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ABSTRACT: This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer
[December-February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of
prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E-165°W and 10°S-10°N)
and SSSI (50°-95°E and 10°S-10°N)] covaries with Australian rainfall, particularly in the northeast region. Composite
analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links
between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS
and precipitation over Australia. The composites show the signature of co-occurring La Nifia and negative Indian Ocean
dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Nifio and
positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI
regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil
moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming
moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from
the random-forest regression analysis that the local soil moisture, El Nifio-Southern Oscillation (ENSO), and SSSP are the
most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the
Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an
improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve
the monitoring of the Australian regional hydrological cycle.

KEYWORDS: ENSO; Flood events; Hydrologic cycle; Machine learning; Rainfall; Salinity; Seasonal forecasting; Soil
moisture

1. Introduction Our previous study (Rathore et al. 2020) shows that sea surface
salinity (SSS) is linked with Australian rainfall via atmospheric
moisture transport. The anomalous positive and negative SSS of
the Indo-Pacific warm pool appears prior to the peak of ENSO
and IOD events and is accompanied by convergence and diver-
gence of atmospheric moisture transport. Also the use of SSS of
the Atlantic Ocean and tropical northwest Pacific Ocean for the
prediction of rainfall has been demonstrated in Li et al. (2016a,b)
and Chen et al. (2019). It is shown that the moisture originating
from the ocean surface leaves an imprint on the SSS that in turn
can be used as a precursor for rainfall over adjacent land areas (Li
et al. 2016a,b; Chen et al. 2019). Here, we use this relationship
between the SSS and atmospheric moisture to predict the rainfall
over Australia, which has not been previously investigated. In
conjunction with Rathore et al. (2020), this study shows the use of
SSS as an additional precursor along with local soil moisture,
ENSO, and IOD indices to improve the prediction of Australian
rainfall. The links between the SSS and rainfall over land cannot
be interpreted as SSS driving or shaping rainfall over land in the

Corresponding author: Saurabh Rathore, saurabh.rathore@utas. ~ Same way that ENSO, a remote driver, and soil moisture, a local
edu.au driver, do. The persistent signature of ENSO evolution and the

Various climate drivers that include oceanic and atmospheric
modes, such as El Nifilo-Southern Oscillation (ENSO), the
Indian Ocean dipole (IOD), the southern annular mode (SAM),
and others, profoundly influence Australian rainfall not only on
interannual time scales (Risbey et al. 2009; Hendon et al. 2014;
Lim and Hendon 2015) but also on decadal time scales (Power
etal. 1998,1999,2006). Among these variations, ENSO and IOD
have, perhaps, the most impact (McBride and Nicholls 1983;
Ashok et al. 2003; Risbey et al. 2009; Ummenhofer et al. 2009;
Cai et al. 2012) with implications for Australia’s ecosystems and
socioeconomic prospects (NCCARF 2012; Holmes 2012; Hayes
and Goonetilleke 2013; Yuan and Yamagata 2015). Yet there is
still a need to improve the prediction of Australian rainfall
through the inclusion of additional variables (such as salinity and
soil moisture) to help anticipate such impacts.
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FIG. 1. Annual mean of SSS for the study area overlaid with the outlined boxes for the DMI
(blue), Nifio-3.4 index (green), region of northeastern Australia (yellow), region of Brisbane
(magenta), and Tasman Sea region (black), with vectors of moisture transport, i.e., divergent
component of moisture flux and the Australian precipitation, where brown indicates low
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rainfall and green indicates high.

response of soil moisture to the convergence and divergence in
prior seasons drive the precipitation over land in the later season
(Hendon et al. 1989; Timbal et al. 2002; Evans et al. 2011). The
convergence/divergence of moisture, which is also associated with
the evolution of ENSO, is imprinted on SSS in the prior season
before ENSO peaks (Rathore et al. 2020). Hence, this study is
about testing the use of SSS as an additional precursor that can be
used along with other remote and local drivers to improve the
prediction of Australian rainfall.

The study’s application is demonstrated for the broader Brisbane
region because it encountered Australia’s severe precipitation
anomalies during 1973/74 and 2010/11 years (Ummenhofer et al.
2015). Recent records (NCCARF 2012; Holmes 2012; Hayes and
Goonetilleke 2013) show that the financial and human loss due to the
flooding event associated with the extreme hydroclimatic conditions
of 2010/11 was estimated to be around $2 billion and 35 deaths. The
flooding events in both the 1973/74 and 2010/11 years were associated
with co-occurring La Nifia and negative IOD (nIOD), which gen-
erally bring anomalously high rainfall over Australia’s northeast re-
gion (Evans and Boyer-Souchet 2012; Zhu 2018; Rathore et al. 2020).

The paper is organized as follows. Section 2 provides the method
and datasets, respectively, used in this study. Sections 3-6 focus on
the links between SSS and Australian rainfall with physical mech-
anisms and the application of SSS for the prediction of Australian
rainfall over the northeast and broader Brisbane region. Section 7 is
the discussion of the results, and section 8 is conclusions of the study.

2. Data and method
a. Data

Our study is focused on the Indo-Pacific region and is boun-
ded by 40°E-100°W and 50°S-10°N with the regions of IOD and
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ENSO defined by the (two) blue and green box, respectively, in
Fig. 1. Monthly means of various oceanic and atmospheric pa-
rameters from observations and reanalysis are used in this study
from 1961 to 2017. For climate variability measures, we use the
Nifio-3.4 index for ENSO and the dipole mode index (DMI) for
IOD. The ENSO index is the area-averaged SST anomaly in the
equatorial Pacific region bounded by 5°S-5°N and 170°-120°W
(Fig. 1, green box) and is based on the monthly time series of
ERSSTV5 (Huang et al. 2017). The DMI is based on Saji et al.
(1999) and is computed as the difference of spatially averaged
SST anomaly between the western equatorial (50°~70°E, 10°S—
10°N; Fig. 1, big blue-outlined box) and the southeastern
equatorial (90°-110°E, 10°S-0°; Fig. 1, small blue-outlined box)
Indian Ocean. Both of these indices were linearly detrended to
enable a focus on interseasonal-to-interannual climate variabil-
ity. We have used the monthly time series of these two indices
from online sources (ENSO: https:/origin.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/ ONI_v5.php DMI:
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/).
We have used three different products for the monthly means
of SSS data. The SSS data include two products from Hadley
Centre subsurface objective analyses (EN 4.2.1; Good et al.
2013) that are bias corrected following the approaches of
Levitus et al. (2009) and Gouretski and Reseghetti (2010). In
the equations below, data from these two sources are labeled
as L09 and G10, respectively. The third SSS product is the
Ocean Reanalysis System 4 (ORAS4) (Balmaseda et al. 2013)
from the European Centre for Medium-Range Weather
Forecasts (ECMWF).

EN4 data (Good et al. 2013) are produced by incorporating
the World Ocean Database (WOD) as a main data source used
for reconstruction of temperature and salinity fields along with
the Coriolis dataset for Reanalysis (CORA). Data from the
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Global Temperature and Salinity Profile program (GTSPP)
from 1990 onward and Argo data from 2000 onward were also
included in EN4. The quality-controlled data are used to
produce a monthly objective analysis of the temperature and
salinity from all types of ocean profiling instruments. By per-
sisting anomalies through to the next month, a forecast of the
ocean state is produced, and this is used in the quality control of
the following month of data and as the background to the next
month’s analysis (Good et al. 2013).

For ORAS4 (Mogensen et al. 2012), data are assimilated using
NEMOVAR, which is a variational data assimilation software
for the NEMO ocean model. ORAS4 assimilates temperature
and salinity profiles from the quality-controlled EN3 dataset,
which includes data from expandable bathythermographs (XBT),
conductivity—temperature—depth sensors (CTD), Argo, and
moorings for the period of 1957-2009. From 2010, real-time data
from the Global Telecommunications System (GTS) are used.

Usually, the assimilation of ocean data brings the state closer
to reality, but only in the presence of enough observations. In
the early 1960s the surface ocean is more sparsely sampled in
SSS datasets and is therefore the most unreliable period in the
full time series analyzed here. To reduce the uncertainty in the
ECMWEF’s ORAS4 product, an ensemble generation strategy
is used with time-varying fluxes and assimilating temperature
and salinity, for the period from 1958 to 1980, which improves
the fit to the temperature and salinity profiles (Balmaseda et al.
2013). We have used the ensemble mean of the three SSS da-
tasets, as mentioned above. The ensemble mean approach re-
sults in the mean smoother field with a small standard error.
This approach is consistent with using as much of the data on
SSS as is available across a suite of products (which use dif-
ferent methods). Furthermore, the use of the machine-learning
approach with random selection of the independent learning
samples generates a robust prediction of the testing data by
minimizing the underlying uncertainties in the data across the
entire time record. However, the records after 1990 are the
most well sampled.

Likewise, we have used the ensemble mean of three differ-
ent products for the monthly terrestrial precipitation over
Australia: the Australian Water Availability Project (AWAP)
(Raupach et al. 2009), NOAA’s National Weather Service/
Climate Prediction Center (CPC) (Chen et al. 2002), and the
Climate Research Unit (CRU) (New et al. 2000; Mitchell and
Jones 2005).

We also used monthly means of specific humidity and
horizontal winds between 1000 and 500 hPa from NCEP-
NCAR Reanalysis 1 (Kalnay et al. 1996). However, it is im-
portant to mention that the specific humidity and horizontal
winds from the NCEP-NCAR Reanalysis 1 are the averages
of the instantaneous values at every 6 h over the averaging
period (1 month). Monthly SST data are from HadISST1
(Rayner et al. 2003), and monthly means of soil moisture data
are from NOAA’s CPC Soil Moisture dataset (Fan and van
den Dool 2004). We focus on seasonal time scales, which are
prone to be less noisy than the higher-frequency time scales.
Moreover, the lack of availability of submonthly data is also
one of the constraints, so we used the monthly data for the
seasonal analysis.
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b. Methods

Monthly anomalies are computed for each dataset by removing
their respective monthly climatology and then detrending the
anomaly time series to remove long-term trends. The three dif-
ferent time series of SSS anomaly and rainfall anomaly are
averaged, as shown in Egs. (1) and (2) respectively, to
eliminate the biases from the different interpolation and
reanalysis techniques:

SSS — SSSORAS4 + S§SG1() + SSSL()9 and (1)
rain + rain + rain
rain = “Mawap ‘3 CPC Mery ?)

The moisture flux divergence (MFD) is computed as follows:

MFD = (§>V~J:qup ~ (E-P), 3)

where g is the gravitational acceleration (9.8 ms™?), g is spe-
cific humidity (gkg '), V is horizontal wind velocity (ms ™), E
is evaporation, and P is precipitation. Moisture flux gV is
computed at each pressure level of the reanalysis and then
integrated from the surface (1000 hPa) to 500 hPa. The upper
limit of integration is taken as 500 hPa, because the majority of
the moisture in the atmosphere is concentrated below this level
(Zhou and Yu 2005; Li et al. 2013; Seager and Henderson 2013;
Li et al. 2016a). The divergent component of moisture flux (MF)
is computed by solving Poisson equations (Lynch 1988), and this
component shows the pathways of moisture transport. Seasonal
averages of July—September (JAS), September—November (SON),
and December—February (DJF) are computed for each de-
trended and deseasonalized time series.

We used singular value decomposition (SVD) (Wallace
et al. 1992) to assess the covariability between SSS and
Australian rainfall. The SSS anomalies within the region 40°E—
100°W and 50°S-10°N are included in the analysis, and the
rainfall anomaly is over the Australian land area. This analysis
helps to identify the regions of SSS anomaly in the ocean that
covary with the rainfall anomalies over the Australian land-
mass. The regions of SSS [SSSP (150°E-165°W and 10°S-10°N)
and SSSI (50°-95°E and 10°S-10°N); red-outlined boxes in
Figs. 2a,d.g] and rainfall [northeastern Australia (132°-152°E
and 25°-10°S; red-outlined box in Figs. 2b,e,h) and Brisbane
(144°-154°E and 34°-24°S; blue-outlined box in Figs. 2b,e,h]
are based on the pattern that we obtained from the SVD
analysis. We then made the box average of SSS over the se-
lected regions in the western equatorial Pacific (SSSP) and
eastern equatorial Indian Ocean (SSSI). Similarly, the region
of northeastern Australia with the prominent pattern in SVD
analysis is used to generate the rainfall time series. For
composite analysis, we selected the high and low SSS
anomaly events in the top and bottom deciles of the SSS
anomaly of those oceanic regions that covary with Australian
rainfall.

The significance test for the composite analysis is estimated
by using a Monte Carlo simulation with replacement. The use
of Monte Carlo simulation to test the significance of composite
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FIG. 2. First mode of joint SVD analysis of SSS anomaly during (a) JAS, (d) SON, and (g) DJF associated with the DJF rainfall; DJF
rainfall anomaly associated with the SSS anomaly of (b) JAS, (e) SON, and (h) DJF; and the normalized time series associated with the
first mode of SVD analysis of SSS anomaly (red) for (c) JAS, (f) SON, and (i) DJF and Australian rainfall anomaly (gray). The explained
variance by SVD analysis of SSS anomaly and rainfall anomaly is represented by square covariance fraction (SCF), and the correlation
coefficient between the associated normalized time series is represented by r, which is significant at 95% from a two-tailed Student’s 7 test.
The SSSIregion (left red-outlined box) of the Indian Ocean and SSSP region (right red-outlined box) region of Pacific Ocean are shown in
(a), (d), and (g); northeastern Australia (red-outlined box) and the Brisbane region (blue-outlined box) are shown in (b), (¢), and (h).

means is demonstrated by Terray et al. (2003). The aim of using
Monte Carlo simulation is to test whether the composites are
significantly different from the background variability present
in those data. For the usual Student’s ¢ test, the underlying
assumption is that the sample years used for the composite
mean are drawn independently from the population and the
alternate testing hypothesis is that the composite mean is dif-
ferent from the population mean. It is also assumed in
Student’s ¢ test that the data are distributed normally, which is
not necessarily an appropriate assumption in climate research
and particularly for variables like precipitation (Nicholls 2001).

To test the significance of the composite mean, the null hy-
pothesis states that the composite mean of high and low decile
years (u1) is the same as the composite mean of randomly se-
lected years (uo). Of the total 56 events, u; is estimated from
the six events of each high and low decile category. In contrast,
Mo is estimated from the composite mean of six randomly se-
lected years, and this procedure is repeated 10000 times to
generate a Gaussian distribution of the composite mean u,. In
summary, the hypotheses are
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e null hypothesis H,: u; = po and
e alternate hypothesis Hy: wy # wo.

So, the null hypothesis states that the composite mean of high
and low decile years (u) is the same as the composite mean of
six randomly selected years (uo) if it lies between *(1.645
multiplied by the standard deviation of the distribution of
composite mean generated by the random selection of six years
for 10000 times). This is equivalent to the 90% confidence
from Student’s two-tailed ¢ test. In contrast, the alternate hy-
pothesis puts the composite mean (i) outside this bound and
makes it significantly different from the background variabil-
ity (o).

Rathore et al. (2020) have shown that there is a link between
SSS anomaly and the Australian rainfall anomaly during
ENSO/IOD events. These events are the prominent modes in
the tropical Indo-Pacific Ocean that have a profound influence
on Australian rainfall (Ashok et al. 2003; Cai et al. 2009;
Ummenhofer et al. 2009, 2011; Taschetto et al. 2011; King et al.
2015) and SSS (Delcroix et al. 1996; Grunseich et al. 2011;
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Singh and Delcroix 2011). Moreover, the east Australian re-
gion from north to south is a vulnerable region and more prone
to flooding events (Halgamuge and Nirmalathas 2017; Hu et al.
2018). Hence, it is necessary to improve the prediction of DJF
rainfall over Australia.

For the prediction, we have used random-forest regression
analysis. The random-forest regression is a nonlinear machine-
learning algorithm, developed by Breiman (2001) based on
classification and regression trees (CART) analysis. This machine-
learning algorithm takes an ensemble learning approach, that is,
the use of multiple decision trees for the prediction (Breiman
2001). If we use a single decision tree, then there is a high chance
of overfitting due to the decision tree’s sensitivity to data vari-
ations. However, increasing the number of decision trees with
random selection of training data reduces the overfitting. The
final prediction is the ensemble average of the predictions gen-
erated by each decision tree and hence it is considered to be an
ensemble learning approach. This method accounts for the re-
lationship between the predictors themselves and their rela-
tionship to the predictand.

The advantage of using a random-forest technique over
traditional linear regression is that the random-forest approach
assumes neither linearity nor that the data are drawn from
a particular distribution (Firth et al. 2005). The ensemble
learning approach of the random-forest algorithm can improve
overall prediction accuracy and avoids overfitting that com-
monly occurs due to highly correlated predictors (Breiman
2001; Pal et al. 2020). In contrast to the random-forest re-
gression, which is a nonparametric approach, simple/multiple
linear regression is a global parametric model and applies a
single predictive formula to the entire data time series (Chen
et al. 2012; Noi et al. 2017). Despite having limited capability to
explicitly account for the underlying processes, the machine-
learning-based predictions generally have shown good skill in
forecasting events (Pal et al. 2020).

As we have mentioned, random-forest regression is an en-
semble learning approach in which a large number of decision
trees are grown to build a forest. Multiple trees can be con-
structed from randomly selected training samples. For the
prediction of DJF rainfall over northeastern Australia (132°-
152°E and 25°-10°S) using random-forest regression, we used
two indices of SSS anomaly [SSSP (150°E-165°W and 10°S-
10°N), and SSSI (50°-95°E and 10°S-10°N)], two indices that
are based on SST anomaly (Nifio-3.4 index and DMI), and the
local soil moisture of northeastern Australia.

In random-forest regression, we train the model with the
spatially averaged rainfall anomaly of northeastern Australia,
the region marked by the yellow-outlined box in Fig. 1 and red-
outlined box in Figs. 2b,e,h, spatially averaged SSS anomaly
from the western Pacific (SSSP) and Indian Ocean (SSSI) over
the region marked by red-outlined boxes in Figs. 2a,d,g, and
spatially averaged soil moisture over northeastern Australia,
Nifio-3.4, and the DMI. The rainfall anomaly index is season-
ally averaged for DJF, whereas SSSP, SSSI, soil moisture,
Nifio-3.4, and the DMI are seasonally averaged over JAS and
SON. After constructing these indices, we used the DJF rain-
fall anomaly as predictand and JAS and SON indices of SSSP,
SSSI, soil moisture, Nifio-3.4 index, and DMI as predictors.
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In this study we have used 50% of the data that are randomly
selected for training and to develop the decision tree model. The
remaining 50% of the data that were withheld are used to test the
model to obtain the unbiased estimates of the regression error and
the importance of the variables used for constructing the regression
tree. The coefficient of determination is used to evaluate the per-
formance of the model; that is, R* = 1 — (Vyesiaual/Viotar), Where R
is the variance explained by the random-forest regression model.
Also, Viesidual = ZZ=1 [fFX), — Pk]2 is the variance that cannot be
explained by the random-forest regression model, f{X) is the pre-
dicted value from random-forest regression, and Py is the observed
rainfall for k = 1,2... , nyears; Vigw = 2, (Px — P)* is the total
variance of the observed rainfall, and P is the overall average of the
observed rainfall.

This prediction assessment was run 300 times, on each iter-
ation the number of trees was increased by 5, and R? was av-
eraged over these iterations. For the training of each decision
tree, we have randomly selected 50% of data (i.e., predictors
and target variable) and the remaining 50% of data are used for
testing (i.e., predicting the target variable from the trained
decision tree to get the R? value). The predictions from each
decision tree are then averaged across all decision trees to
obtain the overall model score (R?). For the prediction of an
entire time series, the ensemble average of the coefficients is
used (i.e., the coefficients that are obtained during the
training). So, the final predicted target variable is obtained
for each year by averaging the ensemble of 1500 predictions
obtained from 1500 decision trees. We have tested this al-
gorithm by changing the number of iterations from 300 to 200
and 500, and the results were unchanged. A similar analysis
has been used for predicting rainfall over different parts of
the world, such as the Sahel, the U.S. Midwest, and the East
Asian monsoon region over China (Li et al. 2016b,a; Chen
et al. 2019).

We have also assessed each index’s importance for its
contribution to prediction of rainfall, which is also known as
feature importance. For the assessment of each index’s im-
portance, we have used the “permutation feature’” importance
method (Altmann et al. 2010). This method is defined as the
decrease in a model score R* when a single feature is shuffled
randomly, and all other features remain unchanged. The ran-
dom shuffling of the feature (predictor) breaks its relationship
to the response variable (predictand). Thus, the drop in the
model score indicates how much the model depends on this
feature. We applied this feature importance method on the
testing data (withheld or unseen data) rather than training
data, which reduces the risk of overfitting and biases that favor
high cardinality features in the training data. Moreover, the
permutation importance function is quite useful because it
accounts for the nonlinearity within the predictors. To get the
importance score, we randomly shuffled each index 1500 times
using the permutation feature importance method.

Hence the advantage of the random-forest regression and
permutation feature importance analysis is that it explicitly
tests and reduces the risk of overfitting by considering the
nonlinearity and colinearity of the predictors and predictand as
shown by many studies (Breiman 2001; Altmann et al. 2010;
Chen et al. 2012; Li et al. 2016a,b; Noi et al. 2017; Ghosh and
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TABLE 1. Years of high and low SSS events for the SSSP and SSSI regions.

High SSS years

Low SSS years

SSSP region (150°~165°W and 10°S-10°N)
SSSI region (50°-95°E and 10°S-10°N)

1971, 1975, 2007, 2008, 2010, and 2011
1969, 1976, 1981, 1986, 2001, and 2010

1972, 1987, 1993, 1994, 2002, and 2015
1962, 1963, 1967, 1968, 1978, and 1997

Behera 2018; Chen et al. 2019; Das and Pandey 2019; Pal
et al. 2020).

Similarly, the random-forest regression analysis is also ap-
plied for the case study of the broader region that surrounds
Brisbane (144°-154°E, 34°-24°S), delineated in Fig. 1 (magenta-
outlined box) and Fig. 2 (blue-outlined box) of 10° X 10° spatial
scale. The delineated region is sufficiently large to perform a test
case for the regional analysis. All the predictors used for the
Brisbane region analysis are the same as in the northeastern
Australia analysis except the local soil moisture, which is for the
Brisbane region.

3. Singular value decomposition

SVD analysis of multiple fields is a technique to investigate
the fields that covary spatially and temporally (i.e., they seem
to have some degree of correlation). A recent study from
Rathore et al. (2020) shows that the variability of SSS in the
Indo-Pacific warm pool is linked to Australian rainfall anom-
alies via atmospheric moisture transport. Therefore, in this
study, we are assessing the covariability of the SSS anomaly
over the Indo-Pacific domain (Fig. 1) and the Australian
rainfall anomaly.

Figure 2 shows the joint SVD analysis of the two fields (SSS
anomaly during JAS, SON, and DJF and Australian rainfall
anomaly during DJF). The first mode of SVD (SVD1) shows
that the positive loading of JAS SSS anomaly (Fig. 2a) of the
western Pacific warm pool (SSSP over 150°E-165°W, 10°S—
10°N) strongly covaries with the positive loading of DJF rain-
fall anomaly (Fig. 2b) over northeastern Australia. However, a
very weak signal of SSS anomaly is present in the Indian Ocean
(SSSI over 50°-95°E, 10°S-10°N). The first mode of JAS SSS
anomaly and DJF rainfall anomaly jointly explains 57% of the
variance. The time series associated with the first mode of SVD
(Fig. 2c) shows the covariability of JAS SSS anomaly and DJF
rainfall anomaly. A significant correlation (r = 0.50 at « =
0.05) exists between the time series of JAS SSS anomaly and
DJF rainfall anomaly associated with the first mode of SVD.
Furthermore, the signatures in JAS SSS anomaly during 1973
and 2010 covary with the heavy precipitation events over
Australia in the following season of DJF.

As compared with JAS, the first mode of SVD of the SON
SSS anomaly (Fig. 2d) has now developed a positive loading
over the SSSI region, and a more concentrated positive loading
is observed over the SSSP region with a weakening south of
10°S. This pattern of SSS anomaly during SON is plausibly
associated with the development of the ENSO and IOD events
(Ballabrera-Poy et al. 2002; Grunseich et al. 2011; Singh and
Delcroix 2011; Kido et al. 2019).

The explained variance (Fig. 2e) corresponds to the first
mode of SVD of SON SSS anomaly, and DJF rainfall anomaly
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is increased to 62%. This increase in the variance is plausibly
due to the increased positive loading of rainfall anomaly over
the northwestern coastal strip of Australia (Fig. 2e); however,
our analysis is primarily concentrated on eastern Australia and
other regions are outside the scope for this study. The corre-
lation between the time series of SON SSS anomaly and DJF
rainfall anomaly, which is associated with the first mode of
SVD, is marginally reduced to 0.45 but still significant at
a = 0.05.

This pattern of loading in SSS anomaly and rainfall anomaly
is continued from SON to the concurrent season of DJF, and
the first mode of SVD of DJF SSS anomaly and DJF rainfall
anomaly jointly explains 65% of the variance with a significant
temporal correlation of r = 0.50 (a = 0.05) between their as-
sociated time series. This analysis suggests that the SSS
anomaly of the previous seasons (JAS and SON) over the re-
gion of Indo-Pacific warm pool (SSSP and SSSI) is coupled
with the rainfall anomaly over northeastern Australia in the
following season (DJF). Moreover, the heavy precipitation
events of Australia during 1973/74 and 2010/11 are consistent
with the anomalously high SSS in prior seasons (Figs. 2¢,f).

4. Composite analysis based on high and low SSS
anomaly events

The composite analysis is based on high and low SSS
anomaly events selected as a top and bottom decile, respec-
tively, from the spatially averaged SSSP and SSSI time series
during SON. The years of high and low SSS of SSSP and SSSI
region used for the composite analysis are shown in Table 1.
These anomalously high and low SSS events of the SSSI and
SSSP regions of the Indo-Pacific warm pool are related to
the anomalously wet and dry conditions over northeastern
Australia. Hence, a composite analysis is conducted to inves-
tigate the links between the ocean and atmosphere during the
high and low SSS anomaly events of the SSSP and SSSI regions
of the Indo-Pacific warm pool and the rainfall over Australia.
These links are described in the following section.

a. Composite analysis based on high SSS anomaly events of
SSSP region

The high SSS years of the SSSP region used for the composite
analysis are 1971, 1975, 2007, 2008, 2010, and 2011. The composite
mean of SST anomaly (Fig. 3, first column), which is based on high
SSS anomaly events of the SSSP region, shows the development of
La Niiia in the tropical Pacific and weaker insignificant signature
of nIOD in the Indian Ocean. These signatures of La Nifia with
weak nIOD are also present in the SSS anomaly (Fig. 3, second
column) where anomalously high SSS of the SSSP region coin-
cides with a weak and insignificant positive SSS anomaly signal in
the SSSI region that is weakly intensified from JAS to DJF. These
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conditions of positive SSS anomalies correspond to the evapo-
ration of moisture from the ocean surface and the SSSP region
appears to be the primary source of moisture transport over
northeastern Australia. In contrast, negative SSS anomalies
around the east and west coast of Australia correspond to
the freshening due to precipitation (Fig. 3, second column).

The moisture flux that originates from the ocean surface coin-
cides with the atmospheric divergence (Fig. 3, third column) over
the anomalously high SSS regions of the Indo-Pacific warm pool
(SSSP and SSSI). A large part of the significant moisture trans-
port toward Australia that is primarily sourced from the SSSP
region coincides with the atmospheric convergence over north-
eastern Australia. There are two main branches of moisture
transport toward Australia during JAS (Fig. 3c): one is the direct
branch from the SSSP region and the second branch is over the
Tasman Sea. In the later season (SON and DJF) there are three
additional branches of moisture transport emerging in which two
branches are from the tropical Indian Ocean, and the third branch
is from the south of Australia (Figs. 3g,k). Overall, the moisture
source from the SSSP region is a significant contributor to the
northeast Australian rainfall. In contrast, less moisture originates
from the weakly intensified SSSI region (weak positive SSS
anomalies) and converges over the ocean in the vicinity of western
Australia.

The convergence of the incoming moisture transport over
Australia coincides with the anomalously high soil moisture (Fig. 3,
fourth column), which progressively increases from JAS to DJF.
The significant positive soil moisture anomalies in northeastern
Australia during JAS (Fig. 3d) get intensified and spread over a
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large part of the continent in the later seasons (Figs. 3h,1). This
anomalous rise in soil moisture (Fig. 3, fourth column) is corrob-
orated with anomalously wet conditions over Australia.
Significant rainfall anomalies over eastern Australia during
JAS (Fig. 3m) expand to a widespread wetting during
SON (Fig. 3n).

Interestingly, the widespread wetting of SON retreated
during DJF, and significant wetting is primarily confined to
eastern Australia. It is worth mentioning that the regions of
high SSS anomalies do not coincide perfectly with the regions
of high MFD, which likely signifies the role of oceanic currents
in advecting the SSS anomaly created by surface freshwater
flux (Yu 2011; Li et al. 2016b).

b. Composite analysis based on low SSS anomaly events of
the SSSP region

The low SSS years of the SSSP region used for the composite
analysis are 1972, 1987, 1993, 1994, 2002, and 2015. The composite
analysis for the low SSS events in the SSSP region is shown in Fig. 4
and is opposite in phase to the high SSS events in this region
(Fig. 3). During the low SSS events in the SSSP region, signatures
of co-occurring El Nifio and positive IOD (pIOD) are observed in
the equatorial Indian and Pacific Oceans as shown by the com-
posite mean of SST anomaly (Fig. 4, first column). As the signa-
tures of co-occurring El Nifio and pIOD in SST get intensified from
JAS to DJF, the significant salty and fresh signatures in SSS are
also strengthened (Fig. 4, second column).

The salty (fresh) anomalies (Fig. 4, second column) to the
north of Australia (SSSP and SSSI region) indicate the source
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FIG. 6. As in Fig. 3, but for low SON SSS events for the SSSI region.

The presence of diverging anomalies of atmospheric mois-
ture transport over Australia results in anomalously dry con-
ditions with negative soil moisture anomalies (Fig. 4, fourth
column). From JAS to DIJF, the significantly negative soil
moisture anomalies are primarily confined to eastern Australia
(Fig. 4, fourth column) and this is corroborated from the
rainfall anomalies (Figs. 4m—o). Similar to Figs. 3m-o, it is
interesting to note that the widespread dryness during JAS
(Fig. 4m) and SON (Fig. 4n) is reduced south of 25°S during
DIJF and concentrated over northeastern Australia (Fig. 40). It
is worth mentioning that the contrast in the wet (Fig. 30) and
dry region (Fig. 40) during DJF could be influenced by the
diversity of ENSO and IOD events (Santoso et al. 2017).

c¢. Composite analysis based on high SSS anomaly events of
the SSSI region

The high SSS years of the SSSI region used for the composite
analysis are 1969, 1976, 1981, 1986, 2001, and 2010. The com-
posite analysis of high SSS events of the SSSI region is shown in
Fig. 5. It is observed that there is a very weak and insignificant
signal of nIOD present in the SST anomaly field during JAS (Fig.
Sa) and SON (Fig. 5e) but diminished during DJF (Fig. 51), which
turns into an insignificant basinwide cooling. The corresponding
SSS anomaly field shows a significant positive anomaly over SSSI
region, which intensified from JAS to DJF (Fig. 5, second col-
umn). However, there is a relatively weak and insignificant cor-
responding SSS signal present in the SSSP region.

The SSSI region indicated by the positive SSS anomaly is the
source of atmospheric moisture. The very weak and insignificant
moisture that originates from the SSSI region converges
mostly over the ocean around Java/Sumatra Island during
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JAS and SON and in the vicinity of western Australia during
DIJF and an insignificant transport over central Australia
(Fig. 5, third column). This effect of moisture convergence is
depicted in the soil moisture anomaly, which is anomalously
wet (dry) in eastern (western) Australia during JAS (Fig. 5d)
with increased soil moisture anomaly during SON (Fig. Sh) and
DIF (Fig. 51).

These variations of soil moisture anomalies (Fig. 5, fourth
column) resemble the rainfall anomalies over Australia from
JAS to DJF (Figs. 5Sm—o). The SSSI region’s high SSS events
show anomalously wet conditions over eastern Australia dur-
ing JAS and SON (Figs. Sm,n) and over northern and central
Australia during DJF (Fig. 50). This analysis resembles pure
nlOD, which is shown by Rathore et al. (2020).

d. Composite analysis based on low SSS anomaly events of
SSSI region

The low SSS years of the SSSI region used for the composite
analysis are 1962, 1963, 1967, 1968, 1978, and 1997. The composite
analysis based on low SSS events of the SSSI region (Fig. 6) re-
sembles the low SSS events of the SSSP region (Fig. 4). The
composite mean of SST anomaly (Fig. 6, first column) shows
similar features to the SSSP region (Fig. 4, first column) of co-
occurring El Nifio and pIOD events with significantly intense SSS
anomaly over the SSSP and SSSI regions (Fig. 6, second column).
Fresh (salty) anomalies around the Maritime Continent to the
north of Australia indicate a sink (source) of atmospheric
moisture.

The moisture originating from the salty region coincides
with the atmospheric divergence and is transported toward the
SSSI, the SSSP region (north of 10°S), and the Australian
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continent (south of 10°S). The moisture transported toward the
SSSI and SSSP regions precipitates as a result of the presence
of atmospheric convergence (Fig. 6, third column) and makes
these regions anomalously fresher (Fig. 6, second column). In
contrast, the portion of moisture that is directed toward the
Australian continent coincides with weak atmospheric con-
vergence and results in weak anomalous wet conditions over
Australia (Fig. 6, third column).

It is interesting to see that the anomalous dryness in the soil
moisture (Fig. 6, fourth column) is not as pronounced as in the low
SSS events of the SSSP region (Fig. 4, fourth column). In the pre-
vious case (Fig. 4, fourth column), there is a widespread anomalous
dryness in the soil moisture from JAS to DJF. In contrast, the
dryness is primarily concentrated over eastern Australia in the
latter case (Fig. 6, fourth column). The rainfall pattern
(Figs. 4m-o and 6m-o0) shows a similar distribution of rainfall
anomaly over Australia but with larger magnitudes in
Figs. 4m—o. These differences between the precipitation and
soil moisture may result from the initial state of soil moisture in
JAS and may be due to the differences in evaporation over
land from JAS to DJF.

In the above composite analyses, we show the physical link be-
tween the SSS, the moisture transport from the source regions, and
rainfall over Australia. It is also observed that the phenomena of
ENSO and IOD modulate the relationships between SSS and
Australian rainfall via atmospheric moisture transport. Some of
these relationships between SSS and Australian rainfall during
ENSO/IOD events were also shown by Rathore et al. (2020). In the
following section, we demonstrate the use of SSS, along with SST-
based ENSO and IOD indices, as an additional precursor for
Australian rainfall. We apply this method specifically to the
Brisbane region (144°~154°E, 34°-24°S).

5. Predictability of northeast Australian rainfall
using SSS

In the previous section, we established a physical link be-
tween the SSS and Australian rainfall using moisture transport
in the atmosphere, SSS anomalies in the oceanic source region,
and rainfall anomalies over Australia. We have also observed
that the SSS values of the Indo-Pacific warm pool region in the
prior season (JAS and SON) covary (and are linked by mois-
ture transport) with the Australian rainfall in the summer
season (DJF). Hence, the signal in the SSS and other variables
(ENSO, 10D, and soil moisture) of the prior season can be
used to assess the quality of the prediction of rainfall over the
northeastern Australia and Brisbane regions.

We used the random-forest regression technique in various
combinations for predicting the northeast Australian rainfall
during DJF by using predictors from prior seasons (JAS and
SON): 1) prediction based on ENSO and IOD indices; 2)
prediction based on ENSO, IOD, and SSS; 3) prediction based
on ENSO, IOD, and soil moisture; and 4) prediction based on
ENSO, IOD, soil moisture, and SSS. In Fig. 7, the upper panel
shows that the variance explained by the predicted time series
of DJF rainfall over northeastern Australia from ENSO and
10D is R? = 033 (JAS). The explained variance increases to R> =
036 or R> = 039 (JAS) by including soil moisture or SSS
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respectively. This shows that during JAS, SSS is more important
than soil moisture for the prediction of DJF rainfall. Using all the
indices together the explained variance is R* = 0.42, showing, in this
case, that all of the indices contribute to the prediction.

During SON (Fig. 7, lower panel), the explained variance
from the combination of ENSO and IOD is R* = 0.29 and is
reduced as compared with JAS (R*> = 0.33). The reduction in
the explained variance of the ENSO and IOD in this season
compensated with a gain in the explained variance by using SSS
(R? = 0.42) and soil moisture (R? = 0.45). It is also interesting
to see that in contrast to JAS, during SON, the soil moisture
can explain more variance when used with ENSO and IOD as
compared to SSS. This suggests that during SON, soil moisture
is more important than SSS for the prediction of DJF rainfall.
On using all the SON indices together, the explained variance
is increased to R*> = 0.51 as compared with R? = 0.42 by using
JAS indices for the prediction of DJF rainfall over northeast-
ern Australia.

The improvement in the explained variance is significant at
95% confidence using a two-sample Student’s ¢ test. However,
the predicted time series of different combinations of indices
do not differ much from each other in high rainfall events but
increase marginally in other lower rainfall years. These results
show that combining the soil moisture and SSS with ENSO
and IOD strongly influences the prediction of DJF rainfall
over northeastern Australia with certain predictability two
seasons ahead.

The importance of different indices for the prediction of
DJF rainfall over northeastern Australia is further investigated
in Fig. 8. This shows that among JAS indices (Fig. 8, upper
panel), ENSO (Nifio-3.4) has the highest importance, followed
by the SSSP index and soil moisture. The SSSI index has the
least importance. The soil moisture is also the index with
highest importance among the SON indices (Fig. 8, lower
panel) but it does not differ much in importance from the
ENSO and SSSP. The memory of the soil to retain the moisture
from the previous season (i.e., SON) provides improved pre-
diction. The improved prediction, plausibly caused by feed-
back in the SON season that amplifies its response to the
rainfall (Yu and Notaro 2020), might be the reason for the
increased importance of the soil moisture in SON as compared
to JAS. The indices’ ranking with the explained variance sug-
gests that most of the variability in the DJF rainfall of north-
eastern Australia is attributed to ENSO; however, the addition
of SSS and local soil moisture indices contributes to further
improvement in the prediction of rainfall.

6. Predictability of Brisbane region rainfall using SSS

Brisbane is vulnerable to flood, as demonstrated by the se-
vere and costly floods in 1973/74 and 2010/11. Hence it is
necessary to improve rainfall prediction to anticipate potential
economic damage from heavy rainfall events. Here, we advo-
cate using SSS (and soil moisture) as an additional precursor to
be considered for the improvement in the prediction of rainfall
over Australia.

For Brisbane rainfall prediction analysis, we have consid-
ered the DJF rainfall over the region of 144°~154°E, 34°-24°S,
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FIG. 7. Normalized time series of DJF rainfall over northeastern Australia (130°-152°E,
25°S-0°) (yellow; identical in both panels) and predicted rainfall time series by incorporating
the (top) JAS and (bottom) SON indices of SSSP, SSSI, Nifio-3.4, DMI, and soil moisture over
northeastern Australia as predictors (red); predicted rainfall including all of the predictors
except SSSP and SSSI (black); predicted rainfall including all of the predictors except soil
moisture (green); and predicted rainfall without incorporating SSSP, SSSI, and soil moisture
indices (blue). The variance explained by the prediction model is shown as the R? value.

along with the JAS and SON indices. From the random-forest
regression analysis (Fig. 9, upper panel), we have found that
ENSO and IOD during JAS can explain 37% (R = 0.37) of the
variance but a significant improvement is observed when
combined with SSS (R* = 0.51). In comparison with SSS, the
local soil moisture of Brisbane, when combined with ENSO
and IOD, can explain 41% (R*> = 0.41) of the variance. By
combining all four indices of JAS, the predicted DJF rainfall
can explain 52% (R* = 0.52) of the variance.

Similarly, when using SON predictors (Fig. 9, lower panel),
ENSO and IOD can explain 36% (R? = 0.36) of variance,
which is further improved to 46% (R = 0.46) when combined
with SSS. The local soil moisture, when combined with ENSO
and TIOD, also improves the explained variance (R* = 0.39) but
less than for SSS. In contrast to JAS indices with R* = 0.52
when all the indices are combined, the variance explained us-
ing SON indices is R* = 0.45. This can be explained with the
reduction in variance explained using SON SSS (R? = 0.46) as
compared with the longer lead time SSS (R? = 0.51; JAS). It is
also observed that, unlike northeastern Australia, the predic-
tion of Brisbane rainfall is less affected by the local soil mois-
ture as compared with SSS, and thus SSS is more important
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than the local soil moisture for the prediction of DJF rainfall
over the Brisbane region.

This effect is shown in Fig. 10, where ENSO is the most
important index for the prediction of DJF rainfall, followed by
the rest of the indices used. For JAS, the SSSP index is the
second most important index after the Nifio-3.4 index, fol-
lowed by IOD and SSSI (Fig. 10, upper panel). For the SON
indices, the Nifio-3.4 index is still of the highest importance.
However, the importance factor of the SSSP index is reduced
because of the increased importance of IOD during SON. This
increase in the importance of IOD during SON (Fig. 10, lower
panel) is likely due to weaker SSSP variability during SON or
due to the ocean advection and mixing, which also explains the
lower variance of DJF rainfall predicted using SON SSS. It is
worth mentioning that the increased importance of IOD dur-
ing SON is plausibly due to its peak occurring at this time,
whereas ENSO is transitioning to attain its peak state during
DJF. Interestingly, the effect of soil moisture over a smaller
region like Brisbane is not as pronounced as it is for a larger
and relatively dryer region like northeastern Australia. These
factors combined can explain the reduced importance of the
SSSP index during SON.
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SST-based indices and local soil moisture, the inclusion of the

NINO e I e— SSS (the SSSP index in particular) can improve the prediction
of Australian rainfall. Moreover, we have also observed that
g —H— the SSS of the Indo-Pacific warm pool leads the rainfall over
g soiLm —] Australia by 3-4 months. The moisture originating from this
8 region of anomalously high SSS eventually converges elsewhere
128 |_EB_' (on ocean and land) through atmospheric moisture transport.
SSS1 }—m—|
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 12 7. Discussion
Predictor Importance (SON) Northeast Australia A recent study demonstrated the link between SSS and
ERIE — Australian rainfall during ENSO and IOD years (Rathore
— | —— | et al. 2020); however, the application of SSS as a precursor of
% . Australian rainfall was not adequately addressed. This study
X0 SSSR I Il | i focuses on the use of SSS as an additional precursor for DJF
g - IE rainfe_lll over northeastern Au.stral%a and the Brisbane region.
In this study, the SVD analysis (Fig. 2) shows that the SSS of
sssl |—|E—| the equatorial Indian Ocean (50°-95°E and 10°S-10°N) and
-0a 62 00 04 06 08 10 12 western Pacific (150°E-165°W, 10°S-10°N) covary with the

0.2
Importance Factor

FI1G. 8. Importance of predictors during (top) JAS and (bottom)
SON in predicting the DJF rainfall over northeastern Australia.
The magenta line is the median, and the blue square is the mean.

From the above analysis, local soil moisture, ENSO, and
SSSP are the important factors for predicting DJF rainfall over
northeastern Australia whereas ENSO, SSSP, and IOD are im-
portant for the Brisbane region. Apart from the conventional

rainfall over northeastern Australia (132°-152°E, 25°-10°S)
and also with other regions such as the northwestern coastal
strip and the eastern seaboard region of Australia.

The signature of positive SSS in the western Pacific is quite
prominent from JAS to DJF (Figs. 2a,d,g). However, positive
SSS in the southwestern equatorial Indian Ocean is quite weak
during JAS (Fig. 2a). It appears as a dipole anomaly, which
would lead to a near-zero SSS anomaly when averaged over the
region. In the following season (SON), the SSS anomaly over
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F1G. 9. As in Fig. 7, but over the broader Brisbane region (144°-154°E, 34°-24°S).
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F1G. 10. As in Fig. 8, but over the broader Brisbane region. The
magenta line is the median and the blue square is the mean.

the SSSI region is slightly strengthened but still weaker in
comparison to the SSSP region (Fig. 2d). This low magnitude of
SSS anomaly in the SSSI region may be partly responsible for
its small contribution to the prediction skill. This suggests that
the evolution of SSS, particularly of the SSSP region, leads the
DJF rainfall over Australia.

The composite analysis of high SSS events of the SSSP and
SSSI region shows the signature of co-occurring La Nifia and
nlOD events (Figs. 3a,e,i and 5a,e,i) with anomalously high SSS
in the Indo-Pacific warm pool region (Figs. 3b,f,j and 5b,f,j). The
regions of high (low) SSS broadly coincide with the regions of
moisture flux divergence (convergence) in the atmosphere and
represent a source (sink) of moisture for evaporation (precipi-
tation) (Figs. 3c,g,k and 5c,gk). It is worth mentioning that
variability at the synoptic scale along with the local thermody-
namic instabilities over land (Hendon et al. 1989) during the high
SSS events will draw the moisture originating from the ocean
surface (Figs. 3c,g,k and 5c,gk). The anomalous moisture
transport associated with the thermodynamic instabilities over
land strengthens the mean moisture supply (Fig. 1) and results in
anomalously wet conditions over Australia.

The presence of these thermodynamic instabilities also in-
fluences the available moisture content of the soil. Previous
studies have recognized the land—atmosphere coupling via soil
moisture that modulates the terrestrial precipitation (Timbal
etal.2002; Evans et al. 2011; Yu and Notaro 2020) in Australia.
The presence of soil moisture also maintains the in-phase
relationship of ENSO and Australian rainfall. The positive
soil moisture anomalies in the presence of thermodynamic
instabilities moisten the lower atmosphere, which will be-
come unstable due to the release of latent heat by evapora-
tion. This will further increase the moisture transport and
could result in convective precipitation (Timbal et al. 2002;
Evans et al. 2011). In contrast, the presence of negative soil
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moisture anomalies corresponds to the dry conditions over
land. A detailed diagnosis of the role of soil moisture can be
done by using idealized general circulation model experi-
ments where soil moisture can be artificially controlled as in
Timbal et al. (2002).

It is also important to mention that while the atmospheric
transport responds rapidly to the SST (on the order of days),
the synoptic ocean—atmosphere conditions may persist over
longer time scales Hendon et al. (1989). Our study, along with
Hendon et al. (1989), shows that the persistence of equatorial
Pacific and Indian Ocean large-scale atmosphere—ocean phe-
nomena (e.g., ENSO and IOD) drives the land anomalies
(anomalies of rainfall and soil moisture) and their persistence.
Also, the phase of these large-scale drivers and their persis-
tence affects the evolution and intensity of the northeast
Australian monsoon. The detailed diagnosis of these synoptic-
scale coupled ocean and atmosphere conditions is beyond the
scope of this study. However, we acknowledge that the per-
sistence of these synoptic conditions over a longer period can
generate a leading response in various land, oceanic, and at-
mospheric fields. Hence, in this study we use the leading re-
sponses of ENSO, 10D, SSS, and soil moisture from prior
seasons (JAS and SON) to assist the prediction of Australian
rainfall for the following season (DJF).

Therefore, during the high SSS events of the SSSP and SSSI
regions, the presence of positive soil moisture anomalies during
JAS and SON (Figs. 3d,h,l and 5d,h,l) corroborates anomalously
wet conditions over Australia (Figs. 3m-o and 5m-o). This
coupling between the soil moisture and the atmospheric circu-
lation, along with the albedo and vegetation effects, contributes
to the enhancement of rainfall over land (Evans et al. 2017).

In contrast, the composite analysis of low SSS events in the
SSSP and SSSI regions shows the signature of co-occurring El
Nifio and pIOD events (Figs. 4a,e,i and 6a,e,i) with anoma-
lously low SSS in the Indo-Pacific warm pool region (Figs. 4b.f,j
and 6b,fj). The moisture originates from north of Australia
and leaves an imprint of anomalously high SSS that broadly
coincides with the anomalously high MFD (Figs. 4c,g,k and
6¢,g.k). Unlike the high SSS events of the SSSP and SSSI re-
gions, the moisture flux originating from the ocean surface
during low SSS events (Figs. 4c,g.k and 6¢,g,k) weakens the
mean moisture supply (Fig. 1) and results in anomalously dry
conditions over Australia.

Although the moisture transport is directed toward Australia,
it coincides with atmospheric divergence and negative soil
moisture anomaly (Figs. 4d,h,] and 6d,h,]l). These conditions
combine to result in anomalously dry conditions over north-
eastern Australia (Figs. 4m and 6m). The identification of
physical mechanisms and links between oceanic, atmospheric,
and land variables leads to greater predictive skills for
Australian rainfall. We have also performed a composite
analysis based on high and low rainfall events over north-
eastern Australia (figure not shown). We have found that the
composite mean based on high and low rainfall events is
broadly similar but with different magnitudes to the com-
posite analysis performed in Figs. 3-6, which are based on
high and low SSS events. This analysis suggests that the SSS
variation is a cleaner indicator for the atmospheric moisture
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transport and terrestrial precipitation than compositing of
high or low rainfall events.

As previous studies have shown, Australian rainfall is
strongly modulated by the variability of the tropical Indian and
Pacific Ocean climate associated with ENSO and 10D events
(Risbey et al. 2009; Ummenhofer et al. 2009; Cai et al. 2011). In
this study, we bring a new perspective of using SSS as an ad-
ditional precursor for improving the prediction of Australian
rainfall. For the prediction of DJF rainfall over northeastern
Australia and the Brisbane region, we used random-forest re-
gression analysis in which we used SSS of Indo-Pacific warm
pool region as an additional precursor, along with the local soil
moisture, Nifio-3.4 index, and DMI to represents the ENSO
and IOD phenomena. We found that the prediction of the DJF
rainfall over northeastern Australia (Fig. 7) and the Brisbane
region (Fig. 9) is improved by the addition of SSS of SSSP and
SSSI regions along with the local soil moisture, ENSO, and
IOD indices.

Unlike other studies (Li et al. 2016b; Chen et al. 2019), we
have shown (Figs. 7 and 9) in our analysis that most of the high
rainfall events are well captured even without including SSS
and local soil moisture. The plausible reason for this is the lo-
cation of Australia and its monsoon season (DJF). Northeastern
Australia is quite close to the equator and particularly to the
western equatorial Pacific, which is highly influenced by equa-
torial dynamics predominantly through ENSO (Rathore et al.
2020). Moreover, the Australian monsoon season (DJF) is also
the season when ENSO matures and attains its peak. In fact,
ENSO starts to evolve from JJA and intensifies in the following
seasons until February of the following year and decays there-
after (Jong et al. 2020). Hence, most of the variance (Figs. 7 and
9) in DJF rainfall of Australia can be strongly attributed to the
ENSO dynamics (Zhao et al. 2019). We have also tested our
analysis by including the SON rainfall of the SSSP region as a
predictor along with all the indices used in the above analysis.
We have found that the rainfall over the ocean in the SSSP re-
gion has limited impact on the prediction of DJF rainfall over
northeastern Australia (figure not shown).

Our result differs from those of Li et al. (2016b) and Chen
et al. (2019), where SSS was the most important predictor,
whereas in this study local soil moisture is the most important
predictor followed by ENSO and SSSP (Fig. 7, lower panel).
By adding the soil moisture index of northeastern Australia
along with ENSO and IOD indices, the explained variance of
DJF rainfall is increased from 29% to 45%, which is 3% higher
than that when SSS is combined with ENSO and IOD. The
explained variance of 51% is observed by combining SSS and
soil moisture with the ENSO and IOD indices. The additional
gain of 21% in the explained variance is achieved by including
local soil moisture of northeastern Australia and remote SSS
(SSSP). This suggests that for the prediction of DJF rainfall
over northeastern Australia, the local soil moisture and SSS
from prior seasons are also important precursors. It is worth
mentioning that unlike northeastern Australia, where local soil
moisture plays a crucial role (Fig. 8), in the Brisbane region the
local soil moisture is of least importance and ENSO, SSSP, and
10D are of highest importance (Fig. 10). Our study suggests
that the prediction of rainfall over northeastern Australia and
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the broader Brisbane region can be improved by including SSS
along with other conventional indices such as ENSO, IOD, and
local soil moisture.

Itis important to mention that the SSS does not shape the
rainfall over land. In fact, the SSS anomaly is the balance
between the evaporation and precipitation (E minus P). The
moisture that originates from the ocean surface to precipi-
tate elsewhere leaves an imprint on the SSS. This region of
anomalously high SSS marks a source of atmospheric
moisture and is also associated with the region of moisture
flux divergence in the atmosphere. However, the conver-
gence of atmospheric moisture over land for precipitation
depends on the synoptic-scale variability as well as on the local
thermodynamic instabilities over land. Hence, our study does
not suggest that the SSS is a dynamically active variable that
drives or shapes the precipitation over land,; it is rather a passive
variable. In fact, it is an imprint of the moisture exchange process
between the ocean and atmosphere that can be used to monitor
the downstream terrestrial precipitation and to improve
prediction.

Our study also suggests that the persistent signals of ENSO
evolution and the response in soil moisture due to convergence/
divergence from JAS to SON are the dominant drivers for the
precipitation over northeastern Australia during DJF. The pre-
diction of Australian rainfall can be improved by tracking the
ENSO signature in SST and/or SSS anomalies. Hackert et al.
(2019) have shown that assimilating SSS, alongside the conven-
tional parameters, in coupled models improves the overall fore-
cast of ENSO.

It is worth mentioning that the predicted rainfall is not in
one-to-one relation with the observed rainfall; there is a future
scope to further improve the prediction of rainfall by including
other potential predictors such as Indian Ocean basinwide
mode (Dommenget 2011). Also, across the seasons IOD is the
second leading mode of the Indian Ocean after the basinwide
mode, but when looking only at the SON season the IOD
seems to be more dominant than the basinwide mode. Hence,
the seasonality of ENSO and the IOD also plays an important
role in the prediction of rainfall over Australia.

Itis also interesting to note that the heavy precipitation year
of 1990/91 is not captured by the random-forest regression
analysis whether SSS is included or not. Hence, it is worth
discussing the heavy precipitation year of 1990/91 in the
northeastern Australia region (Fig. 7). The reasons suggested
by previous studies are heavy rainfall over the Lake Eyre basin
(Pook et al. 2014) and a tropical cyclone “Joy” that dissipated
south of Townsville, Queensland (Van Woesik et al. 1995;
McConochie et al. 2004). During the heavy precipitation over
Lake Eyre, a dominant synoptic system that combined a mon-
soon trough at mean sea level and a geopotential trough in the
midtroposphere was responsible (Pook et al. 2014). Moreover,
the tropical cyclone also brought heavy rainfall of more than
2000 mm between 23 December 1990 and 7 January 1991 over
the region between Prosperine (20°S) and Rockhampton (23°S).
High rainfall associated with tropical low pressure systems
continued to the end of March 1991, which led to extensive
flooding of the central Queensland coastal plain (Van Woesik
et al. 1995).
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Furthermore, this study does not account for the effect of
upper ocean processes such as advection, diffusion, and verti-
cal entrainment (Yu 2011) and the local land surface processes
that influence the soil moisture—precipitation feedback mech-
anism, such as vegetation and albedo (Evans et al. 2017).
However, because of the significant uncertainties in the esti-
mation of evaporation minus precipitation flux (E — P) from
the present generation reanalysis products, the SSS appears to
be a strong candidate to improve the prediction of terrestrial
rainfall (Yu et al. 2017).

8. Conclusions

This study demonstrates the moisture pathways of the
SSSP and SSSI regions, which covary with the Australian
rainfall over various regions (e.g., the northeast, the eastern
seaboard, and the northwestern coastal strip). The events of
anomalously high and low SSS of the SSSP and SSSI regions
are connected with the phases of ENSO (La Nifia and El
Nifio) and IOD (nIOD and pIOD) in the equatorial region of
the Indo-Pacific warm pool. The moisture that originates
from the SSSP and SSSI regions due to evaporation leaves an
imprint on the SSS, which broadly coincides with anoma-
lously high MFD in the atmosphere that converges elsewhere
to produce precipitation.

Our study suggests that the land-atmosphere coupling may
have a strong influence on the convergence and divergence of
incoming atmospheric moisture toward land. As the soil
moisture influences the Australian precipitation during sum-
mer (DJF), it also permits the maintenance of the in-phase
ENSO-rainfall relationship (Timbal et al. 2002; Evans et al.
2011). The presence of positive soil moisture anomaly coin-
cides with the moisture flux convergence and results in
anomalously wet conditions with widespread precipitation
over land. In contrast, the presence of negative soil moisture
anomaly (dry land) coincides with the moisture flux divergence
and results in anomalously dry conditions over land with a
negative rainfall anomaly.

Our predictive analysis using a machine-learning algorithm
(i.e., random-forest regression) supports the ENSO-rainfall
relationship. For northeastern Australia, after local soil mois-
ture, ENSO is the second most important precursor for pre-
dicting the Australian rainfall followed by SSSP. Unlike
northeastern Australia, the local soil moisture of the Brisbane
region is of least importance whereas ENSO and SSSP are of
highest importance. Our study shows an improvement in the
prediction of rainfall over a large region of northeastern
Australia and a small region of Brisbane by the inclusion of the
SSS (especially the SSSP) indices. Hence, continuous moni-
toring of SSS is required for the better prediction of global to
regional hydroclimatic conditions.
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