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Abstract: We propose PSSNet, a network architecture for generating diverse
plausible 3D reconstructions from a single 2.5D depth image. Existing methods
tend to produce only small variations on a single shape, even when multiple shapes
are consistent with an observation. To obtain diversity we alter a Variational Auto
Encoder by providing a learned shape bounding box feature as side information
during training. Since these features are known during training, we are able to
add a supervised loss to the encoder and noiseless values to the decoder. To eval-
uate, we sample a set of completions from a network, construct a set of plausible
shape matches for each test observation, and compare using our plausible diver-
sity metric defined over sets of shapes. We perform experiments using Shapenet
mugs and partially-occluded YCB objects and find that our method performs com-
parably in datasets with little ambiguity, and outperforms existing methods when
many shapes plausibly fit an observed depth image. We demonstrate one use for
PSSNet on a physical robot when grasping objects in occlusion and clutter.

1 Introduction

You look into a cabinet and see a coffee mug on the shelf. Though you only observe the front of
the shell you have a rich prior of shapes and so can infer the occluded structure of the mug. Now
suppose the handle is facing towards the back of the shelf, hidden from view. You may imagine
scenarios where the handle is on the left, on the right, straight back, or perhaps there no handle at
all. We propose a neural network architecture for generating these diverse samples over plausible
completed shapes (Fig. 1).

More specifically, we generate a set of possible 3D shapes from a 2.5D depth image, such as that
provided by a Kinect sensor. There is inherent ambiguity in this process as it is impossible to know
the true occupancy of occluded space. We thus seek an algorithm which produces a set of plausible
3D shape estimates from the observed data.

Broadly, researchers have attempted two approaches when inferring 3D structure from a 2.5D depth
image. Shape matching optimizes a model pose, potentially with uncertainty [1, 2], thus requiring
meshes of any potential object, limiting their ability to generalize. Learning-based methods, such
as Variational Auto Encoders (VAE) [3], only require meshes during training and generate visually-
pleasing shapes, but are optimized and evaluated on a single completion without consideration of
other plausible completions.

Rather than operating on a single maximal-likelihood guess of the world, many robotics algorithms
model and plan over a belief over worlds [4], thus we propose the Plausible Shape Sampling Network
PSSNet, capable of generating diverse shape completions when multiple plausible shapes could fit a
depth image. Our key insight is a restructuring of a Variational Auto Encoder to incorporate shape-
relevant features during training. We use a normalizing flow to map the pose and size of the shape’s
bounding box into a portion of the latent space of the VAE. During inference the network estimates a
distribution over bounding boxes from which a specific box is sampled and used for reconstruction.
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Figure 1: Our proposed PSSNet applied to a noisy segmented Kinect depth image of a mug produces
multiple plausible reconstructions

Evaluating the quality of our network presents a dilemma: how do we decide if shapes produced
by our network are plausible when they differ from the ground truth? We propose a non-learning
method for generating plausible completions for a specific test dataset.

This paper makes the following contributions:

1. A method to generate plausible completions for an evaluation dataset
2. Metrics to evaluate plausible diversity of a black-box shape completer
3. PSSNet: A network for sampling diverse and plausible shape completions

To validate our method, we perform experiments using mugs from shapenet [5] and all YCB objects
[6] which show that for ambiguous completions PSSNet produces diverse yet plausible samples,
while baselines produce similar and poor quality completions. Without ambiguity PSSNet still
retains similar performance to baselines. Finally, we construct physical robot scenarios of grasping
objects in occlusion and clutter and show the diversity of PSSNet aids grasping. Code and a video
are available at https://github. com/UM-ARM-Lab/probabilistic_shape_completion and
https://youtu.be/mY6c8jeZVKU

2 Related Work

Shape Matching: Robotics has studied the problem of inferring 3D structure from RGB and depth
camera images for decades. In the shape matching variant the pose or configuration of a target shape
is estimated from observations. A classic but powerful non-learning approach uses the Iterative
Closest Point (ICP) algorithm to align a target object with the observed pointcloud [7, 8], with some
newer methods predicting a pose using neural networks [9, 10, 11]. Uncertainty can be modeled
using discrete samples stored in a particle filter [12, 13, 14, 1, 15, 16, 17], where an observation
model assigns a likelihood to each proposed shape based on the agreement with the observed depth
image. Researchers have hand-crafted likelihood models using sum of squared pixel depth distances
[1], outlier rejection [9], gaussian per-pixel error [18], and signed distance [19].

Shape matching requires known meshes for objects, limiting the applicability in an unstructured
novel world. Our work uses shape matching to construct an evaluation dataset of plausible shapes
and configurations for each given depth image. Using ICP followed by an outlier rejection obser-
vation model, we generate plausible particles to evaluate how well PSSNet captures uncertainty.
PSSNet does not perform shape matching, nor require models outside of the training process.

Shape Completion: In shape completion or shape reconstruction the 3D structure is directly pre-
dicted from the camera observation. Shape datasets such as shapenet [5] and YCB [6] enable
learning on sufficient examples to generate visually compelling results. The most common net-
work architecture learns an encoder to a feature space followed by a decoder to the shape output
[20, 21, 22, 3, 23, 24, 25, 26, 27, 28, 29, 30]. In different variants the encoder may accept vox-
elgrids [20, 23, 21, 29, 31], images [22, 26], or point clouds [32, 27]. Similarly the decoder may
produce voxelgrids [20, 23, 21, 29, 31, 26], point clouds [32, 27], meshes [25], octrees [33], or im-
plicit surfaces [34]. Our proposed network encodes to and from voxelgrids, however we expect out
contributions to be applicable to other approaches.

In these networks a reconstruction loss such as voxel-independent binary crossentropy guides the
optimizer [20, 21, 31, 30], which leads to averaging over possible shapes when there is ambiguity,
producing “blurry” completions. Generative Adversarial Networks (GANs) [35] penalize this aver-
aging and are used to produce natural-looking 3D reconstructions [30, 3, 29]. We might hope that
by employing VAEs with GANs we could sample substantially different yet plausible completions
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for a single input, yet this diversity has not been studied [30, 3, 29]. In our experience VAE-GANs
have resulted in visually pleasing samples with low diversity.

Representing Bounding Box Uncertainty: Our proposal for encouraging diversity involves ex-
plicitly training the feature space of a VAE to represent means and variances in properties such as
position, orientation, and size. The vector representation of these chosen features and their uncer-
tainties must be representable and learnable by a neural network, which is a notorious challenge
when representing rotations in SO(3). While new rotation belief representations [2] would be inter-
esting to explore in our framework, we follow the approach of Tremblay et al. [36] and represent
pose as a bounding box using 8 3-dimensional points. However, the standard independent Gaussian
prior of a VAE is a poor prior for boxes where we expect corner locations to be highly coupled.

Normalizing flows have become popular in image generation as a method to invertably and losslessly
map the tightly coupled distribution of pixel values onto an independent Gaussian distribution [37,
38, 39]. However, normalizing flows have also been proposed to model posterior distributions of
VAE:s [40, 41]. We take a similar, but inverted, approach and learn a normalizing flow as a map from
the distribution of bounding boxes to the same independent Gaussian distribution used in our VAE.

3 Problem Formulation and Metrics

We assume a dataset of pairs (z,y) where x is the two voxelgrids (known occupied, known free) for
voxelized shape y. In this work we refer to an object as a mesh at an unspecified pose and a shape
as a voxelgrid produced by an object at a specific pose. We assume that for each x there is given
a set of plausible completions P(x). We desire a non-deterministic function §; ~ f(z) where g;
is a voxelgrid called a completion of x. Drawing n samples from f(x) gives a set of completions
Y. = {%,..,Un}- Let d(y1,y2) be a distance function between two voxelgrids (e.g. Chamfer
Distance). We define the Best Accuracy as Ma(z) = ming, .y d(7;,y). For a given (z,y) pair in
our test dataset we additionally evaluate the quality of f using 3 criteria:

1. The coverage of plausible completions:

min d(7, ) (1)
er(l‘) Yi €Yy

2. The average plausibility of completions generated by f:
1

Mp(z) = — min d(y;, ¥ 2
p(z) 7] 2 ooh) (G 9) 2)
Yi €Yy
3. The Plausible Diversity:
Mpp = Mg + Mp 3)

M 4 is most similar to metrics used in previous work and is also not dependent on construction of P.
M penalizes plausible shapes that are not generated by f, whereas M p penalizes network samples
that are far from 7. We want to generate diverse samples that are plausible, thus we seek an f that
achieves lowest M pp, which is the chamfer distance between the sets P and Y.

4 Method

4.1 Plausible Shape Sampling

Our Plausible Shape Sampling Network, PSSNet, is an adaptation of a variational auto encoder
(VAE). During inference PSSNet exactly follows a VAE, with an encoder that predicts a latent mean
and variance from which a latent vector is sampled, and a decoder that produces a 3D voxelgrid
from this latent vector. During training PSSNet differs from a VAE by replacing a portion of the
latent space with a learned representation of an additional input.

Our training data starts with a set of mesh objects at a single pose. For each object we compute an
axis-aligned bounding box. We then augment the dataset by applying rotations and translations to
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Figure 2: Our network, PSSNet, has the structure of a VAE during inference. During training we
separate the latent space into typical learned VAE features and “latent box” feature produced by a
learned normalizing flow applied to the ground truth bounding box. These latent box features are
used both as a loss on the encoder prediction and as input to the decoder during training.

each object and bounding box. Finally, we compute the voxelized shape y and the known-free and
known-occupied voxels = from a fixed view.

We train a normalizing flow on the bounding boxes of the training dataset with a Gaussian prior
N (0, 1). Each bounding box consists of 8 points, thus this flow maps from a 24 dimensional “box”
space to a 24 dimensional “latent box” space 1. The flow consists of 8 ReaINVP networks [38],
each with 2 hidden layers of size 512. During training batch normalization is performed between
every other ReaNVP network.

We then use this flow in training PSSNet (Fig. 2). The encoder takes as input = the known-occupied
and the known-free 643 voxelgrids. 2 x 2 x 2 convolutions with a stride of 2 and relu activation are
applied 4 times sequentially using [64, 128, 256, 512] channels. The output is densely connected to a
200D latent-mean and 200D latent log-variance. During inference the network is identical to a VAE,
and thus a latent vector is sampled from this mean and log-variance. The decoder inverts the structure
of the encoder, with a dense layer reshaped into a 4x4x4x512 tensor followed by “deconvolution”,
or convolution-transpose layers again with a stride of 2. The output of the decoder, 7, is a 643
voxelgrid that represents the probability of occupancy for each voxel, independently. We threshold
this voxelgrid at 0.5 to produce a binary occupancy.

During training, PSSNet differs from a VAE during the latent space sampling. The latent space is
partitioned into two vectors: z/ and the 24 dimensional latent box space z°. During training z° is
replaced by 1), the latent box produced by the normalizing flow applied to the bounding box, thus 2°
has no effect on the final voxelgrid produced. A loss term L1V rewards the log-likelihood of 1/ given
the latent mean zZ and variance zﬁ,gvar produced by the encoder. Additional loss terms for binary
cross-entropy reconstruction loss L™ and LYAE form the Monte Carlo estimate of the Evidence
Lower Bound (ELBO) [42] as applied to shape completion [29, 3]. With N as the total number
of voxels (64%), y[i] as the target value {0, 1} of the ith voxel, and (1, Tjoguar) is the probability
density at 1 of a Gaussian with log-variance 0j4gyqr-

N
L = plyl) _ % 3" —ylillog(gli])) — (1 - yli) log(li) )
LY = log(p(=")) — log(p(2[2)  =log(p(=',0) —log(p(s — 2. 5tpu)) )
Iflow _ log(p(1/)|2’z, le:)gvar)) = log(¢(y — ZZ, Zﬁ)gvar)) (6)



4.2 Quantifying Plausibility

Many shape completion methods evaluate results using the metric d(f(z),y), which may be appro-
priate if the ground truth shape is unambiguous given the view from the depth camera. However,
given two different shapes y1,y2 in the dataset with similar corresponding depth camera image
T1 & X9 it is unreasonable to expect f to always generate the correct output. Furthermore, for our
application we desire f to output diverse yet plausible shapes.

We propose two criteria to define some y; as a plausible completion of x;:

e Observing x; given y; must be sufficiently likely given a camera observation model
o The object represented by y; is in the test database, possibly with a different pose

To address the first criterion we define an observation model obs(x, y) as the likelihood of observing
the depth image of the 2.5D view I'm(x), given that the true occupied voxels are y. Similar work uses
the sum-of-squared depth differences of I'm(z)—Im(y) [1], yet we find this model is not sufficiently
discriminative. On the other hand, applying a Gaussian belief to each pixel independently [18] is far
too discrimative, as a single pixel can alter the likelihood by orders of magnitude. We have had the
most success with an outlier rejection model [9].

We define our obs(z, y) as a binary likelihood in Algorithm 1, indicating if z is or is not plausible.
We first compute a mask of unreliable depth pixels as any pixel in Imn(y) with gradient greater than
some threshold 4, and inflate this mask by one pixel (Line 3). We accept z as a plausible depth
image of y if every reliable pixel of |[Im(x) — Im(y)|| is below § = 4cm. Depending on sensor
noise it may be appropriate to allow some outliers. We deem certain pixels in the depth image I'm(y)
“unreliable” if they are at the boundary of shape, as discretization approximations due to pixelization
may assign a vastly different depth value due to a slight translation orthogonal to the camera. We
see this effect on physical hardware such as a Kinect as depth values near the boundary of shapes
are sometimes far too large, causing points to trail off into the background.

With obs now defined, we generate candidate shapes using objects from the test dataset Drggr.
Uniformly sampling poses and objects is infeasibly inefficient, as the vast majority of samples are
not plausible. As in some particle filter approaches [43], we sample candidate states and project
these onto a manifold of states more likely to be plausible. Algorithm 2 describes our approach. For
each (z;,y;) € Dresr we attempt to create a plausible completion using every element (z;,y;) €
DrEgst. We find a transformation 7' to align the 2.5D voxelgrids z; to x; using /C'P [44] (Line 3).
We then check if the observation is plausible given this aligned shape.

Algorithm 1 Observation Plausible: obs(x, y) Algorithm 2 Compute Plausibles(z;)
1: obs_image = I'm(x) 1: P(z;) =0
2: exp-image = Im(y) 2: for (l‘j, yj) € Drpst do
3: mask = ComputeUnreliable(expected_image) 3 T =ICP(xj, ;)
4: for each pixel index 7 not in mask do 4: if 0bs(x;|Ty;) then
5: if ||obs_image[i] - exp-image[i]|| > 0 then 5 P(z;) = P(z;) UTy;
6: return False 6: return P(z;)
7: return True i ¢

5 Experiments

We present quantitative and qualitative results demonstrating that for non-ambiguous completions
PSSNet performs on par with existing methods, and that when there is ambiguity PSSNet performs
better. We created datasets from shapenet [5] and YCB [6] such that 2.5D views could have multiple
consistent completions. We trained PSSNet as described above as well as a VAE, a VAE with
GAN loss similar to [30], and 3D-rec-GAN++ (without super-resolution layers) [29], with networks
accepting and producing voxelgrids of size 643. We constructed plausible completions P for each x
in our test dataset and evaluated our metrics (Section 3) using d(y1, y2), as chamfer distance between
voxelgrids converted to pointclouds, as it is a common metric of shape completion quality [3].

Shapenet Mugs: Using the mugs category from shapenet we constructed a dataset of 177 train and
37 test meshes. We rotated each mesh and associated bounded box in 5 degree increments about
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@ WIJIJI')I?I’I'

robabilities
Input + GT Plausible Input + GT B l m

[— 3D-rec-GAN —,

VAE-GAN VAE-GAN
3D-rec-GAN PSSNet (Ours) PSSNet (Ours) Plausible set

Figure 4: Completions (green) of a mug are sampled from the visible 2.5D view (grey). When the
handle is visible (left) all methods produce similar mugs close to the ground truth (GT) (blue). When
the handle is occluded (right) sampling from PSSNet yields mugs with different styles of handles in
different orientations, with similar variation seen in the plausible set (4 shapes shown).

Shapenet: all mugs Shapenet: occluded handle
best | coverage | avg. plausible best | coverage | avg. plausible
acc of P plaus | diversity || acc of P plaus | diversity

PSSNet (ours) | 1.9 2.9 2.0 4.9 2.0 3.0 1.9 5.0
VAE 2.0 33 1.9 52 2.7 3.6 22 5.8
3D-rec-GAN | 2.2 3.6 2.0 5.6 3.0 39 2.3 6.2
VAE-GAN 2.0 33 1.9 52 2.8 3.7 2.3 5.9
YCB: 30 pixel wide slit YCB: 6 pixel narrow slit
PSSNet (ours) | 1.3 1.7 3.2 4.8 2.3 4.5 4.4 8.9
VAE 1.5 3.1 1.8 4.9 3.0 7.8 2.8 10.6
3D-rec-GAN | 1.2 3.6 1.2 4.8 4.6 9.6 2.9 12.4
VAE-GAN 1.3 33 1.6 5.0 3.1 7.9 2.7 10.6

Table 1: Best sample accuracy, Coverage of the plausible set, Average sample plausibility and Plau-
sible diversity in mm. PSSNet performs best relatively in “Shapenet: occluded handle” and “YCB:
narrow slit”, as in these datasets there is ambiguity in the full shape given the partial view.
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Figure 5: Completions of YCB objects as viewed through a 6 pixel narrow slit with the nearest
plausible shape shown for each network sample. PSSNet generates diverse samples where other
networks generate only small variations on the same sample.

the vertical axis and voxelized using binvox [45], creating 12744 train and 2664 test shapes. For
approximately 1/5 of rotations, the handle is completely occluded from the 2.5D view.

We display the coverage metric for three of these shapes in Fig. 3. The left and middle mugs have a
typical handle and when the handle is visible all methods obtain similar coverage. When the handle
is occluded other methods perform far worse on M, meaning there are plausible completions that
significantly differ from any samples produced by the network. PSSNet retains similar coverage
even in these occluded regions. The right mug is square and unlike mugs in the training dataset, and
the chamfer distance reconstruction error is dominated by the mug body reconstruction.

We visualize samples in Fig. 4 and qualitatively observe the same trends. When visible, all meth-
ods accurately reconstruct the mug handle, but when occluded other methods tend to average over
plausible mugs and produce poor and non-diverse samples. For the 7 mugs from PSSNet the han-
dles vary in orientation and style while remaining in the occluded region. We find PSSNet generates
these diverse plausible handles for many but not all mugs. Qualitatively, we observe similar behavior
for PSSNet with live Kinect depth images using a hard-coded segmentation of a mug (Fig. 1).

YCB with slit occlusion: We constructed a training dataset by applying a total of 24 rotations about
the vertical and a horizontal axis for each YCB object. During training we occlude left and right
portions of the depth image to simulate viewing the object through a vertical slit. We randomly
translate the YCB shape and then randomly select a slit of width 5 to 30 pixels (1 pixel ~ 0.6cm)
and randomly place this slit so that the target object is visible in at least 5 columns of the image. A
full 2.5D view of any YCB object leaves little ambiguity, and this slit simulates viewing occluded
objects in a cluttered scene.

We construct two test datasets for a subset of the YCB objects by using the same set of rotations but
fix the translations and fix slit widths to 6 and 30 pixels. For each fixed slit width we construct a
separate P by fitting (Alg. 2) each test shape at each orientation and each translation along the slit
in 2 pixel increments. 6 pixels is a small portion of each object, thus in this dataset different objects
with many different translations tend to match each x. The 30 pixel slit captures most of the object,
so there is little ambiguity as to the 3D shape. We visualize completions in Fig. 5.

Metrics averaged over all test datasets are shown in Table 1. PSSNet consistently provides the best
coverage and comparably in plausible diversity for the datasets with lower ambiguity and outper-
forms baselines for datasets with greater ambiguity.

Physical Robot: We constructed two scenarios on a physical robot, shown in Fig. 6 and the accom-
panying video, where a grasp is chosen based on completions of a mug and the YCB Cheez-it box.
Consistent with the simulation experiments we found the baseline methods did not produce reason-
able handles for the mug and thus grasps failed, while PSSNet produced multiple plausible handles
leading to a successful grasp. Similarly, for the Cheez-it box viewed throw a narrow slit formed
from other clutter, baseline methods produced nearly no variation about an incorrect completion,
thus the attempted top grasp was not successful. PSSNet produced a variety of completions, some



Figure 6: Robot scenarios for grasping Cheez-it box (left) and the mug (right). From left to right:
The scene, the robot’s view of the scene, and a grasp attempt.

similar to the Cheez-it box and some more similar to other YCB objects. With this ambiguity, the
robot executed a side grasp that would capture many of the different possibilities, and successfully
grasped the Cheez-it box. Details are further described in the appendix A.2.

6 Discussion

We achieve our goal of creating a network that generates diverse samples, while other networks
generate only small variations on a single completion. PSSNet, however, performs worse on Mp,
indicating that either PSSNet sometimes produces poor quality samples, or that P lacks some plausi-
ble completions. Subjectively, we see both cases. Given a larger set of test shapes, P would contain
more shapes, and likely M p would improve. Below we discuss what we see as the main advantages
and limitations of our design choices for PSSNet and the plausible set:

Feature replacement: The partial feature replacement in the latent space of the VAE allows proper
credit assignment between the encoder and decoder during training of ambiguous samples. For
inputs where the reconstruction is inherently ambiguous we desire the encoder to predict variance in
the latent space. However given this ambiguity in latent space the reconstruction loss is minimized
when the decoder averages over plausible shapes. Replacing these latent box features during training
removes some ambiguity so that the reconstruction loss is minimized when the decoder produces a
specific object without as much blur.

Normalizing flow: The normalizing flow transforms the box features into the distribution A/(0, 1)
of the VAE prior, providing two important properties. First, this maps the arbitrary range of the box
features into the correct range for sampling from the VAE without requiring a distance function in
latent box space. Second, because the normalizing flow tends to be locally smooth, uncertainty in
latent-box space corresponds to rotation, translation, and resizing uncertainty of the bounding box,
allowing the VAE prior to model the variance of our dataset.

Computing the Plausible Set: /C P finds local, not global, minima and typically /C P is run many
times with different initializations. Our dataset Drpgr contains many copies of each object at
different rotations, and these copies serve the function of different initializations. However, there
are some limitations of our plausible set computation. Our algorithm to compute P has quadratic
complexity which limits the size of the test dataset. In addition, our observation model explicitly
ignores small depth errors without considering correlation of errors between pixels, yet small but
correlated depth differences could be used to identify larger shapes. Similarly, we explicitly discard
depth values on the borders of shapes as independently these pixels tend to be noisy, yet again
correlated depth values may provide useful information that is observable even with the independent
noise. Our network f may use such features, but P will not, thus our evaluation may be overly harsh
on our network, penalizing it for not generating shapes in P even when they are not plausible.

7 Conclusion

In this work, we proposed PSSNet, a method for generating diverse yet plausible 3D completions of
a 2.5D depth image. A normalizing flow transforms the side information of the true shape bounding
box into a feature space, which is used during training to encourage an encoder to generate diverse
latent space samples, and to aid the decoder in producing plausible samples. To evaluate this method
on a specific dataset we proposed a shape matching method to generate a set of plausible comple-
tions, as well as metrics for plausible diversity. In experiment PSSNet generated diverse samples
and outperformed existing approaches for depth images with ambiguous reconstructions.
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APPENDIX

A Further Experiment details

Figure 7: Similarity to the Training shapes. Completions (Green) from a depth view (grey) are
shown in both the top and bottom row. In all cases the handle is occluded from the depth view.
The top row additionally shows ground truth (transparent blue), while the bottom row additionally
shows the training shape (orange) that is closest (chamfer distance) to the ground truth test shape.

The completed handle is sometimes closer to the training shape (e.g. left-most), sometimes closer
to the test shape (e.g. right-most) and sometimes different from both.

A.1 Generalizing of shape

Test
Shape

Closest
Training
Shape

In addition to our main contribution, we ask if these shape completion networks are “completing
the shape” or “looking up the closest object from the training set”. To evaluate this we examine the
quality of the completions of the test shape as compared to the training shapes. For each test shape
from the Shapenet Mugs dataset we compute the closest (chamfer distance) training shape. We then
sample 10 completions from PSSNet using the 2.5D view of the test shape and compute chamfer
distance to both the closest-training and test shapes. Over all 26640 samples, the average chamfer
distance to the test and closest-train shapes are 2.4mm and 3.8mm respectively. We find that in 2599
(approx 10%) of samples the completion is closer to the training shape. Numerically this indicates
PSSNet (and presumably other shape completion networks) are more than searching for the nearest
shape.

Qualitatively we notice features, such as the mug handle, sometimes visually appear closer to the
closest-training shape. We visualize selected instances in Figure 7. We note that visually these
completions represent the diversity we desire, where the completion of an occluded handle can vary.

A.2 Physical Robot Details

We constructed two grasping scenarios on a physical robot, shown in Fig. 8 and the accompanying
video. The points from a Kinect were filtered using an image segmenting network to construct
known occupied and known free voxelgrids for the target object. 20 completions were sampled
from which grasp poses were calculated, and then a grasp was attempted. Our grasping strategies
described below are simple but still serve to demonstrate the value of a diverse belief over shapes
under ambiguity.

In the mug scenario, kinematics limits and clutter forced the robot to grasp the mug from the oc-
cluded handle on the far side from the robot. For each completion a grasp was chosen with a
handcoded orientation and grasp point as the furthest back possible grasp to avoid collision with
other clutter. The grasp attempted was the average of all valid grasp points with gripper width wide
enough to capture all grasp points. VAE-GAN sampled completions that did not have visible han-
dles, resulting in most grasp poses in collision with other clutter. Occasionally stray voxels appeared
in VAE-GAN completions that generated valid grasp poses, but when attempted these grasps were
not successful. Using PSSNet sampled completions with handles generated valid grasps, which
when executed resulted in successful grasps of the true mug.

In the Cheez-it scenario, clutter occluded all but a narrow slit from which only a small portion of
the box was visible. Potential grasps were sampled from both a top and side orientation with grasp
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Figure 8: Robot scenarios for grasping Cheez-it box (top) and the mug (bottom). From left to right:
The scene, the robot’s view of the scene, 2 sampled completions using PSSNet, and a grasp attempt.

point at the centroid of the completed object. Completions from VAE-GAN were consistent, but the
completed box was too shallow such that it appeared a top grasp would always be successful. These
attempted top grasps were unsuccessful because the gripper collided with the larger-than-expected
box. PSSNet again showed diversity with some completions thin and narrow and some as deep as
the true box, so that it was unclear if a top grasp would be successful and thus the robot attempted
and succeeded at side grasps.
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