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Abstract—We present a method for learning multi-stage tasks
from demonstrations by learning the logical structure and atomic
propositions of a consistent linear temporal logic (LTL) for-
mula. The learner is given successful but potentially suboptimal
demonstrations, where the demonstrator is optimizing a cost
function while satisfying the LTL formula, and the cost function
is uncertain to the learner. Our algorithm uses the Karush-
Kuhn-Tucker (KKT) optimality conditions of the demonstrations
together with a counterexample-guided falsification strategy to
learn the atomic proposition parameters and logical structure of
the LTL formula, respectively. We provide theoretical guarantees
on the conservativeness of the recovered atomic proposition sets,
as well as completeness in the search for finding an LTL formula
consistent with the demonstrations. We evaluate our method on
high-dimensional nonlinear systems by learning LTL formulas
explaining multi-stage tasks on 7-DOF arm and quadrotor
systems and show that it outperforms competing methods for
learning LTL formulas from positive examples.

I. INTRODUCTION

Imagine demonstrating a multi-stage task to a robot arm
barista, such as preparing a drink for a customer (Fig. 1). How
should the robot understand and generalize the demonstration?
One popular method is inverse reinforcement learning (IRL),
which assumes a level of optimality on the demonstrations,
and aims to learn a reward function that replicates the demon-
strator’s behavior when optimized [1, 4, 31, 35]. Due to this
representation, IRL works well on short-horizon tasks, but can
struggle to scale to multi-stage, constrained tasks [14, 27, 39].
Transferring reward functions across environments (i.e. from
one kitchen to another) can also be difficult, as IRL may
overfit to aspects of the training environment. It may instead
be fruitful to decouple the high- and low-level task structure,
learning a logical/temporal abstraction of the task that is
valid for different environments which can combine low-level,
environment-dependent skills. Linear temporal logic (LTL) is
well-suited for representing this abstraction, since it can unam-
biguously specify high-level temporally-extended constraints
[5] as a function of atomic propositions (APs), which can be
used to describe salient low-level state-space regions. To this
end, a growing community in controls and anomaly detection
has focused on learning linear temporal logic (LTL) formulas
to explain trajectory data. However, the vast majority of these
methods require both positive and negative examples in order
to regularize the learning problem. While this is acceptable
in anomaly detection, where one expects to observe formula-
violating trajectories, in the context of robotics, it can be
unsafe to ask a demonstrator to execute formula-violating
behavior, such as spilling the drink or crashing into obstacles.

Fig. 1. Multi-stage manipulation: first fill the cup, then grasp it, and then
deliver it. To avoid spills, a pose constraint is enforced after the cup is grasped.

In this paper, our insight is that by assuming that demonstra-
tors are goal-directed (i.e. approximately optimize an objective
function that may be uncertain to the learner), we can regu-
larize the LTL learning problem without being given formula-
violating behavior. In particular, we learn LTL formulas which
are parameterized by their high-level logical structure and low-
level AP regions, and we show that to do so, it is important to
consider demonstration optimality both in terms of the quality
of the discrete high-level logical decisions and the continuous
low-level control actions. We use the Karush-Kuhn-Tucker
(KKT) optimality conditions from continuous optimization to
learn the shape of the low-level APs, along with notions of
discrete optimality to learn the high-level task structure. We
solve a mixed integer linear program (MILP) to jointly recover
LTL and cost function parameters which are consistent with
the demonstrations. We make the following contributions:
1) We develop a method for time-varying, constrained inverse

optimal control, where the demonstrator optimizes a cost
function while respecting an LTL formula, where the
parameters of the atomic propositions, formula structure,
and an uncertain cost function are to be learned. We require
only positive demonstrations, can handle demonstration
suboptimality, and for fixed formula structure, can extract
guaranteed conservative estimates of the AP regions.

2) We develop conditions on demonstrator optimality needed
to learn high- and low-level task structure: AP regions can
be learned with discrete feasibility, while logical structure
requires various levels of discrete optimality. We develop
variants of our method under these different assumptions.

3) We provide theoretical analysis of our method, showing
that under mild assumptions, it is guaranteed to return the
shortest LTL formula which is consistent with the demon-
strations, if one exists. We also prove various results on
our method’s conservativeness and on formula learnability.

4) We evaluate our method on learning complex LTL formu-
las demonstrated on nonlinear, high-dimensional systems,
show that we can use demonstrations of the same task on
different environments to learn shared high-level task struc-
ture, and show that we outperform previous approaches.
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II. RELATED WORK

There is extensive literature on inferring temporal logic
formulas from data via decision trees [9], genetic algorithms
[11], and Bayesian inference [37, 39]. However, most of
these methods require positive and negative examples as
input [13, 25, 26, 30], while our method is designed to
only use positive examples. Other methods require a space-
discretization [3, 38, 39], while our approach learns LTL
formulas in the original continuous space. Some methods learn
AP parameters, but do not learn logical structure or perform an
incomplete search, relying on formula templates [6, 28, 41],
while other methods learn structure but not AP parameters
[37]. Perhaps the method most similar to ours is [22], which
learns parametric signal temporal logic (pSTL) formulas from
positive examples by fitting formulas that the data tightly
satisfies. However, the search over logical structure in [22]
is incomplete, and tightness may not be the most informative
metric given goal-directed demonstrations (c.f. Sec. VIII). To
our knowledge, this is the first method for learning LTL
formula structure and parameters in continuous spaces on
high-dimensional systems from only positive examples.

IRL [1, 18, 23, 24, 35] searches for a reward function that
replicates a demonstrator’s behavior when optimized, but these
methods can struggle to represent multi-stage, long-horizon
tasks [27]. To alleviate this, [27, 34] learn sequences of reward
functions, but in contrast to temporal logic, these methods are
restricted to learning tasks which can be described by a single
fixed sequence. Temporal logic generalizes this, being able to
represent tasks that involve more choices and can be completed
with multiple different sequences. Some work [33, 42] aims
to learn a reward function given that the demonstrator satisfies
a known temporal logic formula; we will learn both jointly.

Finally, there is relevant work in constraint learning. These
methods generally focus on learning time-invariant constraints
[12, 14, 15, 16] or a fixed sequence of task constraints
[32], which our method subsumes by learning time-dependent
constraints that can be satisfied by different sequences.

III. PRELIMINARIES AND PROBLEM STATEMENT

We consider discrete-time nonlinear systems xt+1 =
f(xt, ut, t), with state x ∈ X and control u ∈ U , where we de-
note state/control trajectories of the system as ξxu

.
= (ξx, ξu).

We use linear temporal logic (LTL) [5], which augments
standard propositional logic to express properties holding on
trajectories over (potentially infinite) periods of time. In this
paper, we will be given finite-length trajectories demonstrating
tasks that can be completed in finite time. To ensure that the
formulas we learn can be evaluated on finite trajectories, we
focus on learning formulas, given in positive normal form,
which are described in a parametric temporal logic similar to
bounded LTL [20], and which can be written with the grammar

ϕ ::= p | ¬p | ϕ1∨ϕ2 | ϕ1∧ϕ2 | �[t1,t2]ϕ | ϕ1 U[t1,t2] ϕ2, (1)

where p ∈ P .
= {pi}NAP

i=1 are atomic propositions (APs) and
NAP is known to the learner. t1 ≤ t2 are nonnegative integers.

Here, ¬ϕ denotes the negation of formula ϕ, ϕ1 ∨ϕ2 denotes
the disjunction of formulas ϕ1 and ϕ2, ϕ1 ∧ ϕ2 denotes the
conjunction of formulas ϕ1 and ϕ2, the “always” operator
�[t1,t2]ϕ denotes that ϕ “always” has to hold, and the “until”
operator ϕ1 U[t1,t2] ϕ2 denotes that ϕ2 must eventually hold,
and ϕ1 must hold up until that time. The semantics, describing
satisfaction of an LTL formula ϕ by a trajectory ξxu, denoted
ϕ |= ξxu, are given in App. A. Note that negation only
appears directly before APs. Let the size of the grammar be
Ng = NAP +No, where No is the number of temporal/boolean
operators in the grammar. A useful derived operator is “even-
tually” ♦[t1,t2]ϕ

.
= > U[t1,t2] ϕ. We consider tasks that involve

optimizing a parametric cost function (encoding efficiency
concerns, etc.), while satisfying an LTL formula ϕ(θs, θp)
(encoding constraints for task completion):

Problem 1 (Forward problem):

minimize
ξxu

c(ξxu, θ
c)

subject to ξxu |= ϕ(θs, θp)
η̄(ξxu) ∈ S̄ ⊆ C

where c(·, θc) is a potentially non-convex cost function, pa-
rameterized by θc ∈ Θc. The LTL formula ϕ(θs, θp) is
parameterized by θs ∈ Θs, encoding the logical and temporal
structure of the formula, and by θp .

= {θpi }NAP
i=1 , where θpi ∈ Θp

i

defines the shape of the region where pi holds. Specifically,
we consider APs of the form: x |= pi ⇔ gi(ηi(x), θpi ) ≤ 0,
where ηi(·) : X → C is a known nonlinear function,
gi(·, ·) .

= [gi,1(·, ·), . . . , gi,N ineq
i

(·, ·)]> is a vector-valued para-
metric function, and C is the space in which the constraint
is evaluated, elements of which are denoted constraint states
κ ∈ C. In the manipulation example, the joint angles are x, the
end effector pose is κ, and η(·) are the forward kinematics. As
shorthand, let Gi(κ, θ

p
i )

.
= maxm∈{1,...,N ineq

i }
(
gi,m(κ, θpi )

)
.

Define the subset of C where pi holds/does not hold, as

Si(θpi )
.
= {κ | Gi(κ, θpi ) ≤ 0} (2)

Ai(θpi )
.
= cl({κ | Gi(κ, θpi ) > 0}) = cl(Si(θpi )c) (3)

To ensure that Problem 1 admits an optimum, we have defined
Ai(θpi ) to be closed; that is, states on the boundary of an AP
can be considered either inside or outside. For these boundary
states, our learning algorithm can automatically detect if the
demonstrator intended to visit or avoid the AP (c.f. Sec. IV-B).
Any a priori known constraints are encoded in S̄ , where η̄(·)
is known. In this paper, we encode in S̄ the system dynamics,
start state, and if needed, a goal state separate from the APs.

We are given Ns demonstrations {ξdem
j }Ns

j=1 of duration Tj ,
which approximately solve Prob. 1, in that they are feasible
(satisfy the LTL formula and known constraints) and achieve
a possibly suboptimal cost. Note that Prob. 1 can be modeled
with continuous (ξxu) and boolean decision variables (referred
to collectively as Z) [40]; the boolean variables determine the
high-level plan, constraining the trajectory to obey boolean de-
cisions that satisfy ϕ(θs, θp), while the continuous component
synthesizes a low-level trajectory implementing the plan. We
will use different assumptions of demonstrator optimality on



the continuous/boolean parts of the problem, depending on if
θp (Sec. IV), θs (Sec. V), or θc (Sec. VI) are being learned,
and discuss how these different degrees of optimality can affect
the learnability of LTL formulas (Sec. VII).

Our goal is to learn the unknown structure θs and AP
parameters θp of the LTL formula ϕ(θs, θp), as well as
unknown cost function parameters θc, given demonstrations
{ξdem
j }Ns

j=1 and the a priori known safe set S̄ .

IV. LEARNING ATOMIC PROPOSITION PARAMETERS (θp)

We develop methods for learning unknown AP parameters
θp when the cost function parameters θc and formula structure
θs are known. We first review recent results [16] on learning
time-invariant constraints via the KKT conditions (Sec. IV-A),
show how the framework can be extended to learn θp (Sec.
IV-B), and develop a method for extracting states which are
guaranteed to satisfy/violate pi (Sec. IV-C). In this section,
we will assume that demonstrations are locally-optimal for the
continuous component and feasible for the discrete component.

A. Learning time-invariant constraints via KKT

Consider a simplified variant of Prob. 1 that only involves
always satisfying a single AP; this reduces Prob. 1 to a
standard trajectory optimization problem:

minimize
ξxu

c(ξxu)

subject to g(η(x), θp) ≤ 0, ∀x ∈ ξxu
η̄(ξxu) ∈ S̄ ⊆ C

(4)

To ease notation, θc is assumed known in Sec. IV-V and rein-
troduced in Sec. VI. Suppose we rewrite the constraints of (4)
as hk(η(ξxu)) = 0, gk(η(ξxu)) ≤ 0, and g¬k(η(ξxu), θp) ≤
0, where k/¬k group together known/unknown constraints.
Then, with Lagrange multipliers λ and ν, the KKT conditions
(first-order necessary conditions for local optimality [10]) of
the jth demonstration ξdem

j , denoted KKT(ξdem
j ), are:

Primal hk(η(xjt)) = 0, t = 1, . . . , Tj (5a)

feasibility: gk(η(xjt)) ≤ 0, t = 1, . . . , Tj (5b)

g¬k(η(xjt), θ
p) ≤ 0, t = 1, . . . , Tj (5c)

Lagrange mult. λj,k
t ≥ 0, t = 1, . . . , Tj (5d)

nonnegativity: λj,¬k
t ≥ 0, t = 1, . . . , Tj (5e)

Complementary λj,k
t � gk(η(xjt)) = 0, t = 1, . . . , Tj (5f)

slackness: λj,¬k
t � g¬k(η(xjt), θ

p) = 0, t = 1, . . . , Tj (5g)
Stationarity: ∇xtc(ξ

dem
j ) + λj,k

t
>∇xtg

k(η(xjt))

+ λj,¬k
t

>∇xtg
¬k(η(xjt), θ

p) (5h)

+ νj,k
t
>∇xth

k(η(xjt)) = 0, t = 1, . . . , Tj

where � denotes elementwise multiplication. We vectorize the
multipliers λj,kt ∈ RN

ineq
k , λj,¬kt ∈ RN

ineq
¬k , and νj,kt ∈ RN

ineq
k ,

i.e. λj,kt = [λj,kt,1 , . . . , λ
j,k

t,Nk
ineq

]>. We drop (5a)-(5b), as they
involve no decision variables. Then, we can find a constraint

♦ ♦
∧

p1 p2[Zj
1,1, ..., Z

j
1,Tj

]

[
∨Tj

i=1Z
j
1,i, ...,

∨Tj

i=Tj
Zj
1,i]

[Zj
2,1, ..., Z

j
2,Tj

]

[
∨Tj

i=1Z
j
2,i, ...,

∨Tj

i=Tj
Zj
2,i]

(
[
∨Tj

i=1Z
j
1,i, ...,

∨Tj

i=Tj
Zj
1,i]

)∧(
[
∨Tj

i=1Z
j
2,i, ...,

∨Tj

i=Tj
Zj
2,i]

)

Fig. 2. A directed acyclic graph (DAG) model of the LTL formula ϕ =
(♦[0,Tj−1]p1)∧ (♦[0,Tj−1]p2) (eventually satisfy p1 and eventually satisfy
p2). The DAG representation can be interpreted as a parse tree for ϕ (c.f. Sec.
V-A). The Tj boolean values for each node represent the truth value of the
formula associated with the DAG subtree when evaluated on ξdem

j , starting at
times t = 1, . . . , Tj , respectively. Each ξdem

j |= ϕ iff the first entry at the

root node, (
∨Tj

i=1 Z
j
1,i)

∧
(
∨Tj

i=1 Z
j
2,i), is true.

which makes the Ns demonstrations locally-optimal by finding
a θp that satisfies the KKT conditions for each demonstration:

Problem 2 (KKT, exact):

find θp, {λj,kt ,λj,¬kt ,νj,kt }
Tj

t=1, j = 1, ..., Ns

subject to {KKT(ξdem
j )}Ns

j=1

If the demonstrations are only approximately locally-optimal,
Prob. 2 may become infeasible. In this case, we can relax
stationarity and complementary slackness to cost penalties:

Problem 3 (KKT, suboptimal):

minimize
θp,λj,k

t ,λj,¬k
t ,νj,k

t

Ns∑

j=1

(
‖stat(ξdem

j )‖1 + ‖comp(ξdem
j )‖1

)

subject to (5c)− (5e), ∀ξdem
j , j = 1, . . . , Ns

where stat(ξdem
j ) denotes the LHS of Eq. (5h) and comp(ξdem

j )
denotes the concatenated LHSs of Eqs. (5f) and (5g). For some
constraint parameterizations (i.e. unions of boxes or ellipsoids
[16]), Prob. 2-3 are MILP-representable and can be efficiently
solved; we discuss this in further detail in Sec. IV-B.

B. Modifying KKT for multiple atomic propositions

Having built intuition with the single AP case, we return
to Prob. 1 and discuss how the KKT conditions change in
the multiple-AP setting. We first adjust the primal feasibility
condition (5c). Recall from Sec. III that we can solve Prob.
1 by finding a continuous trajectory ξxu and a set of boolean
variables Z enforcing that ξxu |= ϕ(θs, θp). For each ξdem

j ,
let Zj(θpi ) ∈ {0, 1}NAP×Tj , and let the (i, t)th index Zji,t(θ

p
i )

indicate if on ξdem
j , constraint state κt |= pi for parameters θpi :

Zji,t(θ
p
i ) = 1⇔ κt ∈ Si(θpi )

Zji,t(θ
p
i ) = 0⇔ κt ∈ Ai(θpi )

(6)

Since LTL operators have equivalent boolean encodings [40],
the truth value of ϕ(θs, θp) can be evaluated as a function
of Zj , θp, and θs, denoted as Φ(Zj , θp, θs) (we suppress
θs, as it is assumed known for now). For example, consider
the LTL formula ϕ(θs, θp) = (♦[0,Tj−1]p1) ∧ (♦[0,Tj−1]p2),
which enforces that the system must eventually satisfy p1
and eventually satisfy p2. We can evaluate the truth value of



ϕ(θs, θp) ξdem
j by calculating Φ(Zj , θp) = (

∨Tj

t=1 Z
j
1,t(θ

p
1)) ∧

(
∨Tj

t=1 Z
j
2,t(θ

p
2)) (c.f. Fig. 2). Boolean encodings of common

temporal and logical operators can be found in [8]. Enforcing
that Zji,t(θ

p
i ) satisfies (6) can be done with a big-M formulation

and binary variables sji,t ∈ {0, 1}N
ineq
i [7]:

gi(κ
j
t , θ

p
i ) ≤M(1N ineq

i
− sji,t)

1>
N ineq

i

sji,t −N ineq
i ≤MZji,t −Mε

gi(κ
j
t , θ

p
i ) ≥ −Msji,t

1>
N ineq

i

sji,t −N ineq
i ≥ −M(1− Zji,t)

(7)

where 1d is a d-dimensional ones vector, M is a large positive
number, and Mε ∈ (0, 1). In practice, M and Mε can be
carefully chosen to improve the solver’s performance. Note
that sji,m,t, the mth component of sji,t, encodes if κjt satisfies
a negated gi,m(κjt , θ

p
i ), i.e. if sji,m,t = 1 or 0, then κjt satisfies

gi,m(κjt , θ
p
i ) ≤ or ≥ 0. We can rewrite the enforced constraint

as gi(κ
j
t , θ

p
i )� (2sji,t − 1N ineq

i
) ≤ 0 for each i, t; we use this

form to adapt the remaining KKT conditions. While enforcing
(7) is hard in general, if gi(κ, θ

p
i ) is affine in θpi for fixed κ,

(7) is MILP-representable; henceforth, we assume gi(κ, θ
p
i )

is of this form. Note that this can still describe non-convex
regions, as the dependency on κ can be nonlinear. To modify
complementary slackness (5g) for the multi-AP case, we note
that the elementwise product in (5g) is MILP-representable:

[
λj,¬ki,t , −gi(κjt , θpi )� (2sji,t − 1N ineq

i
)
]
≤MQj

i,t

Qj
i,t12 ≤ 1N ineq

i

(8)

where Qj
i,t ∈ {0, 1}N

ineq
i ×2. Intuitively, (8) enforces that either

1) the Lagrange multiplier is zero and the constraint is inactive,
i.e. gi,m(κ, θpi ) ∈ [−M, 0] or ∈ [0,M ] if sji,m,t = 0 or 1, 2)
the Lagrange multiplier is nonzero and gi,m(κt, θ

p
i ) = 0, or

both. The stationarity condition (5h) must also be modified to
consider whether a particular constraint is negated; this can be
done by modifying the second line of (5h) to terms of the form(
λj,¬ki,t

>� (2sji,t−1)
)
∇xtg

¬k
i (η(xt), θ

p). The KKT conditions
for the multi-AP case, denoted KKTLTL(ξdem

j ), then are:

Primal Equations (5a)− (5b), t = 1, . . . , Tj (9a)
feasibility: Equation (7), i = 1, . . . , NAP, t = 1, . . . , Tj (9b)

Lagrange Equation (5d), t = 1, . . . , Tj (9c)

nonneg.: λj,¬k
i,t ≥ 0, i = 1, . . . , NAP, t = 1, . . . , Tj (9d)

Complem. Equation (5f), t = 1, . . . , Tj (9e)
slackness: Equation (8), i = 1, . . . , NAP, t = 1, . . . , Tj (9f)

Stationarity: ∇xtc(ξ
dem
j ) + λj,k

t
>∇xtg

k(η(xjt))

+

Nineq∑
i=1

[(
λj,¬k

i,t
>� (2sji,t − 1)

)
∇xtg

¬k
i (η(xjt), θ

p
i )
]
(9g)

+ νj,k
t
>∇xth

k(η(xjt)) = 0, t = 1, . . . , Tj

As mentioned in Sec. III, if κjt lies on the boundary of AP i, the
KKT conditions will automatically determine if κjt ∈ Si(θpi )
or κjt ∈ Ai(θpi ) based on whichever option enables sji,t to

take values that satisfy (9). To summarize, our approach is
to 1) find Zj , which determines the feasibility of ξdem

j for
ϕ(θs, θp), 2) find sji,m,t, which link the value of Zj from
the AP-containment level (i.e. κjt ∈ Si(θpi )) to the single-
constraint level (i.e. gi,m(κjt , θ

p
i ) ≤ 0), and 3) enforce that ξdem

j

satisfies the KKT conditions for the continuous optimization
problem defined by θp and fixed values of sji,t. Finally, we
can write the problem of recovering θp for a fixed θs as:

Problem 4 (Fixed template):

find θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j , ∀i, j, t
subject to {KKTLTL(ξdem

j )}Ns
j=1

We can also encode prior knowledge in Prob. 4, i.e. known
AP labels or a prior on θpi , which we discuss in App. B.

C. Extraction of guaranteed learned AP

As with the constraint learning problem, the LTL learning
problem is also ill-posed: there can be many θp which explain
the demonstrations. Despite this, we can measure our confi-
dence in the learned APs by checking if a constraint state κ is
guaranteed to satisfy/not satisfy pi. Denote Fi as the feasible
set of Prob. 4, projected onto Θp

i (feasible set of θpi ). Then,
we say κ is learned to be guaranteed contained in/excluded
from Si(θpi ) if for all θpi ∈ Fi, Gi(κ) ≤ 0 / ≥ 0. Denote by:

Gis
.
=
⋂

θ∈Fi

{κ | Gi(κ, θ) ≤ 0} (10)

Gi¬s
.
=
⋂

θ∈Fi

{κ | Gi(κ, θ) ≥ 0} (11)

as the sets of κ which are guaranteed to satisfy/not satisfy pi.
To query if κ is guaranteed to satisfy/not satisfy pi, we can

check the feasibility of the following problem:

Problem 5 (Query containment of κ in/outside of Si(θpi )):

find θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j , ∀i, j, t
subject to {KKTLTL(ξdem

j )}Ns
j=1

Gi(κ, θ
p
i ) ≥ 0 OR Gi(κ, θ

p
i ) ≤ 0

If forcing κ to (not) satisfy pi renders Prob. 5 infeasible, we
can deduce that to be consistent with the KKT conditions,
κ must (not) satisfy pi. Similarly, continuous volumes of κ
which must (not) satisfy pi can be extracted by solving:

Problem 6 (Volume extraction):
minimize

ε,κnear,θ
p,λj,k

t ,λj,¬k
i,t ,

νj,k
t ,sji,t,Q

j
i,t,Z

j

ε

subject to {KKTLTL(ξdem
j )}Ns

j=1

‖κnear − κquery‖∞ ≤ ε
Gi(κnear, θ

p
i ) > 0 OR Gi(κnear, θ

p
i ) ≤ 0

Prob. 6 searches for the largest box centered around κquery
contained in Gis/Gi¬s. An explicit approximation of Gis/Gi¬s can
then be obtained by solving Prob. 6 for many different κquery.



V. LEARNING TEMPORAL LOGIC STRUCTURE (θp , θs)

We will discuss how to frame the search over LTL structures
θs (Sec. V-A), the learnability of θs based on demonstration
optimality (Sec. V-B), and how we combine notions of discrete
and continuous optimality to learn θs and θp (Sec. V-C).

A. Representing LTL structure

We adapt [30] to search for a directed acyclic graph (DAG),
D, that encodes the structure of a parametric LTL formula and
is equivalent to its parse tree, with identical subtrees merged.
Hence, each node still has at most two children, but can have
multiple parents. This framework enables both a complete
search over length-bounded LTL formulas and encoding of
specific formula templates through constraints on D [30].

Each node in D is labeled with an AP or operator from (1)
and has at most two children; binary operators like ∧ and ∨
have two, unary operators like ♦[t1,t2] have one, and APs have
none (see Fig. 2). Formally, a DAG with NDAG nodes, D =
(X,L,R), can be represented as: X ∈ {0, 1}NDAG×Ng , where
Xu,v = 1 if node u is labeled with element v of the grammar
and 0 else, and L,R ∈ {0, 1}NDAG×NDAG , where Lu,v = 1 /
Ru,v = 1 if node v is the left/right child of node u and 0 else.
The DAG is enforced to be well-formed (i.e. there is one root
node, no isolated nodes, etc.) with further constraints; see [30]
for more details. Since D defines a parametric LTL formula,
we set θs = D. To ensure that demonstration j satisfies the
LTL formula encoded by D, we introduce a satisfaction matrix
Sdem
j ∈ {0, 1}NDAG×Tj , where Sdem

j,(u,t) encodes the truth value
of the subformula for the subgraph with root node u at time t
(i.e., Sdem

j,(u,t) = 1 iff the suffix of ξdem
j starting at time t satisfies

the subformula). This can be encoded with constraints:

|Sdem
j,(u,t) − Φtuv| ≤M(1−Xu,v) (12)

where Φtuv is the truth value of the subformula for the
subgraph rooted at u if labeled with v, evaluated on the suffix
of ξdem

j starting at time t. The truth values are recursively
generated, and the leaf nodes, each labeled with some AP i,
have truth values set to Zji (θ

p
i ). Next, we can enforce that the

demonstrations satisfy the formula encoded in D by enforcing:

Sdem
j,(root,1) = 1, j = 1, . . . , Ns (13)

We will also use synthetically-generated invalid trajectories
{ξ¬s}N¬s

j=1 (Sec. V-C). To ensure {ξ¬s}N¬s
j=1 do not satisfy the

formula, we add more satisfaction matrices S¬sj and enforce:

S¬sj,(root,1) = 0, j = 1, . . . , N¬s. (14)

After discussing learnability, we will show how D can be
integrated into the KKT-based learning framework in Sec. V-C.

B. A detour on learnability

When learning only the AP parameters θp (Sec. IV), we as-
sumed that the demonstrator chooses any feasible assignment
of Z consistent with the specification, then finds a locally-
optimal trajectory for those fixed Z. Feasibility is enough if the
structure θs of ϕ(θs, θp) is known: to recover θp, we just need
to find some Z which is feasible with respect to the known θs

(i.e. Φ(Zj , θp, θs) = 1) and makes ξdem
j locally-optimal; that

is, the demonstrator can choose an arbitrarily suboptimal high-
level plan as long as its low-level plan is locally-optimal for the
chosen high-level plan. However, if θs is also unknown, only
using boolean feasibility is not enough to recover meaningful
logical structure, as this makes any formula ϕ for which
Φ(Zj , θp, θs) = 1 consistent with the demonstration, including
trivially feasible formulas always evaluating to >. Consider
the example in Fig. 3: θp1 , θ

p
2 are known and we are given two

kinematic demonstrations minimizing path length under input
constraints, formula ϕ = (¬p2 U[0,Tj−1] p1)∧♦[0,Tj−1]p2, and
start/goal constraints. Assuming boolean feasibility, we cannot
distinguish between formulas in ϕf , the set of formulas for
which the demonstrations are feasible in the discrete variables
and locally-optimal in the continuous variables.

On the other end of the spectrum, we can assume the
demonstrator is globally-optimal. This invalidates many struc-
tures in ϕf , i.e. the blue trajectory should not visit both S1 and
S2 if ϕ = (♦[0,Tj−1]p1) ∨ (♦[0,Tj−1]p2); we achieve a lower
cost by only visiting one. Using global optimality, we can
distinguish between all but the formulas with globally-optimal
trajectories of equal cost (formulas in ϕg), i.e. we cannot learn
the ordering constraint (¬p2 U[0,Tj−1] p1) from only the blue
trajectory, as it coincides with the globally-optimal trajectory
for ϕ = (♦[0,Tj−1]p1) ∧ (♦[0,Tj−1]p2); we need the yellow
trajectory to distinguish the two. We now define an optimality
condition between feasibility and global optimality

Definition 1 (Spec-optimality): A demonstration ξdem
j is µ-

spec-optimal (µ-SO), where µ ∈ Z+, if for every index set
ι
.
= {(i1, t1), ..., (iµ, tµ)} in I .

= {ι | im ∈ {1, ..., NAP}, tm ∈
{1, ..., Tj},m = 1, ..., µ}, at least one of the following holds:
• ξdem

j is locally-optimal after removing the constraints
associated with pim on κjtm , for all (im, tm) ∈ ι.

• For each index (im, tm) ∈ ι, the formula is not satisfied
for a perturbed Z, denoted Ẑ, where Ẑim,tm(θpim) =

¬Zim,tm(θpim), for all m = 1, . . . , µ, and Ẑi′,t′(θ
p
i′) =

Zi′,t′(θ
p
i′) for all (i′, t′) /∈ ι.

• ξdem
j is infeasible with respect to Ẑ.

Spec-optimality enforces a level of logical optimality: if
a state κjt on demonstration ξdem

j lies inside/outside of AP
i (i.e. Gi(κ

j
t , θ

p
i ) ≤ 0 / ≥ 0), and the cost c(ξdem

j ) can be
lowered if that AP constraint is relaxed, then the constraint
must hold to satisfy the specification. Intuitively, this means
that the demonstrator does not visit/avoid APs which will
needlessly increase the cost and are not needed to complete the
task. Further discussion regarding spec-optimality is presented
in App. B. As globally-optimal demonstrations must also be
spec-optimal (c.f. Lem. 1), we will use spec-optimality to
vastly reduce the search space when searching for formulas
which make the demonstrations globally-optimal (Sec. V-C).

C. Counterexample-guided framework

In this section, we will assume that the demonstrator returns
a solution to Prob. 1 which is boundedly-suboptimal with
respect to the globally optimal solution, in that c(ξdem

j ) ≤
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Fig. 3. Left: Two demonstrations which satisfy the LTL formula ϕ =
(¬p2 U[0,Tj−1] p1)∧♦[0,Tj−1]p2 (first satisfy p1, then satisfy p2). Right:
Some example formulas that are consistent with ϕ, for various levels of
discrete optimality (ϕf : discrete feasibility, ϕs: spec-optimality, ϕg : discrete
global optimality).

Algorithm 1: Falsification

1 Input: {ξdem
j }Ns

j=1, S̄ , Output: θ̂s, θ̂p
2 NDAG ← 0, {ξ¬s} ← {}
3 while ¬ consistent do
4 NDAG ← NDAG + 1
5 while Problem 8 is feasible do
6 θ̂s, θ̂p ← Problem 8({ξdem

j }Ns
j=1, {ξ¬s}, NDAG)

7 for j = 1 to Ns do
8 ξjxu ← Problem 7(ξdem

j )

9 if c(ξjxu) <
c(ξdem

j )

(1+δ) then {ξ¬s} ← {ξ¬s}∪ ξxu ;

10 if
∨Ns

j=1(c(ξjxu) <
c(ξdem

j )

(1+δ) ) then consistent ← >;
break;

(1 + δ)c(ξ∗j ), for a known δ, where c(ξ∗j ) is the cost of
the optimal solution. This is reasonable as the demonstration
should be feasible (completes the task), but may be suboptimal
in terms of cost (i.e. path length, etc.), and δ can be estimated
from repeated demonstrations. Under this assumption, any
trajectory ξxu satisfying the known constraints η̄(ξxu) ∈ S̄
at a cost lower than the suboptimality bound, i.e. c(ξxu) ≤
c(ξdem

j )/(1 + δ), must violate ϕ(θs, θp) [14, 15]. We can use
this to reject candidate structures θ̂s and parameters θ̂p. If we
can find a counterexample trajectory that satisfies the candidate
LTL formula ϕ(θ̂s, θ̂p) at a lower cost by solving Prob. 7,

Problem 7 (Counterexample search):
find ξxu

subject to ξxu |= ϕ(θ̂s, θ̂p)

η̄(ξxu) ∈ S̄(ξdem
j ) ⊆ C

c(ξxu) < c(ξdem
j )/(1 + δ)

then ϕ(θ̂s, θ̂p) cannot be consistent with the demonstration.
Thus, we can search for a consistent θ̂s and θ̂p by iteratively
proposing candidate θ̂s / θ̂p by solving Prob. 8 (a modified
version of Prob. 4, which we will discuss shortly) and search-
ing for counterexamples that can prove the parameters are
invalid/valid; this is summarized in Alg. 1. Heuristics on the
falsification loop are discussed in App. C. We now discuss the
core components of Alg. 1 (Probs. 7 and 8) in detail.
Counterexample generation: We propose different methods
to solve Prob. 7 based on the dynamics. For piecewise affine
systems, Prob. 7 can be solved directly as a MILP [40].
However, the LTL planning problem for general nonlinear
systems is challenging [19, 29]. Probabilistically-complete

sampling-based methods [19, 29] or falsification tools [2] can
be applied, but can be slow on high-dimensional systems.
For simplicity and speed, we solve Prob. 7 by finding a
trajectory ξ̂xu |= ϕ(θ̂s, θ̂p) and boolean assignment Z for a
kinematic approximation of the dynamics via solving a MILP,
then warm-start the nonlinear optimizer with ξ̂xu and constrain
it to be consistent with Z, returning some ξxu. If c(ξxu) <
c(ξdem

j )/(1 + δ), then we return, otherwise, we generate a
new ξ̂xu. Whether this method returns a valid counterexample
depends on if the nonlinear optimizer converges to a feasible
solution; hence, this approach is not complete. However, we
show that it works well in practice (see Sec. VIII).
Unifying parameter and structure search: When both θp

and θs are unknown, they must be jointly learned due to their
interdependence: learning the structure involves finding an
unknown boolean function of θp, parameterized by θs, while
learning the AP parameters θp requires knowing which APs
were selected or negated, determined by θs. This can be done
by combining the KKT (9) and DAG constraints (12)-(14) into
a single MILP, which can then be integrated into Alg. 1:

Problem 8 (Learning θp, θs by global optimality, KKT):

find
D,Sdem

j ,S¬sj , θp,λj,kt ,λj,¬ki,t ,νj,kt , sji,t,Q
j
i,t,Z

j ,

∀i, j, t
s.t. {KKTLTL(ξdem

j )}Ns
j=1

topology constraints for D
Equations (12)− (13), j = 1, . . . , Ns
Equation (14), j = 1, . . . , N¬s

In Prob. 8, since 1) the Zji (θ
p
i ) at the leaf nodes of D are

constrained via (7) to be consistent with θp and ξdem
j and 2) the

formula defined by D is constrained to be satisfied for the Z
via (12), the low-level demonstration ξdem

j must be feasible for
the overall LTL formula defined by the DAG, i.e. ϕ(θs, θp),
where θs = D. KKTLTL(ξdem

j ) then chooses AP parameters θp

to make ξdem
j locally-optimal for the continuous optimization

induced by a fixed realization of boolean variables. Overall,
Prob. 8 finds a pair of θp and θs which makes ξdem

j locally-
optimal for a fixed Zj which is feasible for ϕ(θs, θp), i.e.
Φ(Zj , θp, θs) = 1, for all j. To also impose the spec-optimality
conditions (Def. 1), we can add these constraints to Prob. 8:

S
dem,Ẑj

n

j,(root,1) ≤ b1nj (15a)

‖λj,¬kim,tm

>∇xt
g¬kim (η(xjt ), θ

p
im

)‖ ≤M(1− b2nj),
m = 1, ..., µ

(15b)

g¬kim (η(xjt ), θ
p
im

) ≥ −M(1− ejnm), m = 1, ..., µ (15c)

1>
Nim

ineq
ejnm ≥ Ẑjimtm(θpim)− b3nj , m = 1, ..., µ (15d)

g¬kim (η(xjt ), θ
p
im

) ≤M(Ẑjim,tm + b3nj) (15e)

b1nj + b2nj + b3nj ≤ 1, bnj ∈ {0, 1}3,
ejnm ∈ {0, 1}N

im
ineq

(15f)

for n = 1, . . . , |I|, where S
dem,Ẑj

n
j is the satisfaction matrix

for ξdem
j where the leaf nodes are perturbed to take the values



of Ẑjn, where n indexes an ι ∈ I. (15a) models the case when
the formula is not satisfied, (15b) models when ξdem

j remains
locally-optimal upon relaxing the constraint (zero stationarity
contribution), and (15c)-(15e) model the infeasible case.

Remark 1: If µ = 1, the infeasibility constraints (15c)-(15e)
can be ignored (since together with (15a), they are redundant),
and we can modify (15f) to b1nj + b2nj ≤ 1, bnj ∈ {0, 1}2.

Remark 2: It is only useful to enforce spec-optimality on
index pairs (i1, t1), . . . , (iµ, tµ) where Gim(κjtm , θ

p
im

) = 0 for
all m = 1, ..., µ; otherwise the infeasibility case automatically
holds. If θp is unknown, we won’t know a priori when this
holds, but if θp are (approximately) known, we can pre-process
so that spec-optimality is only enforced for salient ι ∈ I.

Remark 3: Prob. 8 with spec-optimality constraints (15) can
be used to directly search for a ϕ(θ̂s, θ̂p) which can be satisfied
by visiting a set of APs in any order (i.e. surveillance-type
tasks) without using the loop in Alg. 1, since (15) directly
enforces that any AP (1-SO) or a set of APs (µ-SO) which
were visited and which prevent the trajectory cost from being
lowered must be visited for any candidate ϕ(θ̂s, θ̂p).

VI. LEARNING COST FUNCTION PARAMETERS (θp , θs , θc)

If θc is unknown, it can be learned by modifying KKTLTL
to also consider θc in the stationarity condition: all terms like
∇ξxuc(ξ

dem
j ) should be modified to ∇ξxuc(ξ

dem
j , θc). When

c(·, ·) is affine in θc for fixed ξdem
j , the stationarity condi-

tion is representable with a MILP constraint. However, the
falsification loop in Alg. 1 requires a fixed cost function in
order to judge if a trajectory is a counterexample. Thus, one
valid approach is to first solve Prob. 8, searching also for
θc, then fixing θc, and running Alg. 1 for the fixed θc (see
App. A). Note that this procedure either eventually returns an
LTL formula consistent with the fixed θc, or Alg. 1 becomes
infeasible, and a new θc must be generated and Alg. 1 rerun.
While this procedure is guaranteed to eventually return a set
of θc, θs, and θp which make each ξdem

j globally-optimal with
respect to c(ξxu, θc) under ϕ(θs, θp), it may require iterating
through an infinite number of candidate θc and hence is not
guaranteed to terminate in finite time (Cor. 3). Nevertheless,
we note that for certain simple classes of formulas (Rem. 3),
a consistent set of θc, θs, and θp can be recovered in one shot.

VII. THEORETICAL ANALYSIS

In this section, we prove that our method is complete under
some assumptions, without (Thm. 1) or with (Cor. 2) spec-
optimality, and that we can compute guaranteed conservative
estimates of Si/Ai (Thm. 2). Finally, we show that leveraging
stronger optimality assumptions on the demonstrator shrinks
the set of consistent formulas (Thm. 3). See App. C for proofs.

Assumption 1: Prob. 7 is solved with a complete planner.
Assumption 2: Each demonstration is locally-optimal (i.e.

satisfies the KKT conditions) for fixed boolean variables.
Assumption 3: The true parameters θp, θs, and θc are in

the hypothesis space of Prob. 8: θp ∈ Θp, θs ∈ Θs, θc ∈ Θc.
Theorem 1 (Completeness and consistency, unknown case):

Under Assumptions 1-3, Alg. 1 is guaranteed to return a

formula ϕ(θs, θp) such that 1) ξdem
j |= ϕ(θs, θp) and 2) ξdem

j

is globally-optimal under ϕ(θs, θp), for all j, 3) if such a
formula exists and is representable by the provided grammar.

Corollary 1 (Shortest formula): Let N∗ be the minimal
size DAG for which there exists (θp, θs) such that ξdem

j |=
ϕ(θs, θp) for all j. Under Assumptions 1-3, Alg. 1 is guaran-
teed to return a DAG of length N∗.

Lemma 1: All globally-optimal trajectories are µ-SO.
Corollary 2 (Alg. 1 with spec-optimality): By modifying

Alg. 1 so that Prob. 8 uses constraints (15), Alg. 1 still returns
a consistent solution ϕ(θ̂s, θ̂p) if one exists, i.e. each ξdem

j is
feasible and globally optimal for each ϕ(θ̂s, θ̂p).

Corollary 3 (Completeness and consistency, unknown cost):
Under Assumptions 1-3, Alg. 2 returns a formula ϕ(θs, θp)
such that 1) ξdem

j |= ϕ(θs, θp) and 2) ξdem
j is globally-optimal

with respect to θc under the constraints of ϕ(θs, θp), for all
j, 3) if such a formula exists and is representable by the
provided grammar.

Theorem 2 (Conservativeness for fixed template): Suppose
that θs and θc are known, and θp is unknown. Then, extracting
Gis and Gi¬s, as defined in (10)-(11), from the feasible set of
Prob. 4 projected onto Θp

i (denoted Fi), returns Gis ⊆ Si and
Gi¬s ⊆ Ai, for all i ∈ {1, . . . , NAP}.

Theorem 3 (Distinguishability): For the consistent formula
sets defined in Sec. V-B, we have ϕg ⊆ ϕµ̃-SO ⊆ ϕµ̂-SO ⊆ ϕf ,
for µ̃ > µ̂.

VIII. EXPERIMENTAL RESULTS

We show that our algorithm outperforms a competing
method, can learn shared task structure from demonstrations
across environments, and can learn LTL formulas θp, θs and
uncertain cost functions θc on high-dimensional problems.
Please refer to the supplementary video for visualizations of
the results: https://youtu.be/cpUEcWCUMqc.
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Fig. 4. Toy example for baseline comparison [22].

Baseline comparison: Likely the closest method to ours is
[22], which learns a pSTL formula that is tightly satisfied by
the demonstrations via solving a nonconvex problem to lo-
cal optimality: arg maxθp minj τ(θp, ξdem

j ), where τ(θp, ξdem
j )

measures how tightly ξdem
j fits the learned formula. We run the

authors’ code [21] on a toy problem (see Fig. 4), where the
demonstrator has kinematic constraints, minimizes path length,
and satisfies start/goal constraints and ϕ = ♦[0,8]p1, where
x |= p1 ⇔ [I2×2,−I2×2]>x ≤ [3, 2,−1, 2]> = [3, θp1 ]

>. We
assume the structure θs is known, and we aim to learn θp

to explain why the demonstrator deviated from an optimal
straight-line path to the goal. Solving Prob. 6 returns G1s = S1
(Fig. 4, right). On the other hand, we run TeLEx multiple
times, converging to different local optima, each corresponding

https://youtu.be/cpUEcWCUMqc


to a “tight” θp (Fig. 4, center): TeLEx cannot distinguish
between multiple different “tight” θp, which makes sense, as
the method tries to find any “tight” solution. This example
suggests that if the demonstrations are goal-directed, a method
that leverages their optimality is likely to better explain them.
Learning shared task structure: In this example, we show
that our method can extract logical structure shared between
demonstrations that complete the same high-level task, but in
different environments (Fig. 5). A point robot must first go to
the mug (p1), then go to the coffee machine (p2), and then
go to goal (p3) while avoiding obstacles (p4, p5). As the floor
maps differ, θp also differ, and are assumed known. We add
two relevant primitives to the grammar, sequence: ϕ1 Q ϕ2

.
=

¬ϕ2 U[0,Tj−1] ϕ1, enforcing that ϕ2 cannot occur until after ϕ1

has occurred for the first time, and avoid: Vϕ .
= �[0,Tj−1]¬ϕ,

enforcing ϕ never holds over [1, Tj ]. Then, the true formula
is: ϕ∗ = Vp4 ∧ Vp5 ∧ (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3.

Suppose first that we are given the blue demonstration in
Env. 2. Running Alg. 1 with 1-SO constraints (15) terminates
in one iteration at NDAG = 14 with ϕ0 = Vp4 ∧ Vp5 ∧
♦[0,Tj−1]p2 ∧♦[0,Tj−1]p3 ∧ (p1 Q p2): always avoid obstacles
1 and 2, eventually reach coffee and goal, and visit mug
before coffee. This formula is insufficient to complete the true
task (the ordering constraint between coffee and goal is not
learned). This is because the optimal trajectories satisfying ϕ0

and ϕ∗ are the same cost, i.e. both ϕ0 and ϕ∗ are consistent
with the demonstration and could have been returned, and
ϕ0, ϕ

∗ ∈ ϕg (c.f. Sec. VII). Now, we also use the blue
demonstration from Env. 1 (two examples total). Running Alg.
1 terminates in two iterations at NDAG = 14 with the formulas
ϕ1 = Vp4 ∧ Vp5 ∧ ♦[0,Tj−1]p1 ∧ ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3
(which enforces that the mug, coffee, and goal must be
eventually visited, but in any order, while avoiding obstacles)
and ϕ2 = ϕ∗. Since the demonstration in Env. 1 doubles back
to the coffee before going to goal, increasing its cost over
first going to goal and then to coffee, the ordering constraint
between the two is learnable. We also plot the generated
counterexample (Fig. 5, yellow), which achieves a lower cost,
since ϕ1 involves no ordering constraints. We use the learned
formula to plan a path completing the task in a new envi-
ronment (App. E). Overall, this example suggests we can use
demonstrations in different environments to learn shared task
structure and disambiguate between potential explanations.
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Fig. 5. Different environments (different θp) with shared task (same θs).

Multi-stage manipulation task: We consider the setup in
Figs. 1, 6 of teaching a 7-DOF Kuka iiwa robot arm to
prepare a drink: first move the end effector to the button on the
faucet (p1), then grasp the cup (p2), then move the cup to the

p6

p5

p3p2
p1

Fig. 6. Demonstrations and counterexamples for the manipulation task.

customer (p3), all while avoiding obstacles. After grasping the
cup, an end-effector pose constraint (α, β, γ) ∈ S4(θp4) (p4)
must be obeyed. We add two “distractor” APs: a different cup
(p5) and a region (p6) where the robot can hand off the cup.
We also modify the grammar to include the sequence operator
Q, (defined as before), and add an “after” operator ϕ1 T ϕ2

.
=

�[0,Tj−1](ϕ2 → �[0,Tj−1]ϕ1), that is, ϕ1 must hold after and
including the first timestep where ϕ2 holds. The true formula
is: ϕ∗ = (p1 Q p2) ∧ (p2 Q p3) ∧ ♦[0,Tj−1]p3 ∧ (p4 T p2).
We use a kinematic arm model: jit+1 = jit + uit, i = 1, . . . , 7,
where ‖ut‖22 ≤ 1 for all t. Two suboptimal human demon-
strations (δ = 0.7) optimizing c(ξxu) =

∑T−1
t=1 ‖jt+1 − jt‖22

are recorded in virtual reality. We assume we have nominal
estimates of the AP regions Si(θpi,nom) (i.e. from a vision
system), and we want to learn the θs and θp of ϕ∗.

We run Alg. 1 with the 1-SO constraints (15), and encode
the nominal θpi by enforcing that Θp

i = {θpi | ‖θpi −θpi,nom‖1 ≤
0.05}. At NDAG = 11, the inner loop runs for 3 iterations
(each taking 30 minutes on an i7-7700K processor), returning
candidates ϕ1 = (p1Qp3)∧(p2Qp3)∧(♦[0,Tj−1]p3)∧(p4T p3),
ϕ2 = (p1Qp3) ∧ (p2Qp3) ∧ (♦[0,Tj−1]p3) ∧ (p4T p2), and
ϕ3 = ϕ∗. ϕ1 says that before going to the customer, the
robot has to visit the button and cup in any order, and then
must satisfy the pose constraint after visiting the cup. ϕ2 has
the meaning of ϕ∗, except the robot can go to the button
or cup in any order. Note that ϕ3 is a stronger formula
than ϕ2, and ϕ2 than ϕ1; this is a natural result of the
falsification loop, which returns incomparable or stronger
formulas with more iterations, as the counterexamples rule out
weaker or equivalent formulas. Also note that the distractor
APs don’t feature in the learned formulas, even though both
demonstrations pass through p6. This happens for two reasons:
we increase NDAG incrementally and there was no room to
include distractor objects in the formula (since spec-optimality
may enforce that p1-p3 appear in the formula), and even if
NDAG were not minimal, p6 would not be guaranteed to show
up, since visiting p6 does not increase the trajectory cost.

We plot the counterexamples in Fig. 6: blue/purple are from
iteration 1; orange is from iteration 2. They save cost by violat-
ing the ordering and pose constraints: from the left start state,
the robot can save cost if it visits the cup before the button
(blue, orange trajectories), and loosening the pose constraint
can reduce joint space cost (orange, purple trajectories). The
right demonstration produces no counterexample in iteration
2, as it is optimal for this formula (changing the order does not
lower the optimal cost). For the learned θp, θpi = θpi,nom except
for p2, p3, where the box shrinks slightly from the nominal;
this is because by tightening the box, a Lagrange multiplier can
be increased to reduce the KKT residual. We use the learned
θp, θs to plan formula-satisfying trajectories from new start



states (see App. F). Overall, this example suggests that Alg.
1 can recover θp and θs on a high-dimensional problem and
ignore distractor APs, despite demonstration suboptimality.
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Fig. 7. Quadrotor surveillance demonstrations and learning curves.

Multi-stage quadrotor surveillance: We demonstrate that we
can jointly learn θp, θs, and θc in one shot on a 12D nonlinear
quadrotor system (see App. G). We are given four demonstra-
tions of a quadrotor surveilling a building (Fig. 7): it needs to
visit three regions of interest (Fig. 7, green) while not colliding
with the building. All visitation constraints can be learned
directly with 1-SO (see Rem. 3) and collision-avoidance can
also be learned with 1-SO, with enough demonstrations. The
true formula is ϕ∗ = ♦[0,Tj−1]p1∧♦[0,Tj−1]p2∧♦[0,Tj−1]p3∧
�[0,Tj−1]¬p4, where p1-p3 represent the regions of interest
and p4 is the building. We aim to learn θpi for the parameter-
ization Si(θpi ) = {[I3×3,−I3×3]>[x, y, z]> ≤ θpi }, assuming
θp4,6 = 0 (the building is not hovering). The demonstrations
minimize c(ξxu, θ

c) =
∑
r∈R

∑T−1
t=1 γr(rt+1 − rt)

2, where
R = {x, y, z, α̇, β̇, γ̇} and γr = 1, i.e. equal penalties to path
length and angular acceleration. We assume γr ∈ [0.1, 1] and
is unknown: we want to learn the cost weights for each state.

Solving Prob. 8 with 1-SO conditions (at NDAG = 12) takes
44 minutes and recovers θp, θs, and θc in one shot. To evaluate
the learned θp, we show in Fig. 7 that the coverage of the
Gis and Gi¬s for each pi (computed by fixing the learned θs

and running Prob. 6) monotonically increases with more data.
In terms of recovered θs, with one demonstration, we return
ϕ1 = ♦[0,Tj−1]p2 ∧ ♦[0,Tj−1]p3 ∧ ♦[0,Tj−1]p4 ∧�[0,Tj−1]¬p1.
This highlights the fact that since we are not provided labels,
there is an inherent ambiguity of how to label the regions
of interest (i.e. pi, i = 1, . . . , 3 can be associated with any
of the green boxes in Fig. 7 and be consistent). Also, one
of the regions of interest in ϕ gets labeled as the obstacle
(i.e. p1 and p4 are swapped), since one demonstration is not
enough to disambiguate which of the four pi should touch
the ground. Note that this ambiguity can be eliminated if
labels are provided (see App. B) or if more demonstrations
are provided: for two and more demonstrations, we learn
ϕi = ϕ∗, i = 2, . . . , 4. When using all four demonstrations,
we recover the cost parameters θc and structure θs exactly, i.e.
ϕ(θ̂s, θ̂p) = ϕ∗, and fixing the learned θs and running Prob. 6
returns Gis = Si and Gi¬s = Ai, for all i. The learned θc, θs,
and θp are used to plan trajectories that efficiently complete the
task for different initial and goal states (see App. G). Overall,
this example suggests that our method can jointly recover a
consistent set of θp, θs, and θc for high-dimensional systems.

IX. CONCLUSION

We present an method that learns LTL formulas with
unknown atomic propositions and logical structure from only
positive demonstrations, assuming the demonstrator is opti-
mizing an uncertain cost function. We use both implicit (KKT)
and explicit (algorithmically generated lower-cost trajectories)
optimality conditions to reduce the hypothesis space of LTL
specifications consistent with the demonstrations. In future
work, we aim to robustify our method to mislabeled demon-
strations, explicitly consider demonstration suboptimality aris-
ing from risk, and reduce our method’s computation time.
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APPENDIX

In this supplementary material, we present a detailed de-
scription of the LTL semantics that we use (Appendix A),
further explanation and motivation for spec-optimality, a dis-
crete optimality condition that we leverage (Appendix B), an
expanded version of our theoretical analysis (Appendix C),
including proofs and additional comments, minor extensions
and expanded details on our method (Appendix D), and some
additional experimental details (Appendices E-G).

APPENDIX A
LTL SEMANTICS

We denote the satisfaction of a formula ϕ(θs, θp) on a finite-
duration trajectory ξxu of total duration T , evaluated at time
t ∈ {1, 2, . . . , T}, as (ξxu, t) |= ϕ. Then, the formula satis-
faction is defined recursively in (16). We emphasize that since
we consider discrete-time trajectories, a time interval [t1, t2]
is evaluated only on integer time instants {t1, t1 + 1, . . . , t2};
this is made concrete in (16). We also provide the following
intuitive description of the LTL operators:
• The “or” operator ϕ1∨ϕ2 denotes a disjunction between

formulas ϕ1 and ϕ2

• The “and” operator ϕ1 ∧ ϕ2 denotes a conjunction be-
tween formulas ϕ1 and ϕ2

• The “bounded-time always” operator �[t1,t2]ϕ denotes
that a formula ϕ always holds over the interval [t1, t2]

• The “bounded-time until” operator ϕ1 U[t1,t2] ϕ2 denotes
that a formula ϕ2 eventually holds during the interval
[t1, t2], and for all timesteps prior to that, ϕ1 must hold.

• The “bounded-time eventually” operator ♦[t1,t2]ϕ denotes
that a formula ϕ eventually has to hold during the interval
[t1, t2].

APPENDIX B
DETAILS ON SPEC-OPTIMALITY

For ease of reading, we have copied the definition of spec-
optimality from the main body.

Definition B.1 (Spec-optimality): A demonstration ξdem
j is

µ-spec-optimal (µ-SO), where µ ∈ Z+, if for every index set
ι
.
= {(i1, t1), ..., (iµ, tµ)} in I .

= {ι | im ∈ {1, ..., NAP}, tm ∈
{1, ..., Tj},m = 1, ..., µ}, at least one of the following holds:

• ξdem
j is locally-optimal after removing the constraints

associated with pim on κjtm , for all (im, tm) ∈ ι.

• For each index (im, tm) ∈ ι, the formula is not satisfied
for a perturbed Z, denoted Ẑ, where Ẑim,tm(θpim) =

¬Zim,tm(θpim), for all m = 1, . . . , µ, and Ẑi′,t′(θ
p
i′) =

Zi′,t′(θ
p
i′) for all (i′, t′) /∈ ι.

• ξdem
j is infeasible with respect to Ẑ.

Recall from the main body that spec-optimality aims to
enforce a level of logical optimality. More specifically, spec-
optimality is a measure of logical optimality, evaluated locally
around a demonstration. To see this, note that the conditions in
Def. B.1 are essentially checking how the local optimality of a
demonstration changes as a result of local perturbations to the
assignments of the discrete variables Z. The three conditions
in Def. B.1 capture the three possibilities upon perturbing Z:
the demonstration could become infeasible if Z is perturbed
(this is what the third condition checks), the demonstration
could remain feasible but local optimality may not change
(this is what the first condition checks), or the demonstration
could remain feasible and no longer be locally-optimal (this
is what the second condition checks). By enforcing that a
demonstration is spec-optimal with respect to the formula
being satisfied, we enforce that this last possibility (feasible
but not locally-optimal) never occurs. We would want to
enforce this, for instance, if the demonstration is assumed to
be globally-optimal for the true LTL formula, because there
should be no alternative assignment of Z which admits a
direction in which the demonstration cost can be improved.
In terms of learning the LTL formula, demonstration spec-
optimality is a useful condition because it prunes trivially-
satisfiable formulas from the search space, spec-optimality
necessarily holds for a demonstration to be globally-optimal
(Lem. C.1), and it can be compactly enforced within a MILP,
making it an efficient surrogate for enforcing global optimality.
Generally, without spec-optimality, the falsification loop in
Alg. 1 will need to eliminate more formulas on the way to
finding a formula which makes the demonstrations globally-
optimal. As a final note, we can interpret µ as a tuning knob
for shifting the computation between the falsification loop
and Prob. 8; imposing a larger µ can potentially rule out
more formulas at the cost of adding additional constraints and
decision variables to Problem 8.

To show how these conditions can be used on a concrete
example, consider again the problem visualized in Fig. 3.
In this problem, θp1 , θ

p
2 are known and we are given two

kinematic demonstrations minimizing path length under input

(ξxu, t) |= pi ⇔ gi(ηi(xt), θ
p
i ) ≤ 0

(ξxu, t) |= ¬pi ⇔ ¬((ξxu, t) |= pi)
(ξxu, t) |= ϕ1 ∨ ϕ2 ⇔ (ξxu, t) |= ϕ1 ∨ (ξxu, t) |= ϕ2

(ξxu, t) |= ϕ1 ∧ ϕ2 ⇔ (ξxu, t) |= ϕ1 ∧ (ξxu, t) |= ϕ2

(ξxu, t) |= �[t1,t2]ϕ ⇔ (t+ t1 ≤ T ) ∧ (∀t̃ ∈ [t+ t1,min(t+ t2, T )], (ξxu, t̃) |= ϕ)

(ξxu, t) |= ϕ1U[t1,t2]ϕ2 ⇔ (t+ t1 ≤ T ) ∧ (∃t̃ ∈ [t+ t1,min(t+ t2, T )] s.t. (ξxu, t̃) |= ϕ2) ∧
(∀ť ∈ [t, t̃− 1], (ξxu, ť) |= ϕ1)

(ξxu, t) |= ♦[t1,t2]ϕ ⇔ (t+ t1 ≤ T ) ∧ (∃t̃ ∈ [t+ t1,min(t+ t2, T )] s.t. (ξxu, t̃) |= ϕ)

(16)



constraints, formula ϕ = (¬p2 U[0,Tj−1] p1)∧♦[0,Tj−1]p2, and
start/goal constraints. We also introduce a different candidate
formula ϕ̂ = ♦[0,Tj−1]p1 ∨ ♦[0,Tj−1]p2. For this example,
consider only the blue demonstration. If the demonstration is
globally-optimal, then ϕ̂ is inconsistent, because to improve
the trajectory cost, the demonstrator would choose to visit only
one of S1 or S2, not both.

We will show how spec-optimality can be used to distin-
guish between ϕ and ϕ̂; specifically, we show the demon-
stration is 1-SO with respect to ϕ but not for ϕ̂. For
both ϕ and ϕ̂, I = {(1, 1), . . . , (1, 5), (2, 1), . . . , (2, 5)}.
Let’s consider ϕ first. For ι ∈ {(1, 1), (2, 1), (2, 2), (1, 3),
(2, 3), (1, 4), (1, 5), (2, 5)}, the third condition in Def. B.1 will
hold, since at these timesteps, the demonstration is not on the
boundary of the paired AP. For ι ∈ {(1, 2), (2, 4)}, the second
condition in Def. B.1 will hold, since perturbing Z at either of
these timesteps (from Z1,2(θp1) = 1 to 0 or from Z2,4(θp2) = 1
to 0) will cause ϕ to be not satisfied. Thus, the demonstration is
spec-optimal with respect to ϕ. On the other hand, for ϕ̂, again
for ι ∈ {(1, 1), (2, 1), (2, 2), (1, 3), (2, 3), (1, 4), (1, 5), (2, 5)},
the third condition in Def. B.1 will hold. However, none of
the three conditions will hold for ι ∈ {(1, 2), (2, 4)}, since the
demonstration will not be locally-optimal upon relaxing the
constraints for either p1 or p2, and since ϕ̂ only enforces that
either one of S1 or S2 are visited, ϕ̂ is still satisfied if either
Z1,2(θp1) or Z2,4(θp2) is flipped to 0. Hence, the demonstration
is not spec-optimal with respect to ϕ̂.

APPENDIX C
THEORETICAL ANALYSIS (EXPANDED)

In this section, we prove that our method is complete under
some assumptions, without (Thm. C.1) or with (Cor. C.2) spec-
optimality, and that we can compute guaranteed conservative
estimates of Si/Ai (Thm. C.2). Finally, we show that the
stronger the assumptions on the demonstrator, the smaller the
set of consistent formulas (the less ill-posed the problem)
(Thm. C.3). We copy the theorem statements and assumptions
from the main body for ease of reading.

A. Correctness and conservativeness

Assumption C.1: Prob. 7 is solved with a complete planner.
Assumption C.2: Each demonstration is locally-optimal

(i.e. satisfies the KKT conditions) for fixed boolean variables.
Assumption C.3: The true parameters θp, θs, and θc are in

the hypothesis space of Prob. 8: θp ∈ Θp, θs ∈ Θs, θc ∈ Θc.
We will use these assumptions to show that when the cost

function parameters θp are known, our falsification loop in
Alg. 1 is guaranteed to return a consistent formula; that is, it
makes the demonstrations globally-optimal.

Theorem C.1 (Completeness & consistency, unknown θs, θp):
Under Assumptions C.1-C.3, Alg. 1 is guaranteed to return a
formula ϕ(θs, θp) such that 1) ξdem

j |= ϕ(θs, θp) and 2) ξdem
j

is globally-optimal under ϕ(θs, θp), for all j, 3) if such a
formula exists and is representable by the provided grammar.

Proof: To see the first point - that Alg. 1 returns ϕ(θ̂s, θ̂p)
such that ξdem

j |= ϕ(θ̂s, θ̂p) for all j, note that in Prob. 8, the

constraints (12)-(14) on the satisfaction matrices Sdem
j encode

that each demonstration is feasible for the choice of θp and θs;
hence, the output of Prob. 8 will return a feasible ϕ(θ̂s, θ̂p).
As Alg. 1 will eventually return some ϕ(θ̂s, θ̂p) which is an
output of Prob. 8, the ϕ(θ̂s, θ̂p) that is ultimately returned is
feasible.

Next, to see the second point - that the ultimately returned
ϕ(θ̂s, θ̂p) makes each ξdem

j globally-optimal, note that at some
iteration of the inner loop, if Prob. 7 is feasible and its solution
algorithm is complete (Assumption C.1), it will return a trajec-
tory which is lower-cost than the demonstration and satisfies
ϕ(θ̂s, θ̂p). Note that Prob. 7 will always be feasible, since
Prob. 8 returns θp, θs for which the demonstration is feasible,
and the feasible set of Prob. 7 contains the demonstration. The
falsification loop will continue until Prob. 7 cannot produce
a trajectory of strictly lower cost for each demonstration; this
is equivalent to ensuring that each demonstration is globally
optimal for the ϕ(θ̂s, θ̂p).

To see the last point, we note that if there exists a formula
ϕ(θ̂s, θ̂p) which satisfies the demonstrations, it is among
the feasible set of possible outputs of Alg. 1; that is, the
representation of LTL formulas, D, is complete (c.f. Lemma
1 in [30]).

We will further show that the formula returned by Alg. 1
is the shortest formula which is consistent with the demon-
strations; this is due to NDAG only being incremented upon
infeasibility of a smaller NDAG to explain the demonstrations.

Corollary C.1 (Shortest formula): Let N∗ be the minimal
size DAG for which there exists (θp, θs) such that ξdem

j |=
ϕ(θs, θp) for all j. Under Assumptions C.1-C.3, Alg. 1 is
guaranteed to return a DAG of length N∗.

Proof: The result follows since Algorithm 1 increases
NDAG incrementally (in the outer loop) until some ϕ(θ̂s, θ̂p)
is returned which makes all of the demonstrations feasible
and globally-optimal, and each inner iteration of Algorithm 1
is guaranteed to find a consistent ϕ(θ̂s, θ̂p) if one exists (c.f.
Theorem C.1).

As leveraging a notion of discrete optimality is crucial to
reduce the search space of LTL formulas, we show that all
globally-optimal demonstrations must also be µ-spec-optimal
for the true specification, for any positive integer µ.

Lemma C.1: All globally-optimal trajectories are µ-SO.
Proof: We show that it is not possible for a demonstration

ξdem
j to be globally-optimal while failing to satisfy (a), (b), and

(c). If the constraints corresponding to pim at κjtm are relaxed,
for some {(im, tm)}µm=1, then ξdem

j can either remain locally-
optimal (which means (a) is satisfied, and happens if all the
constraints are inactive or redundant) or become not locally-
optimal. If ξdem

j becomes not locally-optimal for the relaxed
problem (i.e. (a) is not satisfied), then at least one of the orig-
inal constraints is active, implying

∨µ
m=1

(
Gim(κjtm) = 0

)
.

In this case, one of the following holds: either (1) each κjtm
lies on its constraint boundary:

∧µ
m=1

(
Gim(κjtm) = 0

)
, or

(2) at least one κtm does not lie on its constraint boundary. If
(2) holds, then ξdem

j must be infeasible for Ẑ, so (c) must be



satisfied. If (1) holds, then ξdem
j is both feasible for Ẑ and not

locally-optimal with respect to the relaxed constraints. Then,
there exists some trajectory ξ̂xu such that c(ξ̂xu) < c(ξdem

j ),
and for at least one m in 1, . . . , µ, Gim(κ̂jtm) > 0, where κ̂jtm
is the constraint state at time tm on ξ̂xu. ξ̂xu cannot be feasible
with respect to the true specification, since it makes ξdem

j not
globally-optimal, so in this case (b) must hold.

Using the previous lemma, we can show that modifying
Alg. 1 to additionally impose the spec-optimality conditions
in Prob. 8 still enjoys the completeness properties discussed
in Theorem C.1, while also in general reducing the number of
falsification iterations needed as a result of the reduced search
space.

Corollary C.2 (Alg. 1 with spec-optimality): By modifying
Alg. 1 so that Prob. 8 uses constraints (15), Alg. 1 still returns
a consistent solution ϕ(θ̂s, θ̂p) if one exists, i.e. each ξdem

j is
feasible and globally optimal for each ϕ(θ̂s, θ̂p).

Proof: The result follows from completeness of Alg.
1 (c.f. Theorem C.1) and Lemma C.1: adding (15a)-(15c)
enforces that ξdem

j are spec-optimal, and via Lemma C.1, ξdem
j ,

which is a globally-optimal demonstration, must also be spec-
optimal. Hence, imposing constraints (15a)-(15c) is consistent
with the demonstration.

Next, we show how the consistency properties extend to the
case of unknown cost function, if Alg. 2 returns a solution,
which it is not guaranteed to do in finite time.

Corollary C.3 (Consistency, unknown θc): Under Assump-
tions C.1-C.3, if Alg. 2 terminates in finite time, it returns a
formula ϕ(θs, θp) such that 1) ξdem

j |= ϕ(θs, θp) and 2) ξdem
j

is globally-optimal with respect to θc under the constraints
of ϕ(θs, θp), for all j, 3) if such a formula exists and is
representable by the provided grammar.

Proof: Note that Alg. 2 is simply Alg. 1 with an outer
loop where potential cost parameters θc are chosen. From
Theorem C.1, we know that under Assumptions C.1-C.2, for
the true cost parameter θc, Alg. 1 is guaranteed to return θp and
θs which make the demonstrations globally-optimal under θc.
From Assumption C.3 and the fact that the true parameters θp,
θs, and θc will make the demonstrations globally-optimal, we
know there exists at least one consistent set of parameters (the
true parameters). Then, Alg. 2 will eventually find a consistent
solution (possibly the true parameters), as it iteratively runs
Alg. 1 for all consistent θc.

Finally, we show that for fixed LTL structure and cost
function, querying and volume extraction (Problems 5 and 6)
are guaranteed to return conservative estimates of the true Si
or Ai.

Theorem C.2 (Conservativeness for unknown θp):
Suppose that θs and θc are known, and θp is unknown.
Then, extracting Gis and Gi¬s, as defined in (10)-(11), from
the feasible set of Prob. 4 projected onto Θp

i (denoted Fi),
returns Gis ⊆ Si and Gi¬s ⊆ Ai, for all i ∈ {1, . . . , NAP}.

Proof: We first prove that Gi¬s ⊆ Ai. Suppose that
there exists κ ∈ Gi¬s such that κ /∈ Ai. Then by definition,
for all θpi ∈ Fi, Gi(κ, θpi ) ≥ 0. However, we know that

all locally-optimal demonstrations satisfy the KKT conditions
with respect to the true parameter θp,∗i ; hence, θp,∗i ∈ F . Then,
x ∈ A(θp,∗i ). Contradiction. Similar logic holds for proving
that Gis ⊆ Si. Suppose that there exists x ∈ Gis such that
x /∈ Si. Then by definition, for all θpi ∈ Fi, Gi(κ, θpi ) ≤ 0.
However, we know that all locally-optimal demonstrations
satisfy the KKT conditions with respect to the true parameter
θp,∗i ; hence, θp,∗i ∈ Fi. Then, κ ∈ Si(θp,∗i ). Contradiction.

B. Learnability

The goal of this theorem is to show that the stronger
the assumptions on the demonstrator, the smaller the set of
consistent formulas (the less ill-posed the problem).

Theorem C.3 (Distinguishability): For the consistent for-
mula sets defined in Sec. V-B, we have ϕg ⊆ ϕµ̃-SO ⊆ ϕµ̂-SO ⊆
ϕf , for µ̃ > µ̂.

Proof: ϕg ⊆ ϕµ̃-SO, since per Lemma C.1, all globally-
optimal trajectories are µ̃-SO. Thus, restricting Prob. 8 to
enforce global optimality requires more constraints than re-
stricting Prob. 8 to enforce µ̃-SO. With more constraints,
the feasible set of consistent formulas cannot be larger for
global optimality. Similarly, as enforcing µ̃-SO requires more
constraints than enforcing µ̂-SO, the feasible set of consistent
formulas cannot be larger for µ̃-SO than for µ̂-SO. ϕµ-SO ⊆
ϕf , since enforcing µ-SO also enforces feasibility. Thus,
restricting Prob. 8 to enforce µ-SO requires more constraints
than the standard Prob. 8. With more constraints, the feasible
set of consistent formulas cannot be larger for µ-SO.

APPENDIX D
METHOD EXTENSIONS AND EXPANDED DETAILS

A. Unknown cost algorithm

In Algorithm 2, we formally write the analogue of the falsi-
fication approach in Alg. 1 when the cost function parameters
θc are unknown. The approach is the same as Algorithm 1,
apart from an additional outer while loop, where candidate θc

are selected. Upon the failure of a θc to yield a consistent
θp and θs, the θc is added into a set of cost parameters
for Problem 8 to avoid, Θc

av. The avoidance condition can
be implemented with integer constraints, i.e. |θci − θ̂ci | ≥
εav − (1 − ziav),

∑
i z
i
av ≥ 1, for i = 1, . . . , |θc|. See Sec.

VI for more discussion.

B. Encoding prior knowledge

Known labels: We have assumed that the demonstrations only
include state/control trajectories and not the AP labels; this can
lead to ambiguity as to which S should be assigned to which
proposition pi. For example, consider the example in Fig. 3
(left), where the aim is to recover ϕ(θp) = ♦S1(θp1)∨♦S2(θp2).
The KKT conditions will imply that the demonstrator had to
visit two boxes and their locations, but not if the left box
should be labeled S1 or S2. However, in some settings it may
be reasonable that the labels for each AP are provided, i.e. for
an AP which requires a robot arm to grasp an object, we might
have sensor data determining if the object has been grasped.



Algorithm 2: Falsification, unknown cost function

1 Input: {ξdem
j }Ns

j=1, S̄ , Output: θ̂s, θ̂p, θ̂c
2 NDAG ← 0, {ξ¬s} ← {}, Θc

av ← {}
3 while true do
4 θ̂s, θ̂p, θ̂c←Problem 8′({ξdem

j }Ns
j=1, {ξ¬s}, NDAG,Θ

c
av)

5 while ¬ consistent do
6 NDAG ← NDAG + 1
7 while Problem 8 is feasible do
8 θ̂s, θ̂p ← Problem

8({ξdem
j }Ns

j=1, {ξ¬s}, NDAG, θ̂
c)

9 for j = 1 to Ns do
10 ξjxu ← Problem 7(ξdem

j )

11 if c(ξjxu, θ̂c) < c(ξdem
j , θ̂c)/(1 + δ) then

12 {ξ¬s} ← {ξ¬s} ∪ ξxu
13 if

∨Ns

j=1(c(ξjxu, θ̂
c) < c(ξdem

j , θ̂c)/(1 + δ))

then
14 consistent ← >; break
15 if consistent then return;
16 else Θc

av ← Θc
av ∪ θ̂c; break;

In this case, we can incorporate this by simply constraining
Zji (θ

p
i ) to be the labels; this then removes the ambiguity

mentioned earlier.
Prior knowledge on θp: In some settings, we may have a
rough idea of θp, i.e. as noisy bounding boxes from a vision
system. We might then want to avoid deviating from these
nominal parameters, denoted θpnom, or restrict θp to some region
around θpnom, denoted Θi,nom, subject to the KKT conditions
holding. This can be done by adding

∑NAP
j=1 ‖θ

p
i − θpi,nom‖1 as

an objective or θpi,nom ∈ Θi,nom as a constraint to Prob. 4.

C. Variants on the falsification loop

Depending on the desired application, it may be useful
to impose an ordering in which candidate structures θs are
returned in line 4 of Alg. 1. For example, the user may want
to return the most restrictive formulas first (i.e. formulas with
the smallest language), since more restrictive formulas are less
likely to admit counterexamples (and hence the falsification
should terminate in fewer iterations). On the other hand, the
user may want to return the least restrictive formulas first,
generating many invalid formulas in order to explicitly know
what formulas do not satisfy the demonstrator’s wishes.

However, imposing an entailment-based ordering on the
returned formulas is computationally challenging, as in general
this will involve pairwise LTL entailment checks over a large
set of possible LTL formulas, and each check is in PSPACE
[17]. Despite this, we can heuristically approximate this by
assigning weights to each node type in the DAG based on
their logical “strength”, such that each DAG with the same set
of nodes has an overall weight w =

∑NDAG
u=1

∑Ng
v=1 wu,vXu,v .

For example, ∨ should be assigned a lower weight than ∧,
since ∨s can never restrict language size, while ∧ can never
grow it. Then, stronger/weaker formulas can be returned first
by adding constraint w ≥ wthresh/w ≤ wthresh, where wthresh is
reduced/increased until a consistent formula is found.

Note that multiple consistent formula structures can be also
generated by adding a constraint for Prob. 8 to not return the
same formula structure and continuing the falsification loop
after the first consistent formula is found.

APPENDIX E
ADDITIONAL EXPERIMENTAL DETAILS (ENVIRONMENT

TRANSFER)
We use the learned θs to plan a trajectory which completes

the high-level task (first going to the mug, then the coffee
machine, then the goal, while always avoiding obstacles) in
a novel environment map (with different AP parameters θp).
Please refer to our accompanying video at https://youtu.be/
cpUEcWCUMqc for animations of the planned trajectories.
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Fig. 8. Environment-transfer planned trajectory.

APPENDIX F
ADDITIONAL EXPERIMENTAL DETAILS (MANIPULATION)

We use the learned θp and θs to plan trajectories which
complete the task from new initial conditions in the environ-
ment (Fig. 9). Please refer to our video at https://youtu.be/
cpUEcWCUMqc for animations of the planned trajectories.

Fig. 9. Arm planned trajectories.

https://youtu.be/cpUEcWCUMqc
https://youtu.be/cpUEcWCUMqc
https://youtu.be/cpUEcWCUMqc
https://youtu.be/cpUEcWCUMqc


APPENDIX G
ADDITIONAL EXPERIMENTAL DETAILS (QUADROTOR)

The system dynamics for the quadrotor [36] are:




χ̇
ẏ
ż
α̇

β̇
γ̇
χ̈
ÿ
z̈
α̈

β̈
γ̈




=




χ̇
ẏ
ż

β̇ sin(γ)
cos(β) + γ̇ cos(γ)

cos(β)

β cos(γ)− γ̇ sin(γ)

α̇+ β̇ sin(γ) tan(β) + γ̇ cos(γ) tan(β)
− 1
m [sin(γ) sin(α) + cos(γ) cos(α) sin(β)]u1
− 1
m [cos(α) sin(γ)− cos(γ) sin(α) sin(β)]u1

g − 1
m [cos(γ) cos(β)]u1
Iy−Iz
Ix

β̇γ̇ + 1
Ix
u2

Iz−Ix
Iy

α̇γ̇ + 1
Iy
u3

Ix−Iy
Iz

α̇β̇ + 1
Iz
u4




,

(17)
with control constraints ‖ut‖2 ≤ 10. We time-discretize
the dynamics by performing forward Euler integration with
discretization time δt = 1.2 seconds. The 12D state is
x = [χ, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇]>, and the relevant con-
stants are g = −9.81m/s2, m = 1kg, Ix = 0.5kg · m2,
Iy = 0.1kg ·m2, and Iz = 0.3kg ·m2.

With the four demonstrations provided (see Sec. VIII), we
learn θc, θp, and θs, and obtain a representation of Gis and
Gi¬s, for all AP pi. Using θc, θs, and Gis, we plan trajectories
from new initial states to new goal states in the environment
which are guaranteed to satisfy the true LTL formula; these
trajectories are presented in Fig. 10. Please refer to our
accompanying video at https://youtu.be/cpUEcWCUMqc for
animations of the planned trajectories.

Fig. 10. Quadrotor planned trajectories.

https://youtu.be/cpUEcWCUMqc
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