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Abstract

Motivation: The cGAS pathway is a component of the innate immune system responsible for the detection of patho-
genic DNA and upregulation of interferon beta (IFNS). Experimental evidence shows that IFNf signaling occurs in
highly heterogeneous cells and is stochastic in nature; however, the benefits of these attributes remain unclear. To
investigate how stochasticity and heterogeneity affect IFNf production, an agent-based model is developed to simu-
late both DNA transfection and viral infection.

Results: We show that heterogeneity can enhance IFNS responses during infection. Furthermore, by varying the de-
gree of IFNp stochasticity, we find that only a percentage of cells (20-30%) need to respond during infection. Going
beyond this range provides no additional protection against cell death or reduction of viral load. Overall, these simu-
lations suggest that heterogeneity and stochasticity are important for moderating immune potency while minimizing

cell death during infection.

Availability and implementation: Model repository

AgentBasedModel-cGASPathway.
Contact: jason.shoemaker@pitt.edu

is available at: https:/github.com/ImmuSystems-Lab/

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

IFNp expression—a critical component of the innate immune re-
sponse—has been identified as an inherently stochastic process regu-
lated by interacting, highly heterogeneous cells (Leviyang et al.,
2018; Rand et al., 2012; Zhao et al., 2012); however, the conse-
quences stochastic processes and heterogeneous populations bring
to innate immune signaling remains an open topic of study. Here,
stochasticity is defined as differential responses observed from indi-
vidual cells given identical stimuli, and heterogeneity is defined as
differences between intracellular molecular concentrations across a
cell population (which leads to variations in cellular response).
Multiple intrinsic and extrinsic mechanisms have been proposed
to explain stochasticity and heterogeneity (Rand ez al., 2012; Swain
et al., 2002; Zhao et al., 2012). Low intracellular molecular concen-
trations are a common intrinsic source of stochasticity because they
result in probabilistic responses within the cell (e.g. transcriptional
busting) (Elowitz, 2002; Raj et al., 2008; Satija et al., 2014). This
source of noise can amplify and propagate down signaling pathways
affecting gene expression and cellular behavior (Bar-Even et al.,
2006). In contrast, extrinsic sources that can cause stochasticity and

heterogeneity are differences in the immune stimulus as well as cellu-
lar division (Rand ez al., 2012; Schulte et al., 2014). Together, these
layers of noise and variability coalesce to explain the complex dy-
namics observed in IFNS signaling.

The benefits stochasticity and heterogeneity bring to innate im-
mune signaling remain unclear. Some evidence suggests that cells op-
timize the innate immune response to simultaneously minimize
pathogenic loads and maximize cell survival (Zhao ez al., 2012).
This is plausible as overexpressing innate immune cytokines can
cause unnecessary damage to the host (Hwang et al., 2013), leading
to cytokine storms and chronic inflammation (Prinz et al., 2012).
More recent evidence suggests that stochasticity allows a cell popu-
lation to subdivide, where some cells produce substantial immune
responses that risk apoptosis, while others are preserved to maintain
tissue viability (Drayman et al., 2019; Ivashkiv et al., 2014; Raj
et al., 2008).

In contrast, hypotheses elucidating the advantages of cellular
heterogeneity are less developed. One potential explanation is bet-
hedging (Goldman et al., 2019) where less-fit individuals are main-
tained as a precaution to drastic changes in the environment. Others
suggest that heterogeneity acts as an additional layer of non-genetic
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variability (Brock et al., 2009; Kim et al., 2018) which can impede
pathogenic threats susceptible to noise (Heldt et al., 2015). To better
understand stochasticity and heterogeneity in the context of IFNf
immune signaling, computational modeling is employed to simulate
cell populations with and without these attributes.

Here, we implement an Agent-Based Model (ABM) of the cGAS
pathway, a critical component of the innate immune system respon-
sible for the detection of foreign DNA and expression of IFNS (Sun
et al., 2013). This method was chosen because it extends previous
modeling efforts (Gregg et al., 2018) to incorporate stochasticity/
heterogeneity and has shown success in similar cell signal modeling
(Id et al., 2020; Rikard et al., 2019; Roy et al., 2019; Warsinske
et al., 2016). In this context, success implies correctly emulating bio-
logical outcomes and predicting behavior using a robust and stable
model. Utilizing computational models that incorporate these attrib-
utes has allowed researchers to simulate outcomes that are difficult
to resolve with experimental techniques alone, such as predicting
therapies that impede heterogeneous tumors (Roy et al., 2019) and
predicting bacterial dissemination in heterogeneous granuloma for-
mation (Id et al., 2020).

Due to the expansive roles cGAS plays in disease detection [e.g.
cancer (Ng et al., 2018), inflammation (Gray et al., 2015), acute kid-
ney injury (Maekawa et al., 2019), HSV (Su et al., 2017), HIV (Gao
et al., 2013), MTB (Collins et al., 2015)], it is imperative to further
explore this signaling pathway to improve new drug therapies
(Lama et al., 2019), cancer immunotherapies (Li et al., 2019; Su
et al., 2019) and vaccine adjuvants (Wang et al., 2016). To accom-
plish this, the ABM is used to identify the immunologic advantages
a cell population may have when individual cells are heterogeneous
and subject to stochastic intracellular IFNJ signaling. We hypothe-
size that heterogeneity and stochasticity benefit an immune signaling
cell population by reducing the required number of IFNS producing
cells while still successfully clearing the pathogenic threat.

2 Materials and methods

2.1 Defining epithelial cell (agent) responses to infection
The ABM is constructed on a 200 by 200 grid where each agent rep-
resents an epithelial cell (40 000 cells total, see Fig. 1). The agents—
as they are epithelial cells—remain stationary, while paracrine sig-
naling dynamics allow neighboring agents to transmit information
about their current state and influence the population. Grid sections
are sized such that the edge is roughly equivalent to the diameter of
a human epithelial cell (32 um), which provides the proper scale for
diffusion (Cohen et al., 1967; Milo et al., 2015).

ABMs are flexible frameworks that can use rules, algebraic equa-
tions or ODEs to define how agents respond to their environment.
Here, each agent possesses an ODE model and probabilistic rules
that dictate how they respond to changing local DNA and IFNf con-
centrations as well as the number of virions in neighboring agents.
The ODE model (Gregg et al., 2018) describes how signaling mecha-
nisms within agents respond to current local concentrations of IFNS
and DNA. The differential equations remained largely unchanged,
except for the addition of the diffusion term for IFNf to support
integrating the ODE system into the ABM:

OTFNB]  keyr IENSmMRNA]

ot K7 + [IFNPmRNA]

77[IFNf] + DV2[IFNf]. (1)

Parameters used to simulate each agent are taken from the best
(i.e. lowest error) MCMC iteration of the original work. Two inde-
pendent sources were found for the diffusion coefficient of IFNS [95
um?/s (Kreuz et al., 1965) and 100 um?/s (Coppey et al., 2007)] so
an average of the two are used in the simulation.

The ABM also uses probabilistic rules that facilitate changes in
cell state and propagation of the infection. The first rule states the
probability that a healthy cell transitions into an infected cell
depends on the adjacent cell’s viral concentrations (i.e. Moore’s
neighbors). Each cell is assigned a viral load threshold value ran-
domly sampled from a normal distribution with a mean of 800 viri-
ons and standard deviation of 200 virions. When an infected cell’s

viral concentration exceeds its given threshold, it attempts to infect
each healthy neighboring cell through a Bernoulli trial with the
probability of success defaulted to 0.5. Modifying this parameter
effects how quickly the infection spreads throughout the population,
with low values effectively halting viral spread. To track viral load
over time, an additional ODE state ‘Virus’ is added to the ABM and
the DNA state is modified to incorporate replication,

d[Vvi i
[ CEUS} = kyay[DNA] — 114[Virus] (23)
d[DdeA] = —kif[cGAS|[DNA] + k1 [cGAScompiex] —

(2b)

Rea2 [TREX1][DNA]  [DNAJ(Kpax — [DNA])
“ " Kp + [DNA] Konax

The second probabilistic rule determines the initial concentration
of viral DNA after a cell becomes infected. This is simulated in the
model as a discontinuous jump in DNA concentration subject to a
uniform distribution on the interval [0, K,,,«]. The modified DNA
state can now vary with cGAS binding, TREX1 degradation or repli-
cation specified by the carrying capacity (Kyay = 0.55n1M).

The third and last probabilistic rule depends on the randomly
assigned infection length time, also sampled from a normal distribu-
tion with a mean 8h and standard deviation of 1h. When an
infected cell surpasses the allotted time to be infected, a callback
event is triggered that sets all parameters associated with transcrip-
tion and translation to a value of zero, and the cell is assigned to a
dead state. Proteins, mRNA and other molecules quickly degrade
because the cellular agent has no means to sustain their
concentrations.

2.2 Agent-based model simulation

The ABM is simulated in Julia, which offers several advanced pack-
ages for rapid simulation. At each timestep, the probabilistic rules
are checked and each cell state is updated accordingly. After the up-
date, the DifferentialEquations.jl package (Rackauckas et al., 2017)
is used to progress the intracellular concentrations forward in time.
The Laplacian modeling the diffusion process is discretized using a
second order central differencing scheme with no flux boundary
conditions. This discretization, combined with intracellular ODEs,
results in an ABM with 520 000 ODEs (13 per agent) and 120 000
probabilistic rules (3 per agent). A model of this scale requires a
well-optimized solver that is efficient in computing time and mem-
ory, as well as being numerically stable (Perkel, 2019). We used an
implicit ODE solver [backward differentiation formula, BDF
(Hindmarsh et al., 2005)], which eliminated numerical instability
but required solving a system of linear equations at each time step.
Instead of solving the linear system directly, we used a generalized
minimal residual method (GMRES) to accelerate the BDF solver
(Saad et al., 1986).

Two initial conditions are implemented in the model depending
on whether an ISD transfection or viral infection was simulated.
When considering ISD, agents/cells are assigned specific concentra-
tions of viral DNA at time zero. The viral infection initial condition
instead assumes each cell within the population has some probabil-
ity of being initially infected according to a Poisson distribution,

MO MO
N n! ’

P(n) (3)

Here, # refers to the number of times a cell is infected, and MOI
is the multiplicity of infection. The fraction of cells initially infected
(i.e. primary cells) is varied by changing MOI. A low dose simulated
infection, for example, would have an MOI of 1072, which corre-
sponds to an average of 40 cells being initially infected at least once.
The remaining, healthy cells with no initial DNA concentration are
categorized as secondary cells.
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Fig. 1. Overview of the agent-based model. (A) The model consists of a bottom grid of cells (agents) and a top layer (agent environment) portraying IFNJ diffusing across the
cells. The grid layer is colored green according to the internal DNA concentration (viral or ISD). Healthy cells are colored white and dead cells are colored black. Each cell pos-
sesses an ODE model of the cGAS and JAK/STAT signaling pathways which allows for the detection of cytosolic DNA, production of IFNf and upregulation of feedback
mechanisms. (B) Heterogeneity is simulated by altering non-zero initial conditions. Initial conditions are sampled from a normal distribution and assigned to each cell at the be-
ginning of the simulation. (C) Cells stochastically respond to DNA stimulus by either producing IFN (responsive) or by producing no IFNf (unresponsive). The percentage of
responsive cells is varied across simulations. (D) Healthy cells transition into an infected state subject to the viral concentrations of neighboring cells (Moore neighborhood).
As the concentration of virus increases within an infected cell, the probability of infecting a neighboring cell also increases. (E) Infected cells then transition into dead cells over

time with increasing probability

2.3 Cellular heterogeneity and stochasticity

Experimental observations show that cells possess diverse intracellu-
lar molecular concentrations (heterogeneity) and respond in a binary
manner (stochasticity). To model these observations, we varied ini-
tial conditions and randomly modified ODE parameters associated
with IFNf production. Initial conditions are varied by sampling
from a truncated normal distribution (bounds 0 to infinity) with a
mean specified by the original initial condition and a set variance.
By surveying different variances, we can determine how sensitive the
interferon response is to heterogeneity in cellular composition. The
default variance was set to 0.5 nM2. To simulate the outcome of sto-
chastic IFNJ signaling, cells are randomly assigned different ke,
values (Equation 1). This parameter is responsible for [FNf mRNA
translation and is treated as a Bernoulli distributed random variable
with the probability of failure equal to the desired percentage of
interferon producing cells. The default percentage was set to 20%.

2.4 Statistical analysis

Comparison between group means was performed using a two-
sample #-test in R version 3.6.3. P-values were adjusted using a
Bonferroni correction to account for multiple comparisons. An
adjusted P-value <0.01 was considered significant.

3 Results

3.1 Stochasticity and heterogeneity modulate IFN and

conserve cell survival
With the development of the ABM (Fig. 1), we evaluated the model’s
ability to replicate different population-level (i.e. bulk-level) experi-
mental results and analyzed the effects of stochasticity and hetero-
geneity on cGAS signaling, virus growth and cell death. To compare
across the various model simulations, we monitored IFNJ signaling
at the cell population level.

Figure 2 illustrates the IFNf distribution and cell (agent) state
(healthy, infected, dead) across the cell population 10 h after an ini-
tial ISD transfection (Fig. 2A and D) or DNA virus infection

(Fig. 2B, C, E, F). (See Supplementary Video S1 for full-time course).
Simulations were performed under homogeneous/deterministic or
heterogeneous/stochastic conditions to compare outcomes (see
Supplementary Fig. S1 for other combinations). During ISD trans-
fection (Fig. 2A and D), a dashed-lined boundary divides the popula-
tion into primary cells, which directly receive an ISD transfection
and secondary cells, which receive no direct DNA stimulus and only
respond to paracrine IFNJ signaling. Transfection simulations with
homogeneous/deterministic cell populations (Fig. 2A) exhibited
higher overall IFNf production and more secondary cell activation
than observed in a heterogeneous/stochastic cell population
(Fig. 2D).

Viral infection simulations exhibited different IFNS profiles
(Fig. 2B and E), but the number of cells dead at hour 10 is compar-
able in both viral infection simulations (Fig. 2C and F), at 5.3% and
4.5%, respectively. These results suggest that stochasticity and het-
erogeneity together significantly influence the amount of IFNS pro-
duced (in this case reducing IFNf); however, this influence does not
extend to cell survival, as it remains unchanged. Stochasticity and
heterogeneity appear to benefit the cell population by diminishing
the response needed to overcome the same threat. To further de-
velop this hypothesis, the following sections will investigate how
stochasticity and heterogeneity affect intracellular signaling and de-
termine how each impacts the immune response.

3.2 Dynamics of intracellular molecules are consistent

with experimental evidence

We tested the ABM to see if it could replicate bulk intracellular sig-
naling from cells challenged with ISD and virus (Fig. 3 and
Supplementary Fig. S2). During ISD transfection (Fig. 3A-H) we ob-
serve a strong IFNp response in primary cells to the DNA stimulus,
followed by activation feedback mechanisms like IRF7 and TREX1.
The dynamic responses of the primary cells result from our previous
work fitting an ODE model to 10 experimental datasets [see
Supplementary Fig. S2 (Cox et al., 2017; Guo et al., 2017; Jensson
et al., 2017; Posselt et al., 2011; Qing et al., 2004; Sun et al., 2013;
Wang et al., 2017)] and we show that the ABM reproduces those
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Fig. 2. Simulating IFN dynamics across different cell (agent) populations. The distribution of IFNS 10 h after the addition of cytosolic DNA (viral or ISD). Cell populations
were either modeled as deterministic and homogeneous (A-C) or stochastic and heterogeneous (D-F). For other combinations see Supplementary Figure S1. Panels (A) and (D)
show cell populations transfected with immunostimulatory DNA (ISD). The quarter circular region (dotted black line) divides the cells into two populations. Cells within the
boundary were transfected with ISD and referred to as primary cells. Cells outside this region were not transfected and referred to as secondary cells. In panels (B) and (D), a
virus infection is simulated by assigning non-zero initial conditions of DNA according to a Poisson distribution with MOI=0.01 (Equation 2). Panels (C) and (F) show the

same viral simulation but identify cell states (healthy, infected or dead)
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Fig. 3. Simulating intracellular dynamics across different cell populations. The intracellular signaling dynamics in response to ISD transfection (A-H) and viral infection (I-P)
under deterministic’homogeneous (A-D, I-L) or stochastic/heterogeneous (E-H, M-P) conditions. Average intracellular concentrations are plotted as a function of time and
are separated into cells that are initially transfected/infected (primary) and those that are not (secondary cells). The bold line represents the mean trajectory within the popula-
tion of 40 000 cells (agents) with error bands showing the 5th and 95th percentiles. Panels N-P have inset figures to show more detailed dynamics on a smaller scale

findings when most cells are infected. Note that secondary cells re-
spond to IFNf paracrine signaling to a lower degree and do not fol-
low experimental results because the available experiments were
performed with high MOIs, meaning almost all cells were primary
cells.

Viral infection simulations (Fig. 3I-P) show an enhanced re-
sponse from secondary cells, particularly from feedback mechanisms
like IRF7 (Fig. 3K and O) and TREX1 (Fig. 3L and P). The variance
in these responses is also increased—especially in stochastic/hetero-
geneous cell populations. This is caused by some secondary cells not
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Fig. 4. Effect of heterogeneity on population IFNf levels. Initial non-zero protein
concentrations were sampled from increasingly wider (more variable) normal distri-
butions, as shown on the horizontal axis. With this new initialization, the agents
were simulated with an ISD infection starting with 63% primary cells. The resulting
distribution of peak IFNJ concentrations were taken and partitioned into either pri-
mary or secondary cells. Points represent the median peak IFNJ concentration
(25 200 primary cells and 14 800 secondary cells) with error bars showing the inter-
quartile range. The cell population was simulated with (A) deterministic IFNS pro-
ducing cells and (B) stochastic IFNf producing cells

responding to infection while others are responding more than even
primary cells (see Supplementary Fig. S3 for secondary cell response
distribution). Overall, this suggests that primary cells are more im-
portant to ISD transfection and that secondary cells play a more cen-
tral role in regulating viral infections.

To further support the ABM, we examined the impact hetero-
geneity and stochasticity had on knockdown simulations. This was
compared with simulations of the ODE model under the same
knockout conditions. In principle, emergent behavior from the ABM
should match bulk cell predictions from the ODE model, which is
observed for both TREX1 and IRF7 knockdown (see Supplementary
Fig. S4). Note that variability in the deterministic’homogeneous sim-
ulations arose from differences in local IFNp concentrations across
the cell population.

3.3 Cellular heterogeneity increases interferon

production

The concentrations of mRNA and signaling proteins at the initial
time of infection vary across the cell population and are suspected to
impact immune signaling dynamics (Wimmers et al., 2018). Figure 4
shows the distribution of peak IFNf concentrations across the cell
population that result when simulating an ISD transfection in a de-
terministic/heterogeneous (Fig. 4A) or a stochastic/heterogeneous
cell population (Fig. 4B). Cells were divided into primary and sec-
ondary cells (see Fig. 3) to distinguish production in transfected cells
and paracrine-induced IFNf production, respectively. As increasing
Gaussian noise is added to the initial conditions, we observe a small
decrease in peak IFNf produced (Fig. 4A and B, =0 to 6°=0.3)
followed by a large increase in IFNf produced (Fig. 4A and B,
0°=0.4 to ¢>=1.0) as cellular heterogeneity increases. Secondary
cells produce less interferon than their primary counterparts across
all levels of variability and model types, which indicates that DNA is
a more potent IFNf stimulus compared to interferon alone. These
simulations suggest that increasing cellular heterogeneity leads to
higher levels of IFNB production, but moderate levels of heterogen-
eity can lower IFNf production independently of stochasticity.

3.4 There is an optimal level of intrinsic stochasticity

To assess how stochasticity and cell heterogeneity impact immune
success, we tracked the number of healthy, infected and dead cells
during virus infection (Fig. 5). Figure SA and C show the median
trajectories and the interquartile ranges of the cell states in a homo-
geneous/stochastic or heterogeneous/stochastic cell population,

0 12 24 36 48 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Time (hours) IFNB Producing Cells

Fig. 5. Stochasticity optimizes cell survival. Stochastic interferon expression of viral
infection in homogeneous (A-B) and heterogeneous (C-D) cell populations. (A) Cell
(agent) states were tracked over time in ten simulations with 20% of cells producing
IFNJ to obtain median trajectories with the shaded region showing the interquartile
range. (B) Each boxplot summarizes the percentage dead cells for ten viral infection
simulations (at #=48h). The percentage of cells producing IFNf was varied from
0% (no cells producing IFNf) to 100% (all cells producing an IFNB). (C) The pro-
cess was repeated with a heterogeneous cell population, showing cells states where
20% of cells could produce IFNB. (D) The percentage of IFNf producing cells was
again varied and the percentage dead cell was recorded. Asterisks represent
Bonferroni adjusted significant P-values from a two-sample #-test when compared
against the 100% IFNp producing population (****P <0.00001; ***P < 0.0001;
**P <0.001; *P < 0.01; ns, not significant)

respectively. In both cell populations, the percentage of IFNS pro-
ducing capable cells is left at the default value of 20%. Both the
homogeneous and heterogeneous cell populations have the largest
percentage of cells infected within the first 12h of simulation and
transition to dead based on the randomly assigned duration of infec-
tion (see Methods).

An optimal host immune response would minimize both cell
death and IFNJ needed to remove cytosolic DNA. With these crite-
ria, we evaluated the cell population’s response by changing the
number of IFN producing cells. This was accomplished by random-
ly assigning the k., parameter (Equation 1) a value of zero based
on the desired percentage of IFNf producing cells (e.g. no IFNf pro-
ducing cells would imply that all k,;> parameters were set to zero).
Figure 5B shows how viral infection simulations were affected by
the percentage of IFN producing cells in a homogeneous popula-
tion. When fewer cells respond to the virus, more cells die; however,
there is a wide range (40-100%) where the interferon response
varies but cell survival is not significantly affected. A range of 20-
30% appears to be the optimal percentage of IFNf producing cells
because it both minimizes the number of cells lost to the infection
and IFNB needed to bolster an effective immune response.
Figure 5D repeats these simulations, but with a heterogeneous cell
population. There were no apparent differences found between the
two cell populations, indicating stochasticity was primarily respon-
sible for the observed trends in cell survival.

4 Discussion

Using a multiscale ABM that reproduces cell culture IFNf dynamics,
we performed in silico experiments to determine how cellular het-
erogeneity and stochasticity impact overall IFNB production and
cell death experienced during the infection. Figure 4 exemplifies
how cell heterogeneity can modify intracellular immunity. Low het-
erogeneity (i.e. small variations in cellular composition) allows a cell
population to attain similar IFNf concentrations without having
every cell fully respond with equal magnitude to the infection.
Without impacting the overall immune response, heterogeneity
allows some cells to express low levels of IFNf because they are
compensated by higher expression from neighboring cells through
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paracrine signaling. Highly heterogeneous cell populations magnify
this behavior by having only a few cells produce large amounts of
IFNB that can compensate for the rest of the population. A heteroge-
neous cell population benefits from neighboring cells relying on
each other for IFNJ signaling, but taken to an extreme, may lead to
an excessive response.

Stochasticity, in comparison, plays an important role in main-
taining cell survival. Experimental evidence shows that IFNS re-
sponse is stochastic and results in approximately 20% of cells
responding to infection (Zhao et al., 2012). The ABM simulates this
behavior by varying the number of IFNp producing cells/agents
(Fig. 5). We observed that having 20-30% interferon producing
cells resulted in an optimal balance between limiting cell death and
producing high concentrations of IENf. The modeled ideal percent-
age of responding cells differs slightly from the number reported by
Zhao et. al., but other experimental studies suggest that this ideal re-
sponse is virus specific (Patil et al.). The ABM provided here can eas-
ily be modified to fit any viral specific IFNf response and, more
importantly, provides a possible explanation for these experimental
observations.

The ABM presented enables consideration of how spatial vari-
ation, stochastic signaling within agents and agent/cell heterogeneity
impact infection outcomes. However, trade-offs were made when
developing this ABM; most notably was the number and complexity
of the agents. The model assumes cells are static entities on a uni-
form grid, which is suitable when modeling epithelial cells, but lim-
its modeling other cell types that require agents to possess attributes
like shape, movement and cellular division. The provided code can
be modified to consider these attributes and other software, e.g.
Compucell3D and Morpheus, can facilitate such studies. Another
limitation is how stochasticity is implemented. Stochastic differen-
tial equations could be utilized as they would allow for simulating
stochasticity due to low molecular copy numbers. However, such an
approach would be prohibitively slow, reducing our capacity to
simulate ¢GAS signaling behaviors over a large cell population.
Lastly, a consequence of translating the ODE system into each agent
was a reduced interferon response (compare Fig. 2A and B). This re-
duction is caused by the diffusion of IFNf away from infected cells
to neighboring healthy cells, driven by a steep concentration gradi-
ent. This dissipative effect is only observed in viral infection simula-
tions because the initial condition for ISD transfection places all
primary cells beside one another. This could be addressed with
model rescaling (the data informing the model is relative), should
non-relative measurements become available.

Overall, this paper develops a straightforward method to trans-
late a signaling pathway model—which are commonly described
with ODEs—into an ABM that considers spatial variation, cell-to-
cell heterogeneity, stochastic signaling and is capable of handling
large scale simulations (an ISD simulation takes 95.9 s and a viral in-
fection simulation takes 2410's on an Intel i7-1065G7 CPU). In this
example of the cGAS pathway, the ABM suggests that cells may
have evolved to incorporate specific degrees of cellular heterogeneity
and stochasticity to reduce the number of IFNf producing cells while
maintaining cell survival. Other works have shown that these behav-
iors can also beneficially lead to a small subset of early IFNf produc-
ing cells that drive the timely population level (Shalek ez al., 2014)
and bimodal responses across the cell population (Aguilera et al.,
2017). In all, these simulations corroborate experimental observa-
tions and provide new insight into how cell heterogeneity and sto-
chasticity play a role in optimizing cGAS-mediated IFNf signaling.
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