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Abstract— From real-time battery estimation viewpoint,
weak observability of individual electrode states from termi-
nal voltage measurement is a major barrier. Nevertheless,
such electrode-level information can help expand usable en-
ergy/power as well as lifespan of the battery cell by enabling
electrode-level limit based battery control. Motivated by these
promising improvements, we present a real-time framework
for estimating charge and health of individual electrodes.
Essentially, the weak observability of the electrodes is ad-
dressed by decomposing the overall estimation problem into
two sub-estimators that work in a cascaded manner to provide
charge and health information for individual electrodes. The
performance of the proposed scheme is illustrated by using an
experimentally identified battery model that considers essential
nonlinearities in electrodes’ Open Circuit Potential (OCP)
functions and resistances as well as dominant Solid Electrolyte
Interphase (SEI) aging mechanism. Simulation case studies are
presented based on this identified model which validate the
effectiveness of the proposed framework.

I. INTRODUCTION

Although Lithium-ion Batteries (LIBs) are being consid-
ered to be promising for many applications, safety remains
a key issue for LIBs. Real-time information on battery
electrode-level quantities can be beneficial in improving
safety as well as performance. From estimation theory
viewpoint, the major obstacle in designing an electrode-
level estimation scheme arises from weak observability [1],
[2]. Nevertheless, such electrode-level information can help
expand usable energy/power as well as lifespan of the battery
cell by enabling electrode-level limit based battery control
[3], [4].

Battery cell-level estimation problems have been widely
explored in literature [1], [2]. Very few studies have been
conducted on battery electrode-level State-of-Charge (SOC)
and State-of-Health (SOH) estimation problems. For exam-
ple, the algorithms in [3], [5], [6], estimate Lithium concen-
tration (equivalent to electrode SOC) in individual electrodes
assuming some of the capacity-related parameters such as
total moles of Lithium and electrode’s volume fraction are
known and constant. However, this assumption may not be
practical as these parameters change due to the battery aging.
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In [7], an algorithm is proposed for individual electrode’s
Lithium concentration estimation under the assumption that
perfect open-loop model is available. However, assumption
of such model knowledge may be impractical in real-world
applications. A parameter identification based approach is
presented in [8] to estimate individual electrode’s capacity
and utilization window. Although this approach provides
individual electrode’s SOH information via capacity estima-
tion, it does not provide real-time information of individual
electrode’s SOC.

To address the aforementioned limitations, we have pro-
posed an estimation algorithm in our previous work [4]
that simultaneously estimates individual electrode’s SOC and
SOH without making the aforementioned limiting assump-
tions. However, the work in [4] is based on a simplified
battery model which does not consider (i) dominant aging
factor of Solid Electrolyte Interphase (SEI) growth, and (ii)
nonlinear dependence of electrode resistances on electrode
SOC. Note that SEI aging and nonlinear resistances are
integral part of battery physical dynamics and degradation,
and it is crucial to accommodate them within the model-
based estimation framework. In this work, we extend the
approach proposed in [4] by designing an electrode-level
SOC-SOH estimation algorithm considering electrode-level
dynamics, SEI growth aging model and nonlinearity in elec-
trode resistances. Specifically, we propose a terminal voltage
feedback-based closed-loop cascaded estimation algorithm
to address the weak observability issue regarding electrode-
level estimation. We also analyze the mathematical properties
of the proposed scheme using Lyapnov’s stability theory.
Finally, the effectiveness of the proposed method is evaluated
by using an experimentally identified battery model.

The organization of this paper is as follows. Section II
formulate the model of individual battery electrodes. Section
III presents the electrode-level estimation algorithm. Section
IV describes the model identification from experimental data.
Sections V presents the simulation results and discussions
while Section VI presents conclusion.

II. BATTERY ELECTRODE MODEL

In this section, we discuss the battery model adopted for
this work. The stoichiometry dynamics of each electrode is
modelled as follows:

ẏ(t) =
I(t)

Qp
, ẋ(t) =

−I(t)

Qn
− Q̇SEI(t)

Qn
, (1)

where x ∈ [0, 1] and y ∈ [0, 1] represent the dimensionless
stoichiometries of negative and positive electrodes, respec-



tively; I in Ampere (A) is the battery cell current with
I > 0 representing full cell discharge operation; Qp and
Qn are the capacities of positive and negative electrodes
in Ampere − seconds (A-sec), respectively; QSEI is the
lithium inventory in Ampere−seconds (A-sec) due to Solid
Electrolyte Interphase (SEI) growth. Furthermore, we model
the dynamics of QSEI as follows:

Q̇SEI(t) =
k2SEI

2QSEI(t)
, (2)

where the parameter kSEI > 0 characterizes the time scale
of Lithium loss due to SEI. Finally, the terminal voltage of
the battery cell is given by:

Vt(t) = fp(y)− fn(x)− I(t)
(
Rp(y) +Rn(x)

)
, (3)

where fp(.) and fn(.) are the Open Circuit Potential (OCP)
functions of the positive and negative electrodes, respectively,
expressed in V olts; Rp and Rn are the internal resistances
of positive and negative electrodes, respectively, expressed in
Ω. Note that the OCP functions and resistances are nonlinear
functions of individual electrode stoichiometries.

III. ONLINE ESTIMATION ALGORITHM

In this section, we describe the online estimation algo-
rithm. The objective of the estimation algorithm is to estimate
the available charge and health of the positive and negative
electrodes. In order to achieve such goal, we estimate (i)
stoichiometries x and y which capture the SOC state of each
electrode, and (ii) Qp, Qn, and QSEI which capture the
SOH states of the electrodes. A schematic of the estimation
algorithm is shown in Fig. 1. Note that the algorithm uses
filtered terminal voltage as measured feedback which is
commonly available in commercial battery cells. The purpose
of the filters is to reduce the effect of measurement noise.
Furthermore, the estimation algorithm consists of two sub-
estimators working in cascade. The first sub-estimator is
called Positive Electrode Estimator which estimates positive
electrode’s SOC and SOH (i.e. y and Qp) based on filtered
terminal voltage feedback. The second sub-estimator is Neg-
ative Electrode Estimator which receives filtered terminal
voltage feedback and estimated y from the Positive Electrode
Estimator, and subsequently estimates negative electrode’s
SOC and SOH (i.e. x, Qn and QSEI ).

Fig. 1. On-line estimation algorithm for electrode-level SOC (stoichiome-
tries x; y) and SOH (capacities Qp, Qn) estimation.

As mentioned before, a major problem in battery esti-
mation lies in weak observability of the electrode states
from terminal voltage. That is, the dynamic system states
x and y in (1) are not observable from the output volt-
age Vt. To address such issue, we decouple the original
system (1) into two subsystems: one consisting of posi-
tive electrode dynamics (the first equation in (1)) and the
other consisting of negative electrode dynamics (the second
equation in (1)). As will be shown next, we design Positive
Electrode Estimator and Negative Electrode Estimator based
on these two sub-systems. Furthermore, while using the
first subsystem to design Positive Electrode Estimator, we
treat anode state (x) contribution in terminal voltage Vt as
an external uncertainty. Similarly, while using the second
subsystem to design Negative Electrode Estimator, we treat
cathode state (y) contribution in terminal voltage Vt as an
external uncertainty. Note that these two subsystems are
now separately observable from Vt under nominal (i.e. no
uncertainty) condition.

A. Mathematical Form of the Algorithm

In this subsection, we discuss the mathematical forms of
these aforementioned sub-estimators.

Positive Electrode Estimator: While designing the Pos-
itive Electrode Estimator, we treat the negative electrode
quantities arising in the model as external uncertainty term.
Such treatment allows us to decouple the design of two
estimators in a separate manner. Consequently, from (1), we
can write the positive electrode dynamics as:

ẏ = KpI, K̇p = 0, (4)

where Kp = 1/Qp. Furthermore, we express the terminal
voltage (3) as

Vt = c1y + f1(y, I) + η1, (5)

where c1y+ f1(y, I) = fp(y)− IRp(y) and η1 = −fn(x)−
IRn(x). Note that the term c1y represent the linear com-
ponent of the OCP function fp(y) and the term f1(y, I)
represents the rest of the nonlinearity of fp(y) as well as
−IRp(y). Furthermore, as mentioned before, the term η1
captures the effect of negative electrode related quantities in
the dynamics and is treated as an external uncertainty. The
dynamics of η1 can be expressed as:

η̇1 = αT f(I), (6)

where α = [α1, α2, α3, α4]T and f(I) = [I2, I, İ, 1]T with

α1 =
∂Rn

∂x

1

Qn
, α2 =

∂fn
∂x

1

Qn
+
∂Rn

∂x

1

Qn
Q̇SEI , (7)

α3 = −Rn(x), α4 =
∂fn
∂x

1

Qn
Q̇SEI . (8)

As will be seen later, expressing the terminal voltage in
the form (5) will help in estimator design and convergence
analysis.



Next, based on (4), (5), and (6), we choose the following
structure for Positive Electrode Estimator dynamics:

˙̂y = K̂pI + L1(Vt − V̂t), ˙̂
Kp = L2(Vt − V̂t)I,

˙̂η1 = α̂T f(I), ˙̂α = L3(Vt − V̂t)f(I), (9)

where V̂t = c1ŷ+f1(ŷ, I)+ η̂1 with ŝ representing estimated
value of s. The parameters L1, L2 and L3 are the estimator
gains, tuning parameters of the algorithm.

Negative Electrode Estimator: From (1), we can write
the negative electrode dynamics as:

ẋ = KnI +KnK2/z, ż = K2/z, K̇n = 0, (10)

where Kn = −1/Qn, z = QSEI , and K2 = k2SEI/2.
Furthermore, we express the terminal voltage (3) as

Vt = c2x+ f2(x, I) + fp(y)− IRp(y), (11)

where c2x + f2(x, I) = −fn(x) − IRn(x). The term c2x
represent the linear component of the OCP function fn(x)
and the term f2(x, I) represents the rest of the nonlinearity
of fn(x) as well as −IRn(x). Based on (10) and (11),
we choose the following structure for Negative Electrode
Estimator dynamics:

˙̂x = K̂nI + K̂nK2/ẑ + L4(Vt − V̂t),
˙̂z = K2/ẑ + L5(Vt − V̂t), ˙̂

Kn = L6(Vt − V̂t)I, (12)

where V̂t = c2x̂ + f2(x̂, I) + fp(ȳ) − IRp(ȳ) with ŝ
representing estimated value of s and ȳ is the estimated y
from Positive Electrode Estimator. The parameters L4, L5

and L6 are the estimator gains, tuning parameters of the
algorithm.

Assumption 1. The parameters c1, c2, and f1(.) and f2(.)
are chosen such that f1(.) and f2(.) exhibits Lipschitz
continuity as follows:∣∣∣f1(y(1), I)− f1(y(2), I)∣∣∣ ≤ γ1 ∣∣∣y(1) − y(2)∣∣∣ , ∀I,∣∣∣f2(x(1), I)− f2(x(2), I)∣∣∣ ≤ γ2 ∣∣∣x(1) − x(2)∣∣∣ , ∀I, (13)

where y(1), y(2) ∈ Dy , x(1), x(2) ∈ Dx with Dy and Dx

being the domains of x and y, respectively, and γ1, γ2 > 0
are Lipschitz constants. Furthermore, the constants γ1 and
γ2 satisfy the following properties: |c1| > γ1, |c2| > γ2.

B. Stability Analysis of the Algorithm

Subtracting the estimator dynamics (9) from the plant dy-
namics (4)-(6), the estimation error dynamics of the Positive
Electrode Estimator can be written as:

˙̃y = K̃pI − L1Ṽt,
˙̃Kp = −L2ṼtI,

˙̃η1 = α̃T f(I), ˙̃α = −L3Ṽtf(I), (14)

where s̃ represents the estimation error of s denoted by s̃ =
s− ŝ, and Ṽt = c1ỹ+ f̃1 + η̃1 with f̃1 = f1(y, I)− f1(ŷ, I).
Similarly, subtracting the estimator dynamics (12) from the

plant dynamics (10)-(11), the estimation error dynamics of
the Negative Electrode Estimator can be written as:

˙̃x = K̃nI +K2
K̃n

z
− K2K̂n

zẑ
z̃ − L4Ṽt,

˙̃z = K2

(1

z
− 1

ẑ

)
− L5Ṽt,

˙̃Kn = −L6ṼtI, (15)

where Ṽt = c2x̃+ f̃2 +ω with f̃2 = f2(x, I)− f2(x̂, I). The
term ω represents error arising from the difference between
y and ȳ, that is, the estimation inaccuracies of Positive
Electrode Estimator. Based on these error dynamics (14)
and (15) and the following framework presented in [4], the
following propositions illustrate the stability properties of the
estimation algorithm.

Proposition 1. (Stability of the Positive Electrode Estimator
Error Dynamics) Consider the estimation error dynamics
(14). If Assumption 1 is true, and the estimator gains L1, L2

and L3 are chosen such that the following conditions are
satisfied: L2 = c1/θ1, L3 = θ2 and X ≤ 0 where θ1, θ2 > 0
are arbitrary positive constants and

X =


x11 x12 x13 x14
0 0 0 x24
0 0 0 0
0 0 0 0

 (16)

with x11 = −L1θ1c1 + |L1| θ1γ1, x12 = |L1| θ1, x13 =
L3‖f(I)‖(c1 + γ1), x14 = L2γ1|I|, x24 = L2|I|; then
the estimation errors |ỹ|, ‖α̃‖, |η̃1| and |K̃p| will remain
uniformly bounded as t→∞.

Proof. We consider the following positive definite Lyapunov
function candidate:

W1 =
θ1
2
ỹ2 +

1

2
K̃2

p +
1

2
α̃T α̃+

θ2
2
η̃21 (17)

with θ1 > 0 and θ2 > 0. Differentiating W1 with respect to
time and subsequently, using (14), we get:

Ẇ1 = θ1ỹK̃pI − L1θ1ỹṼt

− K̃pL2ṼtI + θ2η̃1α̃
T f(I)− α̃TL3Ṽtf(I). (18)

Next, (i) using the expression Ṽt = c1ỹ+ f̃1+ η̃1 where f̃1 =

f1(y, I)−f1(ŷ, I), (ii) considering the fact
∣∣∣f̃1∣∣∣ ≤ γ1 |ỹ| from

Assumption 1 and the inequality mT
1m2 ≤ ‖m1‖ ‖m2‖, and

(iii) applying L2 = c1/θ1 and L3 = θ2, we write (18) as:

Ẇ1 ≤ |ỹ|2 {−L1θ1c1 + |L1| θ1γ1}+ |ỹ| |η̃1|L1θ1

+ |ỹ| ‖α̃‖{L3‖f(I)‖(|c1|+ |γ1|)}

+
∣∣∣K̃p

∣∣∣ |ỹ| {L2γ1 |I|}+
∣∣∣K̃p

∣∣∣ |η̃1| {L2 |I|}, (19)

which we can further re-write in vector-matrix form as Ẇ1 ≤
βTXβ where β = [|ỹ|, |η̃1|, |α̃|, |K̃p|]T and X is given in
(16). Note that by choice of L1, we can ensure x11 < 0 and
hence, X ≤ 0. Consequently, we can conclude that Ẇ1 ≤ 0.
Negative semidefiniteness of Ẇ1 confirms that the estimation
errors |ỹ|, |η̃1|, |α̃|, and |K̃p| will remain bounded as t→∞.



Proposition 2. (Stability of the Negative Electrode Estimator
Error Dynamics) Consider the estimation error dynamics
(15). If Assumption 1 is true and ω = 0, and the estimator
gains L4, L5, L6 are chosen such that the following condi-
tions are satisfied: L5 > 0, L6 = θ3/c2 and Y ≤ 0 where θ3
is an arbitrary positive constant, and

Y =

 y11 y12 y13
0 y22 0
0 0 0

 (20)

with y11 = θ3(−L4c2 + |L4|γ2), y12 = L5(|c2| + γ2) +

θ3

∣∣∣K2K̂n

zẑ

∣∣∣, y13 = |L6|γ2|I| + θ3
K2

z and y22 = −K2

zẑ , then

the estimation errors |x̃|, |z̃| and |K̃n| will remain uniformly
bounded as t→∞.

Proof. We consider the following positive Lyapunov func-
tion candidate

W2 =
θ3
2
x̃2 +

1

2
z̃2 +

1

2
K̃2

n, (21)

where θ3 > 0. Next, (i) differentiating W2 with respect to
time and using the expression (15), (ii) considering the fact
|f̃2| ≤ γ2|x̃| from Assumption 1 and the inequality n1n2 ≤
|n1| |n2|, we get:

Ẇ2 ≤ θ3x̃K̃nI − L6c2K̃nx̃I − L4θ3c2|x̃|2 + θ3|L4|γ2|x̃|2

+ L5|c2||x̃||z̃|+ L5γ2|x̃||z̃| −
K2

zẑ
|z̃|2 + γ2|L6||K̃n||x̃||I|

θ3
K2

z

∣∣∣K̃n

∣∣∣ |x̃|+ θ3

∣∣∣∣∣K2K̂n

zẑ

∣∣∣∣∣ |z̃| |x̃| . (22)

With the choice of L6 = θ3/c2, we can write Ẇ2 expression
in the following vector-matrix form: Ẇ2 ≤ λTYλ where
λ = [|x̃|, |z̃|, |K̃n|]T and Y is given in (20). By choice of
L4 we can ensure −L4θ3c2 + |L4|θ3γ2 < 0, and we know
K2, z, ẑ > 0 from the physical properties of the battery
model. Hence, we can ensure Y ≤ 0 which in turn confirms
that the errors |x̃|, |z̃| and |K̃n| will remain bounded as
t→∞.

IV. EXPERIMENTAL IDENTIFICATION OF
BATTERY MODEL

In this section, we discuss the experimental identification
of the battery model discussed in Section II. The pouch
type battery cell under consideration has the following
characteristics: cathode material NMC532, anode material
Silicon/Graphite/Binder with 15/73/12 weight %, total cell
capacity 400 mAh, maximum voltage 4.1 V, and minimum
voltage 3.0 V. Cells were fabricated by Argonne National
Lab Cell Analysis Modeling Prototype facility. In the exper-
imental setup, reference electrode method has been used to
collect anode potential data along with cell terminal voltage
data. Two separate channels in the Arbin BT2000 battery
cycler have been used to measure the anode potential and
terminal voltage with sample time of 20 seconds and 10
seconds, respectively. The OCP functions fp(.) and fn(.)
were measured and identified at a constant current rate of
C/10, as such smaller current better capture the equilibrium

behavior of the battery cell and electrodes. The identified
OCP functions are shown in Fig. 2 and Fig. 3. The sto-
ichiometry points corresponding to 0% full cell SOC are
x0 = 0.05, y0 = 0.88 and the points corresponding to 100%
full cell SOC are x100 = 0.7, y100 = 0.4.

Fig. 2. Identified positive electrode OCP function.

Fig. 3. Identified negative electrode OCP function.

After identifying the OCP functions, we focus on identify-
ing the rest of the model parameters: electrode capacities Qp

and Qn, SEI parameter kSEI , and electrode resistances Rp

and Rn. In order to capture the nonlinear dependencies of
electrode resistances on electrode SOCs, we have assumed
the following polynomial form of the resistance functions:

Charge: Rp(y) =

nc∑
i=0

Pciy
i,Discharge: Rp(y) =

nd∑
i=0

Pdiy
i

Charge: Rn(x) =

mc∑
i=0

Ncix
i,Discharge: Rn(x) =

md∑
i=0

Ndix
i

(23)

where Pci, Pdi, Nci, and Ndi are the coefficients of the
polynomial functions. We have used C/3 constant current
data to identify the aforementioned parameters. First, we
have computed individual electrode potential data from cell
terminal voltage and anode potential measurements. Subse-
quently, we have solved the following optimization problems:

min
ϑn

RMS(Vae − Vam(ϑn)), min
ϑp

RMS(Vce − Vcm(ϑp))

with respect to dynamic constraints (1)-(2) and,
ϑpmin

≤ ϑp ≤ ϑpmax
, ϑnmin

≤ ϑn ≤ ϑnmax
, (24)

where ϑn = {Qn, kSEI , QSEI(0), Nci, Ndi} and ϑp =
{Qp, Pci, Pdi}; RMS(.) indicates the root mean square
operator; ϑpmax , ϑnmax and ϑpmin , ϑnmin are the upper and
lower bounds of the parameters; Vae and Vam are the anode



potential data from experiments and model, respectively; Vce
and Vcm are the cathode potential data from experiments and
model, respectively.

We have solved the optimization problem (24) using Ge-
netic Algorithm (GA) framework. The identification process
resulted in 4.2 mV and 8.8 mV of RMS errors for cathode
and anode models, respectively. The identified parameters
are given in Table I.

TABLE I
IDENTIFIED PARAMETERS

Parameters Values Parameters Values
QSEI(0) 5.2391× 10−8 Ah Qp 0.74 Ah
kSEI 7.2802× 10−5 A

√
s Qn 0.57 Ah

Pc0 -2.528 Pd0 4.54
Pc1 13.44 Pd1 -30.31
Pc2 -21.33 Pd2 77.44
Pc3 11.19 Pd3 -88.96
Pc4 0 Pd4 38.85
Nd0 0.6295 Nd3 -168.1
Nd1 -7.717 Nd4 268.4
Nd2 51.66 Nd5 -186.5
Nci 0, ∀i Nd6 32

V. ESTIMATION RESULTS AND DISCUSSION
In this section, we present simulation case studies in

MATLAB/Simulink platform, based on the identified model
in the previous section. As discussed in the formulation of
the estimation algorithm, we are interested in estimating
x, y,Qn, Qp and QSEI . In the estimation algorithm, the
estimated variables are initialized with incorrect values to
evaluate their convergence. Specifically, we have used 10%
initial error in our case studies. Next, we perform the
following case studies.

A. Case Study 1: Constant Current Charging Scenario

In the first case study, we have considered a constant
current scenario where the battery cell is being charged at
C/3 rate. The estimation results for positive and negative
stoichiometries and capacities (y, x,Qp, Qn) are illustrated
in Fig. 4 and Fig. 5. Furthermore, QSEI estimation is shown
in Fig. 6. It can be seen that all the estimated variables
converged close to the true variables starting from incorrect
initial condition. The steady-state errors for the x and y esti-
mation are 0.7% and 0.3%, and for Qn and Qp estimation are
0.03% and 2.2%, respectively. The convergence times for the
x, y,Qn, Qp are 3.18, 24.6, 5.46, 24.6 minutes, respectively.

Fig. 4. Stoichiometry estimation results under C/3 constant charging rate.

Fig. 5. Capacity estimation results under C/3 constant charging rate.

Fig. 6. SEI growth estimation result under C/3 constant charging rate.

B. Case Study 2: Dynamic Current Discharging Scenario

In the second case study, we have subjected the battery
cell under modified US06 type dynamic discharge current
profile as shown in Fig 7. The estimation results for the
stoichiometries and capacities (y, x,Qp, Qn) are shown in
Fig. 8 and Fig. 9. The QSEI estimation is shown in Fig. 10.
From the results, it can be seen that the estimated variables
converged to their true values with the steady-state errors of
2.9%, 0.8%, 0.7%, and 1.86% for the variables x, y, Qn and
Qp, respectively. The convergence times for the x, y,Qn, Qp

estimation are 60, 36, 34.2 and 38.4 minutes, respectively.

Fig. 7. Dynamic discharge current profile.

C. Case Study 3: Robustness with Respect to Uncertain SEI
Parameter

In this case study, the robustness of estimation algorithm
is studied with respect to SEI model parameter kSEI . We
have applied the same current profile as in case study 1.
The estimation results for Qn and QSEI are shown in
Fig. 11 under different levels of uncertainty. From Fig.
11, we can conclude that the estimation error for Qn and
QSEI stay within a tolerable range under 5% uncertainty in
kSEI . However, the estimation performance reduces notably
beyond 10% uncertain kSEI .



Fig. 8. Stoichiometry estimation results under dynamic discharge current
with 10% initial estimation error for all variables.

Fig. 9. Capacity estimation results under dynamic discharge current with
initial estimation errors of 10% and 5% for Qp and Qn, respectively.

Fig. 10. SEI growth estimation results under dynamic discharge current
with initial estimation error of 10%.

Fig. 11. Negative electrode capacity and SEI growth estimation under
different levels of uncertainties in kSEI .

VI. CONCLUSIONS

We have designed an online estimation algorithm to esti-
mate available charge and capacity of individual electrodes

in a battery cell. This estimation framework addresses the
critical issue of battery observability where individual elec-
trode states are weakly observable from terminal voltage
measurement. The mathematical properties of the proposed
estimation algorithm are analyzed via Lyapunov’s stability
theory. An experimentally identified electrode-level battery
model with nonlinear OCP functions, electrode resistances
and SEI dynamics is used to perform simulation studies
to illustrate the effectiveness of the proposed approach. As
future work, we plan to validate the proposed approach with
experimental data.
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