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Abstract
We present a framework for deformable object manipulation that interleaves planning and control, enabling complex
manipulation tasks without relying on high-fidelity modeling or simulation. The key question we address is when should
we use planning and when should we use control to achieve the task? Planners are designed to find paths through complex
configuration spaces, but for highly underactuated systems, such as deformable objects, achieving a specific configuration
is very difficult even with high-fidelity models. Conversely, controllers can be designed to achieve specific configurations,
but they can be trapped in undesirable local minima owing to obstacles. Our approach consists of three components: (1)
a global motion planner to generate gross motion of the deformable object; (2) a local controller for refinement of the
configuration of the deformable object; and (3) a novel deadlock prediction algorithm to determine when to use planning
versus control. By separating planning from control we are able to use different representations of the deformable object,
reducing overall complexity and enabling efficient computation of motion. We provide a detailed proof of probabilistic
completeness for our planner, which is valid despite the fact that our system is underactuated and we do not have a
steering function. We then demonstrate that our framework is able to successfully perform several manipulation tasks with
rope and cloth in simulation, which cannot be performed using either our controller or planner alone. These experiments
suggest that our planner can generate paths efficiently, taking under a second on average to find a feasible path in three
out of four scenarios. We also show that our framework is effective on a 16-degree-of-freedom physical robot, where
reachability and dual-arm constraints make the planning more difficult.
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1. Introduction

Examples of deformable object manipulation range from
domestic tasks such as folding clothes to time- and safety-
critical tasks such as robotic surgery. One of the chal-
lenges in planning for deformable object manipulation is
the high number of degrees of freedom (DoFs) involved;
even approximating the configuration of a piece of cloth
in three dimensions with a 4 × 4 grid results in a 48-
DoF configuration space. In addition, the dynamics of the
deformable object are difficult to model (Essahbi et al.,
2012); even with high-fidelity modeling and simulation,
planning for an individual task can take hours (Bai et al.,
2016). Local controllers on the other hand are able to very
efficiently generate motion, however, they are only able to
successfully complete a task when the initial configuration
is in the “basin of attraction” of the goal (Berenson, 2013;
McConachie and Berenson, 2018).
The central question we address in this work is how

can we combine the strengths of global planning with the

strengths of local control while mitigating the weakness
of each? We propose a framework for interleaving plan-
ning and control which uses global planning to generate
gross motion of the deformable object, and a local con-
troller to refine the configuration of the deformable object
within the local neighborhood. By separating planning from
control we are able to use different representations of the
deformable object, each suited to efficient computation for
their respective roles. In order to determine when to use
each component, we introduce a novel deadlock prediction
algorithm that is inspired by topologically-based motion
planning methods (Bhattacharya et al., 2012; Jaillet and
Siméon, 2008). By answering the question “Will the local
controller get stuck?”, we can predict whether the local
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Fig. 1. Four example manipulation tasks for our framework. In the first two tasks, the objective is to cover the surface of the table
(indicated by the red lines) with the cloth (shown in green). In the first task, the grippers (shown in blue) can freely move, however the
cloth is obstructed by a pillar. In the second task, the grippers must pass through a narrow passage before the table can be covered. In
the third task, the robot must navigate a rope (shown in green in the top left corner) through a three-dimensional maze before covering
the red points in the top right corner. The maze consists of top and bottom layers (purple and green, respectively). The rope starts in
the bottom layer and must move to the target on the top layer through an opening (bottom left or bottom right). For the fourth task, the
physical robot must move the cloth from the far side of an obstacle to the region marked in pink near the base of the robot.
Note: Colour version of the figure is available online.

controller will be unable to achieve the task from the cur-
rent configuration. If we predict that the controller will get
stuck, we can then invoke the global planner, moving the
deformable object into a new neighborhood from which the
local controller may be able to succeed. The key to our effi-
cient prediction is forward-propagating only the stretching
constraint, assuming the object will otherwise comply to
contact.
We seek to solve problems for one-dimensional and two-

dimensional deformable objects (i.e., rope and cloth) where
we need to arrange the object in a particular way (e.g.,
covering a table with a tablecloth) but where there is also
complex environment geometry preventing us from directly
completing the task. While we cannot claim to solve all
problems in this class (in particular, in environments where
the deformable object can be snagged), we can still solve
practical problems where the path of the deformable object
is obstructed by obstacles. In this work, we restrict our focus
to controllers of the form described in Section 4.1, and tasks
suited to these controllers. Examples of these types of tasks
are shown in Figure 1. In our experiments we show that this
iterative method of interleaving planning and control is able
to successfully perform several interesting tasks where our
planner or controller alone are unable to succeed.
Our contributions are: (1) a novel deadlock prediction

algorithm to determine when a global planner is needed; (2)
an efficient and probabilistically complete global planner
for rope and cloth manipulation tasks; and (3) a framework
to combine local control and global motion planning to
leverage the strengths of each while mitigating their weak-
nesses. We present experiments in both a simulated environ-
ment and on a physical robot (Figure 1). Our results suggest
that our planner can efficiently find paths, taking under a
second on average to generate a feasible path in three out of
four simulated scenarios. The physical experiment shows
that our framework is able to effectively perform tasks in
the real world, where reachability and dual-arm constraints
make the planning more difficult.
A preliminary version of this work was presented in

McConachie et al. (2017). This article extends this work

by adding an additional experiment on a physical robotic
system as well as a proof of the probabilistic completeness
of our planning method. We have also improved planning
times with an improved goal bias method. We also include
additional related work and an expanded discussion.

2. Related work

Robotic manipulation of deformable objects has been stud-
ied in many contexts ranging from surgery to industrial
manipulation (see Khalil and Payeur (2010) and Sanchez
et al. (2018) for extensive surveys). In the following, we
discuss the most relevant methods to the work presented
here, starting with methods of simulating and planning for
deformable objects. We then discuss visual servoing and
learning-based methods for similar tasks. In addition to
previous work in deformable object manipulation, we also
discuss related work in planning/control for robot arms and
ways to consider topology in planning, which we draw from
for our framework. We end with a discussion of proba-
bilistic completeness and describe why previous methods
to show this property do not apply, motivating our proof
method.
Much work in deformable object manipulation relies on

simulating an accurate model of the object being manipu-
lated. Motivated by applications in computer graphics and
surgical training, many methods have been developed for
simulating string-like objects (Bergou et al., 2008; Rungji-
ratananon et al., 2011) and cloth-like objects (Baraff and
Witkin, 1998; Goldenthal et al., 2007). The most common
simulation methods use mass–spring models (Essahbi et al.,
2012; Gibson and Mirtich, 1997), which are generally not
accurate for large deformations (Maris et al., 2010), and
finite-element method (FEM) models (Irving et al., 2004;
Kaufmann et al., 2008; Müller et al., 2002). FEM-based
methods are widely used and physically well-founded, but
they can be unstable when subject to contact constraints,
which are especially important in this work. They also
require significant tuning and are very sensitive to the dis-
cretization of the object. Furthermore, such models require
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knowledge of the physical properties of the object, such as
its Young’s modulus and friction parameters, which we do
not assume are known.
Motion planning for manipulation of deformable objects

is an active area of research (Jiménez, 2012). Saha
et al. (2008) presented a probabilistic roadmap (PRM)
(Kavraki et al., 1996) that plans for knot-tying tasks with
rope. Rodriguez and Amato (2006) study motion plan-
ning in fully deformable simulation environments. Their
method, based on Rapidly-exploring Random Trees (RRTs)
(LaValle, 2006), applies forces directly to an object to move
it through narrow spaces while using the simulator to com-
pute the resulting deformations. Frank et al. (2011) pre-
sented a method that pre-computes deformation simulations
in a given environment to enable fast multi-query planning.
Other sampling-based approaches have also been proposed
(Anshelevich et al., 2000; Burchan Bayazit et al., 2002;
Gayle et al., 2005; Lamiraux and Kavraki, 2001; Moll and
Kavraki, 2006; Roussel et al., 2015). However, all of these
methods either disallow contact with the environment or
rely on potentially time-consuming physical simulation of
the deformable object, which is often very sensitive to phys-
ical and computational parameters that may be difficult to
determine. In contrast, our method uses simplified models
for control and motion planning with far lower computa-
tional cost. In addition, the use of a local controller is not
considered in the previous methods, instead relying on a
global planner (and, thus, implicitly on the accuracy of the
simulator) to generate a path that completes the entire task.
Model-based visual servoing approaches bypass plan-

ning entirely, and instead use a local controller to determine
how to move the robot end-effector for a given task (Hirai
and Wada, 2000; Smolen and Patriciu, 2009; Wada et al.,
2001). Our recent work (Berenson, 2013; McConachie and
Berenson, 2018) as well as that of Navarro-Alarcon and Liu
(2018); Navarro-Alarcon et al. (2014, 2016) bypasses the
need for an explicit deformable object model, instead using
approximations of the Jacobian to drive the deformable
object to the attractor of the starting state. More recent
work by Hu et al. (2018) has enabled the use of Gaus-
sian process regression while controlling a deformable
object. Rather than using only a planner or only a con-
troller, our framework uses both components, each when
appropriate.
Approaches based on learning from demonstration

avoid planning and deformable object modeling challenges
entirely by using offline demonstrations to teach the robot
specific manipulation tasks (Huang et al., 2015; Schulman
et al., 2016); however, when a new task is attempted, a new
training set needs to be generated. In our application we are
interested in a way to manipulate a deformable object with-
out having a high-fidelity model or training set available a
priori. For instance, imagine a robot encountering a new
piece of clothing for a new task. While it may have mod-
els for previously seen clothes or training sets for previous

tasks, there is no guarantee that those models or training
sets are appropriate for the new task.
Park et al. (2014) considered interleaving planning and

control for arm reaching tasks in rigid unknown environ-
ments. In their method, they assumed an initially unknown
environment in which they plan a path to a specific end-
effector position. This path is then followed by a local con-
troller until the task is complete, or the local controller gets
stuck. If the local controller gets stuck, then a new path is
planned and the cycle repeats. In contrast, our controller is
performing the task directly rather than following a planned
reference trajectory, incorporating deadlock prediction into
the execution loop, while our global planner is planning
for both the robot motion as well as the deformable object
stretching constraint.
Our planning method has some similarity to topologi-

cal (Bhattacharya et al., 2012; Jaillet and Siméon, 2008)
and tethered robot (Brass et al., 2015; Kim and Likhachev,
2015) planning techniques; these methods use the topo-
logical structure of the space to define homotopy classes,
either as a direct planning goal, or as a way to help inform
planning in the case of tethered robots. Planning for some
deformable objects, in particular rope or string, can be
viewed as an extension of the tethered robot case where
the base of the tether can move. This extension, how-
ever, requires a very different approach to homotopy than
is commonly used, particularly when working in three-
dimensional space instead of a planar environment. In
our work, we use visibility deformations from Jaillet and
Siméon (2008) as a way to encode homotopy-like classes
of configurations.
Previous approaches to proving probabilistic complete-

ness for efficient planning of underactuated systems rely
on the existence of a steering function to move the system
from one region of the state space to another, or choosing
controls at random (Karaman and Frazzoli, 2013; Kunz and
Stilman, 2015; LaValle and Kuffner, 2001; Li et al., 2016).
For deformable objects, a computationally efficient steer-
ing function is not available, and using random controls
can lead to prohibitively long planning times. Roussel et al.
(2015) bypassed this challenge by analyzing completeness
in the submanifold of quasi-static contact-free configura-
tions of extensible elastic rods. In contrast, we show that
our method is probabilistically complete even when con-
tact between the deformable object and obstacles is con-
sidered along the path. Note that it is especially important
to allow contact at the goal configuration of the object to
achieve coverage tasks. Li et al. (2016) presented an effi-
cient asymptotically optimal planner that does not need a
steering function, however, they do rely on the existence of
a contact-free trajectory where every point in the trajectory
is in the interior of the valid configuration space. Our proof
of probabilistic completeness is based on Li et al. (2016),
but we allow for the deformable object to be in contact with
obstacles along a given trajectory.
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3. Problem statement

Define the robot configuration space to be Cr. We assume
that the robot configuration can be measured exactly.
Denote an individual robot configuration as qr ∈ Cr. This
set can be partitioned into a valid and invalid set. The
valid set is referred to as Cvalid

r , and is the set of config-
urations where the robot is not in collision with the static
geometry of the world. The invalid set is referred to as
Cinv

r = Cr \ Cvalid
r .

We assume that our model of the robot is purely kine-
matic, with no higher-order dynamics. We assume that the
robot has two end-effectors that are rigidly attached to the
object. The configuration of a deformable object is a set
P ⊂ R3 of P = |P| points. We assume that we have
a method of sensing P . The rest of the environment is
denoted by O and is assumed to be both static and known
exactly. We assume that the robot moves slowly enough that
we can treat the combined robot and deformable object as
quasi-static. Let the function f ( qr,P , q̇r) map the system
configuration ( qr,P) and robot movement q̇r to the corre-
sponding deformable object movement Ṗ . We assume that
the deformable object will be damaged if it is stretched
beyond a factor λs from the relaxed state. Let D ∈ RP2

be the symmetric matrix of pairwise distances between all
points of P in its relaxed state. We assume that there are
no other deformable object properties (such as bending
energy) that are relevant to the task.
We define a task based on a set of T target points T ⊂ R3,

a function ρ : P × T → R≥0, which measures the align-
ment error between P and T , and a termination function
�(P), which indicates whether the task is finished. Let a
robot controller be a function C (qr,P , T ),1 which maps the
system state (qr,P) and alignment targets T to a desired
robot motion q̇cmdr . In this work, we restrict our discussion
to tasks and controllers of the form introduced in our pre-
vious work (Berenson, 2013; McConachie and Berenson,
2018); these controllers are local, i.e., at each time t they
choose an incremental movement q̇cmdr which reduces the
alignment error as much as possible at time t + 1.
The problem we address in this work is how to find a

sequence of Ne robot commands {q̇cmdr,1 , . . . , q̇cmdr,Ne
} = Q̇cmd

r
such that each motion is feasible, i.e., it should not bring
the grippers into collision with obstacles, should not cause
the object to stretch excessively, and should not exceed the
robot’s maximum velocity q̇max

r . Let these feasibility con-
straints be represented by A( q̇r)= 0. Then the problem we
seek to solve is

find Q̇cmd
r

s.t. �(PNe )= true

A( q̇cmdr,t )= 0, t = 1, . . . ,Ne

(1)

where PNe is the configuration of the deformable object
after executing Q̇cmd

r .
Solving this problem directly is impractical in the general

case for two major reasons. First, modeling a deformable

Fig. 2. Block diagram showing the major components of our
framework. On each cycle we use either the local controller (dot-
ted purple arrows) or a planned path (dashed red arrows) to predict
whether the system will be deadlocked in the future, planning a
new path is needed to avoid deadlock.
Note: Colour version of the figure is available online.

object accurately is very difficult in the general case, espe-
cially if it contacts other objects or itself. Second, even
given a perfect model, computing precise motion of the
deformable object requires physical simulation, which can
be very time consuming inside a planner/controller where
many potential movements need to be evaluated. We seek
a method that does not rely on high-fidelity modeling
and simulation; instead, we present a framework combin-
ing both global planning and local control to leverage the
strengths of each in order to efficiently perform the task.

4. Interleaving planning and control

Global planners are effective at finding paths through com-
plex configuration spaces, but for highly underactuated sys-
tems such as deformable objects, achieving a specific con-
figuration is very difficult even with high-fidelity models;
this means that we cannot rely on them to complete a task
independent of a local controller. In order for the local
controller to complete the task, the system must be in the
correct basin of attraction. From this point of view it is not
the planner’s responsibility to complete a task but rather
to move the system into the right basin for the local con-
troller to finish the task. By explicitly separating planning
from control we can use different representations of the
deformable object for each component; this allows us to
use a highly simplified model of the deformable object for
global planning to generate gross motion of the deformable
object, while using an independent local approximation for
the controller. The key question then is when should we use
global planning versus local control?
Our framework can be broken down into three major

components: (1) a global motion planner to generate gross
motion of the deformable object; (2) a local controller for
refinement of the configuration of the deformable object;
and (3) a novel deadlock prediction algorithm to determine
when to use planning versus control. Figure 2 shows how

1. A specific controller may have additional parameters (such as gains
in a PID controller), but we do not include such parameters here to keep
C( . . . ) in a more general form.
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these components are connected, switching between a local
controller loop and planned path execution loop as needed.
In the following sections, we describe each component in
turn, starting with the local controller.

4.1. Local control

The role of the local controller is not to perform the
whole task, but rather to refine the configuration of the
deformable object locally. For our local controller we use
a controller of the form introduced in Berenson (2013)
and McConachie and Berenson (2018). These controllers
locally minimize error ρ while avoiding robot collision and
excessive stretching of the deformable object.
An outline of how these controllers function is shown

in Algorithm 1; first, for every target point Ti ∈ T we
define a workspace navigation function pointing towards
Ti using Dijkstra’s algorithm. This gives us the shortest
collision-free path between any point in the workspace
and the target point, as well as the distance traveled along
that path. These navigation functions are used to define
the best direction to move the deformable object Ṗe and
the relative importance of each part of the motion We in
order to locally reduce error as much as possible at each
timestep (lines 1 and 2). These error reduction terms are
then combined using relative importance weight λw with
stretching avoidance terms Ṗs,Ws to define the desired
manipulation direction and importance weights Ṗd ,Wd at
each timestep (lines 3 and 4). If these terms conflict, then
stretching correction takes precedence. We then find the
best robot motion to achieve the desired deformable object
motion, while preventing collision between the robot and
obstacles (line 5).
Given the current system state ( qr,P)

FindBestRobotMotion( qr,P , Ṗd ,Wd) is solving the
following problem:

argmin
q̇r

‖ f ( qr,P , q̇r)−Ṗd‖Wd

subject to ‖q̇r‖ ≤ q̇max
r

(qr + q̇r) ∈ Cvalid
r

(2)

How (2) is solved depends on the particular robot; details
for each function in Algorithm 1 are given in Appendix B.
An important limitation of this approach is that the indi-

vidual navigation functions are defined and applied inde-
pendently of each other; this means that the navigation
functions that are combined to define the direction to move
the deformable object can cause the controller to move the
end-effectors on opposite sides of an obstacle, leading to
poor local minima, i.e., becoming stuck. Figure 3 shows
our motivating example of this type of situation. Other
examples of this kind of situation are shown in Section
7. In addition, while this local controller prevents collision
between the robot and obstacles, it does not explicitly have
any ability to go around obstacles.

Algorithm 1 LocalController( qr,P , T ,D, λs, λw)
1: Tc ← CalculateCorrespondences(Pt, T )
2: Ṗe,We ← FollowNavigationFunction(Pn, Tc)
3: Ṗs,Ws ← StretchingCorrection(D, λs,P)
4: Ṗd ,Wd ← CombineTerms( Ṗe,We, Ṗs,Ws, λw)
5: q̇cmdr ← FindBestRobotMotion( qr,P , Ṗd ,Wd)

Fig. 3. Motivating example for deadlock prediction. The local
controller moves the grippers on opposite sides of an obstacle,
while the geodesic between the grippers (red line) cannot move
past the pole, eventually leading to overstretch or tearing of the
deformable object if the robot does not stop moving towards the
goal.
Note: Colour version of the figure is available online.

In order to address these limitations we introduce a
novel deadlock prediction algorithm to detect when the
system ( qr,t,Pt) is in a state that will lead to deadlock (i.e.,
becoming stuck) if we continue to use the local controller.

4.2. Predicting deadlock

Predicting deadlock is important for two reasons: first, we
do not want to waste time executing motions that will not
achieve the task; second, we want to avoid the computa-
tional expense of planning our way out of a cul-de-sac after
reaching a stuck state. By predicting deadlock before it hap-
pens we address both of these concerns. The key idea is to
detect situations similar to Figure 3 where the local con-
troller will wrap the deformable object around an obstacle
without completing the task. We also need to detect situa-
tions where no progress can be made owing to an obstacle
being directly in the path of the desired motion of the robot.
Let E( qr,P , q̇cmdr )= q̇actr be the true motion of the robot

when q̇cmdr is executed for unit time; in this section, we pre-
dict the future state of the system, thus it is not sufficient
to consider only q̇cmdr , we must also consider q̇actr . Mod-
eling inaccuracies as well as the deformable object being
in contact can lead to meaningful differences between q̇cmdr
and q̇actr . Specifically, when a deformable object is in con-
tact with the environment, tracking q̇cmdr perfectly may lead
to a constraint violation (i.e., overstretch or tearing of the
deformable object).
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We consider a controller to be deadlocked if the com-
manded motion produces (nearly) no actual motion, and the
task termination condition is not met:

‖q̇actr,t ‖ ≈ 0

�(Pt) = false
(3)

In general, we cannot predict whether the system will get
stuck in the limit; to do so would require a very accu-
rate simulation of the deformable object. Instead we pre-
dict whether the system will get stuck within a prediction
horizon Np timesteps. We divide our deadlock prediction
algorithm into three parts and discuss each in turn: (1) esti-
mating gross motion; (2) predicting overstretch; and (3)
progress detection.

4.2.1. Estimating gross motion. The idea central to our
prediction (Algorithm 2) is that while we may not be able
to determine precisely how a given controller will steer the
system, we can capture the gross motion of the system and
estimate whether the controller will be deadlocked. We split
the prediction into two parts. First, we assume that con-
troller C is able to manipulate the deformable object with
a reasonable degree of accuracy within a local neighbor-
hood of the current state. This allows us to approximate
the motion of the deformable object by following the task-
defined navigation functions for each Pi ∈ P . Examples of
this approximation are shown in Figure 4.
Next we use a simplified version of LocalController( ),

which omits the stretching avoidance terms (Algorithm 1,
lines 3 and 4) to predict the commands sent to the robot.
These terms are omitted as they can be sensitive to the exact
configuration of the deformable object, which is not consid-
ered in this approximation. If we are executing a path, then
we can use the planned path directly to predict overstretch.

4.2.2. Predicting overstretch. Next we introduce the
notion of a virtual elastic band between the robot’s end-
effectors. This elastic band represents the shortest path
through the deformable object between the end-effectors.
The band approximates the constraint imposed by the
deformable object on the motion of the robot; if the end-
effectors move too far apart, then the elastic band will be
too long, and thus the deformable object is stretched beyond
a task-specified maximum stretching factor λs. Similarly, if
the elastic band gets caught on an obstacle and becomes too
long, then the deformable object is also overstretched. By
considering only the geodesic between the end-effectors,
we are assuming that the rest of the deformable object
will comply to the environment, and does not need to be
considered when predicting overstretch. The elastic band
representation allows us to use a fast prediction method,
but does not account for the part of the material that is
slack. We discuss this trade-off further in Section 9. This
virtual elastic band is based on Quinlan’s path deformation
algorithm (Quinnlan, 1994) and is used both in deadlock
prediction as well as global planning (Sections 4.3 and 5).

Algorithm 2 PredictDeadlock( ρ, qr,t,Pt,Bt,
T ,Lmax,Np, Path)

1: ConfigHistory ← [ConfigHistory, qt]
2: ErrorHistory ← [ErrorHistory, ρ(Pt) ]
3: BandPredictions ← []
4: Tc ← CalculateCorrespondences(Pt, T )
5: for n = t, . . . , t + Np − 1 do
6: if Path 
= ∅ then
7: Ṗe,We ← FollowNavigationFunction(Pn, Tc)
8: Pn+1 ← Pn + Ṗe

9: q̇cmdr,n ← FindBestRobotMotion( qr,n,Pn, Ṗe,We)
10: qr,n+1 ← qr,n + q̇cmdr,n
11: else
12: qr,n+1 ← qr,n+ FollowPath(Path)
13: end if
14: Bn+1 ← ForwardPropagateBand(Bn, qr,n+1)
15: BandPredictions ← [BandPredictions,Bn+1]
16: end for
17: if PredictOverstretch( BandPredictions, Lmax) or
18: NoProgress(ConfigHistory, ErrorHistory) then
19: return true
20: else
21: return false
22: end if

Algorithm 3 ForwardPropagateBand(B, qr)
1: ( p0, p1)← ForwardKinematics( qr)
2: B ← [p0,B, p1]
3: B ← InterpolateBandPoints(B)
4: B ← RemoveExtraBandPoints(B)
5: B ← PullTight(B)
6: return B

Denote the configuration of an elastic band at time t
as a sequence of Nb,t points Bt ⊂ R3. The number of
points used to represent an elastic band can change over
time, but for any given environment and deformable object
there is an upper limit Nmax

b on the number of points used.
Define Path(B) to be the straight line interpolation of all
points in B. Define the length of a band to be the length of
this straight line interpolation. At each timestep the elastic
band is initialized with the shortest path between the end-
effectors through the deformable object, and then “pulled”
tight using the internal contraction force described in Quin-
lan (1994: section 5), and a hard constraint for collision
avoidance. The endpoints of the band track the predicted
translation of the end-effectors (Algorithm 3). This band
represents the constraint that must be satisfied for the object
not to tear. By considering only this constraint on the object
in prediction, we are implicitly relying on the object to com-
ply to contact as it is moved by the robot. We discuss the
limitations of this assumption in the discussion (Section 9).
Let Lt+n be the length of the path defined by the virtual

elastic band Bt+n at timestep n in the future, and Lmax be the
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longest allowable band length. To use this length sequence
to predict if the controller will overstretch the deformable
object, we perform three filtering steps: an annealing low-
pass filter, a filter to eliminate cases where the band is in
freespace, and the detector itself which predicts overstretch.
We use a low-pass annealing filter with annealing constant
α ∈ [0, 1) to mitigate the effect of numerical and approx-
imation errors which could otherwise lead to unnecessary
planning:

L̃t+1 = Lt+1

L̃t+n = αL̃t+n−1+( 1 − α) Lt+n, n = 2, . . . ,Np

(4)

Second, we discard from consideration any bands which
are not in contact with an obstacle; we can eliminate these
cases because our local controller includes an overstretch
avoidance term that will prevent overstretch in this case
in general. Finally, we compare the filtered length of any
remaining band predictions to Lmax; if after filtering there is
an estimated band length L̃ that is larger than Lmax, then we
predict that the local controller will be stuck. An example of
this type of detection is shown in Figure 5, where the local
controller will wrap the cloth around the pole, eventually
becoming deadlocked in the process.

4.2.3. Progress detection. Lastly, we track the progress of
the robot and task error to estimate whether the controller C
is making progress towards the task goal. This is designed
to detect cases when the robot is trapped against an obstacle.
Naïvely we could look for instances when q̇actr = 0, however
owing to sensor noise, actuation error, and using discrete
math in a computer, we need to use a threshold instead.
At the same time we want to avoid false positives, where
the robot is moving slowly but task error is decreasing. To
address these concerns, we record the configuration of the
robot (stored in ConfigHistory) and the task error (stored in
ErrorHistory) every time we check for deadlock, and intro-
duce three parameters to control what it means to be making
progress: history window Nh, error improvement threshold
βe, and configuration distance threshold βm. If over the last
Nh timesteps, the improvement in error is less than βe, and
the robot has moved less than βm, then we predict that the
controller will not be able to reach the goal from the current
state and trigger global planning.

4.3. Setting the global planning goal

In order to enable efficient planning, we need to approxi-
mate the configuration of the deformable object in a way
that captures the gross motion of the deformable object
without being prohibitively expensive to use. We use the
same approach from Section 4.2.2, but the interpretation
in this use is slightly different; the virtual elastic band is
a proxy for the leading edge of the deformable object.
To define the leading edge, we again use the geodesic
between the grippers. In this way, we can plan to move
the deformable object to a different part of the workspace

Fig. 4. Example of estimating the gross motion of the deformable
object for a prediction horizon Np = 10. The magenta lines start
from the points of the deformable object that are closest to the
target points (according to the navigation function). These lines
show the paths those points would follow to reach the target when
following the navigation function.

Fig. 5. Estimated gross motion of the deformable object (magenta
lines) and end-effectors (blue spheres). The virtual elastic band
(black lines) is forward propagated by tracking the end-effector
positions, changing to cyan lines when overstretch is predicted.
Note: Colour version of the figure is available online.

without needing to simulate the entire deformable object,
instead the deformable object conforms to the environment
naturally.
To make progress towards achieving the task, we want to

set the goal for the global planner to be a configuration that
we have not explored with the local controller. We do so
in two parts; we find the set of all target points TU that are
contributing to task error, split these points into two clus-
ters, and use the cluster centers to define the goal region of
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the end-effectors, qgoalxyz ; any end-effector position within a
task-specified distance δgoal is considered to have reached
the end-effector goal (Algorithm 4, lines 1–3). Second, we
set the goal configuration of the virtual elastic band to be
any configuration that is not similar to a blacklist of virtual
elastic bands. This blacklist is the set of all band config-
urations from which we predicted that the local controller
would be deadlocked in the future (Section 4.2).
To define similarity we use Jaillet and Siméon’s visibility

deformation definition to compare two virtual elastic bands
(Jaillet and Siméon, 2008). Intuitively two virtual elastic
bands are similar if you can sweep a straight line connecting
the two bands from the start points to the end points of the
two bands without intersecting an obstacle. Unlike the orig-
inal use, we do not constrain the start and end points of each
path to match, but the algorithm is identical. We use this as a
heuristic to find states that are dissimilar from states where
we have already predicted that the local controller would
be deadlocked. Let VisCheck(B, Blacklist)→ {0, 1} denote
this visibility deformation check, returning 1 if B is similar
to a band in the blacklist and 0 otherwise. Then

Bgoal = {B | VisCheck(B, Blacklist)= 0} (5)

is the set of all virtual elastic bands that are dissimilar to the
Blacklist.
Combined, qgoalxyz , δgoal, and Bgoal define what it means for

the planner to have found a path to the goal (Algorithm 5);
the end-effectors must be in the right region, and the virtual
elastic band must be dissimilar to any band in the Blacklist.
The combination of local control, deadlock prediction,

and global planning are shown in the MainLoop func-
tion (Algorithm 6). Because the virtual elastic band is an
approximation, we need to predict deadlock while execut-
ing the planned path. We use the same prediction method
for path execution as for the local controller. To set the
maximum band length Lmax used by the global plan-
ner and the deadlock prediction algorithms, we calculate
the geodesic distance between the grippers through the
deformable object in its “laid-flat” state and scale it by the
task-specified maximum stretching factor λs.

5. Global planning

The purpose of the global planner is not to find a path to a
configuration where the task is complete, but rather to move
the system into a state from which the local controller can
complete the task. Planning directly in configuration space
of the full system Cr × R3P is not practical for two impor-
tant reasons. First, this space is very high-dimensional and
the system is highly underactuated. More importantly, to
accurately know the state of the deformable object after a
series of robot motions one would need a high-fidelity sim-
ulation that has been tuned to represent a particular task.
We seek to plan paths very quickly without knowing the
physical properties of a deformable object a priori. The

Algorithm 4 PlanPath( qr,t,Pt,Bt, T , δgoal,
Lmax, δBN , Blacklist)
1: TU ← UncoveredTargetPoints(Pt, T )
2: qgoalxyz ← ClusterCenters( TU )
3: qgoalxyz ← ProjectOutOfCollision( qgoalxyz )
4: Bgoal ← {B | VisCheck(B, Blacklist)= 0}
5: Path ← RRT-EB( qr,t,Bt, q

goal
xyz , δgoal,Bgoal,Lmax, δBN )

6: if Path 
= Failure then
7: return ShortcutSmooth(Path)
8: else
9: return Failure

10: end if

Algorithm 5 GoalCheck(V , qgoalxyz , δgoal,Bgoal)

1: for qf =( qr,B)∈ V do
2: ( p0, p1)← ForwardKinematics( qr)
3: if ‖p0 − qgoalxyz, 0‖ ≤ δgoal and

4: ‖p1 − qgoalxyz, 1‖ ≤ δgoal and B ∈ Bgoal then
5: return 1
6: end if
7: end for
8: return 0

key idea that allows us to plan paths quickly is to con-
sider only the constraint on robot motion that is imposed
by the deformable object, i.e., the robot motion shall not
tear or cause excessive stretching of the deformable object.
We represent this constraint using a virtual elastic band and
enforce the constraint that the band’s length cannot exceed
Lmax.

5.1. Planning setup

Denote the planning configuration space as Cf = Cr × B.
In order to splitCf into valid and invalid sets, we first define
what it means for a band B ∈ B to be valid. A band B ∈ B

is considered valid if the band is not overstretched and the
path defined by B does not penetrate an obstacle:

Bvalid = {B | Length(B)≤ Lmax and

Path(B) ∩ Interior(O)= ∅}. (6)

Then the invalid set is Binv = B \ Bvalid . Similarly define
Cvalid

f = Cvalid
r × Bvalid and Cinv

f = Cf \ Cvalid
f .

HereCr andCf are imbued with distance metrics dr( ·, ·) :
Cr × Cr → R≥0 and df ( ·, ·) :(Cr × B)×(Cr × B)→ R≥0,
respectively. We define distances in robot configuration
space and band space to be additive. That is,

df ( ·, ·)2 = dr( ·, ·)2 +λbdb( ·, ·)2 (7)

for some scaling factor λb > 0. To measure distances in
B, we first upsample each band using linear interpolation
to use the maximum number of points Nmax

b for the given
task, then measure the Euclidean distance between the
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upsampled points when considered as a single vector
(Algorithm 7).
For a given planning problem, we are given a query

( qinitf ,Qgoal
f ) that describes the initial configuration of

the robot and band, as well as a goal region for the
system to reach. Note that Q

goal
f is defined implic-

itly via the GoalCheck() function and the parameters
( qgoalxyz , δgoal, Blacklist) rather than any explicit enumeration.
We now establish a relationship between a path in robot

configuration space πr and one in the full configuration
space πf by making the following assumption.

Assumption 1 (Deterministic propagation). Given an ini-
tial configuration in full space qinitf ∈ Cvalid

f and the cor-

responding robot configuration qinitr ∈ Cvalid
r , a path πr :

[0, 1] → Cvalid
r in robot configuration space with πr( 0)=

qinitr uniquely defines a single path in full space πf , where
πf ( 0)= qinitf . Specifically, define

πf (t)=
[

πr(t)
limh→0− ForwardPropogateBand(B( t − h) ,πr(t) )

]
(8)

Equation (8) implicitly defines an underactuated system
where the only way we can change the state of the band is by
moving the robot; for a path in the full configuration space
πf to be achievable there must be a robot configuration
space path πr, which when propagated using Equation (8),
produces πf . Let FullSpace(πr, qinitf ) be the function that
maps a given robot configuration space path πr and full
space initial configuration qinitf to the full space path defined
by Equation (8).

5.2. Planning problem statement

For a given planning instance, the task is to find a path start-
ing from qinitf through Cvalid

f to any point in Q
goal
f , while

obeying the constraints implied by Equation (8).
For a sequence of robot configurations qinitf , q1,r, . . . ,

qM ,r ∈ Cr, let πr = Path( qinitr , q1,r, . . . , qM ,r) be the path
defined by linearly interpolating between each point in
order. Then, formally, the problem our planner addresses
is the following:

find {q1,r, . . . , qM ,r}
s.t. πr = Path(qinitr , q1,r, . . . , qM ,r)

πf (s)∈ Cvalid
f , ∀s ∈ [0, 1]

πf (1)∈ Q
goal
f

(9)

where πf = FullSpace(πr, qinitf ).

5.3. RRT-EB

Our planner, RRT for Elastic Bands (RRT-EB; see Algo-
rithm 8) is based on RRT with changes to account for a
virtual elastic band in addition to the robot configuration.
Lines 5–12 perform random exploration with lines 13–23

Algorithm 6MainLoop( T ,�, ρ,Pflat, λs, λw,Np, δgoal, δBN )

1: D ← GeodesicDistanceBetweenEndEffectors(Pflat)
2: Lmax ← λsD
3: Blacklist ← ∅
4: Path ← ∅
5: t ← 0
6: qr,0 ← SenseRobotConfig( )
7: P0 ← SensePoints( )
8: while ¬�(Pt) do
9: Bt ← InitializeBand(Pt)

10: if PredictDeadlock( ρ, qr,t,Pt,Bt, T ,Lmax,Np, Path)
then

11: Blacklist ← Blacklist ∪{Bt}
12: Path ← PlanPath( qr,t,Pt,Bt, T , δgoal,

Lmax, δBN , Blacklist)
13: if Path = Failure then
14: return Failure
15: end if
16: end if
17: if Path 
= ∅ then
18: q̇cmdr ← FollowPath(Path)
19: if PathFinished(Path) then
20: Path ← ∅
21: end if
22: else
23: q̇cmdr ← LocalController(qr,t,Pt, T ,D, λs, λw)
24: end if
25: CommandConfiguration( qr,t + q̇cmdr )
26: qr,t+1 ← SenseRobotConfig( )
27: Pt+1 ← SensePoints( )
28: t ← t + 1
29: end while
30: return Success

Algorithm 7 BandDistance: db(B1,B2)

1: B̃1 ← UpsamplePoints(B1,Nmax
b )

2: B̃2 ← UpsamplePoints(B2,Nmax
b )

3: return ‖B̃1 − B̃2‖

biasing the tree expansion towards the goal region. The key
variations are the BestNearest function (Algorithm 9) and
the goal bias method.
BestNearest is based on the selection method used by Li

et al. (2016), selecting the node of smallest cost within a
radius δBN if one exists, falling back to standard nearest-
neighbor behavior if no node in the tree is within δBN of
the random sample. We use path length in robot configura-
tion space Cr as a cost function in our implementation. This
helps reduce path length and ensures that we can specify
lower bounds in Section 6.3. In order to avoid calculating
distances in the full configuration space when it is not nec-
essary, our method for finding the nearest neighbor is split
into two parts, first searching in robot space, then search-
ing in the full configuration space (see Figure 6). Section
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6.2 shows that this method is equivalent to searching in the
full configuration space directly. Here δBN is an additional
parameter compared with standard RRT; it controls how
much focus is placed on path cost versus exploration. The
smaller δBN , the less impact it has as compared with stan-
dard RRT. The larger δBN is, the harder it is to find narrow
passages. We discuss further constraints on δBN in Section
6.3.1.
To sample qrandf =( qrandr ,Brand), we sample the robot

and band configurations independently, then combine the
samples. For typical robot arms qrandr is generated by sam-
pling each joint independently and uniformly from the joint
limits. To sample from B, we draw a sequence of Nmax

b
points from the bounded workspace. For our example tasks,
workspace is a rectangular prism, and we sample each axis
independently and uniformly.
Owing to the fact that our system is highly underactu-

ated, and the goal region is defined implicitly by a function
call rather than an explicit set of configurations, we cannot
sample from the goal set directly as is typically done for a
goal bias. Instead, we precompute a finite set of robot con-
figurationsQgoal

r such that the end-effectors of the robot are
at qgoalxyz . Then, as a goal bias mechanism, γgb percent of the
time, we attempt to connect to a potential goal configuration
starting from the last configuration created by a call to the
Connect function (or the last node selected by BestNearest
if Vnew = ∅). A connection is then attempted between qlastf

and the nearest configuration inQgoal
r . This allows us to bias

exploration toward the robot component of the goal region,
which we are able to define explicitly.

6. Probabilistic completeness of global
planning

Proving probabilistic completeness inCf is challenging due
to the multi-modal nature of the problem. Specifically, as
the virtual elastic band moves in and out of contact the
dimensionality of the manifold that the system is operating
in can change. In addition, the virtual elastic band forward
propagation function (Algorithm 3) can allow the band to
“snap tight” as the grippers move past the edge of an obsta-
cle, changing the number of points in the band represen-
tation as it does so. By leveraging the assumptions from
Section 6.1, we are able to bypass most of these challenges
by focusing on the portion of Cf that can be analyzed,
i.e., Cr.

This section proves the probabilistic completeness of the
planning approach in twomajor steps. First, it will show that
the approach for selecting the nearest node in the tree for
expansion is equivalent to performing a nearest-neighbor
query in the full space. Second, it proves that our algorithm
will eventually return a path that is δr-similar to an optimal
δ-robust solution to the planning problem with probability 1
(if it exists), or it will terminate early having found an alter-
nate path to the goal region. Recall that we do not require
an optimal path, only a feasible one.

Algorithm 8 RRT-EB( qr,t,Bt, q
goal
xyz , δgoal,B

goal,Lmax, δBN , γgb)

1: V ← {( qr,t,Bt) }
2: E ← ∅
3: Qgoal

r ← GetGoalConfigs( qgoalxyz )
4: while ¬MaxTimeEllapsed() do
5: qrandf ← SampleUniformConfig()

6: qnearf ← BestNearest(V , E , δBN , qrandf )

7: Vnew, Enew ← Connect( qnearf , qrandr ,Lmax)
8: V ← V ∪ Vnew

9: E ← E ∪ Enew

10: if GoalCheck(Vnew, qgoalxyz , δgoal,Bgoal)= 1 then
11: return ExtractPath(V , E)
12: end if
13: γ ∼ Uniform[0, 1]
14: if γ ≤ γgb then
15: qlastf ← LastConfig( qnearf ,Vnew)

16: qbiasr ← argmin
qr∈Qgoal

r
dr( qlastr , qr)

17: Vnew, Enew ← Connect( qlastf , qbiasr ,Lmax)
18: V ← V ∪ Vnew

19: E ← E ∪ Enew

20: if GoalCheck(Vnew, qgoalxyz , δgoal,Bgoal)= 1 then
21: return ExtractPath(V , E)
22: end if
23: end if
24: end while
25: Return Failure

Algorithm 9 BestNearest (V , E , δBN , qrandf )

1: Qnear
f ← {qf |qf ∈ V , df ( q, qrandf )≤ δBN }

2: if Qnear
f 
= ∅ then

3: return argminq∈V Cost( q,V , E)
4: else
5: D2

near, r ← minq∈V dr( qrand, qr)2

6: D2
max, f ← D2

near, r + λbD2
max, b

7: Qnear
f ← {q|q ∈ V , dr( qr, qrandr )2 ≤ D2

max, f }
8: return argminqf ∈Qnear

f
df ( qf , qrandf )

9: end if

6.1. Assumptions and definitions

Our problem allows for the virtual elastic band to be in
contact with the surface of an obstacle, both during exe-
cution and as part of the goal set; this means that com-
mon assumptions regarding the expansiveness (Hsu et al.,
1999) of the planning problem may not hold. Instead of
relying on expansiveness, we define a series of alternate
definitions and assumptions that are sufficient to ensure the
completeness of our method.
First, in line with prior work, we assume properties of the

problem instance in regards to robustness. In particular, we
assume the existence of a solution to a given query π

ref
f :

[0, 1] → Cvalid
f , which has several robustness properties.

This solution is called a reference path.
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To begin describing the properties of the reference path,
we assume π

ref
f has robustness properties in the robot

configuration space. That is, the corresponding path in
robot configuration space π

ref
r has strong δr-clearance under

distance metric dr( ·, ·) for some δr > 0.

Definition 2 (Strong δ-clearance). A path π : [0, 1] →
Cvalid has strong δ-clearance under distance metric d( ·, ·)
if ∀s ∈ [0, 1], d(π ( s) ,Cinv)≥ δ, for δ > 0.

Given our assumption about the δr-clearance of the refer-
ence path in robot space, there exists a set Tr of δr-similar
paths to the reference path that are also collision-free.

Definition 3 (δ-similar path). Two paths πa and πb are δ-
similar if the Fréchet distance between the paths is less than
or equal to δ.

Informally, the Fréchet distance is described as follows
(Alt and Godau, 1995). Suppose a man is walking a dog.
The man is walking on one curve while the dog is walk-
ing on another curve. Both walk at any speed but are not
allowed to move backwards. The Fréchet distance of the
two curves is then the minimum length of leash necessary
to connect the man and the dog.
Given the relationship between robot-space and full-

space paths, we can define a full-space equivalent to Tr

as

Tf = {πf | πr ∈ Tr and πf = FullSpace(πr, q
init
f ) } (10)

Given these assumptions and definitions, we are ready to
define an acceptable δ-robust path.

Definition 4 (Acceptable δ-robust path). A path π
ref
f is an

acceptable δ-robust path if the following hold:

1. the robot-space reference path π
ref
r has strong δr-

clearance for some δr > 0;
2. the final state for every path πf ∈ Tf is in Q

goal
f .

We assume there exists a reference path that satisfies this
property and answers our given planning query.

Assumption 5 (Solvable problem). There exists some δr >

0 such that the planning problem admits an acceptable δ-
robust path.

If a planning problem does not yield a reference path with
this property, then it would be practically impossible for a
sampling-based approach to solve it, as this would require
sampling on a lower-dimensional manifold in robot space.
Given that our planner is able to find paths, we believe this
assumption is true except in special cases where the band
must achieve a singular configuration to reach the goal.
While the focus of this article is not on asymptotic opti-

mality, we make use of a cost function Cost(π ) of a path
in Section 6.3.1. Our cost function is path length in robot
configuration space. With a cost function of this form, we
then assume from here onward that the reference path in
question is optimal under the following definition.

Fig. 6. Left: q(2)r is the nearest node to the qrand in robot space, but
it my be as far as Dmax,f away in the full configuration space. By
considering all nodes within Dmax,f in robot space, we ensure that

any node (such as q
(1)
f ) that is closer to qrandf than q

(2)
f is selected

as part of Qnear
f , while nodes such as q

(4)
f are excluded in order

to avoid the expense of calculating the full configuration space
distance. Right: we then measure the distance in the full configu-
ration space to all nodes that could possibly be the nearest to qrandf ,

returning q
(1)
f as the nearest node in the tree.

Definition 6 (Optimal δ-robust path). Let Tf ,δ be the set

of all acceptable δ-robust paths. A path π
ref
f is optimal δ-

robust if

Cost(π ref
f )= inf

πf ∈Tf ,δ
Cost(πf ) (11)

Finally, we also assume that workspace is bounded. This
will be true for any practical task and is rarely mentioned in
the literature, but we use this assumption in our analysis in
Section 6.2.

6.2. Proof of nearest-neighbor equivalence

Lemma 7. If the maximum distance between any two points
in workspace is bounded by Dmax,w > 0, then under dis-
tance metric db( ·, ·), the maximum distance between any
two points in virtual elastic band space is bounded. That
is, there exists Dmax, b > 0 such that db(B1,B2)≤ Dmax, b for
all B1,B2 ∈ B.

Proof. From the definition of B in Section 4.2.2, the num-
ber of points used to represent a virtual elastic band is
bounded by Nmax

b . Let B1,B2 ∈ B be two virtual elastic band
configurations, and let B̃1 =( b̃1,1, . . . , b1,Nmax

b
) and B̃2 =

( b̃2,1, . . . , b2,Nmax
b

) be their upsampled versions as described
in Algorithm 7. Then

db(B1,B2)
2 =

Nmax
b∑
i=1

‖b̃1,i − b̃2,i‖2

≤
Nmax
b∑
i=1

D2
max,w = Nmax

b D2
max,w = D2

max, b(12)
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Lemma 8. If workspace is bounded, then lines 5–8 in Algo-
rithm 9 are equivalent to a nearest-neighbor search in the
full configuration space directly.

Proof. The upper bound ofDmax, b and our additive distance
metric (Equation (7)) ensures that the distance between any
two configurations in full space Cf can be bounded using
only the distance in robot configuration space:

df ( ·, ·)2 ≤ dr( ·, ·)2 +λb · D2
max, b (13)

Next, consider that in line 5 of the algorithm, the nearest
neighbor to qrandr under distance metric dr is found. Let this
nearest neighbor be denoted q̃nearr , keeping in mind that it
belongs to a vertex in the tree q̃nearf =( q̃nearr , q̃nearb ). Let the

(squared) distance between these points under dr be D2
near, r.

From (13), we can bound the distance between the random
sample and q̃nearf under df as D2

max, f ≤ D2
near, r + λbD2

max, b =
D2

max, f .
In line 7 of the algorithm, a radius nearest-neighbor

query of radius Dmax, f is performed, returning a set Qnear
f .

By construction if there is a node qf ∈ V that is closer
to qrandf than q̃nearf , then qf ∈ Qnear

f (Figure 6). Then, the
method selects as the true nearest neighbor in full space
qselectf = argminqf ∈Qnear

f
df ( qf , qrandf ).

6.3. Construction of a δr-similar path

The objective here is to show with probability approach-
ing 1 that the planner generates a δr-similar path to some
robustly feasible solution given enough time. If an alternate
path is found and the algorithm terminates before generat-
ing a δr-similar path, then this is still sufficient for prob-
abilistic completeness. This analysis is similar to Li et al.
(2016), and is based on a covering ball sequence of the opti-
mal δ-robust path π

ref
r . The key differences are in Section

6.3.2 where we show that using a straight line to connect
points in Cr is sufficient to get a lower bound on the prob-
ability of covering the next ball, where Li et al. used a
random control action.

Definition 9 (Covering ball sequence). Given a path πr :
[0, 1] → Cvalid

r , robust clearance δr > 0, a BestNearest
distance δBN > 0, and a distance value 0 < δc < δBN < δr;
the covering ball sequence is defined as a set of K+1 hyper-
balls {Bδr ( q0,r) , . . . ,Bδr ( qK,r) } of radius δr, where qk,r are
defined such that:

• q0,r = πr( 0);
• qK,r = πr( 1);
• PathLength( qk−1,r, qk,r)= δc for k = 1, . . . ,K.

We use q∗
k,r to denote the center of the kth covering hyper-

ball for the reference path π
ref
r . Figure 7 shows an example

of a covering ball sequence.

The objective is to show that the vertex set of the plan-
ning tree after n iterations Vn probabilistically contains a
node within the goal set, i.e.,

lim inf
n→∞ P(Vn ∩ Q

goal
f 
= ∅)= 1 (14)

To do this, the analysis examines K subsegments of the ref-
erence path π

ref
r , based on the covering ball sequence for

the reference path. If we can generate a robot path that is δr

similar to π
ref
r , then given Assumption 5 and the properties

of the reference path, the corresponding full space path will
be a solution to the given planning problem.
Let A(n)

k be the event that on the nth iteration of the algo-
rithm, it generates a δr-similar path to the kth subsegment of
π

ref
r . This of course requires two events to occur: the node

generated from the prior propagation covering segment k−1
must be selected for expansion, and the expansion must then
produce a δr-similar path to the current segment. Then, let
E(n)
k be the event that for segment k, A(n)

k has occurred for

some i ∈ [1, n], i.e., E(n)
k indicates whether the algorithm

has constructed the δr-similar edge for subsegment k. From
these definitions, the goal then is to show that

lim
n→∞P( Success)= lim

n→∞P

(
E(n)
K

)
= 1 (15)

We start by considering the probability of failing to
generate an arbitrary segment 1 ≤ k ≤ K. Then

P

(
¬E(n)

k

)
= P

(
¬A(1)

k ∩ · · · ∩ ¬A(n)
k

)

= P

(
¬A(1)

k

)
P

(
¬A(2)

k | ¬A(1)
k

)
· · · · ·

P

(
¬A(n)

k | ¬A(1)
k ∩ · · · ∩ ¬A(n−1)

k

)

=
n∏

i=1

P

(
¬A(i)

k | ¬E(i−1)
k

)
.

(16)

Note the definition of ¬E(i−1)
k is what allows us to collapse

the product into a concise form.
The probability that¬A(i)

k happens given¬E(i−1)
k is equiv-

alent to the probability that we have not yet generated a
δr-similar path for segment k − 1 (i.e., P(¬E(i−1)

k−1 )) plus the
probability that the previous segment has been generated,
but we fail to generate the current segment:

P

(
¬A(i)

k | ¬E(i−1)
k

)

= P

(
¬E(i−1)

k−1

)
+ P

(
E(i−1)
k−1

)

·P
(
¬A(i)

k | E(i−1)
k−1 ∩ ¬E(i−1)

k

)
, (17)

which we can rewrite in terms of A(i)
k instead of ¬A(i)

k :

P

(
¬A(i)

k | ¬E(i−1)
k

)
= P

(
¬E(i−1)

k−1

)
+ P

(
E(i−1)
k−1

)

·
(
1 − P

(
A(i)
k | E(i−1)

k−1 ∩ ¬E(i−1)
k

))
(18)
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Then multiplying out the last term we obtain

P

(
¬A(i)

k | ¬E(i−1)
k

)
= P

(
¬E(i−1)

k−1

)
+ P

(
E(i−1)
k−1

)

−P

(
E(i−1)
k−1

)
P

(
A(i)
k | E(i−1)

k−1 ∩ ¬E(i−1)
k

)
(19)

Finally, summing the first two terms, we arrive at

P

(
¬A(i)

k | ¬E(i−1)
k

)
= 1 − P

(
E(i−1)
k−1

)

P

(
A(i)
k | E(i−1)

k−1 ∩ ¬E(i−1)
k

)
(20)

Two events need to happen in order to generate a path to
the next hyper-ball: an appropriate node must be selected
for expansion, and Connect( . . . ) must generate a δr-
similar path segment, assuming that the appropriate node
has already been selected. Denote the probability of these
events at iteration i as γ

(i)
k and ρ

(i)
k , respectively. Then

P

(
¬A(i)

k | ¬E(i−1)
k

)
= 1 − P

(
E(i−1)
k−1

)
γ
(i)
k ρ

(i)
k (21)

As we are examining this probability in the limit, we instead
draw a bound on this probability to put it in a form we can
easily examine the limit for. To do so, we must carefully
consider the values of γ

(i)
k and ρ

(i)
k . In Section 6.3.1, we

show that γ
(i)
k is a generally decreasing function, but con-

verges to a finite value γ
(∞)
k > 0 in the limit. Therefore, we

let γ (∞)
k be a lower bound of γ

(i)
k . Then, in Section 6.3.2, ρ(i)

k
will similarly be shown to be positive and lower-bounded;
in particular γ

(i)
k ρ

(i)
k ≤ γ

(∞)
k . Taking γ

(∞)
k as constant, we

can bound (21) as

P

(
¬A(i)

k | ¬E(i−1)
k

)
≤ 1 − P

(
E(i−1)
k−1

)
γ
(∞)
k (22)

Combining Equations (22) and (16) we have

P

(
¬E(n)

k

)
≤

n∏
i=1

(
1 − P

(
E(i−1)
k−1

)
γ
(∞)
k

)
(23)

Denote y(n)k = ∏n
i=1

(
1 − P

(
E(i−1)
k−1

)
γ
(∞)
k

)
. Then

P

(
¬E(n)

k

)
≤ y(n)k (24)

We show using induction over k that Equation (24) tends to
0 as n → ∞, and thus limn→∞ P( Success)= 1.

Base case (k = 1):
Note that P(E(i)

0 )= 1 because the start node always exists.
Then

lim
n→∞P

(
¬E(n)

1

)
≤ lim

n→∞

n∏
i=1

(
1 − P

(
E(i−1)
0

)
γ
(∞)
k

)

= lim
n→∞

n∏
i=1

(
1 − γ

(∞)
k

)

= lim
n→∞

(
1 − γ

(∞)
k

)n
= 0

(25)

Fig. 7. Example covering ball sequence for an example reference
path with a distance along the path of δc between each ball. Given
that the path is δr-robust, each ball is a subset of Cvalid

r .

Induction hypothesis:

lim
n→∞P

(¬E(n)
m

) = 0 for m = 1, 2, . . . , k − 1 (26)

Note that this implies limn→∞ P(E(n)
m )= 1 for

m = 1, 2, . . . , k − 1.

Induction step (2 ≤ k ≤ K):

Consider the log of the bound on P

(
¬E(n)

k

)
,

log y(n)k =
n∑

i=1

log
(
1 − P

(
E(i−1)
k−1

)
γ
(∞)
k

)
(27)

We use the notation x = P

(
E(i−1)
k−1

)
γ
(∞)
k . Given that 0 ≤

x < 1, and writing the Taylor series expansion of log (1 − x)
centered at x = 0 we have

log (1 − x) = −
∞∑
m=1

xm

m
(28)

Substituting (28) back into (27) we obtain

log y(n)k = −
n∑

i=1

∞∑
m=1

(
P

(
E(i−1)
k−1

)
γ
(∞)
k

)m

m
(29)

Dropping all but the first term in the infinite sum, we get the
bound

log y(n)k ≤ −
n∑

i=1

P

(
E(i−1)
k−1

)
γ
(∞)
k (30)

Rearranging terms yields

log y(n)k ≤ −γ
(∞)
k

n∑
i=1

P

(
E(i−1)
k−1

)
(31)

We now use the induction hypothesis. We know that
P(E(n)

k−1)→ 1 as n → ∞, thus
∑n

i=1 P(E
(i−1)
k−1 )→ ∞. Then

lim
n→∞ log y(n)k ≤ −γ

(∞)
k

n∑
i=1

lim
n→∞P

(
E(i−1)
k−1

)
= −∞ (32)

Taking the log of (24) and combining with (32) we obtain

lim
n→∞ logP

(
¬E(n)

k

)
≤ lim

n→∞ log y(n)k = −∞ (33)
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and, therefore,

lim
n→∞P

(
¬E(n)

k

)
= 0 (34)

which completes the induction step.
Thus, given that P(¬E(n)

k )→ 0 as n → ∞ for any 1 ≤
k ≤ K

lim
n→∞P( Success)= lim

n→∞

(
1 − P

(
¬E(n)

K

))
= 1 (35)

6.3.1. Selection of an appropriate node (γ (∞)
k ). First, we

define the following restriction on the definition of δBN .

Definition 10 (δBN restriction). For a reference path π
ref
r

with robustness δr, δBN is defined such that δθ = δr − δBN >

0.

The proof that γ (∞)
k > 0 follows directly from the related

work of Li et al. (2016: proof of Lemma 23). To summa-
rize, owing to best nearest-neighbor selection, there exists
a positive-measure region around the minimum cost vertex
qnearf that observes the optimal reference path in which its
cost dominates all other nearby nodes and, therefore, when
qrandf is drawn in this volume, qnearf =( qnearr , qnearb ) is guar-
anteed to be selected (Figure 8). As our approach follows
an equivalent sampling and nearest-neighbor method to Li
et al. (2016: Algorithm 6) (as shown in Section 6.2),

γ
(∞)
k =

μ
(
Bδθ

(
q∗
k,f

) ∩ BδBN

(
qnearf

))
μ

(
Cf

) > 0 (36)

follows directly.
To show that γ

(∞)
k < 1, we need only consider the case

when there are at least two nodes in V .

6.3.2. δr-similar propagation (ρ(i)
k ). Given that our

nearest-neighbor method is non-standard, and operating
in the full configuration space Cf , we need to carefully

consider how this affects the propagation probability ρ
(i)
k .

Given the kinematic model of our robot system, it is
straightforward to show that the system in robot space
is small-time locally controllable (STLC), i.e., qr can
be instantaneously moved in any direction, barring the
presence of obstacles or configuration space limits.
Then, based on the construction of the covering ball

sequence and the δBN restriction, the following lemma
holds.

Lemma 11. If qrandf is within the minimum domination
region as described in Li et al. (2016: Lemma 23) (Fig-
ure 8), then qrandr ∈ Bδr ( q

∗
k,r) and Connect() will generate

a segment that is δr-similar to segment k of the reference
path.

Proof. Assume that qrandf ∈ Bδθ ( q
∗
k−1,f ). Then we have

dr( q
rand
r , q∗

k, r) ≤ df ( q
rand
f , q∗

k, f )

≤ df ( q
rand
f , q∗

k−1, f )+df ( q
∗
k−1, f , q

∗
k, f )

≤ δθ + δc = δr − δBN + δc

Then by construction of the covering ball sequence, we have
that δc − δBN < 0 and, thus, dr( qrandr , q∗

k,r)< δr. In addition,
we have that the straight line between qnearr as selected by
qrandr is entirely contained in Bδr ( q

∗
k−1,r), and thus is also

in Cvalid
r as the reference path is optimal δ-robust. We then

have that the path generated by Connect is δr-similar to the
kth segment of the reference path.

Lemma 12. The probability of covering segment k at itera-
tion i, given that we have not yet covered segment k but we
have covered segment k − 1

P

(
A(i)
k | E(i−1)

k−1 ∩ ¬E(i−1)
k

)
= γ

(i)
k ρ

(i)
k

is lower-bounded by γ
(∞)
k .

Proof. Consider two possible events. First, that qrandf is
within the minimum domination region (Figure 8) of qnearf .

If qrandf is within the minimum domination region of qnearf ,
then by Lemma 11, Connect() will generate a δr-similar seg-
ment with probability 1. Denote this event as B. Second, the
event that qrandf is somewhere else. Denote this event as C.

Then we can bound P(A(i)
k | E(i−1)

k−1 ∩¬E(i−1)
k ) by considering

only B:

P

(
A(i)
k | E(i−1)

k−1 ∩ ¬E(i−1)
k

)
= P(B)+P(C)

≥ P(B)≥ γ
(∞)
k

7. Simulation experiments and results

We now present four example tasks to demonstrate our
algorithm, two with cloth and two with rope. These tasks
are designed to show that our framework is able to handle
non-trivial tasks that cannot be performed using either our
controller or planner alone. In Section 8, we demonstrate
that our method can also be applied to a physical robot.
For these simulation tasks Cr = SE( 3)×SE( 3), i.e.,

there are two free-flying grippers. In the first and second
tasks, two grippers manipulate the cloth so that it covers
a table. In the first task the cloth is obstructed by a pillar
while in the second task the grippers must pass through a
narrow passage before the table can be covered. The third
and fourth scenarios require the robot to navigate a rope
through a three-dimensional maze before aligning the rope
with a line traced on the floor (see Figure 1). Extension 1
shows the task executions.
All experiments were conducted in the open-source Bul-

let simulator (Coumans, 2010), with additional wrapper
code developed at UC Berkeley (Robot Learning Lab,
2012). The cloth is modeled as a triangle mesh using 1,500
vertices with a total size of 0.3 m×0.5 m. The rope is mod-
eled as a series of small capsules linked together by springs.
In the first rope experiment we use 39 capsules for a 0.78
m long rope, and 47 capsules for a 0.94 m rope in the last
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experiment. We emphasize that our method does not have
access to the model of the deformable object or the simula-
tion parameters. The simulator is used as a “black box” for
testing. We set the maximum stretching factor λs to 1.17 for
the cloth and 1.15 for the rope. All tests are performed using
an i7-8700K 3.7 GHz CPU with 32 GB of RAM. We use
the same deadlock prediction and planner parameters for all
tasks, as listed in Tables 1 and 2. For the purpose of the plan-
ner we treat the grippers as spheres, reducing the planning
space from SE( 3)×SE( 3)×B toR6×B. To lift the planned
path back into SE( 3)×SE( 3)×B we copy the starting ori-
entation of the grippers to each gripper configuration in the
plan.
To smooth the path returned by the planner, at each itera-

tion we randomly select either a single gripper or both grip-
pers and two configurations in the path. To smooth between
the configurations we use the same forward-propagation
method for the virtual elastic band as used in the planning
process. If we have selected only one gripper for smoothing,
we do not change the configuration of the second gripper
during that smoothing iteration. We also forward-propagate
the virtual elastic band to the end of the path to ensure
that the band at the end of the smoothed path is dissimilar
from the blacklist. We perform 500 smoothing iterations for
experiments 1, 2, and 4; and 1,500 for experiment 3 owing
to the larger environment.

7.1. Single pillar

In the first example task, the objective is to spread the cloth
across a table that is on the far side of a pillar (see Fig-
ure 9). We uniformly discretize the surface of the table
to create the target points T , with each discretized point
creating a navigation function that pulls the closest point
on the deformable object towards the target. These target
points are set slightly above the surface to allow for col-
lision margins within the simulator. A single point on the
cloth can have multiple “pulls” or none. Task error ρ is
defined as the sum of the Dijkstra’s distances from each tar-
get point to the closest point on the cloth. If a target point
in T is within a small-enough threshold of their nearest
neighbors in P , then these points are considered “covered”
and do not affect task error or any other calculation. Our
results show that even though the global planner is only
planning using the gripper positions and a virtual elastic
band between them, it is able to find the correct neigh-
borhood for the local controller to complete the task. On
average we are able to find and smooth a path in 3.0 sec-
onds (Table 3), with the majority of the planning time spent
on forward propagation of the virtual elastic band as part of
the validity check for a potential movement of the grippers.
In all 100 trials the global planner is only invoked once,
with the local controller completing the task after the plan
finishes.

Fig. 8. Minimum domination region for a node qi,f , adapted from

Li et al. (2016: Lemma 23). Sampling qrandf in the shaded region

guarantees that a node qnearf ∈ Bδr ( q
∗
k,f ) is selected for propaga-

tion so that either qnearf = qi,f or Cost( q
near
f )< Cost( qi,f ).

Table 1. Deadlock prediction parameters.

Prediction horizon Np 10
Band annealing factor α 0.3
History window Nh 100
Error improvement threshold βe 1
Configuration distance threshold βm 0.03

Table 2. Distance and planner parameters.

Goal bias γgb 0.1
Workspace goal radius δgoal 0.02
Best nearest radius δBN 0.001
Band distance scaling factor λb 10−6

Maximum band points Nmax
b 500

7.2. Double slit

The second experiment uses the same setup as the first,
with the only change being that the single pillar obstacle is
replaced by a wide wall with two narrow slits (Figure 10).
This adds a narrow passage problem and also demonstrates
the utility of the progress detection filter. In this example
the local controller is trying to move the deformable object
straight forward, but with the wall in the way it is unable
to make progress; the local controller cannot explicitly go
around obstacles. This experiment shows comparable plan-
ning time, but it takes longer to smooth the resulting path
(as expected given that the virtual elastic band forward
propagation takes longer near obstacles). The local con-
troller is again able to complete the task after invoking the
planner a single time on all 100 trials.
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Fig. 9. Sequence of snapshots showing the execution of the first experiment. The cloth is shown in green, the grippers are shown in blue,
and the target points are shown as red lines. (1) The approximate integration of the navigation functions from error reduction over Np

timesteps, shown in magenta, pull the cloth to opposite sides of the pillar. (2) A sequence of virtual elastic bands between the grippers
is shown in black and teal, indicating the predicted gripper configuration over the prediction horizon as the local controller follows
the navigation functions. The elastic band changes to teal as the predicted motion of the grippers moves the cloth into an infeasible
configuration. (3–5) The resulting plan by the RRT, shown in magenta and red, moves the system into a new neighborhood. (6) Final
system state when the task is finished by the local controller.
Note: Colour version of the figure is available online.

Table 3. Planning statistics for the first plan for each example task in simulation, averaged across 100 trials. Standard deviation is shown
in brackets.

RRT planning Smoothing

Samples States
NN
time
(s)

Validity
checking
time (s)

Total
time
(s)

Iterations
Validity
checking
time (s)

Visibility
deformation
time (s)

Total
time
(s)

Single pillar
158
[121]

1,182
[804]

∼0.0
[∼0.0]

0.6
[0.5]

0.6
[0.5]

500
0.8
[1.2]

1.6
[0.2]

2.4
[1.2]

Double slit
478
[353]

2,124
[1,428]

∼0.0
[∼0.0]

0.7
[0.8]

0.7
[0.8]

500
2.5
[2.6]

∼ 0.0
[∼0.0]

2.5
[2.6]

Rope maze
4,796
[1,613]

9,926
[3,760]

0.1
[∼0.0]

4.0
[1.7]

4.2
[1.8]

1,500
6.4
[3.9]

∼ 0.0
[∼0.0]

6.5
[3.9]

Repeated
planning

54
[46]

153
[147]

∼0.0
[∼0.0]

0.1
[0.1]

0.1
[0.1]

500
1.4
[0.9]

∼ 0.0
[∼0.0]

1.4
[0.9]
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Fig. 10. Sequence of snapshots showing the execution of the second experiment. We use the same colors as the previous experiment
(Figure 9), but in this example instead of detecting future overstretch in panel (2), we detect that the system is stuck in a bad local
minimum and unable to make progress.

7.3. Moving a rope through a maze

In the third task, the robot must navigate a rope through a
three-dimensional maze before aligning the rope with a line
traced on the floor (Figure 11). This scenario is meant to
represent tasks such as moving a heavy cable through a con-
struction zone without crane access. In this task, the corre-
spondences between the target points T and the deformable
object points P are fixed in advance, thus the CalculateCor-
respondences() function does not have to do any work, as
shown in Table 4. Task error ρ is defined in the same way
as in the first two experiments. Again the planner is invoked
a single time per trial, but planning and smoothing times are
longer than the previous tasks. This is a function of the size
of the environment rather than any particular difference in
the difficulty of performing the planning or smoothing. The
planner finds a feasible path in 4.2 s on average, suggesting
that our method can maintain fast planning times, even in
larger environments with many more obstacles.

7.4. Repeated planning

The fourth task is a variant of the third, with the start con-
figuration of the rope moved near the goal region on the

Table 4. Local controller and deadlock prediction average com-
putation time per iteration for each type of deformable object,
averaged across all trials.

Calculate
Correspondences()
time (s)

Predict
Deadlock()
time (s)

Local
controller
time (s)

Cloth 0.0114 0.0077 0.0126
Rope 0 0.0119 0.0023

top layer of the maze and a longer rope. This task has the
most potential for a planned path to move the deformable
object into a configuration from which the local controller
cannot finish the task by wrapping the rope around an
obstacle near the goal. For this experiment, we reduce the
size of the planning arena to only the goal area, and the
immediate surroundings on the top layer (Figure 12). From
this starting position, the planner is more likely to find
the incorrect neighborhood for the local controller, which
corresponds to placing the rope into the wrong homotopy
class, on the first attempt. We emphasize that the correct
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Fig. 11. Sequence of snapshots showing the execution of the third experiment. The rope is shown in green starting in the top left corner,
the grippers are shown in blue, and the target points are shown in red in the top right corner. The maze consists of top and bottom layers
(green and purple, respectively). The rope starts in the bottom layer and must move to the target on the top layer through an opening
(bottom left or bottom right).
Note: Colour version of the figure is available online.

homotopy class is unknown, as we assume no informa-
tion is given about the connectivity of the target points.
Thus, our method must discover the correct homotopy class
by trail-and-error, invoking the planner when the deadlock
prediction determines the controller will be stuck.
In 71 of the 100 trials, the planner was invoked twice,

in 13 other trials it was invoked three times, and in 2 trials
it was invoked four times. These additional planning and
smoothing stages took on average an additional 6.6 sec-
onds, but the task was completed successfully in all 100
trials. This experiment suggests that our framework is able
to effectively explore different band neighborhoods until the
correct one is found, enabling the local controller to finish
the task, even when the initial configuration is adversarial.

7.5. Computation time

To verify the practicality of our deadlock prediction algo-
rithm and virtual elastic band approximation, we gathered

Table 5. Average computation time to compute the effect of a
gripper motion.

Bullet
simulation
time (ms)

Virtual elastic
band propagation
time (ms)

Cloth 36.12 0.19
Rope 3.19 0.58

data comparing computation time for these components to
the local controller by itself, and to using the Bullet simu-
lator. Table 4 shows the average times per iteration for the
local controller and deadlock prediction algorithms, aver-
aged across all trials of all experiments. As expected, adding
in the deadlock prediction step does increase computation
time, but the overall control loop is still fast enough for
practical use.
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Fig. 12. Sequence of snapshots for the fourth experiment. We use the same colors as the previous experiment (Figure 11), but in this
example the local controller gets stuck twice, in panels 3 and 6. In panel 7 the global planner finds a new neighborhood that is distinct
from previously tried neighborhoods.

Table 5 shows a comparison between the average time
needed to compute the virtual elastic band propagation for
a gripper motion and the time needed to reliably simulate
a gripper motion with the Bullet simulator. Note that the
amount of time required for the simulator to converge to
a stable estimate depends on many conditions, including
what object is being simulated. Through experimentation
we determined that 4 simulation steps were adequate for
rope and 10 for cloth. Comparing the time needed to do this
simulation with the time needed to forward propagate a vir-
tual elastic band, we see that our approximation is indeed
faster by an order of magnitude for rope, and by two orders
of magnitude for cloth. This result reinforces the impor-
tance of using a simplified model, such as the virtual elastic
band, within the planner: this model, while not as accurate
as a simulation, allows us to evaluate motions much faster.

8. Physical robot experiment and results

In order to show that our method is practical for a physi-
cal robotic system, not only free floating end-effectors, we
set up a task similar to the single pillar task (Section 7.1)
with a dual-arm robot. It also shows that while our methods
make strong assumptions about the ability to perceive the
deformable object in Section 3 (in particular, no occlusions
and no sensor noise), our framework is still able to perform
meaningful tasks when those assumptions are violated. In
this task, the robot must align a cloth placemat inside of
the pink rectangle, going around an obstacle in the process
(Figure 13).

8.1. Experiment setup

8.1.1. Robotic platform. Val is a stationary robotic
platform with a 2-DoF torso, two 7-DoF arms, and a rotary

pincer per arm. As in the simulated environments it is
assumed that Val is already holding the cloth, leaving 16
DoFs to be controlled and planned for (Cr = R16).

8.1.2. Cloth perception. The placemat is 0.33 m × 0.46 m
that we discretize into a 3 × 3 grid. As tracking of
deformable objects is a difficult problem, and out of scope
of this article, we instead use fiducials to track the configu-
ration of the cloth. Two of the points are tracked using the
position of the grippers; the other seven points are tracked
with AprilTags (Olson, 2011) and a Kinect V2 RGB-D
sensor (Wiedemeyer, 2014–2015).
In order to address occlusions and noisy data, we filter

the raw observations using a set of objective terms, and a
set of constraints (see Figure 14). We use zi to denote the
last observed position of point i, and use ti to denote the last
time point i was observed. Then we add objective terms to
pull the cloth estimate towards the observations, combined
with constraints between each pair of points to ensure that
the estimate is plausible:

P(t)= argmin
{pi}

∑
i

e−KT (t−ti)‖pi − zi‖2

subject to ‖pi − pj‖2 ≤ KLd
2
ij ∀i, j s.t. i 
= j

(37)

where KT and KL are task-defined scale factors that we set
to 1.5 and 1.0001, respectively, for this task.

8.2. Experiment results

We use the same deadlock, distance, and planner parame-
ters as used in the simulation experiments, performing 500
smoothing iterations once a path is found. We constrain the
rotation of the end-effectors to stay within 1.6 rad of their
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Fig. 13. Cloth placemat task. The placemat starts on the far side of an obstacle and must be aligned with the pink rectangle near the
robot.

starting orientation during the planning process as well as
constrain the grippers to stay close to the table. This forces
the planner to move the placemat around the obstacle rather
than over the obstacle. Finally, we also introduce planning
restarts (Wedge and Branicky, 2008) into the planning pro-
cess in order to address the greater complexity added by
using a 16-DoF robot and the relatively strict workspace
constraints; the restart timeout we set is 60 seconds.
Table 6 shows the planning statistics across 100 planning

trials with identical starting configurations, but different
random seeds. On average planning and smoothing takes
less than 60 seconds, with forward kinematics and collision
checking dominating the planning time. The restart time-
out was unused in 68 out of 100 trials, with the other 32
trials requiring a total of 50 restarts between them. Fig-
ure 15 shows that the planning time follows a “heavy tail”
distribution typical of sampling-based planners.
Our overall framework is able to complete this task as

shown in Figure 13. As in the simulated version of this task,
we are able to predict deadlock before the robot gets stuck,
plan and execute a path to a new neighborhood, and then
use the local controller to finish the task.

9. Discussion and conclusion

We have presented a method to interleave global planning
and local control for deformable object manipulation that
does not rely on high-fidelity modeling or simulation of
the object. Our method combines techniques from topologi-
cally based motion planning with a sampling-based planner
to generate gross motion of the deformable object. The pur-
pose of this gross motion is not to achieve the task alone,
but rather to move the object into a position from which the

local controller is able to complete the task. This division
of labor enables each component to focus on their strengths
rather than attempt to solve the entire problem directly. We
also presented a probabilistic completeness proof for our
planner which does not rely on either a steering function
or choosing controls at random, and addresses our underac-
tuated system. As part of our framework, we introduced a
novel deadlock prediction algorithm to determine when to
use the local controller and when to use the global planner.
Our experiments demonstrate that our framework is able

to be applied to several interesting tasks for rope and cloth,
including an adversarial case where we set up the planner to
fail on the first attempt. For the simulated tasks, our frame-
work is able to succeed at each task 100/100 times, with
average planning and smoothing time under 4 seconds for
3 tasks, and under 11 seconds for the larger environment.
The physical robot experiment shows that our framework
can be used for practical tasks in the real world, with plan-
ning and smoothing taking less than 60 seconds on average.
This experiment also shows that our methods can function
despite noisy and occluded perception of the deformable
object.

9.1. Parameter selection

There are several parameters in both the local controller
and the global planner that can have a significant effect on
the performance of our method. In particular, if the local
controller is prone to oscillations (Appendix B.4), this can
cause the deadlock prediction algorithm to incorrectly pre-
dict that the local controller will get stuck, leading to an
unnecessary planning phase. In the worse case, this can
cause the global planner to be unable to find an acceptable
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Table 6. Planning statistics for the cloth placemat example, averaged across 100 trials. Standard deviation is shown in brackets.

RRT planning Smoothing

Samples States
NN
time
(s)

Validity
checking
time (s)

Random
restarts

Total
time
(s)

Iterations
Validity
checking
time (s)

Visibility
deformation
time (s)

Total
time
(s)

83,041
[83,677]

8,438
[6,182]

4.5
[4.9]

44.1
[44.5]

0.5
[0.9]

50.0
[50.9]

500
3.6
[1.1]

0.1
[∼0.0]

3.6
[1.1]

Fig. 14. Constraint and objective graph for (37). Note that not all
constraints are shown to avoid clutter; every estimated position has
a constraint between itself and every other estimated position.

path owing to the blacklisting procedure. One interesting
direction of future research is how to perform reachabil-
ity analysis for deformable objects in general, in particular
when a high-fidelity model of the deformable object is not
available. In practice, we found that increasing the predic-
tion horizon Np and prediction annealing factor α was not
useful as the prediction accuracy degrades quickly. We did
have to tune the history window Nh and thresholds βe, βm

against each other. Error improvement threshold βe needs
to be set relative to the definition of task error ρ, while βm

is more sensitive to oscillations. If βm is too small, then the
system will fail to detect that the controller is stuck in a
poor local minima. If these thresholds are too high or Nh is
too low, then false positives were common near the end of
the table coverage tasks.
For the global planner, we found that the goal bias γgb has

a similar effect on planning time as a standard RRT; values
in the range [0.05, 0.15] produced similar planning times
for our experiments. In addition, if λb is not small, then
nearest-neighbor checks can become very expensive. In
practice, distances in band space are used to disambiguate
between nodes that are at nearly identical configurations

Fig. 15. Histogram of planning times across 100 trials for the
cloth placemat experiment.

in robot configuration space. This happens when multiple
nodes connect to the position goal qgoalxyz , but their bands are
similar to a blacklisted band. One potential way to make dis-
tances in band space more informative would be to develop
a way to sample interesting band configurations.

9.2. Limitations

We made a choice to favor speed over model accuracy. As
a consequence, there are several issues that our method
does not address. In particular, environments with “hooks”
can cause problems owing to our approximation methods;
the virtual elastic band we use for constraint checking and
planning assumes that: (1) there is no minimum length of
the deformable object and (2) there are no holes in the
deformable object. These assumptions mean that our plan-
ner cannot detect cases where the slack material or a hole
can get snagged on corners or hooks, preventing the motion
plan from being executed. One way this can be mitigated
is by using a more accurate model (at the cost of speed
and task-specific tuning). Other potential solutions include
online modeling methods such as Hu et al. (2018), or learn-
ing which features of the workspace can lead to highly
inaccurate approximations and planning paths that avoid
those areas. In addition, we have no explicit method to avoid
twisting or knot-tying behavior. While shortcut smoothing
can potentially mitigate the worst effects, avoiding such
cases is not something that is within the scope of this work.
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Similarly, we do not have any explicit consideration for
achieving a task that requires knot-tying or twisting; while
some other local controller may be able to perform these
tasks from a suitable starting state, we have not investigated
this option. Finally, we cannot guarantee that we can achieve
any given task in general; while our blacklisting method is
designed to encourage exploration of the state space, it also
has the potential to block regions of the state space from
which the local controller can achieve the task. Defining a
set of tasks that our framework can successfully perform
is not practical given the limited set of assumptions we are
making about the deformable object. Despite these limita-
tions we find that our framework is able to reliably perform
complex tasks where neither planning nor control alone are
sufficient. In future work, we plan to address these weak-
nesses, in particular the snagging and twisting limitations,
which are artifacts of our approximation methods. We also
seek to extend our framework to a broader range of tasks,
beyond coverage and point matching applications.
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Appendix A. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description

1 Video Manipulating deformable objects by inter-
leaving prediction, planning, and control
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Algorithm 10 CalculateCorrespondences(P , T )
1: Tc = [∅]1×T

2: for i ∈ {1, 2, . . . ,T} do
3: j ← argminj∈{1,2,...,P} dDijkstras( Ti,Pj)
4: d ← dDijkstras( Ti,Pj)
5: Tc[j] ← {Tc[j]∪( j, d) }
6: end for
7: return Tc

Algorithm 11 FollowNavigationFunction(P , Tc)
1: Ṗe ← 03P×1

2: We ← 0P×1

3: for j ∈ {1, 2, . . . ,P} do
4: for ( j, d)∈ Tc[j] do
5: Ṗe,i ← Ṗe,i+ DijkstrasNextStep(Pi, j)
6: We,j ← max(We,j, d)
7: end for
8: end for
9: return Ṗe,We

Appendix B. Local controller

This appendix provides the details of each component of
the local controller (Algorithm 1). The three main sec-
tions determine: (1) which direction to manipulate the
deformable object in order to reduce task error; (2) adjust-
ments to help avoid overstretch of the deformable object;
and (3) Determining the best direction to move the robot to
achieve (1) and (2). We discuss each section in turn.

B.1. Reducing error

Determining which direction to manipulate the deformable
object in order to reduce task error is done in three steps
(Algorithms 10 and 11).
Each task defines a navigation function for every target

point Ti using Dijkstra’s algorithm. In general, there is no
one-to-one mapping between T and P; at every timestep,
for every target point Ti, we recalculate which point on the
deformable object Pj is closest, using the results from Dijk-
stra’s algorithm to measure distance (Algorithm 10). These
individual results are then aggregated in Algorithms 11
to define the best direction to manipulate the deformable
object in order to reduce error, and the relative impor-
tance of doing so for each point on the deformable object.
The directions each navigation function indicates are added
together to define the overall direction to manipulate a
point (Algorithm 11, line 5). For the importance factors
Wj, we take only the largest distance that Pj would have to
move as a way to mitigate discretization effects (Algorithm
11, line 6).

Algorithm 12 StretchingCorrection(D, λs,P) (adapted
from McConachie and Berenson (2018))
1: E ← EuclidianDistanceMatrix(P)
2: Ṗs ← 03P×1, Ws ← 0P×1

3: for i ∈ {1, 2, . . . ,P} do
4: for j ∈ {i + 1, . . . ,P} do
5: if Ei,j > λsDi,j then
6: �i,j ← Ei,j − Di,j

7: v ← �i,j(Pj − Pi)
8: Ṗs,i ← Ṗs,i + 1

2v
9: Ṗs,j ← Ṗs,j − 1

2v
10: Ws,i ← max(Ws,i,�i,j)
11: Ws,j ← max(Ws,j,�i,j)
12: end if
13: end for
14: end for
15: return Ṗs,Ws

Algorithm 13 CombineTerms( Ṗe,We, Ṗs,Ws, λw) (adapted
from McConachie and Berenson (2018))
1: for i ∈ {1, 2, . . . ,P} do
2: Ṗd,i ← Ṗs,i +

(
Ṗe,i − ProjṖs,i

Ṗe,i

)
3: Wd,i ← λwWs,i + We,i

4: end for
5: return Ṗd ,Wd

B.2. Stretching correction

Our algorithm for stretching correction is similar to that
found in Berenson (2013), with the addition of a weighting
term λw, and a change in how we combine error correc-
tion and stretching correction. We use the StretchingCor-
rection() function (Algorithm 12) to compute Ṗs and Ws

based on a task-defined stretching threshold Ws ≥ 0. First
we compute the distance between every two points on the
object and store the result in E. We then compare E with
D, which contains the relaxed lengths between every pair
of points. If any two points are stretched by more than a
factor of Ws, we attempt to move the points closer to each
other. We use the same strategy for setting the importance of
this stretching correction Ws as we use for error correction.
When combining stretching correction and error correction
terms (Algorithm 13) we prioritize stretching correction,
accepting only the portion of the error correction that is
orthogonal to the stretching correction term for each point.
Here λw is used to define the relative scale of the importance
factorsWe and Ws.

B.3. Finding the best robot motion

Given a desired deformable object velocity Ṗd and relative
importance weights Wd , we want to find the robot motion
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Algorithm 14 FindBestRobotMotionSim( qr,P , Ṗd ,Wd)

1: q̇cmdr ← ψse(3)( Ṗ,Wd) Equation (40)
2: q̇cmdr ← ObstacleRepulsion( q̇cmdr ,O,β)
3: return q̇cmdr

that best achieves ( Ṗd ,Wd), that is,

argmin
q̇r

‖ f ( qr,P , q̇r)−Ṗd‖Wd

subject to ‖q̇r‖ ≤ q̇max
r

(qr + q̇r) ∈ Cvalid
r

(38)

In general, f ( . . . ) is not known. For our controllers we use
a Jacobian-based approximation

f ( qr,P , q̇r)≈ Jdq̇r (39)

from McConachie and Berenson (2018: section V-C).
Our method for ensuring the robot stays in Cvalid

r is
different, depending on which robot we are using.

B.3.1. Simulated experiments. For the simulated experi-
ments, we first solve Equation (38) using our Jacobian
approximation:

ψse(3)( Ṗ ,W )= argmin
q̇r

‖Jdq̇r − Ṗ‖2W
subject to ‖q̇r‖2 ≤ q̇2r, max, e

(40)

where q̇r, max, e is the maximum velocity for each individual
end-effector (Algorithm 14).
In order to guarantee that the grippers do not collide

with any obstacles, we use the same strategy from Berenson
(2013), smoothly switching between collision avoidance
and other objectives (see Algorithm 15). For every gripper
g and an obstacle set O we find the distance dg to the near-
est obstacle, a unit vector ẋpg pointing from the obstacle to
the nearest point on the gripper, and a Jacobian Jpg between
the gripper’s DoF and the point on the gripper as shown in
Algorithm 16. We then project the servoing motion from
Equation (40) into the null space of the avoidance motion
using the null space projector ( I− J+

pgJpg ). Here β > 0 sets
the rate at which we change between servoing and collision
avoidance objectives and q̇r, max, o > 0 is an internal param-
eter that sets how quickly we move the robot away from
obstacles.

B.3.2. Physical experiments. For the physical robot, instead
of handling collision avoidance in a post-processing step,
we build the collision constraints directly into the optimiza-
tion function (Algorithm 17). To do so, we define a set
of points C = {c1, c2, . . . } on the robot that must stay at
least dbuffer away from obstacles. In our implementation,

Algorithm 15 ObstacleRepulsion(O,β) (adapted
from McConachie and Berenson (2018))
1: for g ∈ {1, 2} do
2: Jpg , ẋpg , dg ← Proximity(O, g)
3: γ ← e−βdg

4: q̇r,g,c ← J+
pg ẋpg

5: q̇r,g,c ← q̇r, max, o
‖q̇r,g,c‖ q̇r,g,c

6: q̇r,g,c ← γ
(
q̇r,g,c +

(
I − J+

pgJpg
)
q̇r,g,c

)
+( 1 −

γ ) q̇r,g
7: end for
8: return q̇r

Algorithm 16 Proximity( g,O) (adapted from McConachie
and Berenson (2018))
1: dg ← ∞
2: for o ∈ {1, 2, . . . , |O|} do
3: pg, po ← ClosestPoints( g, o)
4: v ← pg − po

5: if ‖v‖ < dg then
6: dg ← ‖v‖
7: ẋpg ← v

‖v‖
8: Jpg ← RobotPointJacobian( g, pg)
9: end if

10: end for
11: return Jpg , ẋpg , dg

this is the end-effectors, wrists, and elbows of each arm
of the robot. We then use the same Proximity() function
(Algorithm 16) as the simulated robot to define an extra
constraint that must be satisfied:

ψR16 ( Ṗ ,W )= argmin
q̇r

‖Jdq̇r − Ṗ‖2W
subject to qr + q̇r ∈ Cr

‖q̇r‖2 ≤ q̇2r, max

‖Jrq̇r‖2 ≤ q̇2r, max, e

ẋTpgJpg q̇r ≤ dg + dbuffer

(41)

In addition, we constrain the velocity of the robot both in
joint configuration space

‖q̇r‖2 ≤ q̇2r, max

and the velocity of the end-effectors in SE( 3)

‖Jrq̇r‖2 ≤ q̇2r, max, e

To solve Equations (40) and (41) we use the Gurobi opti-
mizer (Gurobi, 2016). Table 7 shows the parameters we use
for each experiment.
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Table 7. Controller parameters

Simulated
cloth
trials

Simulated
rope
trials

Physical
robot

Servoing max gripper velocity q̇r, max, e 0.2 0.2 0.3
Obstacle avoidance max gripper velocity q̇r, max, o 0.2 0.2 —
Max robot velocity q̇r, max — — 1.5
Obstacle avoidance scale factor β 200 1,000 —
Max stretching factor λs 1.15 1.17 1.01
Stretching correction weight factor λw 2,000 2,000 2,000
Obstacle avoidance buffer dbuffer — — 0.08
Workspace discretization (m) 0.02 0.05 0.02

Algorithm 17 FindBestRobotMotionPhys( qr,P , Ṗd ,Wd)
1: for g ∈ {1, 2, . . . , |C|} do
2: Jpg , ẋpg , dg ← Proximity(O, g)
3: end for
4: q̇cmdr ← ψR16 ( Ṗ,Wd) Eq. (41)

B.4. Parameter selection

While this controller is able to perform multiple cover-
age tasks successfully, it can be prone to oscillations in
three circumstances in particular. First, If the gripper veloc-
ity is too high, or the obstacle avoidance scale factor is
too small, the grippers can oscillate between servoing to

decrease task error, and moving away from obstacles. This
effect is most pronounced when the linearizations used
inside the controller do not model the local environment
well. The second case is when the task is nearly done;
in this case, if the discretization level of the deformable
object or the target points is too coarse, this can lead to
rapid changes in the task error gradient, which can cause
the controller to oscillate. Finally, if stretching correction is
directly opposing task progress, this will lead to oscillation
as the controller switches between the two objectives. The
choice of workspace discretization is not critical as long
as it is sufficient to capture any relevant details of obstacle
geometry.


