SQUARE FUNCTIONS, NONTANGENTIAL LIMITS,
AND HARMONIC MEASURE
IN CODIMENSION LARGER THAN 1
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Abstract

We characterize the rectifiability (both uniform and not) of an Ahlfors regular
set E of arbitrary codimension by the behavior of a regularized distance function
in the complement of that set. In particular, we establish a certain version of the
Riesz transform characterization of rectifiability for lower-dimensional sets. We also
uncover a special situation in which the regularized distance is itself a solution to
a degenerate elliptic operator in the complement of E. This allows us to precisely
compute the harmonic measure of those sets associated to this degenerate operator
and prove that, in sharp contrast with the usual setting of codimension 1, a con-
verse to Dahlberg’s theorem must be false on lower-dimensional boundaries without
additional assumptions.

1. Introduction

The beginning of the twenty-first century has brought a series of long-sought-after
results enlightening connections between the scale-invariant geometric, analytic, and
PDE properties of sets. Among the most celebrated ones were the Riesz transform
characterizations of uniform rectifiability (see, e.g., [9], [20], [22]) and full descrip-
tion of the sets for which the harmonic measure is absolutely continuous with respect
to the Lebesgue measure, in terms of uniform rectifiability along with a certain topo-
logical condition (see [1]). Both of these results rest on, and have been surrounded by,
a plethora of important related advancements. We do not intend to review the related
literature in the present work, but we point out that virtually the entire theory has been
restricted to the (n — 1)-dimensional boundaries of domains in R”. The question of a
possible extension of these results to lower-dimensional sets has become one of the
central open problems in the subject ever since.
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In [5], the first and third author (together with Joseph Feneuil) introduced a regu-
larized distance function D, o (see (1.3) and (1.5) below) as a tool in a long program
to characterize uniformly rectifiable sets of codimension greater than 1 by the behav-
ior of certain (degenerate) elliptic operators in the complement of that set. In this
article, we provide necessary and sufficient conditions for both the rectifiability and
uniform rectifiability (see Definition 1.1) of a d-Ahlfors regular set E in terms of the
oscillation of |V D,, | in the complement of E. These results are new even in the clas-
sical context of codimension 1. However, most notably, for lower-dimensional sets,
and for special values of involved parameters, they provide an unexpected version
of the Riesz transform characterization. We will discuss the details after appropriate
definitions.

We also discover a surprising situation in which the distance function itself is
a solution to the degenerate elliptic operator introduced by [5]. This allows us to
compute Green’s function explicitly and compare the associated harmonic measure
(see (1.11) below) to the Hausdorff measure no matter how irregular E is—a situation
unheard of in codimension 1. In particular, as we mentioned above, recently, as a
culmination of a long line of research starting with the work of F. and M. Riesz [21],
the results of Azzam, Hofmann, Martell, Mourgoglou, and Tolsa [1] showed that the
harmonic measure supported on a codimension 1 set is nice if and only if the set itself
is nice. More precisely, assuming a “quantitative openness” condition on € C R” and
condition (1.1) on 92 (for d = n — 1), the harmonic measure of £ supported on 92
is regular if and only if d<2 is uniformly rectifiable and a weak connectivity condition
holds inside of €2. Our result shows that the analogous characterization fails brutally
in the codimension greater than 1 situation described above (see below for further
discussion).

In order to more precisely state our results (and the analogous work in codimen-
sion 1), let us introduce some notation and notions. We are given an Ahlfors regular
set £ C R”, with n > 2, of any dimension d < n, and an Ahlfors regular measure
on E. Recall that a measure u is d -Ahlfors regular if

C'r? <u(B(Q,r))<Cr? VQeEY0<r<dam(E). (1.1)

A set E is d-Ahlfors regular if #¢ | is a d -Ahlfors regular measure or, equiva-
lently, if it supports some d -Ahlfors regular measure.

The most salient class of regularity for us is uniform rectifiability. Recall that a
set E C R" is d-rectifiable (with d € N necessarily) if

there exist countably many Lipschitz functions

RSB suhthat e (BN fi(RD) =0, (1.2)

Uniform rectifiability is a quantitative version of the following (cf. [8]).
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Definition 1.1

Let d be an integer, and let £ C R” be a d-Ahlfors regular set. We say that E is
d -uniformly rectifiable (with constants 6 > 0, L > 0) if it has big pieces of Lipschitz
images. That is, for any x € E, diam(E) > r > 0 there exists an f : RY — R” which
is L-Lipschitz and such that

HY(ENB(x,r)N f(RY N BO,r))) > 6r9.

The definition above is just one of several (equivalent) definitions of uniform
rectifiability which we chose because we like its geometric flavor. In our work here,
we will introduce as needed (and use) other characterizations of uniform rectifiability
(e.g., using 8 or @ numbers). One of our goals is to provide another characterization of
uniform rectifiability using the regularized distance to E. Note that the sets considered
in this paper satisfying (1.1) or Definition 1.1 will always be unbounded. This choice
simplifies many of our theorems and proofs and comports with prior work in [6] and

[5].

1.1. Regularized distances and (uniform) rectifiability
As above, let E be a d-Ahlfors regular set, and let i be a d -Ahlfors regular measure
whose support is E. In some cases, u will be the restriction to E of the d -dimensional
Hausdorff measure ¢ d, but not always.

For each o > 0 (often fixed in the argument), we define first a function R = R
on Q =R"\ E by

RO = Rya) = [ b=y du(y) (13)
yeE

where the convergence comes from the Ahlfors regularity of w. In fact, a simple

estimate with dyadic annuli shows that

C18(x)™ < R(x) <C8(x)™® forx e R"\E, (1.4)

where we set §(x) = dist(x, E) and C depends on p and «. After this, we define
D = D, (suppressing the dependence on u, o when it is clear from context or
unimportant) by

D(x) = Dya(x) =R, J*(x) forx eR"\E. (1.5)

These distances were first introduced by [5] to study degenerate elliptic PDE, but
in the first part of our paper we are more concerned with the analytic properties of
V D, which we think of as analogous to the Riesz transform (though it is regularized
by the presence of « in the kernel). Indeed,
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VD, a(x) :—é(/

1

|x — y|74@ du(y)) “ / Vx(|?€—y|_d_0l) du(y)
yeE

yeE
d+uo e -1
= ([ ey du)
(04 yeE
X—-y
X —— , 1.6
/yeE —ydrar n(y) (1.6)
for every x € Q. Setting formally & = —1 above and properly reinterpreting the inte-

grals would transform the latter term into the classical Riesz transform. However, our
o is always a positive number, so that the resultant expression, while analogous, is
actually a quite surprising extension of the concept of the Riesz transform. One of the
main discoveries of this article is that VD, , carries rich geometric information, sim-
ilar to the original Riesz transform, for sets of arbitrary dimension (not necessarily
n—1).

To measure the oscillation of VD, 4 in a scale-invariant way we define

n 8 /
F(3) = Fua(0) =809V D)) | = 800 (Y |5 (VD R) )| ) 1)
k=1

for x € Q = R"\E. This is a dimensionless quantity, or rather, in crude terms, it is
easy to see that D is Lipschitz and |V(]V D|?)(x)| is bounded by §(x)~!. We say that
D satisfies the usual square function estimates (USFE for short) when

F(x)28(x)_"+d dx is a Carleson measure on 2. (1.8)

Let us recall the definition of a Carleson measure (which is intimately linked to
uniform rectifiability and will be used several times), first on E x Ry (the standard
case) and then on 2 (as needed above).

Definition 1.2
Let E C R” be d-Ahlfors regular. We say that v(x, r) is a Carleson measure on E x
R if there exists a C > 0 such that, for every X € E and R > 0, we have

v(B(X,R)N E x [0,R]) < CRC. (1.9)

Similarly, § is a Carleson subset of E x (0,+o00) if the measure 1g(x,r) x

d .
M is a Carleson measure on £ x R .

Definition 1.3
Let E C R” be d-Ahlfors regular. We say that A(x) is a Carleson measure on Q2 =
R™\ E if there exists a C > 0 such that
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A(Q N B(X,R)) <CR?

forall X € E and R > 0.
Similarly, Z C Q is a Carleson set if 12 (x)8(x)™"*¢ dx is a Carleson measure
on .

Notice that, for the moment, we use the definition of F that is the simplest for
us to use; taking F(x) = |V(|VD])(x)| instead will give the same results (see, e.g.,
Corollary 2.2).

The results of Sections 2 and 4 characterize uniform rectifiability through the
USEE. In particular, we show the following.

THEOREM 1.4

Letn >2and0 < d < n (apriorid is not necessarily an integer). A d -Ahlfors regular
set in R" equipped with a d -Ahlfors regular measure | is uniformly rectifiable if and
only if F, o satisfies the USFE for some o > 0.

In fact, a slightly weaker condition than the USFE, which we call “weak USFE,”
implies that d is an integer and E is uniformly rectifiable. We note that this charac-
terization is new even in codimension 1 and in some instances may be easier to check
than previous conditions involving square functions (due to David and Semmes [8])
and singular integrals (see. e.g., [9], [20], [22]). Indeed, while it is often hard to check
the L? boundedness of singular operators, given a set E, F), o can be computed fairly
explicitly. We also remark the parallel with the “classical” USFE, involving a Car-
leson measure condition similar to the above for the second derivative of the New-
tonian kernel, that is, the gradient of the kernel of the classical Riesz transform (see
[9]). Just as VD in (1.6) resembles the Riesz transform only formally, our expres-
sions here with @ > 0 are, of course, different, both intuitively (we really think of
them as derivatives of a regularized distance) and factually (these are not classical
singular integrals). Most importantly, the results here apply to the lower-dimensional
setting while the (obvious extension of) the classical USFE is known to fail for sets
of dimension lower than n — 1 (see [9, p. 267]), and no lower-dimensional analogue
of this characterization has been known thus far.

We would like to highlight a crucial component of the proof that the USFE
implies uniformly rectifiability: Corollary 3.2. There we show that if |V.D, | is con-
stant, then E must be a d-affine space and p a constant multiple of #¢|g. This
corollary follows from Theorem 3.1, which is possibly of wider interest, and states
that if the distance to a set E is a C! function, then the set E must be convex. As
we were writing, we learned that this line of inquiry is related to results in convex
analysis (see Section 3 for details).
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We are also interested in the existence of nontangential limits for |V D|. That
is, the limit of |V D(x)| as x approaches a point Q € E without getting “too close”
to E (see (5.3) for the definition of a nontangential region and Definition 5.2 for
the definition of nontangential convergence). Nontangential limits are an important
concept in harmonic analysis (e.g., the classical Fatou’s theorem). In Section 5, we
prove the following.

THEOREM 1.5

Letn > 2, and let 0 < d < n (with d not necessarily an integer). A d-Ahlfors regular
set in R™ equipped with a d -Ahlfors regular measure [ is rectifiable if and only if the
nontangential limit of |V D, o| exists at ji-almost every point in E (for cones of every
aperture).

Continuing to think of VD, 4 as a slightly smoother version of Riesz transform,
these results are in the vein of Tolsa’s in [22], who shows that the existence of princi-
ple values of the Riesz transform is equivalent to rectifiability. We remark that the L2
boundedness of the operator

1

dta ( /y e an(y) /y — T F)duy),

o €E |x_y|d

naturally associated to VD, 4, is valid on all Ahlfors regular sets, using a simple
domination by the Hardy—Littlewood maximal function. Thus, the celebrated result
of [20] that says that, for an Ahlfors regular set E of codimension 1, E is uniformly
rectifiable if and only if the Riesz kernel defines a bounded operator on L2(E, #"~!)
trivially fails in our case. Yet, much as in [22], the existence of the limits characterizes
rectifiability, albeit these are different, nontangential limits.

Finally, let us remark that in both Theorems 1.4 and 1.5 we assume (implicitly)
that d is an integer in one direction (“(uniform) rectifiability implies control on the
oscillation of |V D|”), whereas the fact that d is an integer is a corollary of the geo-
metric conclusion in the other direction (“control on the oscillation of |V D| implies
(uniform) rectifiability”).

1.2. Harmonic measure in codimension 1 and greater
Associated to these distances is the degenerate elliptic PDE:

Lyt = —div( W) —0. (1.10)

—d—1
Dia

In [6], elliptic estimates and some potential theory were established for solutions
of L, « in the complement of E. Most saliently for our purposes, it was shown that a
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maximal principle holds and that the Dirichlet problem could be solved for continuous
data. Thus, for X € Q@ = R"\ E, we can define a harmonic measure wX = a)l{a as
the measure given by the Riesz representation theorem with the property that if u f is

the unique solution to

Lyqur=0, in£,
ur=f, ink,

then
up(X) = /E £(0)doX ,(0). (L11)

The distances D, o, were introduced by [5] as a smooth replacement for §(x); this
smoothness was essential to the proof of the codimension greater than 1 analogue of
Dahlberg’s theorem in [5]. Recall that, for the Laplacian in codimension 1, Dahlberg
proved that for Lipschitz domains the harmonic measure is quantitatively absolutely
continuous (precisely, an A.,-weight) with respect to surface measure (see [3]). In [5],
the authors proved that in codimension greater than 1, w4 € Aoo(d #?|£) when E
is a graph with small Lipschitz constant. In a recent preprint, [7] (see also [12]), the
first and third authors extended this result to all uniformly rectifiable sets E.

As mentioned above, the analogue of this program in codimension 1 has been a
question of central interest for years, in particular because the behavior of harmonic
measure supported on a set £ has important consequences for the solutions of the
Dirichlet problem in the complement of that set (see, e.g., [11]; for recent results
in higher codimension, see [19]). Recently, Azzam, Hofmann, Martell, Mourgoglou,
and Tolsa [1] have completed this program in codimension 1 for the Laplacian. To
be precise, they start with an open set 2 C R” which satisfies the interior corkscrew
condition (roughly this is used to rule out cusps in 92 pointing into ﬁc). They fur-
ther assume that €2 is (n — 1)-Ahlfors regular. In one direction, they show that an
additional connectivity near the boundary assumption (known as the weak local John
condition) on  combined with the (n — 1)-uniform rectifiability of 92 implies that
the harmonic measure of 2 is quantitatively absolutely continuous with respect to
H"1|5q (they use a condition known as weak-Aq,, which takes into account the
pole of the harmonic measure and is natural due to the potentially nasty topology
of ). The aforementioned work of [7] should be seen as a generalization of this
result to higher codimension.

More impressively, uniform rectifiability and the weak local John condition are
necessary and sufficient. Indeed, under the same assumptions of interior corkscrews
and (n — 1)-Ahlfors regularity of the boundary as above, [ 1] shows that if the harmonic
measure in €2 is in weak Ao, then it must be that d€2 is uniformly rectifiable and 2
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satisfies the weak local John condition. (That weak Ao implies uniform rectifiability
was actually already known; cf. [13]. The contribution of [1] is to show that weak
Ao implies the weak local John condition on €2.) For a more precise description of
these results and discussion on the interplay between these assumptions, we suggest
the Introduction of [1].

Our initial goal was to connect the USFE and the existence of nontangential limits
with the behavior of the harmonic measure w,, o with the hopes of proving a higher
codimension version of [13] and therefore characterizing uniform rectifiability by the
behavior of w, 4 (note that the topological conditions above, namely, the interior
corkscrew condition and the weak local John condition, are satisfied by Q2 = R"\ E
whenever E is d-Ahlfors regular with d <n — 1).

However, as mentioned above, such a result turns out to be completely false in
some cases. There is a specific value of «, described in Section 6, where D, 4 itself is
a solution of L qu = 0. In this scenario, we can explicitly compute w,, o by showing
that D, o is, in fact, Green’s function with pole at infinity (see Definition 6.2 and
Corollary 6.8).

More precisely, we show that w,,  is proportional to o0 = J d |g for any Ahlfors
regular set E, including purely unrectifiable ones (see Theorem 6.7). Thus, in the
case of “magic «,” the converse to [7] (hence the higher codimension generalization
of [13]) fails in the most spectacular way possible. We also show that, for any rec-
tifiable set E, the harmonic measure for magic « is a constant multiple of o (see
Corollary 6.10). This is surprising for two reasons. First, for the Laplacian in codi-
mension 1, under mild topological assumptions, the only set for which w = o is the
half-space (see [17]; here w is the usual harmonic measure for the Laplacian). Sec-
ond, there are very few situations in codimension 1 in which the Poisson kernel Z—g’ or
Green’s function can be precisely computed. Essentially only in the presence of lots of
symmetry (e.g., the ball) or where there is an explicit conformal transformation from
the ball (e.g., polygonal domains in R?) are the Poisson and Green’s kernels known.
Here, for magic o, we are able to compute Green’s function with pole at infinity for
any Ahlfors regular set and the Poisson kernel d(‘;‘g"" for any rectifiable set E.

We now expect that the situation for magic « is really exceptional, and hope to

make precise how this is so in future investigations.

2. The square function estimate for uniformly rectifiable sets
In this section, we prove the direct results concerning the USFE.

THEOREM 2.1
Let n > 2, let E C R" be a uniformly rectifiable set of dimension d <n (so d € N),
and let | be a d-Ahlfors regular measure whose support is E. Then for each > 0,
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D g satisfies the USFE. That is, if D, g is as in (1.3) and (1.5), and F is defined as
in(1.7), then (1.8) holds.

See Corollary 2.2 concerning another, roughly equivalent, function F. Notice that
we do not assume that d < n — 1 here, but we do not talk about the possible relations
with the operator L either.

The main outline of the proof is as follows. It is clear that F), g = 0 when v is
a multiple of Hausdorff measure restricted to a plane (we call these measures flat;
see (2.1) below). The key estimate (2.4) makes this quantitative: the size of F,, g
can be estimated by the distance between p and a well-chosen flat measure (this
distance is measured by the o numbers; see (2.3)). Tolsa’s characterization of uniform
rectifiability using o numbers finishes the proof.

Proof
Fix B > 0 and u as in the theorem statement. From now on, we will abuse notation
and refer to D, g as D (similarly for R and F'). Occasionally, we will have to work
with D, g for some other measure v. Here again we will suppress the dependence on
B and just refer to D,,.

Before we can introduce the key estimate alluded to above, we must introduce
the Wasserstein distances and «-numbers. Let us denote by ¥ = F; the set of flat
measures;

a flat measure is a positive multiple of the Lebesgue

measure on an affine d-plane. 2.1

We are interested in Wasserstein distances, which we define as follows. Given
two positive measures p and v and a ball B(x, r), we define Dy (i, V) by

Dxr(p,v) = pd-1 sup
feA(x,r)

/ Fldp—dv)). 2.2)
B(x,r)

where we denote by A(x,r) the set of functions f that are 1-Lipschitz on R” and
vanish on R” \ B(x,r). Notice that the normalization is such that Dy ,(u,v) < C
when p and v are Ahlfors regular, with a constant C that does not depend on x or r.
Let us note that we will not require (1, v to be probability measures, so it is misleading
to say that Dy , is a “distance.”

We are especially interested in the numbers

a(xar) = 1)12; ;Dx,r(:u"))y (23)

where x € R” and r > 0 are such that B(x,r) meets E. These “o-numbers” measure
the local Wasserstein distances from p to flat measures. In the context of quantitative
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rectifiability, these numbers were introduced and widely used by Tolsa (see, e.g., [23])
to create a theory for measures that is analogous to Jones’s S-numbers. We will use
the fact that (see [23]), for any uniformly rectifiable set, £ has Carleson measure
estimates on the a(x,7)? (see (2.5)).

We can now introduce the key estimate. Fix x € €2, set ro = §(x), and for k > 0,
let rx = 2%ro. We will prove that, for 1 <i <n,

10:(|V D)) = [0:(|[VD)[*) = 0: (VD (x)])]

= Co0)71 Y 27 a(y, 2 r), (24)
>0

for y € E N B(x,168(x)), and where v is a correctly chosen flat measure. The
first equality comes from the easy fact (proved below) that, for any flat measure v,
VD, (x)|? is constant.

Before we prove (2.4), let us see how the estimate implies the final result. Theo-
rem 1.2 in [23] says (among other things) that when E is a d -dimensional uniformly
rectifiable set and p is an Ahlfors regular measure whose support is E,

d d
a(x, r)ZM is a Carleson measure on £ x R, (2.5)
r
which means that, for X € £ and R > 0,
R
d d
/ / oz(x,r)2M <CR?. (2.6)
x€ENB(X,R) Jr=0 r

To be precise, in [23], the estimate (2.6) is not written in terms of the numbers
a(x,r)?, but numbers a(Q) indexed by dyadic pseudocubes Q C E; however, the
a(Q) and the a(x,r) mutually dominate each other for comparable values of /(Q)
and r, and it is a standard argument based on Fubini’s theorem to go from the condi-
tion of [23] to (2.6). We skip the computation because it is both easy and done in [5,
Lemma 5.9].

Notice that the function «(x,r) depends both on E and p, and (2.6) contains
information both on the geometry of E (the fact that it is close to a d-plane in most
balls) and on the distribution of w inside E. In fact, Tolsa’s result is already significant
when E =R¢ and du = f d A for some function f suchthat C™' < f < C.

Now we claim that the Carleson measure estimate (1.8) follows from (2.6) and
the key inequality (2.4); let us sketch this. First, we use the estimate (2.4) to estimate

f F2(X)8(X) "t dx
B(Q,R)

<C / 7[ a(Y,2°8(X))* du(y)s "+ ax,
B(Q,R) J B(X,166(X))NE
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where the a function represents the sum on the right-hand side of (2.4) (this notation is
from Lemma 5.89 of [5]). Using a Whitney decomposition of B(Q, R) and changing
the order of integration, we can dominate the above integral by a sum over dyadic
subcubes of £ N B(Q, 16R). Arguing as above or as in Lemma 5.9 in [5], we estimate

16R
/ F2(X)8(X)™4dx < / / a(x,26s)2M.
B(O,R) 0 B(Q,s) s

Finally, this last integral can be dominated by the one in (2.6) following the compu-
tation in Lemma 5.89 of [5].

Proving (2.4): To prove (2.4), recall that F = F, g from (1.7) and R = R, g
from (1.3); we will need to compute their derivatives. Set (z) = |z|~¢~#; this is a
smooth function on R” = R” \ {0}, and we denote by V/ its iterated gradient (i.e.,
the collection of all its derivatives of order j). Notice that R is smooth on €2, and

VR = [ V=) du(y) e
Next, D is smooth on €2, and
VD(x) = —%R(x)—%—IVR(x) (2.8)
and

1 2 1 2
IVD(x)|* = ER(X)_B_2|VR(X)|2 = FR(X)_F_ZZDJ-R(X)P (2.9)
J

and then
3;(|vD)|*) = —% 2 Jrﬁzﬂ R(x)TF 0 R(x) Y [, R(0)|
J
+ %R(x)—%—zZa,-R(x)a,-a,-R(x). (2.10)
J

The precise structure of (2.10) is not so important; it suffices that we can compute (and
bound) the errors we obtain from modifying the measure p more or less explicitly.

The computations above are simpler when F = F,, for a flat v; let v = /\Jf‘“} for
some A > 0. In this case,

Ry(x) = 11832 (x), @2.11)

where ¢; > 0 is a constant that depends on d and «, and §p (x) = dist(x, P). In this
case, (1.5) yields
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Dy(x) = c2A7 P 5p (x), (2.12)

with ¢; = cl_l/ﬂ. It follows that |[VDy|? = ¢2A7%/8, and 9;(|V D, (x)[>) = 0 for
1<i<n.

Our next goal is to estimate the differences |V/ R(x) — V/ R, (x)|, where j >
0 and v is a well-chosen flat measure. In turn, these will allow us to estimate the
difference 9; (|V D(x)|?) —3; (|VD,(x)|?). Given the complexity of (2.10), we expect
lots of terms, but they will all involve differences of the form |V/ R(x) — V/ R, (x)|.
We will start with the simplest case, j = 0.

Recall that x € Q, ro = 8(x), and, for k > 0, rp = 2Kry. Let ¢ be a (fixed)
smooth bump function such that 0 < ¢ <1 on R”, ¢ is radial, ¢ = 1 on B(0, 8rp),
@ =0 on R"\ B(0,16r¢); then let gy = ¢, and, for k > 1, let ¢ (x) = (2 ¥x) —
@(27%*1x) (so that ¢y is supported on A = B(0,25T4r0) \ B(0,2%*2r), where
Ao = B(0,167¢)). Note that Y, .o ok = 1.

Next, we will choose a flat measure v which is nearly optimal for the definition
of a(x,32ry). That is, we will let v = Ak‘%li’k for some A; > 0 and some affine
d-plane Py, so that, in particular,

C(l)x,32rk(/‘b’vk) S Ca(xa32rk)a (213)

where C depends on n, d, and the Ahlfors regularity constant for . As we shall
see, at points and scales where p is not well approximated by flat measures, rather
than choosing the measure vy which minimizes the right-hand side of (2.13), we will
prefer to make sure that we keep some control on A and the support of vy.

To pick the v, let ¢ > 0 be small, to be chosen later. If a(x,32r) < c, then
we just pick vg so that Dy 30, (1, Vi) = a(x,32rg). To see that such a minimizer
exists (and is nice), recall that u(B(x,2r¢)) > C _lr,f, by Ahlfors regularity; if ¢
is small enough, depending only on #, d, and the Ahlfors regularity constant for u,
then any flat measure 7 such that Dy 32, (1, 1) < 2a(x,32rr) must be such that
n(B(x,2r;)) > (2C)_1r,’3 (test (2.2) on a bump function centered at x). Hence (writ-
ingn= )te%’l‘f, as above),

PNB(x,2re)#9% and Cl<A<C. (2.14)

It is now easy to find a minimizing vy = Ay Jq”f,,k , where (2.14) holds for P, Ag. In
the remaining case where «(x,32r) > ¢, we do not complicate our lives, and pick
Vg = J€|L§)k’ where Py is any d -plane through B(x,2rt). Then (2.13) and (2.14) hold
trivially.

Set v =vg and P = Py. By the translation invariance of our problem, we may
assume that the origin lies in P N B(x,2rg) (this will simplify our notation, because

this way we do not need to translate our bump functions ¢y ).
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Recall that R, (x) = 01105?3 (x) by (2.11). Recall, furthermore, the notation in
(2.7). We want to estimate the difference

RG) — Ru(0)] = 3 / G Mh(x = dp—d|: @15
k>0 Ax

by (1.3), >"; ¢x = 1 and suppgx C A.

Notice that ¢ (y)h(x — y) is Lipschitz in y, with a constant at most Crk_d_ﬁ_l,
and it vanishes outside of B(0,2%%4ry) C B(x,25%7ry); thus, by (2.2) (applied with
CTr P g (h(x =) € A, 25rg)),

[ o =)@ =) =P Dy ). @16
k

For k =0, Dy px+5,, (1, V) = Dx, 320 (U, V) = Dx 327 (4, vo). For k > 1, we use
intermediate measures. We start with

°(Dx,2k+5r0 (/L9 V) = i)x,zk+5r0 (M’ Uk) + ‘Dx,2k+5r0 (Vk9 VO)

k
< Dy ity (1 Vi) + ) Drprsyg (viovien). (217)
I=1

where the triangle inequality comes directly from the definition (2.2). We claim that

°(Ox,2k+5r0(vlvvl—1) = COl(X,21+4Vo), (2.18)

because both measures v; and v;_; approximate u well in B(x, 2!+470). The general
idea is that since the two measures are flat measures associated to planes that pass
near x (i.e., (2.14) holds), a good control on B(x, 2145 ro) implies a good control on
B(x, 2k+5 ro). The proof is almost the same as for equation (5.83) in [5], so we leave
it.
We return to (2.15): use (2.13), (2.16), (2.17), and (2.18) to obtain
R = Ry()| =€ r? 3 ax.25r0) <€ r P a(x,2'+0r). (2.19)

k>0 0<l<k >0

Notice that a(x,2/T5rg) < 29+1a(y,2!%5ry) for every y € B(x,16r¢), just by
(2.2), (2.3), and because B(x,2'T%rg) € B(y,2!*%r¢) and hence A(x,2'*5ry) C
A(y,2l+6r0) (recall, from (2.2), that A(x,r) is the set of functions f that are
1-Lipschitz on R” and vanish on R” \ B(x,r)). Thus,

|R() = Ry()| < C > rPau(p.2"0rg) = Crg? S 27Pla(y, 21+6ry)
=0 1>0

=C8(x) Py 27 Pla(y. 2! r) (2.20)
>0

for y € B(x,16ry).
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This was our estimate for R, but we have a similar estimate for the iterated
derivatives of R. That is, we start from (2.7) instead of (1.3), and observe that we
can compute as above, with an extra |x — y|=/, which transforms into an extra
- I <cs (x)~/ in the estimates below. This yields

V7 R@) = V7 Ry ()| = | [E VI h(x = y)(dp — dv)()

< C8(x) Py 2Bl (y, 21 6y) (2.21)
>0

for y € B(x,165(x)). Observe also that a direct estimate with (2.7) yields
|V/R(x)| < C8(x)™P~. (2.22)

Let us check that if we pick Py, our initial plane, correctly, then we have a similar
estimate for R, g, that is,

[V/ R, (x)| < C8(x) P~ (2.23)

Recall from the discussion below (2.13), we choose vg such that Dy 32, (1, Vk) =
a(x,32rg9) when a(x,32rrr) < c. In this regime, we claim that, perhaps by choosing
c alittle bit smaller, the following inequality holds:

dist(y, E) <10 1ry for y € Py N B(x, 167p). (2.24)

Otherwise, pick y € Py N B(x, 16ry), at distance at least 10~ from E, and choose
a Lipschitz bump function f, supported in B(y,2-1072r¢) so that £ = 1072rg on
B(y,1072ro) and f is 1-Lipschitz. Then (2.2) yields | [ f(du — dvo)| < crd ™,
while [ fdpu = 0 (because E does not meet B(y,2-107%rp)) and [ f dvo >
10 2rgv(B(y,Ttro)) > C_lr(‘)’l+1 by (2.14) and because y € Py. If we take ¢ small
enough, then we get a contradiction that proves (2.24). We deduce from this that

|y—x|2%0 for y € Py, (2.25)

because either y € B(x, 16rg) and we use the fact that 107 !rg (zg) dist(y, E) >
dist(x, E) — |y — xo| =ro — |y — Xo|, or else |y — x| > 167y anyway.

When «(x,32rg) > ¢, we decided to pick any d-plane through B(x,2r¢), and
we simply make sure that (2.25) holds when we do this. Once we have (2.25), (2.23)
easily follows from (2.14) and the usual computations.

We may now return to our original formula (2.10). It says that 9; (|V D (x)|?) is a
sum of 2n terms, and we claim that because of (2.22), each of these terms is bounded
from above by C8(x)~!.
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Indeed, if we did not have any derivatives, then we would simply obtain
CR(x)_% = CD? < C§(x)? by (1.5) and (1.4). But we have three additional deriva-
tives, which give an extra §(x)™3. Altogether, the brutal estimate is |3; (|V.D(x)|?)| <
C8(x)~!. By (2.23), we would have the same estimate when we replace R with R, g
in some places. Now we need to estimate 9; (|VD(x)|?) — 9;(|V D, g(x)|?), which
is a sum of terms like the above, except that now one of the terms of each product
is replaced with the corresponding difference involving |V/ R(x) — V/ R, 5(x)|. We
use (2.21) for this difference (which allows us to multiply the estimate by a sum of
a-numbers), keep the same estimates for the rest of each product, sum everything up,
and obtain that

0:(|[VD)|*)| = [0: (VD)) = 8 (| Dy g ()] )]

<C8(x)™ Y 27Dl (y 26 ry),
>0

for y € B(x,168(x)). This is (2.4), the desired result. O

The attentive reader may ask why we raise |V D| to the second power in the defi-
nition of F (see (1.7)). Indeed, this is done mostly for aesthetic reasons (mainly so that
(2.10) does not look so nasty). In the following corollary, we show that our result still
holds if F is replaced by F (which is the same except that we do not square |V D).

COROLLARY 2.2
Theorem 2.1 is still valid when we replace F(x) with

F(x)=8(x)|V(IVD|)(x)]. (2.26)

Proof

Noting that [VD| = ([VD|*)1/2, we see that F(x) = 1F(x)|VD|™!, at least for x

such that VD(x) # 0. Let C; > 0 be large, to be chosen later (depending on 7, d,

and the Ahlfors regularlty constant for p), and set Z = {x € Q;|VD| < C[ l} It is

enough to control F (x)l z(x), because we can use Theorem 2.1 for the rest of F.
Even on Z, F is not as large as one may fear; for 1 <i <n,

2
9,09 D)) = |24 (VIVDP) ] = 5| 2T 2D

2 [VD(x)|

_ )8,‘VD(X) -VD(x)

2 -1
IVD()] = |V2D(x)| = C5(x) 2.27)

by brutal computations, and at the end, (2.8) and (2.22). In particular, this implies that
F is bounded uniformly on Z:

|F(x)| =8(x)|V|VD)||<C, VxeZ. (2.28)
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In addition, we claim that Z itself is not large. Indeed, let x € Z be given; recall
the notation used in the proof of Theorem 2.1, specifically that v is a well-chosen flat
measure so that D, g(z) = cz)to_l/ﬂSP (z). Hence, by (2.14), [VD, g(x)| = C~! and,
by (2.8) (and (2.25)),

VR, 5(x)| = CT Ry 4 (x) 5+ = C15(x) 1. (2.29)
On the other hand, [VD| < C{ ! by definition of Z; hence, by (2.8) again,
IVR(x)| < CC R(x) ! < CC71o(x) 1. (2.30)
If we choose C; large enough, then we deduce from equations (2.29) and (2.30) that
|VR, (x) — VR(x)| = c§(x)""F (2.31)
for some ¢ > 0. Then by (2.21) (with j = 1),

ZZ_(ﬂ+j)la(y,2l+6ro) >C~" forye B(x,165(x)). (232)
>0

But we have seen earlier that the work of Tolsa [23] gives a Carleson estimate on
the square of the sum (over dyadic cubes) of the left-hand side of (2.32) (see the
discussion right before the beginning of the proof of (2.4)). This Carleson estimate
implies by Chebyshev (and the same computations using Fubini that lead from (2.6)
to (1.8); see the two paragraphs after (2.6)) that Z is a Carleson set. That is, there is a
constant C > 0 such that, for X € £ and R > 0,

dp(x) d
< CR*“. (2.33)
/B(X,R)mz §(x)n—4

This immediately leads to a Carleson bound on F |z,

~ d ) d
/ |[Foo P 220 ez / 2 _cpa a3
B(X,R)NZ 8(x)"— B(X,R)nz  O(x)"~
This completes the proof of Corollary 2.2. O

3. E is flat when |V D| is constant on 2
To prove the converse to Theorem 2.1 (and later in Section 5 to study nontangen-
tial limits), we first prove the “limiting result”: if F vanishes, that is, if |[V.D,, g| is
constant, then © must be supported on a plane.

More precisely, we show in this section that in this case D, g is a multiple of d,
E is a d-plane, and j is a multiple of #¢|g.
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We learned while writing the paper that a subset C of a Banach space X with
the property that, for every x € X, there is a unique closest point ¢ € C to x is called
a Chebyshev set. Chebyshev sets are well studied (see the survey [2]), and it is an
old theorem, attributed to Bunt, that every Chebyshev set in Euclidean space is con-
vex (see Theorem 13 in [2]). Invoking this result would allow us end the proof of
Theorem 3.1 after (3.5). However, we include the whole argument for the sake of
completeness. As an aside, it is apparently an interesting open question as to whether
every Chebyshev set in a Hilbert space is convex.

THEOREM 3.1

Let E be a closed set in R", and let D be a continuous nonnegative function on R",
which vanishes on E, is of class C' on Q = R" \ E, and such that |V D| is positive
and constant on every connected component of Q2. Then E is convex. If, in addition,
[VD|=1o0n R, then D(x) = dist(x, E) for x € R".

Theorem 3.1 is stated as is so that we may apply it easily in the proof of Corol-
lary 3.2. However, the discerning reader will notice that the theorem is really the
combination of two separate facts: first, that a C! function vanishing on E with
constant derivative on a connected component of R”\ E is a constant multiple of
dist(x, E) on that component, and second, the fact—mentioned in the Introduction—
that if dist(x, £) is C! in R*\ E, then E is convex.

Note that the function D in Theorem 3.1 is not necessarily of the form D, 4
defined in (1.3). However, we will eventually apply the theorem to exactly those func-
tions.

Proof

We start with the assumption that |V D| = 1 on some connected component 2 of 2.
Observe first that D(x) > 0 on 2, because of our assumption that |V D| # 0 (and
that D > 0). We may of course assume that ¢ # @. In our main case, when E is
Ahlfors regular of dimension d <n — 1, Q2 = R"\ E is connected and dense in R”,
so Qo = 2.

Set v(x) = VD(x) on Qo; this is a C° vector field that does not vanish, and
we can use it to define a flow. That is, given x € Q¢, we can define ¢(x,-) to be the
solution of the equation % = —v(¢@(x,1)) such that ¢(x,0) = x, which is defined
on a maximal (open) interval /(x). By the chainrule (and |VD| = 1), 9; D(¢(x,t)) =
—1 for ¢ € I(x). Integrating this, we note that D(¢(x,t)) = D(x) —¢ for ¢t € I(x).

This solution can be extended as long as ¢(x,?) stays in Q (equivalently, Q2y),
which means at least as long as D(¢(x,?)) > 0. So [ contains [0, D(x)), and
lim;4 px) D(p(x,1)) = 0 = ¢(x, D(x)) € E. To be precise, while the flow cannot
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be extended naturally to time ¢t = D(x), the limit p(x) = lim;4 p(x) ¢(x, ) exists and
p(x) € E.
Since § and ¢(x,-) are 1-Lipschitz, ¢t — §(¢(x,t)) is 1-Lipschitz, and

8(x) =8(p(x,0)) < D(x) + tTl})rI(lx)S(w(x,l)) = D(x). (3.1)

On the other hand, if ps(y) is a point of E that minimizes the distance to x, then
the bound on the gradient of D implies that

D(x) =|D(psx)) — D(x)| < | psiry — x| = 8(x),

where the first equality follows from the continuity of D at pg(x). That is, not only
did we prove that

8(x) = D(x) forx e, (3.2)
but we also learned that the flow follows straight lines. More precisely, setting
Iy ={o(x,1):0 <t < D(x)}, (3.3)

we know that the length of 'y is D(x) = 8(x), and since |p(x) — x| > 6(x) by def-
inition of §(x), the fact that Iy goes from x to p(x) and has a length D(x) implies
that it is the line segment [x, p(x)).

Let us pause to point out that we have already proved the second conclusion of
the theorem: that if |V D(x)| = 1, then D(x) = dist(x, E). To prove the first part of
the theorem, it will suffice to show that

p is 1-Lipschitz on Q. (3.4)

Indeed, if we know (3.4), let us assume for the sake of contradiction that £ is not
convex. In particular, let points a,b € E be given, with b # a such that there exists
an x € (a,b) (the open line segment between a and b) that does not lie in E. Let
Q2 denote the connected component of €2 that contains x, and define p on 50, as
above (if |[VD| =c¢ # 1 on Q¢, then we can always consider D/c without losing
generality). Denote by /o the connected component of (a,b) N Q2 that contains x;
this is an interval (a’, ") C (a,b), which is contained in Q¢ (because it is connected
and contained in ), and a’, b’ € E. By (3.4), the length of the arc p([p) is at most
|b" —d’|, and since p is the identity on E (this follows from |p(x) — x| = §(x) and
p continuous on Qg), we obtain that p(Iy) = (a’,b’). In particular, x € p(Iy) C E,
which is a contradiction.

For the remainder of the proof we study p, aiming toward (3.4). We first check
that p(x) is the unique closest point in £ to x.
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Observe that VD (x) = _&33\ for x € Q. This is, for instance, because Ty
has a tangent at x that points in the direction of —v(x) = —V D(x). But I'; also points

in the direction of p(x) — x, since I'y = [x, p(x)). Let us deduce from this that
ly — x| > 8(x) foryeE\{p(x)}, (3.5

that is, that p(x) is the only point of E that realizes the distance to x. Indeed, let
y € E be such that |y — x| = 8(x), and observe that along [y, x] the function D(§)
goes from 0 to §(x); since D(x) is 1-Lipschitz and the length of the segment is §(x),
integrating d; D((1—1)y +tx) from¢ = 0 to ¢t = 1 implies that (VD (§), ﬁ) =—1,
for all £ € [x, y). Therefore, Iizil also points in the direction of —v(x). We conclude
that y — x and p(x) — x are two vectors which point in the same direction and have
the same length, hence y = p(x). The claim, (3.5), follows.

Let us extend p to Qg by setting p(x) = x when x € E. We claim that p is
continuous on . Indeed, if {x;} in Q¢ converges to x, then the sequence {p(xx)}
is bounded (because |p(xx) — xx| = 8(xx)), and it is easy to see that any point of
accumulation y of this sequence is such that |y — x| = limg_ 400 | p(xk) — Xk | =
8(x), hence is equal to p(x). That is, { p(xr)} converges to p(x), as needed for the
continuity of p.

To prove the higher regularity of p, we start by showing that if L4 (p(x),x) is
the closed half-line that starts from p(x) and contains x, then

Ly(p(x).x) C QU {p(x)} and

(3.6)
p(y)=px) foryeLi(px).x).

To prove the first part of (3.6), first note that the half-open segment [p(x), x)
cannot contain a point in E (other than p(x)), otherwise that point would be closer
to x than p(x) is. Later in this argument we will show that the rest of L (p(x),x)
also cannot contain a point in £, which will complete the proof that L (p(x), x) C
Qo U{p(x)j.

Note that if y € [p(x), x], then p(y) = p(x) is immediate by the uniqueness of
C9 vector flows; that is, y = ¢(x, ) for some ¢ € (0, D(x)], and therefore ¢(y,s) =
o(x,t + ) for all s € [0, D(x) —¢] = [0, D(y)]. But, as we have seen above, the
point where the flow starting at y hits E is, by definition, p(y). This implies that
p(y») =9¢(y.D(y)) =¢(x,D(y) +1) = ¢(x, D(x)) = p(x).

To prove (3.6) for y € L+ (p(x),x)\[p(x), x] we must reverse the flow. For x €
Q9, we define ¢4 (x, -) to be reverse flow of ¢; that is % = v(p4(x,1)), with the
initial value ¢+ (x,0) = x. This function is defined on an interval /4 C [0, +00), and
since we can check as we did for ¢ above that D(¢+(x,7)) = D(x)+¢t > D(x) >0
for ¢ € I(x), and that we can extend the solution as long as ¢ (x,1) € Qo, it follows
that 7(x) = [0, +00).
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Let x € Q¢ and ¢y > 0 be given, and set y = ¢ (x, #9) (note that D(y) = D(x) +
to > 0so y ¢ E). Notice that ¢4 (x,t0 —t) = ¢(y,t) for 0 <t <1y, because ¢4, ¢
come from reverse flows. This implies that x € I', (recall the notation from (3.3)).
But we know that I', is a straight line from y to p(y). From this, p(y) = p(x)
immediately follows; indeed, if p(y) € (p(x), x], then 6(x) < |p(y) — x| < |p(x) —
x|, which is a contradiction. Similarly, if p(x) € (p(»), y], then the second part of
(3.6) follows. Note that we have also shown that the whole ray L (p(x), x)\[p(x), x]
is contained in the image of the flow of # > ¢ (x,?). Since D(p4+(x,t)) > D(x) >
0, this image is contained in €2, which finishes the proof that L (p(x),x) C Q¢ U
{p(x)}.

For x € Qg, denote by P (x) the hyperplane through p(x) which is orthogonal to
x — p(x). Then let H(x) denote the half-space on the other side of P(x). That is, set

H(x)={z eR"(z,x — p(x)) < (p(x).x — p(x))}. 3.7

We claim that £ C H(x). To check this, we may assume that p(x) =0 and x = Ae,,
where e, is the last element of the canonical basis and A > 0. By the discussion above,
p(tey) = 0 for every ¢t > 0, and this means that ¢ = dist(te,,0) < dist(ze,,z) for
every z € E. Write z = ae, + v, with v L e,; then dist(te,,,z)> = |(t —a)e, —v|* =
(t —a)? + |v|? and we get that 12 < (t —a)? + |v|?. We let ¢ tend to +o0 and get that
a <0, hence (z,x — p(x)) ={(z,x) =al <0={p(x),x — p(x)), which means that
z € H(x), as needed.
We now turn to (3.4). Let x, y € Q¢ be given; we want to prove that

|p(x)—py)| <Ix—yl. (3.8)

Without loss of generality, we may assume that p(x) = 0 and x = Ae, for some
A > 0. We have two inequalities that we can use, one from the fact that p(y) € H(x)
(because p(y) € E), which says that

(p(»).x) =0, (3.9)

and similarly another from the fact that 0 = p(x) € H(y), that is, 0 = (p(x),y —
p() <{(p(),y — p(y)), or equivalently

(P, )= P[> (3.10)

Write y = e, + yo for some yq € e,}, and first assume that p < 0. Replacing x with
0 diminishes |x — y| but does not change |p(x) — p(»)|; thus it is enough to prove
(3.8) for x = 0. That is, we just need to show that | p(y)| < |y|, which follows from
(3.10) and Cauchy—Schwarz.

So we may assume that u > 0. Replacing x with pe, diminishes |[x — y| but
does not change |p(x) — p(y)|, so as before we may assume that A = . That is,
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y = Aey + yo. Now write p(y) = ae, + byo + z, witha,b e Rand z € e,ﬂ- n yé‘.
Then a < 0 by (3.9) and because A > 0, (3.10) yields

xa +blyol> =y, p(1) = |p)|° = a® + b2|yo? + |2 3.11)
Now

1) = pO)* = [p()|* < Aa + blyol? (3.12)

and for (3.8) we just need to know that Aa + b|yg|? < |x — y|?> = |yo|?. Since a <0,
we just need to check that b < 1 or yo = 0. We return to (3.11), which says that

b(b—1)|yo|* <ra—a®*—|z|%. (3.13)

The right-hand side is nonpositive, so yo = 0 or else b(b — 1) < 0; this last case is
impossible if b > 1, so finally (3.8) holds and p is 1-Lipschitz. O

Notice that there is a (less interesting) converse. If E is convex and D(x) =
dist(x, E), then D is 1-Lipschitz, the point p(x) € E such that |x — p(x)| = D(x) is
unique, and it is not so hard to check that VD (x) = — |§E§§:§| and so |[VD(x)| = 1.

We now apply Theorem 3.1 to the situation where D = D, 4 is defined by (1.3).

COROLLARY 3.2

Let 0 < d < n, and let u be a d-dimensional Ahlfors regular measure supported on
the closed set E C R". Suppose that for some o > 0, the function D, o defined by
(1.3) and (1.5) is such that on Q =R" \ E, |V D, o| is locally constant and positive.
Then d is an integer, E is a d-plane, and the density of . with respect to ‘%IGIIE is
constant. If d <n—1, then there is a constant ¢ > 0 such that D, o (x) = c dist(x, E)
for x € Q.

Proof
Let u, E, and « satisfy the assumptions, and let D = D, ,. We observed earlier that
D is smooth on €2, and by (1.4) it is equivalent to § on €2, hence has a continuous
extension to R” such that D(x) = 0 on E. Then on each connected component of 2
there is a constant ¢ > 0 such that ¢! D satisfies the assumptions of Theorem 3.1;
hence, E is convex and D is a constant multiple of § on each of the connected com-
ponents of €2 (at the end of this proof we show that the constant multiple must be the
same on each component).
Next we check the geometric fact that if d < n and E is a convex Ahlfors regular
set of dimension d, then d is an integer and FE is a subset of an affine d -space.
Denote by m the smallest integer greater than or equal to d. That is, m = d if
d is an integer, and m = [d] + 1 otherwise. First we check that m = d (and d is an
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integer). Suppose that 0 € E. It is easy to find m + 1 independent points in E, that
is, points Xy, ..., X, € E that are not contained in any (m — 1)-plane (a d-Ahlfors
regular set cannot be a subset of an (m — 1)-dimensional plane since m — 1 < d).

Since FE is convex, it contains the convex hull of the m + 1 points above, and in
particular it contains an m-disk A. This forces d > m, and hence d = m. In addition,
let P denote the affine d -plane that contains A; notice that £ C P, because otherwise
E contains a (d + 1)-disk (by convexity again), and cannot be Ahlfors regular of
dimension d.

We want to show now that E is all of P. We will show a slightly more general
statement, that if d <#n and E is a convex, d-Ahlfors regular subset of a d-plane
P CR”, and if §(x) = dist(x, E) is of class C? on all of R*\ P, then E = P. Since
in the present situation D = ¢§ and D € C*°(R"\ E), we will conclude that £ = P.

To see this, assume that £ # P and, without loss of generality, that zero is a
boundary point of E, considered as a subset of P. That is, 0 € E (because E is
closed) and every ball around zero contains a point in P\E. Let C be the set of
points e such that Ae € E for some A > 0. Since E is convex and contains zero, C is
also the set of points e such that Ae € E for A > 0 small, and then C is a convex cone.
Next let e lie in the interior of C; such a point exists because E contains an m-disk
A (as above), and —e; ¢ C because otherwise zero would be an interior point of E
(note that if —e; € 0C, then we can perturb e; slightly to e; € C such that —e, € C,
which still gives a contradiction).

Let e, be a unit direction which is normal to P; we claim that § is not C2 in the
direction e at the point e,. For small € > 0, we have €e; € E; this is the definition
of C. Thus 6(€e; + e3) = 1 for all small enough positive € > 0, and consequently,
0e,0(cey + e2) = 8?1615(&1 + e5) = 0. On the other hand, the fact that —e; ¢ C
implies that there exists some 6 > 0 such that e; - x > —(1 — 0)||x|| forall x € E (6
depends on the distance between —e; and C). Let x, be the closest point in E to the
point e; — €eq; then

§%(ey —€e1) = lxe —ex + 681“2 =1+e2+ ||x€||2 + 2¢(er, Xe)
2
>14+ (||xe|| —e) + 2€0 || x|l

After analyzing two cases, depending on the relative size of ||x¢| and &/2, we find
that

§(ez —e€eq) =14 ce.

Let Me = sup;¢pg ¢] |8§1e1 8(ex —tey)|. If we assume that 9., § is continuous at e,

(i.e., that d¢, 8(ez) = 0), then by the Taylor remainder theorem:

1+ ce? <8(ex—eer) <1+ M.



SQUARE FUNCTIONS IN CODIMENSION LARGER THAN 1 23

This implies that lim¢ o M, > ¢ which in turn implies that § is not C 2 at the point e5.
This contradicts the initial assumption that £ # P.

We are left to prove the final claim: that 4 must be a constant times H9|p.
Assume without losing generality that O € P is a point of density for u, with density
co > 0 (clearly everything is invariant under translation, but ¢y may depend on the
point O € P). For r | 0, define the measure y supported on P by ux(S) = %.

k
Note that py is still a d-Ahlfors regular measure supported on P. It is then easy to
see that i — coH?|p weakly as measures. By changing coordinates, y = ryz, it is
also clear that

_ dp(y) NV (1 dp(rgz) \=He
Dya(rix) = (/P W) - (@/PW)

=rDy, a(x), VX eR"\E.

Since Dy, q(rgx) = c8(rrx) = crid(x) for some ¢ > 0 (which may depend on the
component of 2 containing x), it follows that D, 4(x) = ¢§(x). Letting k — oo
and using that g — co#?|p, we obtain that D ysed|p o(x) = c8(x). However, by
(2.12) for each ¢ > 0 there is only one ¢ > 0 for which Dz ga|, o(x) = c8(x). This
implies that co = T, that is, that the density of & with respect to #?|p is the same at
all points of density in P. In addition, u is independent of the connected component
of € that contains x and thus the constant c is the same for all connected components
of Q. Therefore, ;1 = ¢#?|p and we are done. O

Readers familiar with the concept of tangent measure will note that we essentially
analyzed the tangent measures of y at x¢ to obtain that u has constant density with
respect to ¢ | p. This analysis was particularly easy in the case above, that is, when
W is an Ahlfors regular measure whose support is a d-plane. Later, in Section 5, we
will need to understand the behavior of D (x) as x — E for more complicated
sets E. In that section we will treat the concepts of tangent measure and blowup with
more care and comprehensiveness.

4. A weak USFE implies the uniform rectifiability of £

In this section, we use the “endpoint result” of Section 3 to prove a (a priori slightly
stronger) converse to Theorem 2.1 and Corollary 2.2. Let us note that, throughout this
section, d is not assumed to be an integer (but will be forced to be so a posteriori).

THEOREM 4.1
Letn > 1 be an integer, and let 0 < d < n be given. Let |4 be a d -dimensional Ahlfors
regular measure supported on the closed set E C R". Let o > 0 be given, and define
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R=Ru4 D=Dyo F=Fug and F = F,q by (1.3), (1.5), (1.7), and (2.26),
respectively. For ¢ > 0, set

Z(8)={X€Q;F(x)>8} and Z(s)z{er;F(x)>e}. 4.1)

If for every e > 0 Z(¢) or Z(s) is a Carleson set (see Definition 1.3), then d is an
integer and E is uniformly rectifiable.

Notice that the USFE (applied to either F or F ) implies the Carleson condition on
Z(¢) (resp., Z (&)) in the statement, by Chebyshev; thus we will refer to the condition
that Z(¢) (or Z(e)) is a Carleson set as the weak USFE.

As is always the case with these types of results, what we will prove is that there
is a constant g9 > 0 that depends on n, d, «, and the Ahlfors regularity constant
for p such that if Z(eg) or 4 (&9) is a Carleson set, then d is an integer and E is
uniformly rectifiable. But this is not such a useful difference anyway, since g9 comes
from a compactness argument and cannot be computed. However, it does mean that
one should not be concerned about the constants associated to the Carleson set Z(¢)
potentially blowing up as ¢ |, 0.

Before beginning the proof of Theorem 4.1, let us first check that it is enough
to prove the theorem for Z. Indeed, recall from (1.7) and (2.26) that F(x) =
§(x)|[V(IVD[?)(x)| and F (x) = §(x)|V(]VD|)(x)|. Thus, as observed at the begin-
ning of the proof of Corollary 2.2, F < 2|VD|F. By (2.8), (1.4), and (2.22) (note
that this last estimate, while presented in the context of Theorem 2.1 uses only the
d -Ahlfors regularity of u),

IVD|(x) < CR(x)"# ' |[VR(x)| < C5(x)'**|VR(x)| < C. 4.2)

So F(x) < CF(x). If F(x) > &, then F(x) > ¢/C. That is, Z(s) C Z(g/C). If
Z (¢/C) is a Carleson set, then Z(¢) is a Carleson set, and if we know the result for
Z , then we can deduce the uniform rectifiability from this and get the result for Z.

To prove the result for Z, we will show that the weak USFE (i.e., the condition
that Z(¢) is a Carleson set) implies that d is an integer and E satisfies the condition
known as the bilateral weak geometric lemma (BWGL). The BWGL property, along
with Ahlfors regularity, characterizes uniform rectifiability and so this will complete
the proof. Let us quickly recall what the BWGL is (for a more comprehensive intro-
duction to this and other characterizations of uniform rectifiability, see, e.g., [9]).

Recall the local normalized Hausdorft distances dy , defined for x € R” and
r > 0by

1 —
dyr(E, F) = —(sup{dist(y, F);:y € E N B(x,r)}
r

+ sup{dist(y, E);y € F N B(x,r)}), (4.3)
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where E, F are closed sets that meet B (x, r) (we will not need the other cases). Using
this distance for an integer d > 0, we can define a bilateral d-dimensional version of
Jones’s f numbers in [15], which we denote S (x,r), as

Bp(x,r) Eigfdx,,(E,P), (4.4)

where the infimum is taken over all affine d-planes P that meet B (x,r). These num-
bers measure, in a two-sided way, how close the set E is to being flat at the point x
and scale r > 0. We can now state the BWGL.

Definition 4.2

Let £ C R” be a closed set, let d be a positive integer, and let 55 (x,r) be defined
with respect to E as in (4.4). Then E satisfies the condition known as the bilateral
weak geometric lemma (BWGL) if the set R(7) defined by

R(r) = {(x,r) € Ex(0,4+00); Bp(x,r) > r} (4.5)

is a Carleson subset of E x (0, 4-00) for all 7 > 0. Recall that any § C E x (0, +00)
is a Carleson subset of E if there exists a C > 0 such that, for all X € R” and R > 0,

/ / 1g(x,r)
x€ENB(X,R) Jre(0,R]

It is proved in [8] that if E is Ahlfors regular (of some integer dimension d) and
satisfies the BWGL, then it is uniformly rectifiable (see also [9, Theorem 1.2.4] for the
statement). In fact, it is enough to show that R () is a Carleson set for a single t > 0,
sufficiently small depending on the dimensions and the Ahlfors regularity constant
for E (see [9, Remark I1.2.5]).

To show that the BWGL holds, we will first replace the Z(¢)’s with other similar
sets B(n), which also satisfy a Carleson condition when the Z(¢)’s do, and which are
more amenable to a later compactness argument that will invoke Corollary 3.2.

d
M < CR4. (4.6)
r

LEMMA 4.3

Letn >2,d <n, and let E C R"” support a d-Ahlfors regular measure 1. For M > 1
(a large constant, to be chosen later) and x € Q2 = R"\E, define a big (Whitney)
neighborhood of x as

W(x) = Wa(x) ={y € QN B(x, M§(x));dist(y, E) > M~'8(x)}. 4.7
Define the bad set B(n) = B (n) by

Bu () ={x € Q; F(y) = 1 for some y € Wy (x)}. (4.8)
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With this notation, if Z(¢) is a Carleson set, then for each large enough M, Bps(3¢)
is a Carleson set as well.

Thus, with our assumption that the weak USFE holds, each 8y (n) is a Carleson
set.

Proof
This will be a relatively simple covering argument. Let 7 € (0, 1) be small, to be
chosen later (depending on ¢). We define a very dense collection H, of points in €2,
which is a maximal subset of Q with the property that |x — y| > t max{8(x),8(y)}
when x, y € H; are different.

The net H; is useful because F varies so slowly. Indeed, recalling the estimates
below (2.25), 8(x)"' F(x) = |V(IVD(x)*)| < C8(x)~". The same argument, still
based on the formula (2.10) and the estimate (2.22), yields

[V(8(x)™'F)|(x) = C8(x)~2. (4.9)

Let us use this to check that if t is small enough (depending on ¢), then

|F(x)— F(x')| <& forx,x’ € Q such that |x" — x| < 478(x). (4.10)

First observe that §(x’) > §(x) — |x’ — x| > (1 — 47)8(x) > §(x)/2 and in fact
8(x)/2 < 8(z) <28(x) for z € [x,x’]. Then, setting G(x) = §(x)~! F(x) just for the
sake of the computation,

|F(x)— F(x))| = |G(x)8(x) — G(x")8(x")|
<8(x)|G(x) — G(xX")| + G(x')[8(x) — 8(x")|
< C()[|x" —x[8(x) 2] + G(x)|x' — x| < C|x' — x]8(x)~"
<Crt<g, 4.11)

where we used (4.9) and the fact that G(x") = §(x') "1 F(x") < C8(x’)~! by the esti-
mate above (4.9). So (4.10) holds.

Now let x € B(3¢) be given. This means that we can find y € Wjs(x) such that
F(y) = 3e.

By maximality of H;, we can find z € H; such that |z — y| < tmax{§(z),d(y)}
(otherwise, add y to H;). If 7 is small enough, then the triangle inequality yields
8(y) <28(z) and so |z — y| <278(z2).

If 7 is small enough, then (4.11) implies that F(z) > 2¢. In fact, this stays true
for all w € B(z,78(z)). Notice also that since y € Wy (x), 2M)~18(z) < 8(x) <
2M§(z), and also |x — z| < 2M §(x) < 4M?8(z). In short, x € V(z), where

V(z) ={x € QN B(z,4M?§(2));8(x) = 2M)~'8(z)}.
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We are ready for the Carleson estimate. Recall (2.33), and set do(x) =
§(x)™"*4 dx; we need to show that

AX,R):= / do(x) <CR? (4.12)
x€QNB(X,R)NB(3¢)

for X € E and R > 0. Let X and R be given. Observe that if x € Q N B(X,R) N

B(3¢), then any point z € H, constructed as above lies in H,; N B(X,3MR), because

|z — x| <2M§(x) and 6(x) < |x — X| < R. Furthermore, the argument above tells

us that every x € Q N B(X, R) N B(3¢) isin V(z) for some z € H(t, X, M, R,¢) =

{ze H.N B(X,3MR); F(z) > 2¢}. Thus

A(X,R) < > /V()do(x)fc > 8(z) ™" |V (2)]

zeH(t,X,M,R ) zeH(t,X,M,R¢)

<C > §(z)¢ <C > o(B(z,78(2)/10))

z€H(t,X,M,R ¢) zeH(t,X,M,R¢)

< Co(Z(e) N B(X,4MR)) < CR?, (4.13)

by definition of o (for the second inequality) and the fact that V(z) C B(z,4M?8(z))
(for the third one), and then because o (B(z,18(z)/10)) = C18(z)? and the balls
B(z,18(2)/10) are disjoint by definition of H, and then finally (for the last line)
since each B(z,t8(z)/10) is contained in Z(¢) N B(X,4MR), and by our Carleson
estimate assumption on Z. The lemma follows. O

As mentioned above, the set By (3¢) is defined in the right way to make it
amenable to a compactness argument. In the following lemma we will show that if x
is not in Bjs(3¢), then the set E is relatively flat in a neighborhood of x of radius
comparable to §(x).

LEMMA 4.4

For each choice of 0 < d < n, a > 0, an Ahlfors regularity constant Cy, and constants
n > 0 (small) and N > 1 (large), we can find M > 1 and & > O such that if yu is Ahlfors
regular (of dimension d, constant Cy, and support E CR"), and if x € Q \ B (3¢),
then d is an integer and there is a d -plane P such that dy ys)(E, P) <.

More explicitly, if d is not an integer, then we can find M and ¢ (depending on
d too) such that Q2 \ B,s(3¢) is empty.

Proof
We will prove this by compactness. Thatis,let 0 < d <n, Cy, >0, N,and n > 0 be
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given, and suppose that, for each k > 0, there is a set E, a d-Ahlfors regular measure
g with constant Cy and whose support is Ex, which provide a counterexample with
My =2k and g = 27%. That is, let Fj be defined as in (1.7) but adapted to Ey,
i, and o. We assume that there are points x; € Q2 = R"\ E that do not lie in the
corresponding bad set Bfl’,‘( (3er), that is,

Fe(y)<27*

for all y € Qx N B(xk, 258k, (xk)) with 8, (v) = 2758k, (k). (4.14)

and yet for which the conclusion does not hold. That is, either d is not an integer, or
d is an integer but there is no d-plane Py such that dy, n5(x, ) (Ek. Pr) < 1. We want
to reach a contradiction.

By translation and dilation invariance, we may assume that x;z = 0 and
8k, (xx) = dist(0, Ex) = 1. We use the uniform Ahlfors regularity to replace
{(Ek,px)} with a subsequence for which pj converges (in the weak sense) to
an Ahlfors regular measure (oo, and E converges (in the Hausdorff distance sense)
to a closed set Eo (locally in R™). It is also easy to check that E is the support of
Moo and that (i is d -Ahlfors regular with a constant that depends only on Cy and n.
For more details (albeit in a slightly less general context), see the discussion before
Lemma 5.1 below.

Additionally, R, .« = Ry, (uniformly on compact sets of Qo = R"\Eo)
and similarly for D, o and its derivatives. This follows from the weak convergence
of the j1x (actually a little work is necessary as 3/ i(x — y) is not compactly supported,
but one can argue exactly as in Lemma 5.1 below). Because of this, and with hopefully
obvious notation,

Foo(y) = kEToo Fr(y) (4.15)

for every y € Qoo.

Let Wi = W,k (0) be as in (4.7) but associated to the set E. Clearly, any y € Qo
lies in W for k large, and so, by assumption, Fi (y) < 2% for k large. Taking limits,
(4.15) implies that Foo (y) = 0 for y € Qoo and, by (1.7), |V Dol is locally constant.
If by bad luck |V Ds| = 0 on some connected component Q¢ C Q2, then we also
get that Do, = 0 on Q¢ (because Do, vanishes on FE); this is impossible, by the
definition of Dy, (cf. (1.4) and (1.5)). So |V D | # 0 on Q¢, and now Corollary 3.2
says that d is an integer and E is a d-plane.

Now recall that Ej converges to the d-plane Eo; we thus get that, for k large,
do, N (Er, Ex) < n, which is the desired contradiction. Lemma 4.4 follows. O

We are now ready to prove Theorem 4.1.
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Proof of Theorem 4.1
In view of Lemma 4.3, to prove Theorem 4.1, we just need to choose ¢ = &; > 0 such
that

if B(3¢) is a Carleson set in €2,

then R(7) is a Carleson set in E X (0, +00). (4.16)

Let us do this. For (x,r) € R(t), we first use the Ahlfors regularity of E to choose
y € Q N B(x,r/2) such that §(y) > 2«xr, where the constant ¥ > 0 depends on the
dimensions and the Ahlfors regularity constant. The existence of y is standard; if
we could not find it, then we would be able to find C,«™" balls B; of radius xr/2,
centered on E N B(x,r/2), and that are disjoint. This would yield

C, 'k er/)? <€ Y H#YENB;) <CHY(ENB(x.r)) <Cre,
J

a contradiction for k small because d < n. Denote by H (x,r) the ball B(y,«r). Then
lz—x|<r and 8(z) =«r forze H(x,r). 4.17)

Take N = 10x~!; this way, B(z, N8(z)) contains B(x,r) for z € H(x,r). Let
n > 0, to be chosen later in terms of 7, N, and choose M = My, >0ande =¢en, >
0 as in Lemma 4.4. That lemma says that if z € H(x,r) \ B (3¢), then we can
find a d-plane P such that d, ys(;)(E, P) < n. This also implies that dy ,(E, P) <
r~'N§(z)d; nsz)(E. P) < Nd; nsiz)(E, P) < Nn (because B(z, N§(z)) contains
B(x,r) and by the definition (4.3)). We choose 7 so small that Nn < 7, and we get
that B5(x,r) < 7. This contradicts the fact that (x,r) € R(t); therefore, every z €
H(x,r) lies in By (3¢).

Return to the proof of (4.16), and assume that 87 (3¢) is a Carleson set in 2. Let
X € E and R > 0 be given, and denote by A(X, R) the left-hand side of (4.6), with
9 = R(1). Since |H(x,r)| > C~1r", we see that

AX,R)<C / / Lz (x,r)r™"
x€eENB(X,R) Jre(0,R]
dxe(x)dr
x ( / 1t (2) dz)+). 4.18)

Of course, we apply Fubini and integrate in x and r first.
Notice that z € B(X,2R) N By (3¢) and |x — z| < r <k~ 18(z), so we get that

A(X,R) < [ h(z)dz, (4.19)
B(X,2R)NB s (3e)

with
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A4 (x)dr
oref [ e
x€ENB(z,k—18(z)) J§(z)<r<R r

(because r > |x — z| > §(z)). The integral in r is at most C§(z)™". Then we integrate
in x and get that (z) < C8(z)¢ . Finally,

AX,R)<C [ 8(z)4™dz < CRY, (4.20)
B(X,2R)NBps (3e)

by the assumption that Bz (3¢) is a Carleson set. O

5. Blowups and nontangential limits of |V Dg|
Throughout this section, let £ C R” be a d-Ahlfors regular set with d <n — 1 and
n > 2; this assumption is not strictly necessary for all our proofs, but without it we
must be a bit more careful as to questions of topology and in any case it is the only
scenario in which we are interested (we try to state when the result holds with d < n).
Let  be a d-Ahlfors regular measure supported on E.

We are interested in the behavior of VD, g near E. One convenient tool for
studying this is the blowup procedure.

ForQe E,SCE,yeQ,andr; | 0, we can define

E —
Ei,Q = " Q N
iS +
i, 0(S) = plriS +0) 7 Q), (5.1)
Dyp(riy +
Dipo(y)= LT 20 (r y Q)-

1

When the point Q is unimportant or clear from context, we may abuse notation and
refer simply to E;, u;, and D; g. Note that the u;’s are still Ahlfors regular (with the
same constants as i) and E; is the support of ;. To explain the definition of D;, let
y € R"\ E;, which implies that y = Z =2 for some z € R™\ E. Then we can calculate

ri

Dy p(»)7* =/ dpi(x) w=r,~x_+QeE/ dp(w)
wi B = £, Ix — y|d+B £ rid|W;Q _ Z:_Q|d+ﬂ
_ (Dup@)\#
- <T) . (5.2)

As the p;’s are uniformly Ahlfors regular, we know that, perhaps passing to a
subsequence, we have [1; — . Since the u;’s are uniformly Ahlfors regular, (o is
also Ahlfors regular and its support E, is the limit (in the Hausdorff distance sense)
of the E;. We want to show that R; and D; converge to Ry and D.
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LEMMA 5.1

Let E, u be as above, and let ry | 0 and Q € E. With the notation and assumptions
above, Ry, Dy, and their derivatives converge to Roo, Do, and their derivatives,
uniformly on every compact subset of Qoo = R" \ Eo.

Proof
Consider V/ Ry (x) = JE, VI h(x —y)dui(y),asin (2.7), and fix a compact set K C
Q- Also, let e > 0 be given. Choose R > 0 large enough (depending on K, €). Then
there exists a smooth cutoff function ¢ = ¢, g, supported in the large ball B(0, R),
and chosen close enough to x p(o,g) so that [ IV/h(x —)||1 —@(y)|dux(y) < e for
all k, and for all x € K.

Let C C R"\K be a closed set such that E; C C for all large enough K (such
a C exists by the compactness of K and the Hausdorff convergence of Ey — E).
Then the functions {V/h(x — y)@(y)}xek, are uniformly bounded, as functions of
v, in Lip(B(0,7) N C) (this bound will depend on C, R, &, but that is irrelevant).
By the Arzela—Ascoli theorem, this sequence (indexed by x) is precompact. Thus, we
can find a finite collection of continuous functions {g;} supported in B(0,2R) such
that, for each x € K, there is a g; with |g;(y) — V/h(x — y)@(y)| < eR™¢ for all
y € Ex N B(0,2R) (for any k large enough). Then by Ahlfors regularity, [ [g;(y) —
V/h(x = oWl dpk + [1i(y) = V/h(x = y)p(y)| dpoo < Ce for all k. Since
each [ g; duy converges to [ g; djio, we see that, for k large,

| / VI h(x = )ldux — dpsol| < Ce:

the conclusion (for V/ Ry (x)) follows. The same estimates for V/ D follow as well,
because on the compact set K we have uniform lower and upper bounds on the Ry
(again for k large enough). This proves the lemma. ([

Lemma 5.1 gives convergence on compact sets separated from E,. But we want
to understand the convergence up the boundary. In order to do this, it will be conve-
nient to introduce “nontangential access” regions, for reasons that we will make clear
shortly. For Q € E, R > 0, and n € (0, 1), define

Trp(Q) ={x € QN B(Q,R):dist(x, E) > n|x — Ol}. (5.3)

Associated to these nontangential regions is the concept of a nontangential limit.

Definition 5.2
We say that f has a nontangential limit L at Q € E if there is some 7 € (0, 1) such
that

lim  sup ‘f(x)—L| =0.
R0 xerg »(Q)
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We will denote this limit L by n.t.limy_, o f(x), or even n.t. limz_)Q f(x) to be
explicit.

Let E, Q, and {r;} be as in (5.1), and assume that the E;’s converge to
Eo. Let F}’fn(O) be defined as in (5.3) but with respect to Eo. Then, after
a new sequence extraction, the sets W converge to a limit I', with
F;’Sn /2(0) oI'D F%?Zn (0). For the moment, lwe only know that D;, R;, and their
derivatives, converge to Do, Roo, and their derivatives, uniformly on compact sub-
sets of R \ Eo. If we want V D; to converge to V D, uniformly on compact subsets
of R”, then it should at least converge uniformly on each F;’fn (0), which roughly
corresponds, after a change of variables, to V D having a nontangential limit at Q (in
fact, for every small 7).

In the following two theorems, we give a characterization of the existence of
nontangential limits of |V D| at p-a.e. point Q € E. It turns out that the existence
of this limit is intimately linked to the tangent measures of yu at Q (and thus the
rectifiability of ©). We will assume some basic familiarity with tangent measures
here; for more background we suggest Chapter 17 of [18].

THEOREM 5.3

Let E be d-Ahlfors regular and d -rectifiable (so necessarily d € N), let u be a d -
Ahlfors regular measure supported on E, and let B > 0. Then for jt-almost every
Q € E, the limit n.t. limz_)Q VD, g(x)| exists for every n > 0.

Proof

Notice first that it will be enough to show that, for each n > 0, the nontangential limit
n.t. limz_)Q VD, g(x)| exists for p-almost every O € E, because then the excep-
tional set of Q € E for which the limit fails to exist for all n is contained in the
countable union of the exceptional sets for n; = 27.

Let x; € Q = R"\ E be a sequence of points approaching Q € E non-tangen-
tially (i.e. x; € I'g »(Q) for some n € (0,1), R >0 and x; — Q). Let r; = |x; — Q|
and define E;, u;, D; asin (5.1).

By Lemma 5.1 (perhaps passing to a subsequence), E; — Eoo and p; — Moo
which is a d-Ahlfors regular measure supported on E,. Furthermore, D; — Dy, =
Dg ;.- This convergence happens uniformly on compacta inside of €2, in the C*
topology. Note that X; = % € ©; N B(0,1). We also note (by the assumption that
X; is a nontangential sequence) that dist(X;, E;) > 7.

Passing to a subsequence, we may assume that X; — X, and then X, € Q¢
because dist(X oo, Eoo) = 1 (recall that r; = |x; — Q|). Then by (5.2),

|VDoo(Xoo)| =1lim|VD;(X;)| = lim|VD(x;)|. (5.4)
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The reader may be worried because we only proved the existence of
lim; |[VD(x;)| for a subsequence, but what will save us is that, for almost every
choice of Q € E, the left-hand side L = |V Do (Xso)| does not depend on {x;} or
the choice of subsequences. Then it will follow that all the accumulation points of
|[VD(x;)|, where x; € I'r ,(Q) and x; tends to O, are equal to the number L (take a
sequence {x;}, so that |V D(x;)| tends to a given accumulation point, and then pro-
ceed as above). The existence of the nontangential limit n.t. limz_)Q [VD(x)| =L
will follow.

So we look for Q € E such that |V D (Xoo)| above does not depend on {x;},
the choice of subsequences, or X, for that matter.

Since E is rectifiable, E has an approximate tangent d -plane P’ at almost every
point Q € E (see Theorem 15.19 in [18]). Since E is Ahlfors regular, and by Exercise
41.21 in [4], for instance, P’ is a true tangent plane, and any limit E., that we get
from extraction is the vector plane P parallel to P’. In addition, Theorem 16.5 in

[18] says that (for almost every Q € E) all the blowup limits of 0 = J(’ldE are flat

measures, and in fact of the form oo = Jfl‘ﬁ,, because the density of o is 1 almost

everywhere. In addition, i = fo for some function f such that C™! < f < C, and
if Q is a Lebesgue density point for f, all the blowup limits of u at Q are of the form
Moo = [(Q)AP.

Thus, for almost every point Q € E, we have no choice: in (5.4), |V Do (Xoo)|
must be the constant value of |V D| associated to the plane P and the measure jioo =
f(Q)Ap. The existence of n.t. 1imZ_>Q |V D(x)|, and Theorem 5.3, follows. O

What follows is the converse to Theorem 5.3. However, we note that in order to
prove the rectifiability of E, we need the nontangential limit to exist inside cones of
all apertures, as opposed to checking the existence inside cones of any given aperture.

THEOREM 5.4

Let E be a set supporting the d -Ahlfors regular measure p with d < n (not necessar-
ily an integer), and let B > 0. Assume that, for p-almost every Q € E, the nontan-
gential limit n.t. limZ¢Q VD, g(x)| exists for every aperture ) € (0,1). Then d is an
integer and E is d -rectifiable.

Proof
We will show that at p-almost every Q € E, every tangent measure to u is flat (i.e., is
a multiple of the restriction of #¢ to a d-plane). This implies that j is d -rectifiable
and, thus (since p is Ahlfors regular), that E is d -rectifiable.

Let QO € E be a point such that the nontangential limit of |V D, g| exists for
every aperture, and let {r;} be any sequence of positive numbers that tends to zero.
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Then define E;, u; and D; = Dy, g as in (5.1). Lemma 5.1 shows that, passing
to a subsequence if needed, we may assume that E; tends to a limit Eo,, ; has a
weak limit (1o, and D; converges, uniformly on compact subsets of R” \ E,, to
Deo=Dy 8-

We now want to show that |V D] is constant on Q.. = R”\ E and is equal to
L =n.tlimyg|VD,g(x)|. Let Y, Z € Qq, and set ny = dist(Y, E)/(2|Y|) €
(0,1), and similarly let nz = dist(Z, Ex)/ (2] Z]|) € (0, 1). We can assume that nz <
ny so that I'y 5, (Q) € I'1 ., (Q). By the convergence of E; to En,, we have Z €
Q; for i large enough and dist(Z, E;) > dist(Z, E«)/2. Therefore, r; Z + Q € Q
and dist(r; Z + Q,E) =r;jdist(Z, E;) > r; dist(Z, Ex)/2 = 1inz|Z|. Thus, r; Z +
0 €Ty, (Q) for i large enough (where the cone is with respect to €2). Similarly,
riY + Q eTI'yy, (Q) for i large enough (again where the cone is with respect to €2).
Observe that L = n.t.lim]% 01V Dy g (x)| because the nontangential convergence

N
holds in every cone. We can then write

VD, p(Z)|= lim |VD,p(riZ +0Q)|=L= 11?1|VDM,[; (1Y + Q)|

i—+o0o

=|VDup(Y)

’

where the first and last equalities follow from (5.1), @; = feo, and Lemma 5.1.

We conclude that [VD,,_ gl is constant on Q. If that constant is zero, then by
the fact that D, __ g vanishes on E,, we obtain D, _, g = 0. This contradicts (1.4)
and (1.5). Thus, |[VD,, . g| is a nonzero constant on Q2 and by Corollary 3.2, E is
a d-dimensional affine space and oo is a constant multiple of H restricted to Eop.
Thus, p is flat.

In the language of tangent measures, all the tangents to p at Q are flat measures.
Furthermore, by Ahlfors regularity, the upper density of u is bounded away from
infinity and the lower density of p is bounded away from zero. Thus, we can invoke
Theorem 17.6 in [18] and conclude that the support of u is a d-rectifiable set. Since
E is the support of , we are done. O

Finally, we can compute the nontangential limit of [V.D,, g| at a point at which
the d-density of y exists (call it ®? (i1, Q)) and E has a unique tangent plane (call
it To E). Blowing up at such a point gives oo = Od(u, Q) H#¢ |7, E - Recalling that
Dya|, g =cp.n.adp for any plane P, we have

Dy = ng(M,Q)JethE,,s = Cﬁ,n,d®d (I‘Ls Q)_l/ﬂngQE, (5.5)
which implies that

n.tlimyo VD, gl = cgna®(u, Q)7 VE. (5.6)
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6. D, for “magic o

Let E C R" be a d-Ahlfors regular set, and let i be a d-Ahlfors regular measure
supported on E. If the numbers n, d < n (not necessarily integer), and @ > 0 are such
that

n=d+2+a, (6.1

then it turns out that the function D, 4 defined in (1.5) is a solution of

1
Ly = —div(fVu) =0
Ho Dﬁ,ad 1

in Q@ = R"\ E (throughout this section, o will satisfy (6.1) whereas g > 0 will be
arbitrary; in particular, we will try to make it clear when we are assuming that d <
n—2).

We can check this (in the classical sense) in €2 simply by differentiating the
smooth function D, 4 (recall (2.8)),

o | -1
LyaDya=—div(D; 5 41VD, o) = - div(D 4 R & T VR )

1 1
= div(D; "I DITEVR, o) = EAR,W 6.2)

by (1.5) and (6.1). Then by (1.3) (and (6.1)),

Rt = [ Jr=yan0) = [ x=sPdutn 63
yeE yeE
we recognize the Green kernel (notice that n > 2 by (6.1)); hence, L, oD o =0
on 2.

We want to say that D, 4 is “Green’s function with pole at infinity” associated
to the operator L = L, 4 (indeed, it is a solution which behaves like distance to the
boundary). To do so properly, however, we need to define Green’s function with pole
at infinity (and the corresponding harmonic measure). We will then show that in the
complement of any d-Ahlfors regular set E these objects exist and are unique up
to multiplication by a positive scalar. Throughout, we will use some of the elliptic
regularity and potential theory studied in [6], in particular, we will assume that the
reader is comfortable with the existence and properties of a Green’s function and
associated harmonic measure with finite pole.

Before we begin, we must recall the weighted Sobolev spaces introduced in [6].
Throughout this section, E will be a closed d -Ahlfors regular set and 6(x) will denote
the distance from x to the closest point in E.
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Definition 6.1 (see [6])
Let E C R” be a d-Ahlfors regular set for some d < n—1 (not necessarily an integer).
Set w(x) = §(x)~®"4=V and define the weighted Sobolev space

W=W,?={ueLl (R"\E):Vue L>(R"\E,wdx)}.
We can then localize these Sobolev spaces: for any open O C R”, we define
W (0) ={u e LL.(0).¢f €W forall g € C§°(0)}.
It will be useful later to know that w(x) is locally integrable. Indeed, it follows

from Ahlfors regularity that

1 n—d

[{x € B(Q.r) |w(x)>A}| =|{x € B(Q.R) | §(x) < A~ w=a=T}| < CA~w=a-TRY,

forall R > 0 and Q € E, which in turn implies that

/ w(x)dx < /
B(Q,R) 0

— CR"R 4"V 4 CR[~(n—d — DA™ 7==T|% (s

R—(n—d—l) 00

|B(Q,R)}dA+CRd/ AT dA

R—(n—d—1)

< CRd+1.

(We thank a referee for pointing out a minor error in the previous version of this
computation and for providing us with a fix.)

These Sobolev spaces are the setting in which the elliptic estimates and potential
theory established in [6] hold. We can now define the Green’s function and harmonic
measure with pole at infinity.

Definition 6.2

Let E C R” be a d-Ahlfors regular set for some d < n—1 (not necessarily an integer),
let B €(0,1), and let u be a d-Ahlfors regular measure supported on E. Let Q =
R"\E, D =D, g be as in (1.5), and let L = L, g be the associated degenerate
elliptic operator. We say that 1, W are the Green’s function and harmonic measure
with pole at infinity, respectively (associated to 8, ), if uso € Wi (B(Q, R)) NC(R")
for every Q € E and R > 0 and the following holds:

Uso >0, 1in 2,
Uso =0, onkE,

Lig, =0, inQ, (6.4)

/D_(”_d_l)Vuoo-VgodXzf(pda)oo, Vo € Cg°(R").
Q E
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Before we can show the existence and uniqueness of these objects, we must recall
the comparison principle for solutions, stated and proved in our setting in [6] (see also,
e.g., [14] for the codimension 1 statement). Recall from [6] that there exists an M > 1
such that for Q € E and r > 0 there exists a point A, (Q) with

|4,(Q) = Q] <r < M§(A,(Q)). (6.5)

We call A,(Q) a corkscrew point for Q at scale r > 0.

THEOREM 6.3 ([6, Theorem 11.146])

Let Q € E, let r > 0, and let Xo = Ar(Q) € Q be the corkscrew point for Q at
scale r. Let u,v € W,(B(Q,2r)) be nonnegative, not identically zero, solutions of
L,pu=0L,gv=0inB(0,2r), B >0, suchthat Tu=Tv=00n ENB(Q,2r)
(where T is the trace operator defined in Theorem 3.4 in [6]). Then there exists a
constant C > 1 depending on n, d, and Ahlfors regularity constants, such that

1 uXo) _u(X) _ u(Xo)
v(Xo) T v(X) T w(Xp)

VX eQNBO,r). (6.6)

The comparison theorem leads naturally to Holder regularity of quotients at the
boundary. Our proof below is inspired by [10, Theorem 4.5], who show this regular-
ity for solutions of a parabolic problem. The “usual” elliptic proof (cf. [14]) relies on
interior approximating domains, which are difficult in the codimension greater than 1
setting because of the presence of boundaries with mixed dimension (see the discus-
sion at the beginning of Section 11 of [6]).

COROLLARY 6.4
Let u, v, Q, r be as in Theorem 6.3. There exist ¢ > 0, y € (0, 1) (depending only on
the Ahlfors regularity of E, n, d, and B) such that

X)v(Y Y

u(X)v( )—l‘fc’(g) ’ 6.7)

u(¥Y)v(X) r
forall X,Y € B(Q,p) N, as long as p <r/4.
Proof
We claim that there exists some 6 € (0, 1) (independent of Q and r) such that

u u
0SCB(Q.r/2) T = 8 oscp(.r) - (6.8)

for all < r/2. That the claim implies (6.7) follows from iterating (6.8) and appealing
to Theorem 6.3.
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Letinfp(g,r) % = c1 and suppg(g ) % = ¢2, and replace u by U = % (ifcy =

c1, then u = cyv and the result is trivial). It follows that L, gU =0 and U > 0 in
B(Q,r)and U =0on E N B(Q,r). So we can apply Theorem 6.3 with 2r replaced
by r. Also note that

U U
0<—(Z)<l=oscpior)—> YZeB(Q,r)NQ.
v v

Note that osc(U/v) = (¢ — ¢1) "' osc(u/v). So if estimate (6.8) holds for U, v, then
it also holds for u, v.

Let A,/2(Q) be the corkscrew point for Q at scale r/2. If %(Ar/Z(Q)) <C™2
(where C > 1 is the constant from Theorem 6.3), then by Theorem 6.3 we would have

which would imply that oscg(g.r/2) % < %, and hence, the desired result (with 0 =
o)
If, on the other hand, % (4,2(0))>C ~2, then we apply Theorem 6.3 to obtain

U U
inf —>C"'—(4 >C73
B(é,r/2) . v ( r/Z(Q))
This implies that osc (g r/2) % <1—C73andso (6.8) holds with § = 1 —C 3.
O

Finally, using an argument inspired by [16, Lemma 3.7] and Corollary 3.2, we
can show the existence and uniqueness of the Green’s function and harmonic measure
with pole at infinity.

LEMMA 6.5

For any E, B, wu as in Definition 6.2, there exist an associated harmonic measure
and Green’s function with pole at infinity. Furthermore, they are both unique up to
multiplication by a positive scalar.

Proof

First we show the existence of Green’s function with pole at infinity. Fix Q € E, and
let X; = A,:(Q) € Q denote a corkscrew point for Q at scale 2! (i.e., M§(X;) >
|X; — Q| > 2!; see (6.5)). Define (for i > 1) g;(X) = % where g(X.,Y)
is the Green’s function for Lg , with pole at ¥ (cf. Section 10 in [6]). Similarly

X,
define w;(S) = #(}2) These are somewhat arbitrary normalizations (recall that

the Green’s function that we want to construct will only be unique modulo a multi-
plicative function).
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We claim that, for any K CC R”, there exists a C > 0 (depending on K) such
that g;(X) < C forall X € K andi > ip(K) > 0 large enough (so that X; lies away
from K). Indeed, this follows from the fact that g; (X;) = 1, Harnack’s inequality
(see Lemma 8.42 in [6]), and the existence of Harnack chains in £ (see Lemma 2.1
in [6]). From this it follows that the g;’s are uniformly Holder continuous on com-
pacta (see Lemmas 8.42 and 8.98 in [6]). Thus (after the extraction of a diagonal
subsequence) we have that g; — g, where the convergence is uniform on compacta
in the continuous topology. Note that in K CC 2 the equation is uniformly elliptic,
so the uniform convergence on compacta also implies (again perhaps passing to a
subsequence) that Vg; — Vg, pointwise almost everywhere. Finally, note that the
uniform convergence implies that goc > 0 in 2 and goo = 0 on E. Furthermore, by
Harnack’s inequality and goo(X1) = 1, it must be that g, > 0 in .

Forany Q € E and R > 0,if i > ig(Q,r) > 0 is large enough, then we know that
Xi ¢ B(Q,4R). Thus, we can estimate

[ a@lumdr=cr? [ g@luedesce,
B(Q,R) B(Q,2R)
where the first inequality follows from Lemma 8.47 in [6] (a Caccioppoli-type esti-
mate) and the second inequality follows from the fact that |g;| < Cr on B(Q,2R)
by the argument in the above paragraph (and the fact that w(x) is locally integrable).
Thus, the g;’s are in W,.(B(Q, R)) with uniformly controlled norms for all i large
enough and, applying Fatou’s lemma, we conclude that g, is in W, (B(Q, R)) for all
Qe FEandR>0.
Asthe g;’s are in W, (B(Q, R)) with uniformly controlled norms, it follows from
the weak formulation of L, g g; = 0 (and integration by parts) that L, g g = 0in £2.
We will now show that g« is the unique positive solution to L, g which vanishes
on E and is in W,.(B(Q, R)) for all Q € E and R > 0 (up to scalar multiplication).
Indeed, assume that there existed some other f* which was positive in 2, zero on E,
in W,(B(Q, R)) forall R >0, Q € E, and satisfied L, g f = 0. We can multiply f
by a positive scalar such that f(X;) = 1. Then by Corollary 6.4 applied at larger and
larger scales, it is clear that f(X) = goo(X) for all X € Q: starting from

0o (X) |X — X1
gf(}?() _I)SC(%)V’

take R — oo.

It is time to establish the existence of wx; let Q € E and R > 0. If i is
big enough, then by Lemma 11.78 in [6] we have wXi (B(Q, R)) < CR ™ 1g(X;,
AR(Q)), where Agr(Q) is the corkscrew point for Q at scale R. Thus, w;(B(Q,
R)) < CR¥'g;(Ar(Q)) < CRr,p < oo by Harnack’s argument above. This implies
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that the sequence of measures {w; } is uniformly bounded on any compact set and so,
perhaps passing to a subsequence, there is an ws, such that w; = wee.
We note that, by the definition of g; and w;, we have

/D_(Z_d_l)vgiwdx=/ pdow;.
e E

for all ¢ € Cg°(R"\X;) (cf. Section 9 in [6]). Fix ¢, and let i — oo on both sides;
using the fact that w; — ws and g; — goo in W, (K) for any compact K, we obtain
that

/QDI:,(;Z_d_l)VgooV‘P dx Z/EQdeom

as desired.
The uniqueness of w then follows from its integral relationship with goo (cf.
(6.4)) and the uniqueness of go. U]

We shall now show that, for the magic value of « =n —d —2, D, is the Green’s
function with pole at infinity.

COROLLARY 6.6

Let E C R" be a d-Ahlfors regular set for d < n — 2 (not necessarily an integer), and
let pu be a d-Ahlfors regular measure supportedon E. If « =n —d —2, then D, 4 is
the Green’s function with pole at infinity for E (cf. Definition 6.2).

We remark that the Green’s function with pole at infinity is unique modulo a
multiplicative constant, hence, strictly speaking, the corollary above assures that any
such Green’s function is either D, 4 or its multiple.

Proof

We remark that the uniqueness in Lemma 6.5 does not require that D, , verify the
last condition in (6.4); the proof shows that a nonnegative solution to the degenerate
operator which vanishes at the boundary and satisfies the correct growth condition is
unique up to a scalar multiple.

We have seen earlier that D, o is a positive solution to the degenerate elliptic
operator which vanishes on the boundary; because of Lemma 6.5, it suffices to show
that D, o € W, (B(Q, R)) for all Q € E and R > 0. However, we know from (4.2)
that [VD,, o| < C. Since w(X) is locally integrable in R”, the desired result follows.

O

The fact that we are able to explicitly write down the Green’s function with pole
at infinity for magic « allows us to easily compute and bound the associated har-
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monic measure. The next theorem shows that, for any Ahlfors regular set £ and magic
o =n —d — 2, the harmonic measure ,, o is comparable to surface measure. As a
corollary, we have the analogous result for harmonic measure with finite pole. Thus,
as mentioned in the Introduction, there is absolutely no converse to the theorem that
w¥X € Ax(0) when E is uniformly rectifiable. In fact, our result holds even when
d <n —2is not an integer.

THEOREM 6.7

Let n > 3, E C R" be a d-Ahlfors regular set (for d <n — 2, not necessarily an
integer), and let . be a d-Ahlfors regular measure supportedon E. Ifao =n—d —2,
then the harmonic measure with pole at infinity w,, o is comparable to 0 = # d| E;
that is, there is a constant C > 0 (depending only on n, d and the Ahlfors regularity
constants for | and o ) such that if we normalize w, o as we did in the construction,
then

c! <%(Q)§C, VO €E. 6.9)

For the rest of the section, we will use the notation a ~ b if there is a constant C,
depending only on 1, d and the Ahlfors regularity of i, such that C~1 < 5=C.

Proof

For the sake of brevity, we will write ® = w;, o, D = D, . Recall Lemma 11.78
from [6]: there exists a C > 0 (depending on 1, d , and the Ahlfors regularity constants
of E, ) suchthatif Q € E,r >0and X € Q\ B(Q,2r), then

CTlrdlg(X. Xo) <0 (B(Q.1) =CriTig(X. Xo).  (6.10)

where Xog = A,(Q) is a corkscrew point for Q at scale r, g(—, Xp) is the Green’s
function with pole at X associated to L «, and X is the harmonic measure with
pole at X associated to L, o. Divide (6.10) by g(X;, X1) for i > 1, where X; =
A,i,(Q), and take X = X;. This yields

C—]rd—l g(Xi’XO) < in (B(er)) < rd—l g(Xi’XO).
g(Xi, X1) —  g(Xi,X1) ~ g(Xi, X1)

Then we let i tend to +00; we claim that

C'r71D(Xo) < w(B(Q,r)) < Cri~' D(X,). 6.11)
Indeed, arguing as in Lemma 6.5, Harnack’s inequality implies that G; (—) = ;'(%i ;1) )

are uniformly, in i, bounded on compacta, are all positive and harmonic in R”\ (£ U
{Xi}), and zero on E. Passing to a (subsequential) limit, we get that G;(—) = Goo,
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a function which satisfies the definition of a Green’s function at infinity. Using the
uniqueness of said function, we can conclude that Go, = CD (in fact, we com-
pute that C = D(X1)). Similarly, the measures w; = #Xlxl) form a precompact
sequence in the weak topology and, with the G;’s, satisfy the last line of (6.4). This
equation is preserved under the uniform convergence of the G;’s and the weak limit
of the w;’s and, as such, w; — w, the harmonic measure with pole at infinity. With
this convergence in mind, the inequality (6.11) follows from the prior offset inequal-
ity letting i — oo (one also has to use the doubling of w to see that w(B(Q,r)) <
Co(B(Q.r))).

From (6.11) the conclusion of the lemma is easy: notice that D(Xo) ~ §(Xo) ~ r.
It follows that w(B(Q,r)) =~ r? for any Q € E and any r > 0. O

There is an analogue to Theorem 6.7 for a harmonic measure with finite pole
associated to L, o (where « is magic). The proof essentially follows from the bound-
edness of quotients and the comparability of the Green’s function with the harmonic
measure (Theorem 11.146 and Lemma 11.78 in [6], respectively).

COROLLARY 6.8

Letn >3, E CR" be an Ahlfors regular set of dimension d (not necessarily integer),
and let | be an Ahlfors regular measure with support E. Assume that « =n —d —
2> 0, and define D = D, o and L = L, o as above. Finally, let X € Q =R" \ E
be given, and denote by w* the associated harmonic measure with pole at X. Set
R =dist(X, E). Then there is a constant C, depending only on n, d, and the Ahlfors
regularity constant for |, such that

C™'(A) < R?w¥ (4) < Cp(4)
for every measurable set A C E N B(X,100R). (6.12)

We remark that (6.12) is a correct, homogeneous, finite pole version of the state-
ment that the harmonic measure is proportional to the Hausdorff measure. A reader
might be more accustomed to seeing it as a strengthened version of the A condition:
forall Q € E, X € Q, R=dist(X, E),

1 wu(A) - ¥ (A) <C wu(A)
w(B(X,100R)) ~ wX(B(X,100R)) —  wu(B(X,100R))’

(6.13)
for every measurable set A C £ N B(X, 100R).
Proof

Of course, there is nothing special about the radius 100 R, but the result for larger R
could be obtained by a change of pole.
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Rather than proving (6.12), we will find it more convenient to prove that, for all
Q € E,r > 0such that B(Q,r) C B(X,100R) and r < R/4,

Cc7'rd < R4wX(B(Q,r)) <Cr. (6.14)

By Lemma 11.78 in [6], we know that X (B(Q,r)) ~ r¢~'g(X, A,(Q)), where g
is the Green’s function associated to the operator L ;. Note that g(X,—) and D(—)
are both positive solutions to L in B(Q, R/2) which vanish on B(Q, R/2) N E; thus,
we can apply Theorem 6.3 and get that

X (B(Q.1)) . 8X.4-(Q) _ 8(X.4:(Q)

ra r T DA (0)
(X ARya(0) _ g(X. Appa(Q))
= DUrp0) = R (13

so (6.14) will follow once we check that g(X, Ag/2(Q)) =~ R,

Choose Y € Q so that R/20 < |Y — X| < R/10, and consider g(X,Y). It is
clear that dist(Y, E) ~ R ~ dist(Ar/2(Q), E) >~ |[Ar;2(Q) — Y|. Thus, by the exis-
tence of Harnack chains (see Lemma 2.1 in [6]), because we can find a chain from
Y to Ar/2(Q) that does not get close to X, and by Harnack’s inequality, we have
g(X, ARs2(0Q)) ~ g(X.Y).

Finally, by equations (10.89) and (10.96) in [6], we have g(X,Y) ~ R'~“ . Plug-
ging this into (6.15) gives (6.14); then (6.12) follows from the Lesbesgue differentia-
tion theorem (or, equivalently, by a straightforward covering argument). U

When E is rectifiable the nontangential limit of |VD, 4| exists (see Theo-
rem 5.3), and, much as in the codimension 1 setting, gives us the Poisson kernel (for
magic o).

LEMMA 6.9

Let n > 3, and let E C R" be a d-Ahlfors regular set with d <n — 2 an integer.
Assume that E is d-rectifiable, let 1 be a d-Ahlfors regular measure whose support
is E, and let « =n —d — 2. Then for o-a.e. Q € E, the density of .« is given
by ®%(, Q) modulo a multiplicative constant. To be precise, if we fix the constants
so that the Green’s function with pole at infinity is the function D, o that was con-
structed above, then there exist ¢, g > 0 and ¢, g4 > 0 such that

dw,q

~ . —(n—d—=2) (5.6)
Q) = Tpantlimeso|VDya ()] " 600 (1 0).

Proof
For simplicity, write D = D, 4, and let @ be the associated harmonic measure with
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pole at infinity. For any ¢ € C2°, we know that
/ D~®=4-Vy D .Vedx =/ pdo. (6.16)
Q E

Let Q € E be a point where the nontangential limit of |V D| exists and where there

is a unique tangent to £ and tangent measure for p (call it (io). Such a Q € E can

be found o-a.e. (by the theory of rectifiable sets and Theorem 5.3 above). Let ¢ be
x=0

a smooth approximation of xp(o,1) and, for r; | 0, define ¢; (x) = o r;i ). Adapting

1

notation as in (5.1), we get

4

1 —
/D_(”_d_l)VDVgDidx: dﬂfD_("_"l_l)(x)VD(x)'(pr)()C Q)dx
Q r; Q T

= [ D7) Di) - Vo) ay.
by a change of variables y = % :_Q .
We now take the limit in i. Recall that E has a unique tangent d-plane T at
0, and that there is a nontangential limit L = n.t.limy_, ¢ |V D]|. In addition, by the
discussion in Section 5 (see, in particular, (5.5) and (5.6)), D; tends to Deo(x) =
L&7(x), and this convergence happens uniformly up to 7. The convergence of V D,
to VD is only uniform on compact sets of R” \ 7', but close to T the integrals are
controlled uniformly because the gradients are bounded, so we get that

lim | D~®=4=DVD . Vg, dx

1—>0 JO

_ [ ~(d-2) / ()" 4"DV5, . Ve dx. (6.17)
R\T

Split the integral on the right-hand side of (6.17) into two pieces: one on a neigh-
borhood T of radius € > 0 around 7', and the other outside of 7. The integral on
Te goes to zero as ¢ > 0 goes to zero, by the Lipschitz character of §7 and ¢ and the
local integrability of §~®*~4=1)_For the integral on R” \ T;, we can integrate by parts.
Notice that §7 is a distance to the d-tangent plane, hence, it is a radial function in a

space with n — d dimensions, and hence, 5;” +d+2 i harmonic. Then

/ ((gT)—(n—d—l)VgT Vodx = / s_(”_d_l)wd%”_l
R?\T, {x|dist(x,T)=¢}

_ 01/ / g~ (n=d=1) g gpn=d=1 4 gpd
T Jesn—d—1

=cz/ pd X4 + 0(e), (6.18)
T
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where c; and ¢, are dimensional constants that we shall never need to compute. We
let e tend to zero, return to (6.17), and obtain

lim [ D~=4=Dyp.vy, dx=ch_("_d_2)/ odJ?. (6.19)
1—>0 JO T

Now we let ¢ tend to yp,1) (as BV functions); the right-hand side tends to

e L==4=2) 7, where Vj is the volume of the d-dimensional unit ball. For the

left-hand side, notice that, by (6.16),

d
fD_("_d_l)VD-Vwidxzf (pidwzf <p,~—wd0.
Q E g do

When i tends to 400 and Q is a point of density for ‘;—‘(’; (which is true o-a.e.),
the quantity fE (pi(Z)|§—‘;(Z) — Z—‘(‘T’(Q)|do(Z) tends to zero; we are left with
‘;—‘(‘;(Q) [gwido. If Q is also a point of density 1 for o (which is again true o-
a.e.), then fE @i do tends to fT <de€d. Now we let ¢ tend to yx p(o,1) and get that
the left-hand side of (6.19) tends to C3Z,—§(Q), where ¢3 may depend on how we
normalize #? with respect to the Lebesgue measure. Thus, (6.19) implies that

99 () = ¢4 L~"=4=2)_This is the desired result. O

In the specific case where u = 0 = #¢|g and E is d-rectifiable, (5.6) tells us
that n.t.limy— ¢ |VDg 4| = ¢n.a0% (0, Q)% = ¢, 4 by the fact that ®¢ (o, Q) = 1
for o-a.e. Q in any d -rectifiable set. Thus, we can conclude that ws o is proportional
too.

COROLLARY 6.10
Let E, d, n, o be as in Lemma 6.9. Then there exists a constant ¢ > 0 such that
Wg,q = €O, Where, as above, 0 = ]€d|E.
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