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ABSTRACT: This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer

[December–February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of

prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (1508E–1658Wand 108S–108N)

and SSSI (508–958E and 108S–108N)] covaries with Australian rainfall, particularly in the northeast region. Composite

analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links

between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS

and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean

dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Niño and

positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI

regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil

moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming

moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from

the random-forest regression analysis that the local soil moisture, El Niño–Southern Oscillation (ENSO), and SSSP are the

most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the

Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an

improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve

the monitoring of the Australian regional hydrological cycle.

KEYWORDS: ENSO; Flood events; Hydrologic cycle; Machine learning; Rainfall; Salinity; Seasonal forecasting; Soil

moisture

1. Introduction

Various climate drivers that include oceanic and atmospheric

modes, such as El Niño–Southern Oscillation (ENSO), the

IndianOcean dipole (IOD), the southern annular mode (SAM),

and others, profoundly influence Australian rainfall not only on

interannual time scales (Risbey et al. 2009; Hendon et al. 2014;

Lim and Hendon 2015) but also on decadal time scales (Power

et al. 1998, 1999, 2006).Among these variations, ENSOand IOD

have, perhaps, the most impact (McBride and Nicholls 1983;

Ashok et al. 2003; Risbey et al. 2009; Ummenhofer et al. 2009;

Cai et al. 2012) with implications for Australia’s ecosystems and

socioeconomic prospects (NCCARF 2012; Holmes 2012; Hayes

and Goonetilleke 2013; Yuan and Yamagata 2015). Yet there is

still a need to improve the prediction of Australian rainfall

through the inclusion of additional variables (such as salinity and

soil moisture) to help anticipate such impacts.

Our previous study (Rathore et al. 2020) shows that sea surface

salinity (SSS) is linked with Australian rainfall via atmospheric

moisture transport. The anomalous positive and negative SSS of

the Indo-Pacific warm pool appears prior to the peak of ENSO

and IOD events and is accompanied by convergence and diver-

gence of atmospheric moisture transport. Also the use of SSS of

the Atlantic Ocean and tropical northwest Pacific Ocean for the

prediction of rainfall has been demonstrated in Li et al. (2016a,b)

and Chen et al. (2019). It is shown that the moisture originating

from the ocean surface leaves an imprint on the SSS that in turn

can be used as a precursor for rainfall over adjacent land areas (Li

et al. 2016a,b; Chen et al. 2019). Here, we use this relationship

between the SSS and atmospheric moisture to predict the rainfall

over Australia, which has not been previously investigated. In

conjunction with Rathore et al. (2020), this study shows the use of

SSS as an additional precursor along with local soil moisture,

ENSO, and IOD indices to improve the prediction of Australian

rainfall. The links between the SSS and rainfall over land cannot

be interpreted as SSS driving or shaping rainfall over land in the

same way that ENSO, a remote driver, and soil moisture, a local

driver, do. The persistent signature of ENSO evolution and the
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response of soil moisture to the convergence and divergence in

prior seasons drive the precipitation over land in the later season

(Hendon et al. 1989; Timbal et al. 2002; Evans et al. 2011). The

convergence/divergence of moisture, which is also associated with

the evolution of ENSO, is imprinted on SSS in the prior season

before ENSO peaks (Rathore et al. 2020). Hence, this study is

about testing the use of SSS as an additional precursor that can be

used along with other remote and local drivers to improve the

prediction of Australian rainfall.

The study’s application is demonstrated for the broader Brisbane

region because it encountered Australia’s severe precipitation

anomalies during 1973/74 and 2010/11 years (Ummenhofer et al.

2015). Recent records (NCCARF 2012; Holmes 2012; Hayes and

Goonetilleke 2013) show that the financial andhuman loss due to the

flooding event associated with the extreme hydroclimatic conditions

of 2010/11 was estimated to be around $2 billion and 35 deaths. The

flooding events in both the 1973/74 and 2010/11 yearswere associated

with co-occurring La Niña and negative IOD (nIOD), which gen-

erally bring anomalously high rainfall over Australia’s northeast re-

gion (Evans andBoyer-Souchet 2012;Zhu 2018;Rathore et al. 2020).

The paper is organized as follows. Section 2 provides themethod

and datasets, respectively, used in this study. Sections 3–6 focus on

the links between SSS and Australian rainfall with physical mech-

anisms and the application of SSS for the prediction of Australian

rainfall over the northeast and broader Brisbane region. Section 7 is

the discussionof the results, and section 8 is conclusions of the study.

2. Data and method

a. Data

Our study is focused on the Indo-Pacific region and is boun-

ded by 408E–1008Wand 508S–108Nwith the regions of IOD and

ENSO defined by the (two) blue and green box, respectively, in

Fig. 1. Monthly means of various oceanic and atmospheric pa-

rameters from observations and reanalysis are used in this study

from 1961 to 2017. For climate variability measures, we use the

Niño-3.4 index for ENSO and the dipole mode index (DMI) for

IOD. The ENSO index is the area-averaged SST anomaly in the

equatorial Pacific region bounded by 58S–58N and 1708–1208W
(Fig. 1, green box) and is based on the monthly time series of

ERSSTv5 (Huang et al. 2017). The DMI is based on Saji et al.

(1999) and is computed as the difference of spatially averaged

SST anomaly between the western equatorial (508–708E, 108S–
108N; Fig. 1, big blue-outlined box) and the southeastern

equatorial (908–1108E, 108S–08; Fig. 1, small blue-outlined box)

Indian Ocean. Both of these indices were linearly detrended to

enable a focus on interseasonal-to-interannual climate variabil-

ity. We have used the monthly time series of these two indices

from online sources (ENSO: https://origin.cpc.ncep.noaa.gov/

products/analysis_monitoring/ensostuff/ONI_v5.php DMI:

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/).

We have used three different products for the monthly means

of SSS data. The SSS data include two products from Hadley

Centre subsurface objective analyses (EN 4.2.1; Good et al.

2013) that are bias corrected following the approaches of

Levitus et al. (2009) and Gouretski and Reseghetti (2010). In

the equations below, data from these two sources are labeled

as L09 and G10, respectively. The third SSS product is the

Ocean Reanalysis System 4 (ORAS4) (Balmaseda et al. 2013)

from the European Centre for Medium-Range Weather

Forecasts (ECMWF).

EN4 data (Good et al. 2013) are produced by incorporating

theWorld Ocean Database (WOD) as a main data source used

for reconstruction of temperature and salinity fields along with

the Coriolis dataset for Reanalysis (CORA). Data from the

FIG. 1. Annual mean of SSS for the study area overlaid with the outlined boxes for theDMI

(blue), Niño-3.4 index (green), region of northeastern Australia (yellow), region of Brisbane

(magenta), and Tasman Sea region (black), with vectors of moisture transport, i.e., divergent

component of moisture flux and the Australian precipitation, where brown indicates low

rainfall and green indicates high.
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Global Temperature and Salinity Profile program (GTSPP)

from 1990 onward and Argo data from 2000 onward were also

included in EN4. The quality-controlled data are used to

produce a monthly objective analysis of the temperature and

salinity from all types of ocean profiling instruments. By per-

sisting anomalies through to the next month, a forecast of the

ocean state is produced, and this is used in the quality control of

the following month of data and as the background to the next

month’s analysis (Good et al. 2013).

For ORAS4 (Mogensen et al. 2012), data are assimilated using

NEMOVAR, which is a variational data assimilation software

for the NEMO ocean model. ORAS4 assimilates temperature

and salinity profiles from the quality-controlled EN3 dataset,

which includes data from expandable bathythermographs (XBT),

conductivity–temperature–depth sensors (CTD), Argo, and

moorings for the period of 1957–2009. From 2010, real-time data

from the Global Telecommunications System (GTS) are used.

Usually, the assimilation of ocean data brings the state closer

to reality, but only in the presence of enough observations. In

the early 1960s the surface ocean is more sparsely sampled in

SSS datasets and is therefore the most unreliable period in the

full time series analyzed here. To reduce the uncertainty in the

ECMWF’s ORAS4 product, an ensemble generation strategy

is used with time-varying fluxes and assimilating temperature

and salinity, for the period from 1958 to 1980, which improves

the fit to the temperature and salinity profiles (Balmaseda et al.

2013). We have used the ensemble mean of the three SSS da-

tasets, as mentioned above. The ensemble mean approach re-

sults in the mean smoother field with a small standard error.

This approach is consistent with using as much of the data on

SSS as is available across a suite of products (which use dif-

ferent methods). Furthermore, the use of themachine-learning

approach with random selection of the independent learning

samples generates a robust prediction of the testing data by

minimizing the underlying uncertainties in the data across the

entire time record. However, the records after 1990 are the

most well sampled.

Likewise, we have used the ensemble mean of three differ-

ent products for the monthly terrestrial precipitation over

Australia: the Australian Water Availability Project (AWAP)

(Raupach et al. 2009), NOAA’s National Weather Service/

Climate Prediction Center (CPC) (Chen et al. 2002), and the

Climate Research Unit (CRU) (New et al. 2000; Mitchell and

Jones 2005).

We also used monthly means of specific humidity and

horizontal winds between 1000 and 500 hPa from NCEP–

NCAR Reanalysis 1 (Kalnay et al. 1996). However, it is im-

portant to mention that the specific humidity and horizontal

winds from the NCEP–NCAR Reanalysis 1 are the averages

of the instantaneous values at every 6 h over the averaging

period (1 month). Monthly SST data are from HadISST1

(Rayner et al. 2003), and monthly means of soil moisture data

are from NOAA’s CPC Soil Moisture dataset (Fan and van

den Dool 2004). We focus on seasonal time scales, which are

prone to be less noisy than the higher-frequency time scales.

Moreover, the lack of availability of submonthly data is also

one of the constraints, so we used the monthly data for the

seasonal analysis.

b. Methods

Monthly anomalies are computed for each dataset by removing

their respective monthly climatology and then detrending the

anomaly time series to remove long-term trends. The three dif-

ferent time series of SSS anomaly and rainfall anomaly are

averaged, as shown in Eqs. (1) and (2) respectively, to

eliminate the biases from the different interpolation and

reanalysis techniques:

SSS5
SSS

ORAS4
1 SSS

G10
1 SSS

L09

3
and (1)

rain5
rain

AWAP
1 rain

CPC
1 rain

CRU

3
. (2)

The moisture flux divergence (MFD) is computed as follows:

MFD5

�
1

g

�
= �

ðPs

0

qVdp ffi (E2P) , (3)

where g is the gravitational acceleration (9.8m s22), q is spe-

cific humidity (g kg21),V is horizontal wind velocity (m s21),E

is evaporation, and P is precipitation. Moisture flux qV is

computed at each pressure level of the reanalysis and then

integrated from the surface (1000 hPa) to 500 hPa. The upper

limit of integration is taken as 500 hPa, because the majority of

themoisture in the atmosphere is concentrated below this level

(Zhou and Yu 2005; Li et al. 2013; Seager andHenderson 2013;

Li et al. 2016a). The divergent component of moisture flux (MF)

is computed by solving Poisson equations (Lynch 1988), and this

component shows the pathways of moisture transport. Seasonal

averages of July–September (JAS), September–November (SON),

and December–February (DJF) are computed for each de-

trended and deseasonalized time series.

We used singular value decomposition (SVD) (Wallace

et al. 1992) to assess the covariability between SSS and

Australian rainfall. The SSS anomalies within the region 408E–
1008W and 508S–108N are included in the analysis, and the

rainfall anomaly is over the Australian land area. This analysis

helps to identify the regions of SSS anomaly in the ocean that

covary with the rainfall anomalies over the Australian land-

mass. The regions of SSS [SSSP (1508E–1658Wand 108S–108N)

and SSSI (508–958E and 108S–108N); red-outlined boxes in

Figs. 2a,d,g] and rainfall [northeastern Australia (1328–1528E
and 258–108S; red-outlined box in Figs. 2b,e,h) and Brisbane

(1448–1548E and 348–248S; blue-outlined box in Figs. 2b,e,h]

are based on the pattern that we obtained from the SVD

analysis. We then made the box average of SSS over the se-

lected regions in the western equatorial Pacific (SSSP) and

eastern equatorial Indian Ocean (SSSI). Similarly, the region

of northeastern Australia with the prominent pattern in SVD

analysis is used to generate the rainfall time series. For

composite analysis, we selected the high and low SSS

anomaly events in the top and bottom deciles of the SSS

anomaly of those oceanic regions that covary with Australian

rainfall.

The significance test for the composite analysis is estimated

by using a Monte Carlo simulation with replacement. The use

of Monte Carlo simulation to test the significance of composite
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means is demonstrated by Terray et al. (2003). The aim of using

Monte Carlo simulation is to test whether the composites are

significantly different from the background variability present

in those data. For the usual Student’s t test, the underlying

assumption is that the sample years used for the composite

mean are drawn independently from the population and the

alternate testing hypothesis is that the composite mean is dif-

ferent from the population mean. It is also assumed in

Student’s t test that the data are distributed normally, which is

not necessarily an appropriate assumption in climate research

and particularly for variables like precipitation (Nicholls 2001).

To test the significance of the composite mean, the null hy-

pothesis states that the composite mean of high and low decile

years (m1) is the same as the composite mean of randomly se-

lected years (m0). Of the total 56 events, m1 is estimated from

the six events of each high and low decile category. In contrast,

m0 is estimated from the composite mean of six randomly se-

lected years, and this procedure is repeated 10 000 times to

generate a Gaussian distribution of the composite mean m0. In

summary, the hypotheses are

d null hypothesis Ho: m1 5 m0 and
d alternate hypothesis H1: m1 6¼ m0.

So, the null hypothesis states that the composite mean of high

and low decile years (m1) is the same as the composite mean of

six randomly selected years (m0) if it lies between 6(1.645

multiplied by the standard deviation of the distribution of

composite mean generated by the random selection of six years

for 10 000 times). This is equivalent to the 90% confidence

from Student’s two-tailed t test. In contrast, the alternate hy-

pothesis puts the composite mean (m1) outside this bound and

makes it significantly different from the background variabil-

ity (m0).

Rathore et al. (2020) have shown that there is a link between

SSS anomaly and the Australian rainfall anomaly during

ENSO/IOD events. These events are the prominent modes in

the tropical Indo-Pacific Ocean that have a profound influence

on Australian rainfall (Ashok et al. 2003; Cai et al. 2009;

Ummenhofer et al. 2009, 2011; Taschetto et al. 2011; King et al.

2015) and SSS (Delcroix et al. 1996; Grunseich et al. 2011;

FIG. 2. First mode of joint SVD analysis of SSS anomaly during (a) JAS, (d) SON, and (g) DJF associated with the DJF rainfall; DJF

rainfall anomaly associated with the SSS anomaly of (b) JAS, (e) SON, and (h) DJF; and the normalized time series associated with the

first mode of SVD analysis of SSS anomaly (red) for (c) JAS, (f) SON, and (i) DJF and Australian rainfall anomaly (gray). The explained

variance by SVD analysis of SSS anomaly and rainfall anomaly is represented by square covariance fraction (SCF), and the correlation

coefficient between the associated normalized time series is represented by r, which is significant at 95% from a two-tailed Student’s t test.

The SSSI region (left red-outlined box) of the IndianOcean and SSSP region (right red-outlined box) region of PacificOcean are shown in

(a), (d), and (g); northeastern Australia (red-outlined box) and the Brisbane region (blue-outlined box) are shown in (b), (e), and (h).
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Singh and Delcroix 2011). Moreover, the east Australian re-

gion from north to south is a vulnerable region andmore prone

to flooding events (Halgamuge andNirmalathas 2017; Hu et al.

2018). Hence, it is necessary to improve the prediction of DJF

rainfall over Australia.

For the prediction, we have used random-forest regression

analysis. The random-forest regression is a nonlinear machine-

learning algorithm, developed by Breiman (2001) based on

classification and regression trees (CART) analysis. This machine-

learning algorithm takes an ensemble learning approach, that is,

the use of multiple decision trees for the prediction (Breiman

2001). If we use a single decision tree, then there is a high chance

of overfitting due to the decision tree’s sensitivity to data vari-

ations. However, increasing the number of decision trees with

random selection of training data reduces the overfitting. The

final prediction is the ensemble average of the predictions gen-

erated by each decision tree and hence it is considered to be an

ensemble learning approach. This method accounts for the re-

lationship between the predictors themselves and their rela-

tionship to the predictand.

The advantage of using a random-forest technique over

traditional linear regression is that the random-forest approach

assumes neither linearity nor that the data are drawn from

a particular distribution (Firth et al. 2005). The ensemble

learning approach of the random-forest algorithm can improve

overall prediction accuracy and avoids overfitting that com-

monly occurs due to highly correlated predictors (Breiman

2001; Pal et al. 2020). In contrast to the random-forest re-

gression, which is a nonparametric approach, simple/multiple

linear regression is a global parametric model and applies a

single predictive formula to the entire data time series (Chen

et al. 2012; Noi et al. 2017). Despite having limited capability to

explicitly account for the underlying processes, the machine-

learning-based predictions generally have shown good skill in

forecasting events (Pal et al. 2020).

As we have mentioned, random-forest regression is an en-

semble learning approach in which a large number of decision

trees are grown to build a forest. Multiple trees can be con-

structed from randomly selected training samples. For the

prediction of DJF rainfall over northeastern Australia (1328–
1528E and 258–108S) using random-forest regression, we used

two indices of SSS anomaly [SSSP (1508E–1658W and 108S–
108N), and SSSI (508–958E and 108S–108N)], two indices that

are based on SST anomaly (Niño-3.4 index and DMI), and the

local soil moisture of northeastern Australia.

In random-forest regression, we train the model with the

spatially averaged rainfall anomaly of northeastern Australia,

the region marked by the yellow-outlined box in Fig. 1 and red-

outlined box in Figs. 2b,e,h, spatially averaged SSS anomaly

from the western Pacific (SSSP) and Indian Ocean (SSSI) over

the region marked by red-outlined boxes in Figs. 2a,d,g, and

spatially averaged soil moisture over northeastern Australia,

Niño-3.4, and the DMI. The rainfall anomaly index is season-

ally averaged for DJF, whereas SSSP, SSSI, soil moisture,

Niño-3.4, and the DMI are seasonally averaged over JAS and

SON. After constructing these indices, we used the DJF rain-

fall anomaly as predictand and JAS and SON indices of SSSP,

SSSI, soil moisture, Niño-3.4 index, and DMI as predictors.

In this study we have used 50% of the data that are randomly

selected for training and to develop the decision tree model. The

remaining 50% of the data that were withheld are used to test the

model to obtain the unbiased estimates of the regression error and

the importance of the variables used for constructing the regression

tree. The coefficient of determination is used to evaluate the per-

formance of the model; that is,R25 12 (Vresidual/Vtotal), whereR
2

is the variance explained by the random-forest regression model.

Also,Vresidual 5 �n

k51[f (X)k 2 Pk]
2
is the variance that cannot be

explained by the random-forest regression model, f(X) is the pre-

dicted value from random-forest regression, and Pk is the observed

rainfall for k5 1, 2. . . , n years;Vtotal 5�n

k51(Pk 2 P)
2
is the total

variance of the observed rainfall, andP is the overall average of the

observed rainfall.

This prediction assessment was run 300 times, on each iter-

ation the number of trees was increased by 5, and R2 was av-

eraged over these iterations. For the training of each decision

tree, we have randomly selected 50% of data (i.e., predictors

and target variable) and the remaining 50%of data are used for

testing (i.e., predicting the target variable from the trained

decision tree to get the R2 value). The predictions from each

decision tree are then averaged across all decision trees to

obtain the overall model score (R2). For the prediction of an

entire time series, the ensemble average of the coefficients is

used (i.e., the coefficients that are obtained during the

training). So, the final predicted target variable is obtained

for each year by averaging the ensemble of 1500 predictions

obtained from 1500 decision trees. We have tested this al-

gorithm by changing the number of iterations from 300 to 200

and 500, and the results were unchanged. A similar analysis

has been used for predicting rainfall over different parts of

the world, such as the Sahel, the U.S. Midwest, and the East

Asian monsoon region over China (Li et al. 2016b,a; Chen

et al. 2019).

We have also assessed each index’s importance for its

contribution to prediction of rainfall, which is also known as

feature importance. For the assessment of each index’s im-

portance, we have used the ‘‘permutation feature’’ importance

method (Altmann et al. 2010). This method is defined as the

decrease in a model score R2 when a single feature is shuffled

randomly, and all other features remain unchanged. The ran-

dom shuffling of the feature (predictor) breaks its relationship

to the response variable (predictand). Thus, the drop in the

model score indicates how much the model depends on this

feature. We applied this feature importance method on the

testing data (withheld or unseen data) rather than training

data, which reduces the risk of overfitting and biases that favor

high cardinality features in the training data. Moreover, the

permutation importance function is quite useful because it

accounts for the nonlinearity within the predictors. To get the

importance score, we randomly shuffled each index 1500 times

using the permutation feature importance method.

Hence the advantage of the random-forest regression and

permutation feature importance analysis is that it explicitly

tests and reduces the risk of overfitting by considering the

nonlinearity and colinearity of the predictors and predictand as

shown by many studies (Breiman 2001; Altmann et al. 2010;

Chen et al. 2012; Li et al. 2016a,b; Noi et al. 2017; Ghosh and
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Behera 2018; Chen et al. 2019; Das and Pandey 2019; Pal

et al. 2020).

Similarly, the random-forest regression analysis is also ap-

plied for the case study of the broader region that surrounds

Brisbane (1448–1548E, 348–248S), delineated in Fig. 1 (magenta-

outlined box) and Fig. 2 (blue-outlined box) of 108 3 108 spatial
scale. The delineated region is sufficiently large to perform a test

case for the regional analysis. All the predictors used for the

Brisbane region analysis are the same as in the northeastern

Australia analysis except the local soil moisture, which is for the

Brisbane region.

3. Singular value decomposition

SVD analysis of multiple fields is a technique to investigate

the fields that covary spatially and temporally (i.e., they seem

to have some degree of correlation). A recent study from

Rathore et al. (2020) shows that the variability of SSS in the

Indo-Pacific warm pool is linked to Australian rainfall anom-

alies via atmospheric moisture transport. Therefore, in this

study, we are assessing the covariability of the SSS anomaly

over the Indo-Pacific domain (Fig. 1) and the Australian

rainfall anomaly.

Figure 2 shows the joint SVD analysis of the two fields (SSS

anomaly during JAS, SON, and DJF and Australian rainfall

anomaly during DJF). The first mode of SVD (SVD1) shows

that the positive loading of JAS SSS anomaly (Fig. 2a) of the

western Pacific warm pool (SSSP over 1508E–1658W, 108S–
108N) strongly covaries with the positive loading of DJF rain-

fall anomaly (Fig. 2b) over northeastern Australia. However, a

very weak signal of SSS anomaly is present in the IndianOcean

(SSSI over 508–958E, 108S–108N). The first mode of JAS SSS

anomaly and DJF rainfall anomaly jointly explains 57% of the

variance. The time series associated with the first mode of SVD

(Fig. 2c) shows the covariability of JAS SSS anomaly and DJF

rainfall anomaly. A significant correlation (r 5 0.50 at a 5
0.05) exists between the time series of JAS SSS anomaly and

DJF rainfall anomaly associated with the first mode of SVD.

Furthermore, the signatures in JAS SSS anomaly during 1973

and 2010 covary with the heavy precipitation events over

Australia in the following season of DJF.

As compared with JAS, the first mode of SVD of the SON

SSS anomaly (Fig. 2d) has now developed a positive loading

over the SSSI region, and a more concentrated positive loading

is observed over the SSSP region with a weakening south of

108S. This pattern of SSS anomaly during SON is plausibly

associated with the development of the ENSO and IOD events

(Ballabrera-Poy et al. 2002; Grunseich et al. 2011; Singh and

Delcroix 2011; Kido et al. 2019).

The explained variance (Fig. 2e) corresponds to the first

mode of SVD of SON SSS anomaly, and DJF rainfall anomaly

is increased to 62%. This increase in the variance is plausibly

due to the increased positive loading of rainfall anomaly over

the northwestern coastal strip of Australia (Fig. 2e); however,

our analysis is primarily concentrated on eastern Australia and

other regions are outside the scope for this study. The corre-

lation between the time series of SON SSS anomaly and DJF

rainfall anomaly, which is associated with the first mode of

SVD, is marginally reduced to 0.45 but still significant at

a 5 0.05.

This pattern of loading in SSS anomaly and rainfall anomaly

is continued from SON to the concurrent season of DJF, and

the first mode of SVD of DJF SSS anomaly and DJF rainfall

anomaly jointly explains 65% of the variance with a significant

temporal correlation of r 5 0.50 (a 5 0.05) between their as-

sociated time series. This analysis suggests that the SSS

anomaly of the previous seasons (JAS and SON) over the re-

gion of Indo-Pacific warm pool (SSSP and SSSI) is coupled

with the rainfall anomaly over northeastern Australia in the

following season (DJF). Moreover, the heavy precipitation

events of Australia during 1973/74 and 2010/11 are consistent

with the anomalously high SSS in prior seasons (Figs. 2c,f).

4. Composite analysis based on high and low SSS
anomaly events

The composite analysis is based on high and low SSS

anomaly events selected as a top and bottom decile, respec-

tively, from the spatially averaged SSSP and SSSI time series

during SON. The years of high and low SSS of SSSP and SSSI

region used for the composite analysis are shown in Table 1.

These anomalously high and low SSS events of the SSSI and

SSSP regions of the Indo-Pacific warm pool are related to

the anomalously wet and dry conditions over northeastern

Australia. Hence, a composite analysis is conducted to inves-

tigate the links between the ocean and atmosphere during the

high and low SSS anomaly events of the SSSP and SSSI regions

of the Indo-Pacific warm pool and the rainfall over Australia.

These links are described in the following section.

a. Composite analysis based on high SSS anomaly events of
SSSP region

The high SSS years of the SSSP region used for the composite

analysis are 1971, 1975, 2007, 2008, 2010, and 2011. The composite

mean of SSTanomaly (Fig. 3, first column), which is based on high

SSS anomaly events of the SSSP region, shows the development of

La Niña in the tropical Pacific and weaker insignificant signature

of nIOD in the Indian Ocean. These signatures of La Niña with

weak nIOD are also present in the SSS anomaly (Fig. 3, second

column) where anomalously high SSS of the SSSP region coin-

cides with a weak and insignificant positive SSS anomaly signal in

the SSSI region that is weakly intensified from JAS toDJF. These

TABLE 1. Years of high and low SSS events for the SSSP and SSSI regions.

High SSS years Low SSS years

SSSP region (1508–1658W and 108S–108N) 1971, 1975, 2007, 2008, 2010, and 2011 1972, 1987, 1993, 1994, 2002, and 2015

SSSI region (508–958E and 108S–108N) 1969, 1976, 1981, 1986, 2001, and 2010 1962, 1963, 1967, 1968, 1978, and 1997
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conditions of positive SSS anomalies correspond to the evapo-

ration of moisture from the ocean surface and the SSSP region

appears to be the primary source of moisture transport over

northeastern Australia. In contrast, negative SSS anomalies

around the east and west coast of Australia correspond to

the freshening due to precipitation (Fig. 3, second column).

The moisture flux that originates from the ocean surface coin-

cides with the atmospheric divergence (Fig. 3, third column) over

the anomalously high SSS regions of the Indo-Pacific warm pool

(SSSP and SSSI). A large part of the significant moisture trans-

port toward Australia that is primarily sourced from the SSSP

region coincides with the atmospheric convergence over north-

eastern Australia. There are two main branches of moisture

transport toward Australia during JAS (Fig. 3c): one is the direct

branch from the SSSP region and the second branch is over the

Tasman Sea. In the later season (SON and DJF) there are three

additional branches of moisture transport emerging in which two

branches are from the tropical IndianOcean, and the third branch

is from the south of Australia (Figs. 3g,k). Overall, the moisture

source from the SSSP region is a significant contributor to the

northeast Australian rainfall. In contrast, less moisture originates

from the weakly intensified SSSI region (weak positive SSS

anomalies) and converges over the ocean in the vicinity ofwestern

Australia.

The convergence of the incoming moisture transport over

Australia coincides with the anomalously high soil moisture (Fig. 3,

fourth column), which progressively increases from JAS to DJF.

The significant positive soil moisture anomalies in northeastern

Australia during JAS (Fig. 3d) get intensified and spread over a

large part of the continent in the later seasons (Figs. 3h,l). This

anomalous rise in soil moisture (Fig. 3, fourth column) is corrob-

orated with anomalously wet conditions over Australia.

Significant rainfall anomalies over eastern Australia during

JAS (Fig. 3m) expand to a widespread wetting during

SON (Fig. 3n).

Interestingly, the widespread wetting of SON retreated

during DJF, and significant wetting is primarily confined to

eastern Australia. It is worth mentioning that the regions of

high SSS anomalies do not coincide perfectly with the regions

of high MFD, which likely signifies the role of oceanic currents

in advecting the SSS anomaly created by surface freshwater

flux (Yu 2011; Li et al. 2016b).

b. Composite analysis based on low SSS anomaly events of
the SSSP region

The low SSS years of the SSSP region used for the composite

analysis are 1972, 1987, 1993, 1994, 2002, and 2015. The composite

analysis for the lowSSS events in the SSSP region is shown inFig. 4

and is opposite in phase to the high SSS events in this region

(Fig. 3). During the low SSS events in the SSSP region, signatures

of co-occurring El Niño and positive IOD (pIOD) are observed in

the equatorial Indian and Pacific Oceans as shown by the com-

posite mean of SST anomaly (Fig. 4, first column). As the signa-

tures of co-occurringElNiñoandpIODinSSTget intensified from

JAS to DJF, the significant salty and fresh signatures in SSS are

also strengthened (Fig. 4, second column).

The salty (fresh) anomalies (Fig. 4, second column) to the

north of Australia (SSSP and SSSI region) indicate the source

FIG. 3. Composite analysis based on high SON SSS events of the SSSP region during JAS, SON, and DJF for (a),(e),(i) SST anomaly;

(b),(f),(j) SSS anomaly; (c),(g),(k) MFD anomaly (shading) overlaid by vectors of divergent component of moisture flux anomaly;

(d),(h),(l) soil moisture anomaly; and (m)–(o) rainfall anomaly. Stippled regions and magenta vectors are significant at 90%.
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(sink) region of atmospheric moisture (Fig. 4, third column).

From JAS to DJF a large amount of significant moisture that

originates from the source region converges over the SSSI and

SSSP region in the ocean north of 108S (Fig. 4, third column). In

contrast, the amount of moisture that is directed toward

Australia from the source regions coincides with the atmo-

spheric divergence over the Australian landmass and diverges

further, away from south of 108S (Fig. 4, third column).

FIG. 4. As in Fig. 3, but for low SON SSS events.

FIG. 5. As in Fig. 3, but for the SSSI region.
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The presence of diverging anomalies of atmospheric mois-

ture transport over Australia results in anomalously dry con-

ditions with negative soil moisture anomalies (Fig. 4, fourth

column). From JAS to DJF, the significantly negative soil

moisture anomalies are primarily confined to eastern Australia

(Fig. 4, fourth column) and this is corroborated from the

rainfall anomalies (Figs. 4m–o). Similar to Figs. 3m–o, it is

interesting to note that the widespread dryness during JAS

(Fig. 4m) and SON (Fig. 4n) is reduced south of 258S during

DJF and concentrated over northeastern Australia (Fig. 4o). It

is worth mentioning that the contrast in the wet (Fig. 3o) and

dry region (Fig. 4o) during DJF could be influenced by the

diversity of ENSO and IOD events (Santoso et al. 2017).

c. Composite analysis based on high SSS anomaly events of
the SSSI region

The high SSS years of the SSSI region used for the composite

analysis are 1969, 1976, 1981, 1986, 2001, and 2010. The com-

posite analysis of high SSS events of the SSSI region is shown in

Fig. 5. It is observed that there is a very weak and insignificant

signal of nIOD present in the SST anomaly field during JAS (Fig.

5a) and SON (Fig. 5e) but diminished during DJF (Fig. 5i), which

turns into an insignificant basinwide cooling. The corresponding

SSS anomaly field shows a significant positive anomaly over SSSI

region, which intensified from JAS to DJF (Fig. 5, second col-

umn). However, there is a relatively weak and insignificant cor-

responding SSS signal present in the SSSP region.

The SSSI region indicated by the positive SSS anomaly is the

source of atmospheric moisture. The very weak and insignificant

moisture that originates from the SSSI region converges

mostly over the ocean around Java/Sumatra Island during

JAS and SON and in the vicinity of western Australia during

DJF and an insignificant transport over central Australia

(Fig. 5, third column). This effect of moisture convergence is

depicted in the soil moisture anomaly, which is anomalously

wet (dry) in eastern (western) Australia during JAS (Fig. 5d)

with increased soil moisture anomaly during SON (Fig. 5h) and

DJF (Fig. 5l).

These variations of soil moisture anomalies (Fig. 5, fourth

column) resemble the rainfall anomalies over Australia from

JAS to DJF (Figs. 5m–o). The SSSI region’s high SSS events

show anomalously wet conditions over eastern Australia dur-

ing JAS and SON (Figs. 5m,n) and over northern and central

Australia during DJF (Fig. 5o). This analysis resembles pure

nIOD, which is shown by Rathore et al. (2020).

d. Composite analysis based on low SSS anomaly events of
SSSI region

The low SSS years of the SSSI region used for the composite

analysis are 1962, 1963, 1967, 1968, 1978, and 1997. The composite

analysis based on low SSS events of the SSSI region (Fig. 6) re-

sembles the low SSS events of the SSSP region (Fig. 4). The

composite mean of SST anomaly (Fig. 6, first column) shows

similar features to the SSSP region (Fig. 4, first column) of co-

occurring El Niño and pIOD events with significantly intense SSS

anomaly over the SSSP and SSSI regions (Fig. 6, second column).

Fresh (salty) anomalies around the Maritime Continent to the

north of Australia indicate a sink (source) of atmospheric

moisture.

The moisture originating from the salty region coincides

with the atmospheric divergence and is transported toward the

SSSI, the SSSP region (north of 108S), and the Australian

FIG. 6. As in Fig. 3, but for low SON SSS events for the SSSI region.
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continent (south of 108S). Themoisture transported toward the

SSSI and SSSP regions precipitates as a result of the presence

of atmospheric convergence (Fig. 6, third column) and makes

these regions anomalously fresher (Fig. 6, second column). In

contrast, the portion of moisture that is directed toward the

Australian continent coincides with weak atmospheric con-

vergence and results in weak anomalous wet conditions over

Australia (Fig. 6, third column).

It is interesting to see that the anomalous dryness in the soil

moisture (Fig. 6, fourth column) is not as pronounced as in the low

SSS events of the SSSP region (Fig. 4, fourth column). In the pre-

vious case (Fig. 4, fourth column), there is a widespread anomalous

dryness in the soil moisture from JAS to DJF. In contrast, the

dryness is primarily concentrated over eastern Australia in the

latter case (Fig. 6, fourth column). The rainfall pattern

(Figs. 4m–o and 6m–o) shows a similar distribution of rainfall

anomaly over Australia but with larger magnitudes in

Figs. 4m–o. These differences between the precipitation and

soil moisturemay result from the initial state of soil moisture in

JAS and may be due to the differences in evaporation over

land from JAS to DJF.

In the above composite analyses, we show the physical link be-

tween the SSS, the moisture transport from the source regions, and

rainfall over Australia. It is also observed that the phenomena of

ENSO and IOD modulate the relationships between SSS and

Australian rainfall via atmospheric moisture transport. Some of

these relationships between SSS and Australian rainfall during

ENSO/IODevents were also shownbyRathore et al. (2020). In the

following section, we demonstrate the use of SSS, along with SST-

based ENSO and IOD indices, as an additional precursor for

Australian rainfall. We apply this method specifically to the

Brisbane region (1448–1548E, 348–248S).

5. Predictability of northeast Australian rainfall
using SSS

In the previous section, we established a physical link be-

tween the SSS and Australian rainfall using moisture transport

in the atmosphere, SSS anomalies in the oceanic source region,

and rainfall anomalies over Australia. We have also observed

that the SSS values of the Indo-Pacific warm pool region in the

prior season (JAS and SON) covary (and are linked by mois-

ture transport) with the Australian rainfall in the summer

season (DJF). Hence, the signal in the SSS and other variables

(ENSO, IOD, and soil moisture) of the prior season can be

used to assess the quality of the prediction of rainfall over the

northeastern Australia and Brisbane regions.

We used the random-forest regression technique in various

combinations for predicting the northeast Australian rainfall

during DJF by using predictors from prior seasons (JAS and

SON): 1) prediction based on ENSO and IOD indices; 2)

prediction based on ENSO, IOD, and SSS; 3) prediction based

on ENSO, IOD, and soil moisture; and 4) prediction based on

ENSO, IOD, soil moisture, and SSS. In Fig. 7, the upper panel

shows that the variance explained by the predicted time series

of DJF rainfall over northeastern Australia from ENSO and

IOD is R25 0.33 (JAS). The explained variance increases to R25
0.36 or R2 5 0.39 (JAS) by including soil moisture or SSS

respectively. This shows that during JAS, SSS is more important

than soil moisture for the prediction of DJF rainfall. Using all the

indices together the explained variance isR25 0.42, showing, in this

case, that all of the indices contribute to the prediction.

During SON (Fig. 7, lower panel), the explained variance

from the combination of ENSO and IOD is R2 5 0.29 and is

reduced as compared with JAS (R2 5 0.33). The reduction in

the explained variance of the ENSO and IOD in this season

compensated with a gain in the explained variance by using SSS

(R2 5 0.42) and soil moisture (R2 5 0.45). It is also interesting

to see that in contrast to JAS, during SON, the soil moisture

can explain more variance when used with ENSO and IOD as

compared to SSS. This suggests that during SON, soil moisture

is more important than SSS for the prediction of DJF rainfall.

On using all the SON indices together, the explained variance

is increased to R2 5 0.51 as compared with R2 5 0.42 by using

JAS indices for the prediction of DJF rainfall over northeast-

ern Australia.

The improvement in the explained variance is significant at

95% confidence using a two-sample Student’s t test. However,

the predicted time series of different combinations of indices

do not differ much from each other in high rainfall events but

increase marginally in other lower rainfall years. These results

show that combining the soil moisture and SSS with ENSO

and IOD strongly influences the prediction of DJF rainfall

over northeastern Australia with certain predictability two

seasons ahead.

The importance of different indices for the prediction of

DJF rainfall over northeastern Australia is further investigated

in Fig. 8. This shows that among JAS indices (Fig. 8, upper

panel), ENSO (Niño-3.4) has the highest importance, followed

by the SSSP index and soil moisture. The SSSI index has the

least importance. The soil moisture is also the index with

highest importance among the SON indices (Fig. 8, lower

panel) but it does not differ much in importance from the

ENSO and SSSP. Thememory of the soil to retain themoisture

from the previous season (i.e., SON) provides improved pre-

diction. The improved prediction, plausibly caused by feed-

back in the SON season that amplifies its response to the

rainfall (Yu and Notaro 2020), might be the reason for the

increased importance of the soil moisture in SON as compared

to JAS. The indices’ ranking with the explained variance sug-

gests that most of the variability in the DJF rainfall of north-

eastern Australia is attributed to ENSO; however, the addition

of SSS and local soil moisture indices contributes to further

improvement in the prediction of rainfall.

6. Predictability of Brisbane region rainfall using SSS

Brisbane is vulnerable to flood, as demonstrated by the se-

vere and costly floods in 1973/74 and 2010/11. Hence it is

necessary to improve rainfall prediction to anticipate potential

economic damage from heavy rainfall events. Here, we advo-

cate using SSS (and soil moisture) as an additional precursor to

be considered for the improvement in the prediction of rainfall

over Australia.

For Brisbane rainfall prediction analysis, we have consid-

ered the DJF rainfall over the region of 1448–1548E, 348–248S,
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along with the JAS and SON indices. From the random-forest

regression analysis (Fig. 9, upper panel), we have found that

ENSOand IODduring JAS can explain 37% (R25 0.37) of the

variance but a significant improvement is observed when

combined with SSS (R2 5 0.51). In comparison with SSS, the

local soil moisture of Brisbane, when combined with ENSO

and IOD, can explain 41% (R2 5 0.41) of the variance. By

combining all four indices of JAS, the predicted DJF rainfall

can explain 52% (R2 5 0.52) of the variance.

Similarly, when using SON predictors (Fig. 9, lower panel),

ENSO and IOD can explain 36% (R2 5 0.36) of variance,

which is further improved to 46% (R2 5 0.46) when combined

with SSS. The local soil moisture, when combined with ENSO

and IOD, also improves the explained variance (R25 0.39) but

less than for SSS. In contrast to JAS indices with R2 5 0.52

when all the indices are combined, the variance explained us-

ing SON indices is R2 5 0.45. This can be explained with the

reduction in variance explained using SON SSS (R2 5 0.46) as

compared with the longer lead time SSS (R2 5 0.51; JAS). It is

also observed that, unlike northeastern Australia, the predic-

tion of Brisbane rainfall is less affected by the local soil mois-

ture as compared with SSS, and thus SSS is more important

than the local soil moisture for the prediction of DJF rainfall

over the Brisbane region.

This effect is shown in Fig. 10, where ENSO is the most

important index for the prediction of DJF rainfall, followed by

the rest of the indices used. For JAS, the SSSP index is the

second most important index after the Niño-3.4 index, fol-

lowed by IOD and SSSI (Fig. 10, upper panel). For the SON

indices, the Niño-3.4 index is still of the highest importance.

However, the importance factor of the SSSP index is reduced

because of the increased importance of IOD during SON. This

increase in the importance of IOD during SON (Fig. 10, lower

panel) is likely due to weaker SSSP variability during SON or

due to the ocean advection and mixing, which also explains the

lower variance of DJF rainfall predicted using SON SSS. It is

worth mentioning that the increased importance of IOD dur-

ing SON is plausibly due to its peak occurring at this time,

whereas ENSO is transitioning to attain its peak state during

DJF. Interestingly, the effect of soil moisture over a smaller

region like Brisbane is not as pronounced as it is for a larger

and relatively dryer region like northeastern Australia. These

factors combined can explain the reduced importance of the

SSSP index during SON.

FIG. 7. Normalized time series of DJF rainfall over northeastern Australia (1308–1528E,
258S–08) (yellow; identical in both panels) and predicted rainfall time series by incorporating

the (top) JAS and (bottom) SON indices of SSSP, SSSI, Niño-3.4, DMI, and soil moisture over

northeastern Australia as predictors (red); predicted rainfall including all of the predictors

except SSSP and SSSI (black); predicted rainfall including all of the predictors except soil

moisture (green); and predicted rainfall without incorporating SSSP, SSSI, and soil moisture

indices (blue). The variance explained by the prediction model is shown as the R2 value.
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From the above analysis, local soil moisture, ENSO, and

SSSP are the important factors for predicting DJF rainfall over

northeastern Australia whereas ENSO, SSSP, and IOD are im-

portant for the Brisbane region. Apart from the conventional

SST-based indices and local soil moisture, the inclusion of the

SSS (the SSSP index in particular) can improve the prediction

of Australian rainfall. Moreover, we have also observed that

the SSS of the Indo-Pacific warm pool leads the rainfall over

Australia by 3–4 months. The moisture originating from this

region of anomalously high SSS eventually converges elsewhere

(on ocean and land) through atmospheric moisture transport.

7. Discussion

A recent study demonstrated the link between SSS and

Australian rainfall during ENSO and IOD years (Rathore

et al. 2020); however, the application of SSS as a precursor of

Australian rainfall was not adequately addressed. This study

focuses on the use of SSS as an additional precursor for DJF

rainfall over northeastern Australia and the Brisbane region.

In this study, the SVD analysis (Fig. 2) shows that the SSS of

the equatorial Indian Ocean (508–958E and 108S–108N) and

western Pacific (1508E–1658W, 108S–108N) covary with the

rainfall over northeastern Australia (1328–1528E, 258–108S)
and also with other regions such as the northwestern coastal

strip and the eastern seaboard region of Australia.

The signature of positive SSS in the western Pacific is quite

prominent from JAS to DJF (Figs. 2a,d,g). However, positive

SSS in the southwestern equatorial Indian Ocean is quite weak

during JAS (Fig. 2a). It appears as a dipole anomaly, which

would lead to a near-zero SSS anomaly when averaged over the

region. In the following season (SON), the SSS anomaly over

FIG. 8. Importance of predictors during (top) JAS and (bottom)

SON in predicting the DJF rainfall over northeastern Australia.

The magenta line is the median, and the blue square is the mean.

FIG. 9. As in Fig. 7, but over the broader Brisbane region (1448–1548E, 348–248S).
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the SSSI region is slightly strengthened but still weaker in

comparison to the SSSP region (Fig. 2d). This lowmagnitude of

SSS anomaly in the SSSI region may be partly responsible for

its small contribution to the prediction skill. This suggests that

the evolution of SSS, particularly of the SSSP region, leads the

DJF rainfall over Australia.

The composite analysis of high SSS events of the SSSP and

SSSI region shows the signature of co-occurring La Niña and

nIOD events (Figs. 3a,e,i and 5a,e,i) with anomalously high SSS

in the Indo-Pacific warm pool region (Figs. 3b,f,j and 5b,f,j). The

regions of high (low) SSS broadly coincide with the regions of

moisture flux divergence (convergence) in the atmosphere and

represent a source (sink) of moisture for evaporation (precipi-

tation) (Figs. 3c,g,k and 5c,g,k). It is worth mentioning that

variability at the synoptic scale along with the local thermody-

namic instabilities over land (Hendonet al. 1989) during the high

SSS events will draw the moisture originating from the ocean

surface (Figs. 3c,g,k and 5c,g,k). The anomalous moisture

transport associated with the thermodynamic instabilities over

land strengthens themeanmoisture supply (Fig. 1) and results in

anomalously wet conditions over Australia.

The presence of these thermodynamic instabilities also in-

fluences the available moisture content of the soil. Previous

studies have recognized the land–atmosphere coupling via soil

moisture that modulates the terrestrial precipitation (Timbal

et al. 2002; Evans et al. 2011; Yu andNotaro 2020) in Australia.

The presence of soil moisture also maintains the in-phase

relationship of ENSO and Australian rainfall. The positive

soil moisture anomalies in the presence of thermodynamic

instabilities moisten the lower atmosphere, which will be-

come unstable due to the release of latent heat by evapora-

tion. This will further increase the moisture transport and

could result in convective precipitation (Timbal et al. 2002;

Evans et al. 2011). In contrast, the presence of negative soil

moisture anomalies corresponds to the dry conditions over

land. A detailed diagnosis of the role of soil moisture can be

done by using idealized general circulation model experi-

ments where soil moisture can be artificially controlled as in

Timbal et al. (2002).

It is also important to mention that while the atmospheric

transport responds rapidly to the SST (on the order of days),

the synoptic ocean–atmosphere conditions may persist over

longer time scales Hendon et al. (1989). Our study, along with

Hendon et al. (1989), shows that the persistence of equatorial

Pacific and Indian Ocean large-scale atmosphere–ocean phe-

nomena (e.g., ENSO and IOD) drives the land anomalies

(anomalies of rainfall and soil moisture) and their persistence.

Also, the phase of these large-scale drivers and their persis-

tence affects the evolution and intensity of the northeast

Australian monsoon. The detailed diagnosis of these synoptic-

scale coupled ocean and atmosphere conditions is beyond the

scope of this study. However, we acknowledge that the per-

sistence of these synoptic conditions over a longer period can

generate a leading response in various land, oceanic, and at-

mospheric fields. Hence, in this study we use the leading re-

sponses of ENSO, IOD, SSS, and soil moisture from prior

seasons (JAS and SON) to assist the prediction of Australian

rainfall for the following season (DJF).

Therefore, during the high SSS events of the SSSP and SSSI

regions, the presence of positive soil moisture anomalies during

JAS and SON (Figs. 3d,h,l and 5d,h,l) corroborates anomalously

wet conditions over Australia (Figs. 3m–o and 5m–o). This

coupling between the soil moisture and the atmospheric circu-

lation, along with the albedo and vegetation effects, contributes

to the enhancement of rainfall over land (Evans et al. 2017).

In contrast, the composite analysis of low SSS events in the

SSSP and SSSI regions shows the signature of co-occurring El

Niño and pIOD events (Figs. 4a,e,i and 6a,e,i) with anoma-

lously low SSS in the Indo-Pacific warm pool region (Figs. 4b,f,j

and 6b,f,j). The moisture originates from north of Australia

and leaves an imprint of anomalously high SSS that broadly

coincides with the anomalously high MFD (Figs. 4c,g,k and

6c,g,k). Unlike the high SSS events of the SSSP and SSSI re-

gions, the moisture flux originating from the ocean surface

during low SSS events (Figs. 4c,g,k and 6c,g,k) weakens the

mean moisture supply (Fig. 1) and results in anomalously dry

conditions over Australia.

Although the moisture transport is directed toward Australia,

it coincides with atmospheric divergence and negative soil

moisture anomaly (Figs. 4d,h,l and 6d,h,l). These conditions

combine to result in anomalously dry conditions over north-

eastern Australia (Figs. 4m and 6m). The identification of

physical mechanisms and links between oceanic, atmospheric,

and land variables leads to greater predictive skills for

Australian rainfall. We have also performed a composite

analysis based on high and low rainfall events over north-

eastern Australia (figure not shown). We have found that the

composite mean based on high and low rainfall events is

broadly similar but with different magnitudes to the com-

posite analysis performed in Figs. 3–6, which are based on

high and low SSS events. This analysis suggests that the SSS

variation is a cleaner indicator for the atmospheric moisture

FIG. 10. As in Fig. 8, but over the broader Brisbane region. The

magenta line is the median and the blue square is the mean.
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transport and terrestrial precipitation than compositing of

high or low rainfall events.

As previous studies have shown, Australian rainfall is

strongly modulated by the variability of the tropical Indian and

Pacific Ocean climate associated with ENSO and IOD events

(Risbey et al. 2009; Ummenhofer et al. 2009; Cai et al. 2011). In

this study, we bring a new perspective of using SSS as an ad-

ditional precursor for improving the prediction of Australian

rainfall. For the prediction of DJF rainfall over northeastern

Australia and the Brisbane region, we used random-forest re-

gression analysis in which we used SSS of Indo-Pacific warm

pool region as an additional precursor, along with the local soil

moisture, Niño-3.4 index, and DMI to represents the ENSO

and IOD phenomena.We found that the prediction of the DJF

rainfall over northeastern Australia (Fig. 7) and the Brisbane

region (Fig. 9) is improved by the addition of SSS of SSSP and

SSSI regions along with the local soil moisture, ENSO, and

IOD indices.

Unlike other studies (Li et al. 2016b; Chen et al. 2019), we

have shown (Figs. 7 and 9) in our analysis that most of the high

rainfall events are well captured even without including SSS

and local soil moisture. The plausible reason for this is the lo-

cation of Australia and its monsoon season (DJF). Northeastern

Australia is quite close to the equator and particularly to the

western equatorial Pacific, which is highly influenced by equa-

torial dynamics predominantly through ENSO (Rathore et al.

2020). Moreover, the Australian monsoon season (DJF) is also

the season when ENSO matures and attains its peak. In fact,

ENSO starts to evolve from JJA and intensifies in the following

seasons until February of the following year and decays there-

after (Jong et al. 2020). Hence, most of the variance (Figs. 7 and

9) in DJF rainfall of Australia can be strongly attributed to the

ENSO dynamics (Zhao et al. 2019). We have also tested our

analysis by including the SON rainfall of the SSSP region as a

predictor along with all the indices used in the above analysis.

We have found that the rainfall over the ocean in the SSSP re-

gion has limited impact on the prediction of DJF rainfall over

northeastern Australia (figure not shown).

Our result differs from those of Li et al. (2016b) and Chen

et al. (2019), where SSS was the most important predictor,

whereas in this study local soil moisture is the most important

predictor followed by ENSO and SSSP (Fig. 7, lower panel).

By adding the soil moisture index of northeastern Australia

along with ENSO and IOD indices, the explained variance of

DJF rainfall is increased from 29% to 45%, which is 3% higher

than that when SSS is combined with ENSO and IOD. The

explained variance of 51% is observed by combining SSS and

soil moisture with the ENSO and IOD indices. The additional

gain of 21% in the explained variance is achieved by including

local soil moisture of northeastern Australia and remote SSS

(SSSP). This suggests that for the prediction of DJF rainfall

over northeastern Australia, the local soil moisture and SSS

from prior seasons are also important precursors. It is worth

mentioning that unlike northeastern Australia, where local soil

moisture plays a crucial role (Fig. 8), in the Brisbane region the

local soil moisture is of least importance and ENSO, SSSP, and

IOD are of highest importance (Fig. 10). Our study suggests

that the prediction of rainfall over northeastern Australia and

the broader Brisbane region can be improved by including SSS

along with other conventional indices such as ENSO, IOD, and

local soil moisture.

It is important to mention that the SSS does not shape the

rainfall over land. In fact, the SSS anomaly is the balance

between the evaporation and precipitation (Eminus P). The

moisture that originates from the ocean surface to precipi-

tate elsewhere leaves an imprint on the SSS. This region of

anomalously high SSS marks a source of atmospheric

moisture and is also associated with the region of moisture

flux divergence in the atmosphere. However, the conver-

gence of atmospheric moisture over land for precipitation

depends on the synoptic-scale variability as well as on the local

thermodynamic instabilities over land. Hence, our study does

not suggest that the SSS is a dynamically active variable that

drives or shapes the precipitation over land; it is rather a passive

variable. In fact, it is an imprint of themoisture exchangeprocess

between the ocean and atmosphere that can be used to monitor

the downstream terrestrial precipitation and to improve

prediction.

Our study also suggests that the persistent signals of ENSO

evolution and the response in soil moisture due to convergence/

divergence from JAS to SON are the dominant drivers for the

precipitation over northeastern Australia during DJF. The pre-

diction of Australian rainfall can be improved by tracking the

ENSO signature in SST and/or SSS anomalies. Hackert et al.

(2019) have shown that assimilating SSS, alongside the conven-

tional parameters, in coupled models improves the overall fore-

cast of ENSO.

It is worth mentioning that the predicted rainfall is not in

one-to-one relation with the observed rainfall; there is a future

scope to further improve the prediction of rainfall by including

other potential predictors such as Indian Ocean basinwide

mode (Dommenget 2011). Also, across the seasons IOD is the

second leading mode of the Indian Ocean after the basinwide

mode, but when looking only at the SON season the IOD

seems to be more dominant than the basinwide mode. Hence,

the seasonality of ENSO and the IOD also plays an important

role in the prediction of rainfall over Australia.

It is also interesting to note that the heavy precipitation year

of 1990/91 is not captured by the random-forest regression

analysis whether SSS is included or not. Hence, it is worth

discussing the heavy precipitation year of 1990/91 in the

northeastern Australia region (Fig. 7). The reasons suggested

by previous studies are heavy rainfall over the Lake Eyre basin

(Pook et al. 2014) and a tropical cyclone ‘‘Joy’’ that dissipated

south of Townsville, Queensland (Van Woesik et al. 1995;

McConochie et al. 2004). During the heavy precipitation over

Lake Eyre, a dominant synoptic system that combined a mon-

soon trough at mean sea level and a geopotential trough in the

midtroposphere was responsible (Pook et al. 2014). Moreover,

the tropical cyclone also brought heavy rainfall of more than

2000mm between 23 December 1990 and 7 January 1991 over

the region between Prosperine (208S) and Rockhampton (238S).
High rainfall associated with tropical low pressure systems

continued to the end of March 1991, which led to extensive

flooding of the central Queensland coastal plain (Van Woesik

et al. 1995).
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Furthermore, this study does not account for the effect of

upper ocean processes such as advection, diffusion, and verti-

cal entrainment (Yu 2011) and the local land surface processes

that influence the soil moisture–precipitation feedback mech-

anism, such as vegetation and albedo (Evans et al. 2017).

However, because of the significant uncertainties in the esti-

mation of evaporation minus precipitation flux (E 2 P) from

the present generation reanalysis products, the SSS appears to

be a strong candidate to improve the prediction of terrestrial

rainfall (Yu et al. 2017).

8. Conclusions

This study demonstrates the moisture pathways of the

SSSP and SSSI regions, which covary with the Australian

rainfall over various regions (e.g., the northeast, the eastern

seaboard, and the northwestern coastal strip). The events of

anomalously high and low SSS of the SSSP and SSSI regions

are connected with the phases of ENSO (La Niña and El

Niño) and IOD (nIOD and pIOD) in the equatorial region of

the Indo-Pacific warm pool. The moisture that originates

from the SSSP and SSSI regions due to evaporation leaves an

imprint on the SSS, which broadly coincides with anoma-

lously high MFD in the atmosphere that converges elsewhere

to produce precipitation.

Our study suggests that the land–atmosphere coupling may

have a strong influence on the convergence and divergence of

incoming atmospheric moisture toward land. As the soil

moisture influences the Australian precipitation during sum-

mer (DJF), it also permits the maintenance of the in-phase

ENSO–rainfall relationship (Timbal et al. 2002; Evans et al.

2011). The presence of positive soil moisture anomaly coin-

cides with the moisture flux convergence and results in

anomalously wet conditions with widespread precipitation

over land. In contrast, the presence of negative soil moisture

anomaly (dry land) coincides with the moisture flux divergence

and results in anomalously dry conditions over land with a

negative rainfall anomaly.

Our predictive analysis using a machine-learning algorithm

(i.e., random-forest regression) supports the ENSO–rainfall

relationship. For northeastern Australia, after local soil mois-

ture, ENSO is the second most important precursor for pre-

dicting the Australian rainfall followed by SSSP. Unlike

northeastern Australia, the local soil moisture of the Brisbane

region is of least importance whereas ENSO and SSSP are of

highest importance. Our study shows an improvement in the

prediction of rainfall over a large region of northeastern

Australia and a small region of Brisbane by the inclusion of the

SSS (especially the SSSP) indices. Hence, continuous moni-

toring of SSS is required for the better prediction of global to

regional hydroclimatic conditions.
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