up to several days in some
cases).” In our simulations, we have achieved the first stage of
equilibration, that is, local relaxation of the grafted chains, but
the entire system has not reached equilibrium.

To further analyze the distribution of the grafted polymers
around the NPs, we computed radial monomer density profiles
for the GNP systems with varying grafted chain lengths and
grafting densities, as shown in Figure 7a—c. Here, we
decompose the monomer density into two parts, p = p, +
Poy Where p, is the contribution from polymers grafted to the
same NP, while the contribution from other polymers is
expressed in p,. In all investigated cases, the total monomer
density p fluctuates around the average monomer density in
the system within our measurement uncertainty. For high
grafting density p, = 0.47 6% we can see a distinct layering of
monomers near the hard NP surface (see Figure 7a,b), which
decays within the range of a few monomers. However, no such
layering is observed around the NP surface at the lowest
grafting density p, = 0.15 6> (see Figure 7c). Further, in all
cases, p, decays to zero at a distance r & r,, — 2R, which
indicates that the polymers fill the space between neighboring
GNPs but do not wrap around them for the chosen set of
simulation parameters. For Py =047 6% p, approaches zero as
we move toward the NP surface, because the cores of the
GNPs are completely surrounded by their own monomers. For
pg = 0.15 6%, the surrounding polymers from the other cores
can easily interpenetrate, resulting in nonzero values of p, even
close to the NP surface (see Figure 7c). For comparison, the
radial density profiles for the fcc lattice starting configurations
are presented in Figure 7a,b as dashed lines, and we can see
only minor deviations between the two cases.

To quantify the interpenetration of polymer coronas from
neighboring GNPs, we computed the product of the radial
monomer density profiles, pyp,, which is shown in Figure 7a—c
as orange lines. The full width at half-maximum, &, of the
product of pp, provides a measure for the width of the
interpenetration layer. We use the location of the maximum
(corresponding to the distance where p, and p, cross) to
extract the overall brush thickness, h,. In Figure 7a,b, we have
presented results from random and fcc lattice starting
configurations. In both cases, the maxima of the distributions
appear at similar locations and thus provide similar values for
the total brush thickness 4, indicating that h, does not depend
on the starting configurations. Further, we identify the
thickness of the dry layer by hyy, = h, — 6/2 and attribute
the remaining part of the brush thickness to the inter-
penetration layer, that is, hiye,/2 = h, — hg, = 6/2. Following
this convention, the typical fraction of monomers from other
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Figure 7. Monomer density profiles of the grafted polymers around
the NPs as a function of radial distance from the surface of the
NPs, r — R, for various grafted chain lengths and grafting densities,
(a)N=15,p,=04767% (b) N=85,p, = 0.47 67> and (c) N = 85,
pg = 0.15 6 % Here, p is the local monomer density, p, is the
monomer density of the chains coming from the central NP, and
P, is the monomer density from other GNPs. Interpenetration
layers are quantified by the product of monomer density profiles,
PPo which are represented by orange lines. Solid and dashed
colored lines show the results for random and fcc starting
configuration, respectively. The horizontal black dashed line
represents the average monomer density in the GNP systems.
Black vertical arrows represent the average surface-to-surface
distance between neighboring NPs, r,, — 2R.

GNPs in the dry layer is 5S—6% for all investigated cases (note
that the two-layer model assumed strictly 0% and a sharp
boundary between the dry and interpenetration layers). The
resulting layer thicknesses are plotted in Figure 2a,b, which are
in excellent agreement with the theoretical predictions. We
also compute the average number of monomers (grafted to the
same NP) in the dry layer, ny,, and the average number of
monomers fly,, = N — ng,, in the interpenetration layer.
Next, we compare three different measures of the total brush
thickness obtained from our simulations: (i) h, = [3(V,)/
(47)]'® — R is obtained by the Voronoi construction around
the center of the NPs, assuming that the Voronoi cells are
spherical (same definition as in our two-layer model); (ii) h,,
= an/2 — R has been extracted from the first peak of the radial
distribution function between the NPs (see Figure 5); and (iii)
h, is the radially averaged location of the crossing of p, and p,,
which corresponds to the center of the interpenetration layer
formed by the polymer brushes of adjacent GNPs. The values
for h, h,,, and h, are listed in Table 1 for all simulated systems,
with h,, < h, < h,. We used h, to define the brush thickness in
our simulations and all quantities derived from it. The
differences between these values can be understood by
considering the rhombic dodecahedral shape of the Voronoi

cells in the simulations with fcc starting configurations (see
Figure 1b and Supporting Information for details): The
thickness h,,, corresponds to half of the face-to-face distance of
the Voronoi cell, and for a perfect rhombic dodecahedron it is

given by b, = (#/+/18)"°R,, — R ¥ 0.9R,,, — R< R, — R
= h,. If the crossing of p, and p, occurs exactly on the surface
of the rhombic dodecahedron, then geometric considerations

lead to h, ~ 1.115(x/~/18 )°R,, — R>h,. We found,

however, that these crossings occur at slightly shorter distances
compared to the surface of a perfect rhombic dodecahedron, so
that the measured }, is somewhat smaller than theoretically
expected. To account for this discrepancy, we introduce an
empirical shape factor @ =~ 0.93 based on our simulation
results, and multiply all theoretical expressions for the brush
thickness (i.e., h, hg,, and hyy.,/2) by this factor.

Figure 8a shows the values of the fraction of monomers in
the interpenetration zone ;,.,/N as functions of N at fixed p,

nter:
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Figure 8. Fraction of monomers in the interpenetration zone 1.,/
N as a function of (a) N at fixed p, = 0.47 672 and (b) Py at fixed N
= 85. The symbols show the simulation results (initialized from
random NP locations), and the solid lines indicate the theoretical
prediction from our two-layer model. The dashed lines are the
theoretical predictions of the modified model of Kapnistos et al.”®

= 0.47 6> The results from theory and simulation are in good
agreement with each other, exhibiting the same trends: For
small N, the ratio n,,,,/N decreases with N due to the faster
growth of the dry layer in this regime, while n;,,.,/N gradually
increases with N for large N, resulting in a minimum at
intermediate N. Note that ¢,,...(N) decays monotonically with
increasing N for the same parameters (cf. Figure 2d), as the
calculation of ¢y, includes the NP core in the denominator as
discussed in the Two-Layer Model section. The values of 1.,/
N for the GNP systems with varying p, at fixed N = 85 are
plotted in Figure 8b. In this case, both the theory and the
simulations show that n;,, /N gradually decreases with
increasing grafting density p, for fixed N.

To better understand the conformational details of the
grafted chains, we computed the polymer end-to-end vector R,
and its radial (R,,) and transverse (R,,) components, both for
the entire chains and for chain segments of length n. We first
determined from our simulation data the probability
distribution functions of the squared end-to-end distances of
the entire grafted chains, P((RZ)), revealing that the grafted
chains are always more extended than polymers of the same
length in a pure melt (see Figure S5 in Supporting
Information). Chain sections close to the NP surface have
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different conformations compared to chain sections at the
periphery of the polymer corona because of steric crowding
effects. To quantify the local polymer conformation, we have
computed (R,,) for subsections of fixed length n = 20 along
the chain contour. Figure 9 shows (R,,)* of these chain
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Figure 9. Main plots: Square of normalized average radial end-to-
end distances 3(R,,)*/(R2,) in chain sections of length n. The
dashed lines correspond to the theoretical prediction from our
two-layer model 3[h(n,; + n) — h(n,;)]*/(nb*), while vertical
colored arrows indicate ny, from our simulations. Insets:
Normalized fluctuations of the radial (solid) and transverse
(dashed) components of the end-to-end vector, 3((R},) —
(RD/RE) and 3((RE) — (R.))/(A(RyY), respectively. In
all panels, the chain section length is fixed at n = 20 with one chain
end at monomer n,,; and the other end at monomer n,; + n. Data
shown for GNP systems with (a) N = 30, 85, 142, and 212 at Py =
0.47 6% and (b) p, = 0.1567%,0.3567% 0.47 6 %,and 0.55 6 > at N
= 8S.

sections (the average transverse components (Re’t> are always
zero within statistical fluctuations), normalized by the mean-
square end-to-end distance in a pure polymer melt (RZo(n))/3.
All results are shown as functions of the chain section origin
foi (e = O corresponds to the grafting point) for GNP
systems with (a) varying N at pg =047 6% and (b) varying Pg
at N = 85. In our two-layer model, 3(R,,)*/(RZ,) = 3[h(n, +
n) — h(ng)]*/(nb*), which is also included in Figure 9. In
Figure S6 of the Supporting Information, we have plotted
3(R,,)*/{R2,) as functions of the number n of monomers in a
chain section, while fixing one chain end at the grafting point
(nori = O) .

In both theory and simulations, there is a pronounced
extension of chain sections near the NP surface in all cases,
followed by a monotonic decrease of 3(R.,)*/(RZ,) with
increasing n.4. For a given ng; 3(R.,)*/(RZy) increases with
increasing grafting density p, in both the dry and inter-
penetration layer of the polymer corona. In our simulations,
chain sections deep in the interpenetration layer approach
(R.,)* ~ 0, whereas (R,,)* > 0 in our two-layer model for all

oy Further, the theoretical extension of chain sections was
independent of the total chain length N, which is a
consequence of our approximation that all grafted chains
behave in the same way and uniformly fill the volume between
h(nyy;) and h(n,,; + n). We have also computed the fluctuations
of the radial and transverse components of R,(n) of these
chain sections relative to fluctuations in pure polymer melts,
3R — (R))/(R) and 3(RL) — (R)D/(2(R,)),
respectively. These data are shown in the inset of Figure 9 as
functions of n.; for fixed n = 20, demonstrating that the
fluctuations along the radial direction are strongly suppressed
in all cases. In contrast, transverse fluctuations were slightly
enhanced for N < 85 but suppressed for N > 85. Figure S6a,b
in the Supporting Information shows the square of the
normalized average radial size as functions of n at fixed n,; = 0,
while the relative fluctuations are plotted in Figure Sé6c,d.

CONCLUSIONS

In this work, we studied the structure of polymer-grafted
nanoparticles (GNPs) via coarse-grained molecular dynamics
simulations by systematically varying the degree of polymer-
ization of the grafted polymers and their grafting density at
fixed NP radii. The total brush thickness of the GNPs, h, was
decomposed into two separate layers: a dry layer of extended
chains, where only few monomers from the surrounding GNPs
were present, and an interpenetration layer of unperturbed
chains, where significant overlap between grafted chains of the
surrounding GNPs occurred, presumably to maximize their
conformational entropy. The thicknesses of the dry layer, hy,,,
and of the interpenetration layer, hy,.,,, were estimated by a
simple spherical two-layer model. According to our theory, the
behavior of h, hg,, and hyy, can be described by a single
universal parameter, x, which compares the actual number of
graft chains on an NP, Z, to what is expected for the number of
overlapping unperturbed chains in a melt with the same
volume as the GNP (with both the core and corona included).
This crowding parameter x decreases with increasing graft
length N at fixed grafting density p,, whereas x increases with
increasing p, at fixed N. Thus, x ~ 1 for unperturbed chains
(e.g, sparsely grafted NPs with long grafts), while x > 1 for
strongly extended chains (e.g.,, densely grafted NPs with short
grafts). We find that this two-layer model works well in the
range of our simulations 1 S & S 7.

For GNPs with fixed grafting density p,, both hg, and h;y./
2 increase with increasing N, with hg, > hy/2 for the
investigated range of N at p, = 0.47 6> When the chain length
Nis fixed and p, is varied instead, hy,, increases with increasing
Py whereas hy../2 decreases. For sufficiently small pg, hqy, is
smaller than h,,./2, but these two curves cross at some
intermediate p, so that eventually hiy../2 > hyy at a large
enough p,. We also predict that the volume fraction of the
interpenetration layer, ¢;,.,, is a universal function of x which
decays monotonically with increasing x. All of these
predictions from our two-layer scaling model are in
quantitative agreement with simulation results after we account
for the slightly distorted shape of the polymer coronas. Most
importantly, we predict a peak in the chain extension energy
3ksTh*/(2Nb*) at N, ~ 81(pR*)/Z, which for our system
with p, = 047 7% R = 7.50, p = 0.9 6> is Ny, & 93. For
grafts with N = N, the total brush thickness is h = /3R,
independent of grafting density p, and monomer density p.
The associated maximum value of the extension energy is E,,
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~ 0.055a’kzTZ/(pRb*), which is ~1.4 kT for our case (Z =
332, a ~ 0.93).

Our theoretical model is useful for designing pure melts of
GNPs with tailored structural properties, for instance,
optimizing the degree of polymer interpenetration at a given
NP volume fraction. Further, the theoretical knowledge gained
from this work provides a starting point for investigating
systems to which additional free components, such as small
molecules or ungrafted polymers, are added. For example, it is
conceivable that small additives become homogeneously
dispersed in the polymer brush, whereas large additives
could occupy the interstitial sites between the polymer
coronas. A conjecture could be that the optimal condition
for this partitioning to occur is at the maximum chain
extension energy. It will also be interesting to investigate the
structural properties of anisotropic GNPs with high aspect
ratios.

METHODS

The grafted polymers are represented by a bead—spring model, where
a chain consists of N spherical beads, each with diameter ¢ and mass
m. The bonds between the individual monomers are modeled via the
finitely extensible nonlinear elastic (FENE) potential:>**”

L)

where r; is the maximum bond length and k is the spring constant. To
prevent unphysical bond crossing, which will impact our associated
study on system dynamics, we employed the standard Kremer—Grest
parametrization,‘%’57 that is, r, = 1.56 and k = 30e/0%.

The interaction between any two monomers separated by distance
r is represented by the standard Lennard-Jones (LJ) potential:

k >
—=7
50

o

UFENE(V) =

forr <r,

Uy (7) = 46[(

0 for r > r,

(20)
with cutoff distance r, = 30, and interaction strength & = kzT. The pair
potential Uyg(r) is multiplied with a smoothing polynomial, S(r), for
distances r > r,, = 2.50, to gradually decrease both the potential and
force to zero at r = r.. The functional form of S(r) is:

(rcz - 1’2)2(1'c2 + 27 — 3r52m)

2 2 \3
(rc ~ Tsm

S(r) =

(21)

The hard NPs are modeled as smooth spheres with radius R. The
NP—NP interaction is described by the shifted Lennard-Jones (sLJ)

potential:
48( 2R )12 ( 2R ]6
r—A r— A

for r < roy + A

UNN(V) =
for r > foy + A
(22)

with A = 2R — 1 and cutoff distance rg;5 = 2185 to make Uyy purely
repulsive. The interaction between a monomer and an NP is also
described by the sLJ potential with A = (2R + 6)/2 — 1 in eq 22.

The polymers are grafted to the NPs by rigidly attaching the first
polymer bead to the NP surface. These immobile grafting points are
randomly distributed on the NP surface with a minimum distance of
0. Then, the remainder of the chains are connected to those grafting
beads using the FENE potential (see the schematic representation
given in Figure 10).

Throughout all our simulations, we set the radius of the NPs to R =
7.50 and either varied the degree of polymerization N at fixed grafting
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(a)

Figure 10. Schematic of (a) an NP with all grafting beads, (b) a
polymer chain which will be grafted to the NP surface, and (c) the
resulting GNP with one grafted chain.

density p, = 0.47 67% or varied pg at fixed N = 85 (a summary of the
simulated systems is given in Table 2). Note that for 6 = 1 nm, this
model matches the experimental systems studied by Bilchak et al.*’
All our MD simulations are performed using the HOOMD-blue
software package (v. 2.5.1) with double-precision floating point
operations.”*~® Periodic boundary conditions are applied along the x,
¥, and z directions. We set the simulation time step to At = 0.0027,

where 7 = \/mo?/ (kgT) is the intrinsic MD unit of time.

In order to study the effect of the NP arrangement, we generated
starting configurations where the GNPs are either placed randomly in
the simulation box or on the fcc lattice. Initially, Nyyp GNPs are
distributed in a cubic box, with its edge length chosen such that the
polymer coronas of the GNPs do not overlap. Next, an isotropic
compression is applied, until we reach a monomer density (typically
between 0.7 67° and 0.8 67>) close to the one at equilibrium, p = 0.9
673, During this process, all interactions are set to purely repulsive. In
the next step, we turn on the attractive contributions of the pair
potentials, and simulate over 2 X 107 time steps in the NPT ensemble
at fixed pressure P = 0 £/¢° and temperature T = e/ky. After
equilibrating the system in the NPT ensemble, we compute the time-
averaged volume of the system, and simulate for 10 time steps at this
volume in the NVT ensemble, using a Langevin thermostat. For the
final production runs, we perform simulations in the NVE ensemble
for at least 5 X 107 time steps. The volume fraction of NPs in the
system is then @yp = 47R’Nyp/(3V). All results presented for the
GNP systems with random starting configurations are averaged over
three independent initializations, while we use a single starting
configuration for the systems initialized on the fcc lattice. We found
that the final box volume, and thus also the monomer density p and
NP loading ¢np, did not depend on the starting configuration.
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