
  

  

Abstract—This paper reports our study on the impact of 
transcatheter aortic valve replacement (TAVR) on the 
classification of aortic stenosis (AS) patients using cardio-
mechanical modalities. Machine learning algorithms such as 
decision tree, random forest, and neural network were applied 
to conduct two tasks. Firstly, the pre- and post-TAVR data are 
evaluated with the classifiers trained in the literature. Secondly, 
new classifiers are trained to classify between pre- and post-
TAVR data. Using analysis of variance, the features that are 
significantly different between pre- and post-TAVR patients are 
selected and compared to the features used in the pre-trained 
classifiers. The results suggest that pre-TAVR subjects could be 
classified as AS patients but post-TAVR could not be classified 
as healthy subjects. The features which differentiate pre- and 
post-TAVR patients reveal different distributions compared to 
the features that classify AS patients and healthy subjects. These 
results could guide future work in the classification of AS as well 
as the evaluation of the recovery status of patients after TAVR 
treatment. 

I. INTRODUCTION 

Cardiovascular disease (CVD) is the dominant global 
cause of death, accounting for more than 17.9 million deaths 
per year [1]. Among the different categories of heart disease, 
valvular heart disease (VHD) accounts for approximately 20% 
of all cardiac surgical procedures in the United States [1]. 
Aortic stenosis (AS) is the most prevalent of all VHDs, and is 
defined as the narrowing of the aortic valve which prevents an 
adequate outflow of blood [2], [3]. Conventional AS detection 
techniques such as echocardiography and magnetic resonance 
imaging are often constraining, expensive, and limited to use 
in the clinic [3]. Recently, wearable sensors using non-
invasive modalities have been investigated as out-of-clinic 
ubiquitous monitors for the detection of CVDs. Specifically, 
cardio-mechanical modalities, i.e. seismo- and gyro-
cardiography, have been evaluated for monitoring various 
kinds of cardiovascular diseases using inertial sensors attached 
to the chest walls of subjects [4]-[8]. Researchers have verified 
the feasibility of detecting atrial fibrillation [4], [6], heart 
arrhythmia [5], and heart failure [7]. Our group has previously 
studied the capability of detecting AS based on time-frequency 
features extracted from seismo- and gyro-cardiograms [8]. We 
collected seismo-cardiogram (SCG) signals using an 
accelerometer, and gyro-cardiograms (GCG) using a 
gyroscope. These inertial sensors detect heart-induced 
vibrations that are related to valve activities [8]. Our results 
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indicate that we can effectively differentiate between AS 
patients before treatment and healthy subjects based on 
features from cardio-mechanical signals using conventional 
machine learning algorithms [8].  

 Transcatheter aortic valve replacement (TAVR) is the 
replacement of the aortic valve of the heart through the blood 
vessels without an open heart surgery, and is a major method 
of treatment for AS [9]-[12]. It is a feasible and less risky 
option for frail and elderly patients who need valve 
replacement or implementation compared to other treatments 
[11], [12]. However, valve replacement does not provide a 
definitive cure to the patient and might result in prosthesis-
related complications such as prosthesis-patient mismatch and 
thromboembolic complications [11]. Many of the 
complications can be prevented through careful medical 
management and long-term follow-up after implantation [12]. 
A non-invasive home-based monitor that provides an 
evaluation of the wellness of aortic valves could hugely benefit 
the long-term healthcare service for AS patients after TAVR. 

There are two concerns in the evaluation of pre- and post-
TAVR subjects with the framework developed in [8]. Firstly, 
our framework is based on the characteristics of vibration 
signals produced by heart valves. It is unknown if artificial 
valves provide the same mechanical characteristics compared 
to natural valves. It has been shown that artificial valves may 
produce different sounds in the hearing frequency range 
compared to natural valves [10]. Since sound is also induced 
by vibrations, this observation raises our concern regarding 
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Fig. 1. The overall structure of the classification tasks studied in this work. 
(a) Testing with pre-trained classifiers for the classification of AS patients 
and healthy subjects. (b) Developing new classifiers for the classification of 
pre- and post-TAVR subjects. 
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low-frequency vibrations induced by artificial valves as well. 
Secondly, from the perspective of the classifier, it is not clear 
whether post-TAVR patients could be classified in the same 
category as healthy subjects. In other words, patients with 
artificial valves might need to be categorized as a separate 
class due to the distinct characteristics of their cardio-
mechanical signals. 

In this work, for the first time, we evaluate cardio-
mechanical recordings from AS patients before and after 
TAVR treatment. Fig. 1 illustrates the two classification tasks 
studied in this paper. As presented in Fig. 1 (a), we first 
evaluate the classification results of pre- and post-TAVR using 
the pre-trained classifiers developed in our previous work [8]. 
Next, using the same framework, we train new classifiers to 
classify between pre- and post-TAVR data as shown in Fig. 1 
(b). Finally, we compare the feature sets used in Fig. 1 (a) and 
Fig. 1 (b).  

The structure of the paper is as follows. Section II 
introduces the experimental materials and protocol. The 
hardware and software methods are explained in Section III, 
followed by the results in Section IV. Section V concludes the 
study and discusses future work. 

II. EXPERIMENTAL MATERIALS AND PROTOCOL  

A. Datasets 

1) Dataset of AS patients with TAVR treatments 
Ten inpatient subjects from the Structural Heart & Valve 

Center of Columbia University Medical Center (CUMC) 
participated in the collection of recordings. All the patients 
were first measured before receiving the TAVR treatment. 
They were measured again on the same day after the 
procedure. The AS cohort includes four male and six female 
subjects whose ages, weights, and heights varied as 63-95 
years old, 57-88 kg, and 155-180 cm, respectively.  

2) Dataset of AS patients and healthy subjects 
Data from 40 subjects were used in the training of the pre-

trained classifier. Twenty AS subjects from the cardiac care 
units of Columbia University Medical Center (CUMC) 
participated in the data collection, all of whom were measured 
prior to receiving any treatments. A control group of twenty 
healthy subjects also participated in this study. Measurements 
from normal subjects were performed at Stevens Institute of 
Technology. More details of these two demographic groups 
can be found in our previous work [8]. 
B. Experimental Protocol 

The subjects were asked to sit at rest on a bed for five 
minutes during both pre- and post-TAVR measurements. The 
subjects breathed naturally during the experiments. The 
Institutional Review Board of CUMC approved the patient 
experimental protocol under protocol number AAAR4104. 

III. METHODS 

A. The Hardware System 

We used the same hardware system as in [8] to ensure the 
consistency of data collection. A commercial wearable sensor 
node (Shimmer 3 from Shimmer Sensing) is attached to the 
center of the sternum along the third rib using a chest strap. A 
three-axis accelerometer measures the seismo-cardiogram 

(SCG) signal, and a three-axis gyroscope records the gyro-
cardiogram (GCG) signal. Both sensors share the same axis 
definition, where the z-axis refers to the dorso-ventral direction 
of the body, the y-axis is along the head-to-foot direction, and 
the x-axis is along the shoulder-to-shoulder direction. 
Reference heartbeat measurements are taken by a standard 
four-lead electrocardiogram (ECG) system, which is wire-
connected to the sensor. All the recordings are sampled at a 
sampling rate of 256 Hz. Data are stored in an SD card during 
measurements and then imported into MATLAB (R2018) for 
further processing.  
B. The Software Methods 

Fig. 2 illustrates the block diagram of the proposed signal 
processing framework, which is modified from our previous 
study in [8]. The signal processing framework consists of three 
main parts. The first part is feature generation based on SCG 
and GCG signals, as shown in Fig. 2 (a). The features are then 
used for the first and second classification tasks introduced in 
Section I, as presented in Fig. 2 (b) and Fig. 2 (c) respectively. 
The details are as below. 

1) Feature generation 
The feature generation is consistent with our previous 

study to ensure a fair comparison of results. A simple 
introduction of this step is presented in this paper. More details 
can be found in [8].  

First, the raw signals are pre-processed. We use the z-axis 
of the SCG signals and the y-axis of the GCG signals for 
feature generation. Two zero-phase infinite impulse response 
(IIR) bandpass filters are used to prefilter the SCG, GCG, and 
ECG signals with a passing band of 0.8-25 Hz for SCG/GCG, 
and a passing band of 0.8-30 Hz for ECG signals. The filtered 
signals are divided into equal-length segments using a 
threshold-based exclusion method with a root-mean-square 
(RMS) filter modified from [4]. The method is first applied to 
the SCG waveform to generate timestamps for the 
segmentation of data with a length of 10 seconds. The 
timestamps are then applied to all SCG, GCG, and ECG 
waveforms to ensure the alignment of recordings. All equal-
length SCG and GCG segments are then further divided into 
single-cardiac-cycle segments based on the R-R intervals from 
the corresponding ECG waveforms.  

The equal-length 10-second segments of SCG and GCG 
are processed using continuous wavelet transform (CWT), 
with a wavelet selection of Morse wavelet. We focus on 55 
frequency bins within a frequency range of 0.79-25.39 Hz and 

 
Fig. 2. Diagram of the signal processing framework. (a) Pre-processing and 
feature generation. (b) Feature selection based on previous results and test 
on the pre-trained classifiers. (c)Perform new feature analysis and conduct 
new training/validation tasks. 
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extract four statistical features from each frequency bin. The 
statistical features are the maximum power, the mean, the 
standard deviation, and the median values.  

In addition, we apply empirical mode decomposition 
(EMD) to the single-cardiac-cycle SCG/GCG segments and 
generate intrinsic mode functions (IMFs). Four IMFs are 
generated from each segment and the segments from the same 
10-second waveform are ensemble-averaged. Then the mean, 
the standard deviation, the skewness, and the entropy of the 
averaged IMFs are extracted as features. Consequently, 236 
features are extracted from each of the SCG and GCG signals 
respectively. 

2) Feature selection and pre-trained classification 
The pre-trained classifiers are based on a selection of 

features from all the features generated in Step 1). Table I 
summarizes the feature selection results of the pre-trained 
classification task. In summary, 24 features from SCG and 30 
features from GCG are selected for the classification task. In 
our previous study, it was shown that the combination of SCG 
and GCG features produces the best results [8]. Therefore, the 
new data is evaluated using the classifier trained by combined 
SCG and GCG features. More details of the feature selection 
could be found in [8]. The types and configurations of the 
classifiers are introduced in the following Section 3. 

3) Feature analysis and new training task. 
 We conduct a new feature analysis with a one-way 

analysis of variance (ANOVA) test for the classification of 
pre- and post-TAVR measurements. The ANOVA test results 
are used to train classifiers via decision tree (DT), random 
forest (RF), and neural network (NN) algorithms. The types 
and configurations of the algorithms are the same as in [8]. The 
maximum split for DT is 20, and the maximum depth is 7. The 
number of trees in RF is 30 with a maximum number of 798 
splits. The NN has 30 input, 20 hidden and 10 output neurons 
with an initial learning rate of 0.001. 

4) Evaluation and Validation 
The standard sensitivity (SE), specificity (SP), and 

accuracy (ACC) metrics are evaluated in this study. We 
implemented ten-fold cross-validation, as also implemented in 
[8]. A total of 610 segments are extracted from 20 
measurements. To balance the training sets from pre- and post-
TAVR measurements, 480 segments were selected, with 240 
from pre- and 240 from post-TAVR measurements.  

IV. EXPERIMENTAL RESULTS 

A. Classification Results Using Pre-Trained Classifiers 

The pre-TAVR measurements are from a similar cohort to 
the AS cohort in [8]. Therefore, we expect the pre-TAVR 
cohort in the new data to be classified as the true-negative of 
the pre-trained classifiers, i.e., the AS cohort of the previous 
research. Subsequently, we correlate the post-TAVR cohort to 
the label of healthy subjects. As a result, the specificity metrics 
represent the percentages of pre-TAVR observations that are 
classified as AS. The sensitivity values show the percentages 
of post-TAVR observations that have been estimated to be 
healthy. 

Fig. 3 summarizes the average classification results from 
the ten-fold cross-validations via the three types of pre-trained 
classifiers. As shown in Fig. 3, the sensitivity metrics report 

low values, which are 0.33 from DT, 0.45 from RF, and 0.46 
from NN. The standard deviations of the results are 0.22 from 
DT, 0.21 from RF, and 0.15 from NN, suggesting a significant 
variation in the classification performance. These values 
suggest that the post-TAVR cohort could not be classified 
either as AS patients or healthy subjects by the pre-trained 
classifiers. 

On the other hand, the specificity values report 0.92 from 
DT, 0.95 from RF, and 0.89 from NN, showing a high 
agreement between pre-TAVR patients and the previously 
collected AS patients. The standard deviations are 0.04, 0.02, 
and 0.05 from DT, RF, and NN respectively. The results show 
that the pre-TAVR cohort could be effectively classified as AS 
patients. The best result from our previous work in [8] is 0.98 
from the RF classifier, which is better than the best result of 
0.95 from the RF classifier in this test. The performance 
difference might be caused by the demographic difference 
between the two cohorts since not all AS patients have 
conditions to be treated by TAVR. The average accuracy 
values are 0.62 from DT, 0.70 from RF, and 0.68 from NN, 
suggesting that the pre/post-TAVR classification should not be 
generally considered the same as AS/Healthy classification. 
B. Feature Analysis and Comparison 

Table II summarizes the new feature analysis and 
classification results based on the pre- and post-TAVR 
measurements. There are 23 significant features from SCG and 
33 features from GCG, most of which are from the maximum 
features of CWT. Compared to the previous feature set in 
Table I, there are fewer SCG-based features and more GCG-
based features. There are five features in common from SCG, 
which are the mean of IMF1 and the maximum features at 
1.07, 1.15, 1.23, and 3.04 Hz. In comparison, nine features are 
found in common from GCG, which are the mean of IMF1, 

TABLE I.   
FEATURE SELECTION FOR THE PRE-TRAINED CLASSIFIERS  

Source Feature Type Frequency Bin (Hz) or IMF Number 
SCG 

CWT  

Maximum 

1.07 1.15 1.23 1.32 
1.42 1.52 2.83 3.04 
3.26 3.49 6.08 6.51 
9.21    

Mean 2.30 4.30 4.60 

Standard Deviation 1.00 1.07 1.15 
1.23   

Median 1.32 2.14  
EMD 

 
Mean IMF1 

Skewness IMF3 
Total 24 

GCG 

CWT 
 

Maximum 

3.04 3.26 3.49 3.74 
4.01 4.01 4.3 4.6 
4.94 5.29 5.67 6.51 
7.48 8.02 8.59 9.21 
9.87 10.58   

Mean 0.87 0.94 1.00 
1.07   

Standard Deviation 4.30 4.60 4.94 
Median 4.00 4.29  

EMD 
 

Mean IMF1 IMF3  
Skewness IMF3 

Total 30 
 



  

and the maximum features at 3.04, 3.26, 3.49, 3.74, 4.01, 4.94, 
6.51, and 7.48 Hz. The features that overlap with the previous 
feature set are highlighted in orange shades. It is observed that 
there most features are different between the new and previous 
feature sets. 

The classification results summarized in Table II report the 
best sensitivity, specificity, and accuracy from the RF 
classifier as 0.995, 0.993, and 0.994 respectively. These results 
are comparable with the classification results of 0.996 in SE, 
0.995 in SP, and 0.995 in AC in [6]. Although these results are 
biased due to the small data size, they represent the 
effectiveness of the new feature set for the classification of 
pre- and post-TAVR observations.  

In summary, the features that differentiate pre- and post-
TAVR patients do not have significant overlapping with the 
features that differentiate AS and healthy subjects. In other 
words, AS patients after TAVR treatment can not be simply 

classified as healthy even though their valves are replaced and 
considered as functional. Two hypotheses can explain this 
difference. The first is that the artificial valve structure 
produces different heart-induced vibrations compared to a 
natural valve. Secondly, the recovery status of the subjects 
after TAVR may influence the behavior of the valves. The 
post-TAVR patients may have weak hearts because they were 
measured the same day after the surgery. 

V. CONCLUSION 

This paper presents our evaluation of cardio-mechanical 
signals collected from AS patients before and after TAVR 
treatments. Our analyses can be summarized as three major 
conclusions. Firstly, pre-TAVR measurements can be 
classified as AS, although post-TAVR measurements can not 
be classified as healthy. Secondly, the features from cardio-
mechanical signals are significantly different between pre- and 
post-TAVR measurements. Lastly, the significant features 
between pre- and post-TAVR measurements are mostly 
different from those between AS patients and healthy subjects. 

Future work in this area includes the verification of our 
preliminary observations with a larger demographic group. 
The results of this work reveal potential in several 
applications. For instance, subjects with artificial valves can 
be labeled as a separate class from subjects with natural valves 
so that the algorithms used for AS analysis can be more 
accurate and robust. The feature differences could also be used 
to indicate the recovery status of AS patients after TAVR 
treatments. The existence of prosthetic structures or devices 
should also be noticed as a factor that might influence the 
training or classification tasks related to other types of CVDs. 
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Fig. 3. Classification results from the pre-trained classifier. SE: sensitivity, 
SP: specificity, AC: accuracy, DT: decision tree, RF: random forest, NN: 
neural network. 

SE SP AC
DT 0.33 0.92 0.62
RF 0.45 0.95 0.70
NN 0.46 0.89 0.68
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TABLE II.   
FEATURE ANALYSIS OF THE NEW DATA 

Source Feature Type Frequency Bin (Hz) or IMF Number 
SCG 

CWT  
Maximum 

0.76 0.81 0.87 1.00 
1.07* 1.15 1.23 1.74 
2.64 3.04 4.94 5.29 
7.48 8.59 9.87 10.58 

14.96 19.74   
Mean 10.58   

Median 9.87 10.58 11.34 
EMD Mean IMF1 
Total 23 

GCG 

CWT 
 

Maximum 

1.00 1.07 1.15 1.23 
1.42 1.52 1.74 1.87 
2.00 2.15 2.47 2.64 
2.83 3.04 3.26 3.49 
3.74 4.01 4.94 6.08 
6.51 6.98 7.48 13.96 

14.96 19.74 22.68  
Mean 8.02 10.58  

Median 7.48 8.02 10.58 
EMD Mean IMF1 
Total 33 

Classification Results 
 DT RF NN 

SE 0.990 0.995 0.988 
SP 0.991 0.993 0.990 
AC 0.991 0.994 0.989 

*Values with orange shading are overlapping with Table I. SE: sensitivity, 
SP: specificity, AC: accuracy, DT: decision tree, RF: random forest, NN: 
neural network. 
 


