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Abstract—This paper reports our study on the impact of
transcatheter aortic valve replacement (TAVR) on the
classification of aortic stenosis (AS) patients using cardio-
mechanical modalities. Machine learning algorithms such as
decision tree, random forest, and neural network were applied
to conduct two tasks. Firstly, the pre- and post-TAVR data are
evaluated with the classifiers trained in the literature. Secondly,
new classifiers are trained to classify between pre- and post-
TAVR data. Using analysis of variance, the features that are
significantly different between pre- and post-TAVR patients are
selected and compared to the features used in the pre-trained
classifiers. The results suggest that pre-TAVR subjects could be
classified as AS patients but post-TAVR could not be classified
as healthy subjects. The features which differentiate pre- and
post-TAVR patients reveal different distributions compared to
the features that classify AS patients and healthy subjects. These
results could guide future work in the classification of AS as well
as the evaluation of the recovery status of patients after TAVR
treatment.

I. INTRODUCTION

Cardiovascular disease (CVD) is the dominant global
cause of death, accounting for more than 17.9 million deaths
per year [1]. Among the different categories of heart disease,
valvular heart disease (VHD) accounts for approximately 20%
of all cardiac surgical procedures in the United States [1].
Aortic stenosis (AS) is the most prevalent of all VHDs, and is
defined as the narrowing of the aortic valve which prevents an
adequate outflow of blood [2], [3]. Conventional AS detection
techniques such as echocardiography and magnetic resonance
imaging are often constraining, expensive, and limited to use
in the clinic [3]. Recently, wearable sensors using non-
invasive modalities have been investigated as out-of-clinic
ubiquitous monitors for the detection of CVDs. Specifically,
cardio-mechanical modalities, i.e. seismo- and gyro-
cardiography, have been evaluated for monitoring various
kinds of cardiovascular diseases using inertial sensors attached
to the chest walls of subjects [4]-[8]. Researchers have verified
the feasibility of detecting atrial fibrillation [4], [6], heart
arrhythmia [5], and heart failure [7]. Our group has previously
studied the capability of detecting AS based on time-frequency
features extracted from seismo- and gyro-cardiograms [8]. We
collected seismo-cardiogram (SCG) signals using an
accelerometer, and gyro-cardiograms (GCG) using a
gyroscope. These inertial sensors detect heart-induced
vibrations that are related to valve activities [8]. Our results
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indicate that we can effectively differentiate between AS
patients before treatment and healthy subjects based on
features from cardio-mechanical signals using conventional
machine learning algorithms [8].

Transcatheter aortic valve replacement (TAVR) is the
replacement of the aortic valve of the heart through the blood
vessels without an open heart surgery, and is a major method
of treatment for AS [9]-[12]. It is a feasible and less risky
option for frail and elderly patients who need valve
replacement or implementation compared to other treatments
[11], [12]. However, valve replacement does not provide a
definitive cure to the patient and might result in prosthesis-
related complications such as prosthesis-patient mismatch and
thromboembolic  complications [11]. Many of the
complications can be prevented through careful medical
management and long-term follow-up after implantation [12].
A non-invasive home-based monitor that provides an
evaluation of the wellness of aortic valves could hugely benefit
the long-term healthcare service for AS patients after TAVR.

There are two concerns in the evaluation of pre- and post-
TAVR subjects with the framework developed in [8]. Firstly,
our framework is based on the characteristics of vibration
signals produced by heart valves. It is unknown if artificial
valves provide the same mechanical characteristics compared
to natural valves. It has been shown that artificial valves may
produce different sounds in the hearing frequency range
compared to natural valves [10]. Since sound is also induced
by vibrations, this observation raises our concern regarding
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Fig. 1. The overall structure of the classification tasks studied in this work.
(a) Testing with pre-trained classifiers for the classification of AS patients
and healthy subjects. (b) Developing new classifiers for the classification of
pre- and post-TAVR subjects.
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low-frequency vibrations induced by artificial valves as well.
Secondly, from the perspective of the classifier, it is not clear
whether post-TAVR patients could be classified in the same
category as healthy subjects. In other words, patients with
artificial valves might need to be categorized as a separate
class due to the distinct characteristics of their cardio-
mechanical signals.

In this work, for the first time, we evaluate cardio-
mechanical recordings from AS patients before and after
TAVR treatment. Fig. 1 illustrates the two classification tasks
studied in this paper. As presented in Fig. 1 (a), we first
evaluate the classification results of pre- and post-TAVR using
the pre-trained classifiers developed in our previous work [8].
Next, using the same framework, we train new classifiers to
classify between pre- and post-TAVR data as shown in Fig. 1
(b). Finally, we compare the feature sets used in Fig. 1 (a) and
Fig. 1 (b).

The structure of the paper is as follows. Section II
introduces the experimental materials and protocol. The
hardware and software methods are explained in Section III,
followed by the results in Section IV. Section V concludes the
study and discusses future work.

II. EXPERIMENTAL MATERIALS AND PROTOCOL
A. Datasets

1) Dataset of AS patients with TAVR treatments

Ten inpatient subjects from the Structural Heart & Valve
Center of Columbia University Medical Center (CUMC)
participated in the collection of recordings. All the patients
were first measured before receiving the TAVR treatment.
They were measured again on the same day after the
procedure. The AS cohort includes four male and six female
subjects whose ages, weights, and heights varied as 63-95
years old, 57-88 kg, and 155-180 cm, respectively.

2) Dataset of AS patients and healthy subjects

Data from 40 subjects were used in the training of the pre-
trained classifier. Twenty AS subjects from the cardiac care
units of Columbia University Medical Center (CUMC)
participated in the data collection, all of whom were measured
prior to receiving any treatments. A control group of twenty
healthy subjects also participated in this study. Measurements
from normal subjects were performed at Stevens Institute of
Technology. More details of these two demographic groups
can be found in our previous work [8].

B.  Experimental Protocol

The subjects were asked to sit at rest on a bed for five
minutes during both pre- and post-TAVR measurements. The
subjects breathed naturally during the experiments. The
Institutional Review Board of CUMC approved the patient
experimental protocol under protocol number AAAR4104.

III. METHODS
A. The Hardware System

We used the same hardware system as in [8] to ensure the
consistency of data collection. A commercial wearable sensor
node (Shimmer 3 from Shimmer Sensing) is attached to the
center of the sternum along the third rib using a chest strap. A
three-axis accelerometer measures the seismo-cardiogram

(SCQ) signal, and a three-axis gyroscope records the gyro-
cardiogram (GCG) signal. Both sensors share the same axis
definition, where the z-axis refers to the dorso-ventral direction
of the body, the y-axis is along the head-to-foot direction, and
the x-axis is along the shoulder-to-shoulder direction.
Reference heartbeat measurements are taken by a standard
four-lead electrocardiogram (ECG) system, which is wire-
connected to the sensor. All the recordings are sampled at a
sampling rate of 256 Hz. Data are stored in an SD card during
measurements and then imported into MATLAB (R2018) for
further processing.

B. The Software Methods

Fig. 2 illustrates the block diagram of the proposed signal
processing framework, which is modified from our previous
study in [8]. The signal processing framework consists of three
main parts. The first part is feature generation based on SCG
and GCG signals, as shown in Fig. 2 (a). The features are then
used for the first and second classification tasks introduced in
Section I, as presented in Fig. 2 (b) and Fig. 2 (c) respectively.
The details are as below.

1) Feature generation

The feature generation is consistent with our previous
study to ensure a fair comparison of results. A simple
introduction of this step is presented in this paper. More details
can be found in [8].

First, the raw signals are pre-processed. We use the z-axis
of the SCG signals and the y-axis of the GCG signals for
feature generation. Two zero-phase infinite impulse response
(IIR) bandpass filters are used to prefilter the SCG, GCG, and
ECG signals with a passing band of 0.8-25 Hz for SCG/GCQG,
and a passing band of 0.8-30 Hz for ECG signals. The filtered
signals are divided into equal-length segments using a
threshold-based exclusion method with a root-mean-square
(RMS) filter modified from [4]. The method is first applied to
the SCG waveform to generate timestamps for the
segmentation of data with a length of 10 seconds. The
timestamps are then applied to all SCG, GCG, and ECG
waveforms to ensure the alignment of recordings. All equal-
length SCG and GCG segments are then further divided into
single-cardiac-cycle segments based on the R-R intervals from
the corresponding ECG waveforms.

The equal-length 10-second segments of SCG and GCG
are processed using continuous wavelet transform (CWT),
with a wavelet selection of Morse wavelet. We focus on 55
frequency bins within a frequency range of 0.79-25.39 Hz and
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Fig. 2. Diagram of the signal processing framework. (a) Pre-processing and
feature generation. (b) Feature selection based on previous results and test
on the pre-trained classifiers. (c)Perform new feature analysis and conduct
new training/validation tasks.



extract four statistical features from each frequency bin. The
statistical features are the maximum power, the mean, the
standard deviation, and the median values.

In addition, we apply empirical mode decomposition
(EMD) to the single-cardiac-cycle SCG/GCG segments and
generate intrinsic mode functions (IMFs). Four IMFs are
generated from each segment and the segments from the same
10-second waveform are ensemble-averaged. Then the mean,
the standard deviation, the skewness, and the entropy of the
averaged IMFs are extracted as features. Consequently, 236
features are extracted from each of the SCG and GCG signals
respectively.

2) Feature selection and pre-trained classification

The pre-trained classifiers are based on a selection of
features from all the features generated in Step 1). Table I
summarizes the feature selection results of the pre-trained
classification task. In summary, 24 features from SCG and 30
features from GCG are selected for the classification task. In
our previous study, it was shown that the combination of SCG
and GCG features produces the best results [8]. Therefore, the
new data is evaluated using the classifier trained by combined
SCG and GCG features. More details of the feature selection
could be found in [8]. The types and configurations of the
classifiers are introduced in the following Section 3.

3) Feature analysis and new training task.

We conduct a new feature analysis with a one-way
analysis of variance (ANOVA) test for the classification of
pre- and post-TAVR measurements. The ANOVA test results
are used to train classifiers via decision tree (DT), random
forest (RF), and neural network (NN) algorithms. The types
and configurations of the algorithms are the same as in [8]. The
maximum split for DT is 20, and the maximum depth is 7. The
number of trees in RF is 30 with a maximum number of 798
splits. The NN has 30 input, 20 hidden and 10 output neurons
with an initial learning rate of 0.001.

4) Evaluation and Validation

The standard sensitivity (SE), specificity (SP), and
accuracy (ACC) metrics are evaluated in this study. We
implemented ten-fold cross-validation, as also implemented in
[8]. A total of 610 segments are extracted from 20
measurements. To balance the training sets from pre- and post-
TAVR measurements, 480 segments were selected, with 240
from pre- and 240 from post-TAVR measurements.

IV. EXPERIMENTAL RESULTS
A. Classification Results Using Pre-Trained Classifiers

The pre-TAVR measurements are from a similar cohort to
the AS cohort in [8]. Therefore, we expect the pre-TAVR
cohort in the new data to be classified as the true-negative of
the pre-trained classifiers, i.e., the AS cohort of the previous
research. Subsequently, we correlate the post-TAVR cohort to
the label of healthy subjects. As a result, the specificity metrics
represent the percentages of pre-TAVR observations that are
classified as AS. The sensitivity values show the percentages
of post-TAVR observations that have been estimated to be
healthy.

Fig. 3 summarizes the average classification results from
the ten-fold cross-validations via the three types of pre-trained
classifiers. As shown in Fig. 3, the sensitivity metrics report

TABLE L
FEATURE SELECTION FOR THE PRE-TRAINED CLASSIFIERS

Source Feature Type Frequency Bin (Hz) or IMF Number
SCG
1.07 1.15 1.23 1.32
Maximum 1.42 1.52 2.83 3.04
3.26 3.49 6.08 6.51
9.21
CWT Mean 2.30 4.30 4.60
Standard Deviation 1.00 1.07 L15
1.23
Median 1.32 2.14
EMD Mean IMF1
Skewness IMF3
Total 24
GCG
3.04 3.26 349 3.74
4.01 4.01 43 4.6
Maximum 4.94 5.29 5.67 6.51
7.48 8.02 8.59 9.21
CWT 9.87 10.58
0.87 0.94 1.00
Mean 107
Standard Deviation 4.30 4.60 4.94
Median 4.00 4.29
EMD Mean IMF1 IMF3
Skewness IMF3
Total 30

low values, which are 0.33 from DT, 0.45 from RF, and 0.46
from NN. The standard deviations of the results are 0.22 from
DT, 0.21 from RF, and 0.15 from NN, suggesting a significant
variation in the classification performance. These values
suggest that the post-TAVR cohort could not be classified
either as AS patients or healthy subjects by the pre-trained
classifiers.

On the other hand, the specificity values report 0.92 from
DT, 0.95 from RF, and 0.89 from NN, showing a high
agreement between pre-TAVR patients and the previously
collected AS patients. The standard deviations are 0.04, 0.02,
and 0.05 from DT, RF, and NN respectively. The results show
that the pre-TAVR cohort could be effectively classified as AS
patients. The best result from our previous work in [8] is 0.98
from the RF classifier, which is better than the best result of
0.95 from the RF classifier in this test. The performance
difference might be caused by the demographic difference
between the two cohorts since not all AS patients have
conditions to be treated by TAVR. The average accuracy
values are 0.62 from DT, 0.70 from RF, and 0.68 from NN,
suggesting that the pre/post-TAVR classification should not be
generally considered the same as AS/Healthy classification.

B. Feature Analysis and Comparison

Table II summarizes the new feature analysis and
classification results based on the pre- and post-TAVR
measurements. There are 23 significant features from SCG and
33 features from GCG, most of which are from the maximum
features of CWT. Compared to the previous feature set in
Table I, there are fewer SCG-based features and more GCG-
based features. There are five features in common from SCG,
which are the mean of IMF1 and the maximum features at
1.07, 1.15, 1.23, and 3.04 Hz. In comparison, nine features are
found in common from GCG, which are the mean of IMF1,



TABLE IL
FEATURE ANALYSIS OF THE NEW DATA

Source | Feature Type | Frequency Bin (Hz) or IMF Number

SCG
0.76 0.81 0.87 1.00
1.07* 1.15 1.23 1.74
Maximum 2.64 3.04 4.94 5.29
CWT 7.48 8.59 9.87 10.58
14.96 19.74
Mean 10.58
Median 9.87 10.58 11.34
EMD Mean IMF1
Total 23
GCG
1.00 1.07 1.15 1.23
1.42 1.52 1.74 1.87
2.00 2.15 2.47 2.64
Maximum 2.83 3.04 3.26 3.49
CWT 3.74 4.01 4.94 6.08
6.51 6.98 7.48 13.96
14.96 19.74 22.68
Mean 8.02 10.58
Median 7.48 8.02 10.58
EMD Mean IMF1
Total 33
Classification Results
DT RF NN
SE 0.990 0.995 0.988
SpP 0.991 0.993 0.990
AC 0.991 0.994 0.989

*Values with orange shading are overlapping with Table 1. SE: sensitivity,
SP: specificity, AC: accuracy, DT: decision tree, RF: random forest, NN:
neural network.

and the maximum features at 3.04, 3.26, 3.49, 3.74,4.01, 4.94,
6.51, and 7.48 Hz. The features that overlap with the previous
feature set are highlighted in orange shades. It is observed that
there most features are different between the new and previous
feature sets.

The classification results summarized in Table II report the
best sensitivity, specificity, and accuracy from the RF
classifier as 0.995, 0.993, and 0.994 respectively. These results
are comparable with the classification results of 0.996 in SE,
0.995 in SP, and 0.995 in AC in [6]. Although these results are
biased due to the small data size, they represent the
effectiveness of the new feature set for the classification of
pre- and post-TAVR observations.

In summary, the features that differentiate pre- and post-
TAVR patients do not have significant overlapping with the
features that differentiate AS and healthy subjects. In other
words, AS patients after TAVR treatment can not be simply
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NN 0.46 0.89 0.68

Fig. 3. Classification results from the pre-trained classifier. SE: sensitivity,
SP: specificity, AC: accuracy, DT: decision tree, RF: random forest, NN:
neural network.

classified as healthy even though their valves are replaced and
considered as functional. Two hypotheses can explain this
difference. The first is that the artificial valve structure
produces different heart-induced vibrations compared to a
natural valve. Secondly, the recovery status of the subjects
after TAVR may influence the behavior of the valves. The
post-TAVR patients may have weak hearts because they were
measured the same day after the surgery.

V. CONCLUSION

This paper presents our evaluation of cardio-mechanical
signals collected from AS patients before and after TAVR
treatments. Our analyses can be summarized as three major
conclusions. Firstly, pre-TAVR measurements can be
classified as AS, although post-TAVR measurements can not
be classified as healthy. Secondly, the features from cardio-
mechanical signals are significantly different between pre- and
post-TAVR measurements. Lastly, the significant features
between pre- and post-TAVR measurements are mostly
different from those between AS patients and healthy subjects.

Future work in this area includes the verification of our
preliminary observations with a larger demographic group.
The results of this work reveal potential in several
applications. For instance, subjects with artificial valves can
be labeled as a separate class from subjects with natural valves
so that the algorithms used for AS analysis can be more
accurate and robust. The feature differences could also be used
to indicate the recovery status of AS patients after TAVR
treatments. The existence of prosthetic structures or devices
should also be noticed as a factor that might influence the
training or classification tasks related to other types of CVDs.
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