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Abstract

A sofic group G is said to be flexibly stable if every sofic approximation to G can converted to a
sequence of disjoint unions of Schreier graphs by modifying an asymptotically vanishing proportion
of edges. We establish that if PSL4(Z) is flexibly stable for some d > 5 then there exists a group

which is not sofic.
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1 Introduction

1.1 Sofic groups

Soficity is a finite approximation property for countable discrete groups which has received consid-
erable attention in recent years. A group is called sofic if it admits a sofic approximation, which is
a sequence of partial actions on finite sets that asymptotically approximates the action of the group
on itself by left-translations. The precise definition appears below. Soficity can be thought of as a

common generalization of amenability and residual finiteness. We refer the reader to [613] for surveys.

It is a famous open problem to determine whether every countable discrete group is sofic. It is
also widely open to classify sofic approximations to well-known groups, for example by showing that
every sofic approximation is asymptotically equivalent to an approximation by actions on finite sets
(as opposed to partial actions). If a group has this latter property, it is called flexibly stable. The main
result of this paper is that if PSLy(Z) is flexibly stable for some d > 5 then there is a nonsofic group.
The proof gives an explicit group G, constructed as a quotient of an HNN-extension of PSL4(Z), that
is not sofic if PSL4(Z) is flexibly stable.

We now formulate precise definitions to state the result.

Definition 1.1. Let G be a countable discrete group. A sofic approximation to G consists of a
sequence (V)02 of finite sets and a sequence (0,)02 of functions o, : G — Sym(V},) such that the

following conditions hold, where we write o3, instead of 0, (g).

o Asymptotic homomorphisms: For every fixed pair g,h € G we have

lim ——[{v € V, : 09(c"(v)) = o8 (0)}] = 1.

o Asymptotic freeness: For every fixed nontrivial element g € G we have

li !
1m —-

H{v eV, o) =v} =0.

We say that G is sofic if there exists a sofic approximation to G.



1.2 Flexible stability

Definition 1.2. A sofic approximation (o, : G — Sym(V,,))02, is perfect if each o, is a genuine

group homomorphism.

If S is a finite generating set for G we can endow V,, with the structure of a S-labelled directed graph
by putting an s-labelled edge from v to o®(v) for each s € S and v € V,,. Accordingly, we refer to the
V,, as the vertex sets of the sofic approximation. With this structure, each connected component of a

perfect sofic approximation to GG is a Schreier graph on the cosets of a finite-index subgroup of G.

Definition 1.3. Let ¥ = (0, : G — Sym(V,,))02, and E = (&, : G — Sym(V},))0%, be two sofic
approximations to G with the same vertex sets. We say that ¥ and = are at edit-distance zero if for
each fired g € G we have

HveV,:09(v) =& (v)} =1

li !
m ——-

Now suppose the vertex sets of E = (&, : G — Sym(W,,))>2 | are not necessarily the same as the vertex
sets of . We say that 3 and = are conjugate if there exist finite sets U, and injections m, : V,, — Uy,

pn » Wy — U, such that
[ 1 7% I 11
1= lim = lim

n—00 ‘Un‘ n—00 ‘Un‘

and such that the sofic approzimations (Tp«opn)oey and (pn«n)oe, are at edit-distance zero. Here
Tnx0n : G — Sym(U,,) is the map defined by:
(Tne o )? (T (v)) = (07, (v))
forveV, and
(Tne0p)? (u) = u

if u € Uy \ my(Vi). The map pn«ly, : G — Sym(U,,) is defined similarly.

Definition 1.4. We say that a sofic group G is flexibly stable if every sofic approximation to G is

conjugate to a perfect sofic approximation to G.

It is clear that a flexibly stable group is residually finite. It is also clear that free groups are flexibly
stable. In [I0] it is shown that surface groups are flexibly stable. A group G is said to be strictly



stable if every sofic approximation is conjugate to a perfect sofic approximation where the conjugacies
7w and p as in Definition are bijections. In [2] it is shown that finitely generated abelian groups are
strictly stable. In [4] it is shown that polycyclic groups are strictly stable. In [3] it is shown that no
infinite property (T) group is strictly stable. The most elementary example for which flexible stability

is unknown seems to be the direct product of the rank two free group with Z.

The main result of this paper is the following.

Theorem 1.1. Suppose that PSLy(Z) is flexibly stable for some d > 5. Then there exists a group

which is not sofic.

The nonsofic group of the theorem has the following form. Let H be a countable discrete group with
subgroups A and B and suppose there is an isomorphism ¢ : A — B. The HNN extension Hxg4
is defined to be (H x (t))/N where H x (t) is the free product of H with a copy of Z and N is the
smallest normal subgroup of H * (t) containing all elements of the form tat~'¢(a)~! for a € A. We will
need a mod 2 version of the construction above. So let Ny be the smallest normal subgroup of H x (t)

containing all elements of the form tat~1¢(a)~! for a € A along with t2. Let H x4 /2 = (H x (t))/Na.

In Section 2, we show that if H is flexibly stable and if H, A, B and ¢ satisfy certain technical con-
ditions then the group H %4 /2 cannot be sofic. This part of the argument is completely general in
that it does not use anything specific to PSLy(Z). The rest of the paper involves constructing two
subgroups A and B of PSL;(Z) and showing that they possess the required properties. This part uses
a ping-pong type argument that originates in the reference [I]. Other precursors to this idea can be
found in work on strong approximation in [I1], on maximal subgroups of PSL4(Z) in [9] and on the
congruence subgroup property in [12]. We need that d > 5 only because this condition guarantees that
all PSLy(Z) orbits in PSLy(Z/pZ) have density bounded by a constant which is strictly less than 1.
We do not know whether the result can be improved to d € {3,4}.

Because Theorem [[.1] uses such heavy machinery, it is natural to wonder whether results of its type can

be found among other groups. For example, if H is a direct product of two free groups then do there



exist subgroups A and B satisfying the criteria of Theorem 2.J? What if H is a lattice in the isometry
group of quaternionic hyperbolic space? Another interesting case would be to establish Theorem 2.1]
for a 2-Kazhdan group such as a higher-rank p-adic lattice. The relevance of this last case is that
in [§ it is shown that 2-Kazhdan groups satisfy the analog of flexible stability for homomorphisms
into finite-dimensional unitary groups with the unnormalized Frobenius metric. It is unknown whether

PSL4(Z) is 2-Kazhdan.

1.3 Acknowledgments

The first author would like to thank Tsachik Gelander for conversations on this problem many years
ago, including a proof that certain groups constructed in a manner similar to the group appearing in
the main theorem are not residually finite and therefore are good candidates for being nonsofic. We
thank Emmanuel Breuillard for helpful discussions related to the proof of Lemma We also thank

Yves Stalder for catching some errors in a previous version.

2 General results

Theorem 2.1. Suppose H is a flexibly stable countable discrete group with subgroups A and B satis-
fying the following conditions.

(1) If K < H has finite index, then every B-orbit in H/K is contained in an A-orbit. Explicitly,
this means for every h € H we have BhK C AhK.

(2) If C is the subgroup generated by A and B then there is an automorphism w € Aut(C') such that
w(A) = B and w? is the identity.

(3) There is a constant A > 1 such that if K is a proper finite index subgroup of H then for every
g,h € H we have
|AgK| > A\|BhK| (2.1)

where the cardinality | - | is taken in H/K.



(4) A has property (1) with respect to the family of finite index subgroups

{KNA: K<H,H:K|<oo}.

Then the group
G = (H,t|t* = 1,tat™" = w(a) Ya € A)

s not sofic.

The proof of Theorem 2.1]is in Subsection 23] below after some preliminaries.

2.1 Property (7)

This section reviews Property (7).

Definition 2.1. Let I' = (V, E) be a finite graph. If W C V' the edge boundary in I' of W will be
denoted OrW and consists of all edges (v,w) € E where v € W and w ¢ W. If W is nonempty the
edge isoperimetric ratio of W will be denoted .r(W) and is defined to be |opW||W|~t. The edge
expansion constant of I' will be denoted e(T') and is defined to be the minimum value of vp(E) over

all nonempty subsets W C V' satisfying |W| < %|V|

Definition 2.2. Let (I'y,)02, be a sequence of finite connected graphs and let ¢ > 0. We say that
(Tp)eey forms a family of c-expanders if inf,ene(I'y) > ¢. We say that ('), forms a family of

expanders if it forms a family of c-expanders for some ¢ > 0.

Definition 2.3. Let G be a group, H < G and S C G. The Schreier coset graph Schreier(G/H, S)
is the multi-graph with vertex set G/H and edges {gH,sgH} for all gH € G/H and s € S. Multiple

edges and self-loops are allowed.

Definition 2.4. A group G has Property (1) with respect to a family F of finite index subgroups
of G if there is a finite generating set S C G and a constant ¢ > 0 such that for every H € F we have
that Schreier(G/H, S) is a c-expander.

It is easy to see that Property (7) for a family F is does not depend on the choice of S.



2.2 Modular HNN extensions

Let H be a countable discrete group with subgroups A, B < H and suppose there is an isomorphism
¢ : A— B. The HNN extension Hx, is defined to be (H * (t))/N where H * (t) is the free product
of H with a copy of Z and N is the smallest normal subgroup of H x (t) containing all elements of the
form tat~'¢(a)~! for a € A. We will need a mod 2 version of the construction above. So let Ny be the
smallest normal subgroup of H * (t) containing all elements of the form tat~'¢(a)~! for a € A along

with 2. Let H x4 /2 = (H * (t))/Na.

Lemma 2.1. Let C be the subgroup of H generated by A and B. Assume there exists an automorphism
w of C such that w? is the identity and such that w(a) = ¢(a) for all a € A and w(b) = ¢~(b) for all

b€ B. Then the canonical homomorphism from H to H x4 /2 is injective.

Proof of Lemma 2. Let D be the semidirect product C' x Z/2Z where Z /27 acts on C via the auto-
morphism w. We claim that H *, /2 can be constructed as the free product of H with D amalgamated
over the common subgroup C. Indeed, H x¢ D is naturally generated by H and the additional gen-
erator t = t~! of Z/2Z. If a € A then tat is equal to w(a) = ¢(a) and similarly if b € B then tbt is
equal to w(b) = ¢~ (b). Therefore tatp(a)~' and thtd—1(b)~! are trivial in H ¢ D for all a € A and
all b € B. By the universal property of free products with amalgamation we see that these relations
suffice to describe H *¢ D and so we have established the claim. Since the factor groups always inject

into an amalgamated free product this completes the proof of Lemma 211 O

2.3 Proof of Theorem 2.1

We now prove Theorem 2.J1 By Lemma [2.1], the canonical homomorphism from H into G is injective.
Thus we identify H as a subgroup of G from now on. Assume toward a contradiction that there exists
a sofic approximation ¥ = (o, : G — Sym(V},))7°; to G. Since H is flexibly stable, we may assume

without loss of generality that the restriction of X to H is perfect.

Since A has property (7) with respect to the family

{KNA: K<H,/H:K|<o}



there exists a finite generating set S C A and a constant ¢ > 0 such that for every finite index subgroup
K of H all connected components of the Schreier coset graph Schreier(H/K,S) are c-expanders. Let
I',, be the graph on V,, corresponding to {of : s € S}. Explicitly, this means that the edges of T,
are the pairs {v,07(v)} for v € V,, and s € S. Since ¥ | H is perfect, every connected component of
I',, is a Schrieier coset graph of the form Schreier(H/K, S) and so every connected component of I',, is

c-expander.

Let A, be the graph on V,, corresponding to {0':(8) : s € S}. The hypothesis that every B-orbit
is contained in an A-orbit implies that the vertex set of every A,-connected component is contained

in the vertex set of a I',-connected component.

For the remainder of Subsection we fix n € N such that o, is a sufficiently good sofic approx-

imation for certain conditions stated later to hold. We suppress the subscript n in notations.

Let ©1,...,€Qy, be an enumeration of the connected components of I' such that |Q;| > [Q;11] for
all j € {1,...,m—1}. Let D be the set of all w € V such that w € Q; and o' (w) € Q) where j < k. If
o is a sufficiently good sofic approximation then for at least 1%|V| vertices w € V we must have that
(6")?(w) = w. If the last condition is satisfied then at least one of w and o!(w) is an element of D.

Therefore |D| > %|V|.

Let T C {1,...,m} be the set of all indexes j such that |D NQ;| > %|Qj|. We must have

14

L 22

, 10

JjET
Fix j € 7 and consider the set D N §};. Let ©4,...,0, be the partition of D N (2; into the intersec-
tions of D N ; with o'-pre-images of connected components of A. Let ¢ € {1,...,r} and suppose
c'(0,) C Q. Since o'(0,) is contained in a single connected component of A we see from (21)) that
ANt (©q)] < |Q]. Since ©, C D we have j < k so that |©;] > || and therefore A|Oy| < |Q;| which
implies (A —1)|04| < |25\ Og.



Since ©4 C €2; we have 0r©, = 0r(£2; \ ©,). Since every connected component of I' is a c-expander,

|0r©4| > cmin (|04, [€2; \ O4]) > cmin(1, A — 1)|0,].

Let ¢ = ¢min(1,A —1). So
d d d
01U Uar0,] = (011 4+ [0,]) = 1D N1 y| = 10| (23)
Here the first inequality holds because the pairwise disjointness of the ©, guarantees that for any edge

e there are at most two indices ¢ such that e € Or©,.

Let ¢ € {1,...,7}, let v € O, and suppose (v,w) is an edge in OO, If w ¢ D then o'(v) and
ol(w) are in different connected components of I', and so in particular they are in different connected
components of A. On the other hand, if w € D then by hypothesis o!(v) and o!(w) are in different

connected components of A. Hence in either case (¢!(v),o!(w)) is not an edge in A.

From (Z3]) we see that for at least %]le edges (v,w) in I' | €; the image (o'(v),o(w)) is not
an edge in A. Summing this over all j € Z we see from (Z2]) that there is a set K of edges in I" with
|K| > %OIV] such that for each (v,w) € K the image (¢*(v), o' (w)) is not an edge in A. However, if o
is a sufficiently good sofic approximation then the number of such edges should be an arbitrarily small

fraction of |V|. Thus we have obtained a contradiction and the proof of Theorem 2]is complete.

3 Subgroups of special linear groups

In Section B] we will prove that PSLy(Z) satisfies the conditions of Theorem 2] for d > 5, thereby
completing the proof of Theorem [I:1]



3.1 Ping-pong arguments

The next Lemma constructs the subgroups A and B that will be used in our application of Theorem

21

Lemma 3.1. Let d > 3. Identify PSLy(Z) with the image in PSL4(Z) of the copy of SLa(Z) in the
upper left corner of SLy(Z). Then there exist subgroups A and B of PSLy(Z) such that the following
hold.

(1) A and B are free groups of rank 4,
(2) A is profinitely dense in PSL4(Z),
(3) B is contained in PSLa(Z) and

(4) the subgroup (A, B) is free of rank 8.

Proof of Lemma[31l By the main theorem of [I] there exists a profinitely dense free subgroup A of
PSL4(Z) with rank 4. The construction of this subgroup gives additional information about A that we

will use. To describe this, we recall the following notions from [I].

An element g € PSLy4(Z) is hyperbolic if it is semisimple, admits a unique (counting multiplici-
ties) eigenvalue of maximum absolute value and a unique eigenvalue of minimum absolute value. Let
{v1,v2,...,v4} be a basis of generalized eigenvectors such that v; corresponds to the unique maximal
eigenvalue of g and v, corresponds to the unique minimal eigenvalue. Let a(g) = [v1] € RP4~! and
p(g) = [span(vs,...,vq)] € RPY1. These are the attracting fixed point and repelling hyperplane of
g. Note that a(g™!) = [vg] and p(¢g~!) = [span(vy,...,v4_1)]. Although g need not be diagonalizable,
p(g) does not depend on the choice of basis {vy,...,v4}.

Definition 3.1. Let go, g1, ..,9s € PSL4(Z) be hyperbolic elements. Then {gi,...,gs} is a go-rooted
free system if there exist open sets O; C RP for j € {0,1,...,s} such that the following hold.

(1) The sets {Oj};T:O are pairwise disjoint,

10



(2) for all j € {1,...,s} we have
{algj),alg; 1)} € 0; € O RPN (plg0) U p(gy ) (3.1)

(3) we have

{a(g0), a(gg )} € Op € Op C RPH\ U p(g;) Uplg; ")

(4) and g;(Ok) Ugj_l(O_k) C Oj for all distinct pairs j,k € {0,...,s}.

The construction in [I] shows that there exist hyperbolic elements go, g1, 92, g3, g4 € PSL4(Z) such that
{91,92, 93,94} is a go-rooted free system and the subgroup (g1, g2, g3, 94) is profinitely dense. (The
fourth clause in the definition of a gg-rooted free system that we use differs slightly from the one used
in [1I]. However, it is easy to verify that their proof gives a go-rooted free system in our sense.) We

make the following claim.

Claim 3.1. After conjugating the elements above if necessary, we may assume that p(g;) Up(gj_l) does

not contain [span(ey, e2)] and a(gj)Ua(gj_l) does not intersect [span(es, ..., eq)] for any j € {0,...,4}.

Proof of Claim[31. We claim that if V, W C R? are subspaces, then the set of all elements h € SLy(R)
such that h(V') C W is Zariski-closed. Since intersections of closed sets are closed, it suffices to consider
the special case in which V is spanned by a single vector v. Let 7 : R4 — W be orthogonal projection.
Then h + ||hv — 7(hv)||3 is a polynomial whose zero set is exactly the set of h € SLy(R) such that
hv € W. This proves the claim.

By abuse of notation, we identify p(g;) and a(g;) with their associated subspaces in R?. Let V;
be the set of all h € SLy(R) such that h(p(g;) U ,o(gj_l)) does not contain span(er,ez). Let W; be the
set of all i € SLy(R) such that h(a(g;)) ¢ span(es, ..., eq) and h(a(g; 1)) ¢ span(es, ..., eq). By the
previous paragraph both V; and W; are Zariski open. They are non-empty because for every k, the

group SL4(R) acts transitively on the set of k-dimensional subspaces.

11



Since SL4(R) is connected, it is Zariski-connected. So the intersection of any finite collection of non-
empty Zariski open subsets is non-empty. In particular, ﬂjf:(](vj N Wj) is nonempty and Zariski-open.
By the Borel density Theorem, SL4(Z) is Zariski dense in SL4(R). Therefore the set

4

SLa(z) N | () (V; N W) (3.2)

j=0
is non-empty. Let h € PSL4(Z) be the image of an element of the set in ([B2]). Replacing each g; with
hg;h=! proves Claim Bl
O

Let 7 : RP4~!\ [span(es,...,eq)] — [span(ei,es)] denote the projection map. Claim [B1] shows that

the points ﬂ(a(gjcl)) are well-defined.

It is well-known that given any finite subset F of RP!, there exists a hyperbolic element f € PSLy(Z)
which has no fixed point in F'. Therefore we can find hyperbolic elements hq, ha, h3, hy € PSLao(Z) such
that the following hold.

U{a }) ﬂ ™ ({ogr), (9;1)})> =0 (3.3)

a(h; )} N {a(he), alh, )} =0 (34)
{a(gg) (g] D} n{ahy), (b))} =0 (3.5)
4 4
U{ahy), ;) | 0 <U (p(gi) U p(ggl))) = 0. (3.6)
j=1 k=0

Here, the set in ([34) is empty for all distinct pairs j,k € {1,2,3,4} and the set in (B3] is empty for
all 7 €{0,...,4} and all k € {1,...,4}. Equation (3.0) is justified by the first part of Claim Bl which
implies (Ui_q(p(91) U p(g;")) ) N[span(e, )] is finite.

Let j € {1,...,4} and k € {0,...,4}. Since h; € PSLy(Z), p(h;) is the span of oz(hj_l) € [span(eq, e2)]
and [span(es, ..., eq)]. So the projection 7 maps p(h;)\ [span(es, ..., eq)] to the point oz(hj_l). So (33)

implies

12



4 4
(U(P(hj) Up(hjl))) N (U{a(gk),a(ggl)}> =0. (3.7)
j=1 k=0

Let A be the standard metric on RP4! and for ¢ > 0 and S C RP?! write
B.(S) = {v e RP*!: A(v,9) < €}

Observe that for any hyperbolic element ¢ € PSLy(Z), there exists a sequence (€,)52; of positive

numbers decreasing to zero such that
£ (RP1\ B, (p(€) U p(t™1))) € Be, ({a(0), (1)), (3.8)

So after replacing go with gf for a sufficiently large n we may replace Oy with a smaller open neigh-

borhood of {a(go),a(gy')}. Thus using [B7) we may assume that

4
00N [ J(p(hy) Up(h;h)) | =0, (3.9)

Jj=1

By (B4 B0) there exist open neighborhoods Uy, Us, Us, Uy of {a(hy), (k1) ™}, ... {a(hs),a(h; ')}
respectively such that for each distinct pair j, k in {1, 2, 3,4},

U5 0 (p(he) U p(hy ") U p(go) U plgg ™)) = 0. (3.10)
By B8 B9, BI0) there exists N € N such that
hY (U U Og) U by N (T, U Oy) C Uj (3.11)
for all distinct pairs j, k € {1,...,4}. By (3.8, BI0) there exists M € N such that
96" (U U Ox) U g™ (T UO) € Oo (3.12)

for all distinct pairs k € {1,...,4}. Write s; = h;v for j € {1,...,4} and s; = gO_ng_4géV[ for
j€{5,...,8}. Also write U; = g;™(0;_4) for j € {5,...,8}.

13



We claim that the set {si,...,ss} generates a free group of rank 8. This will suffice to establish
Lemma Bl since the elements {ss, ..., ss} generate a profinitely dense subgroup of PSL;(Z) and since

{s1,...,84} CPSLy(Z). We claim that

(s;(Tr) Us; ' (Tr)) C U (3.13)

for all distinct pairs j,k € {1,...,8}. By the standard ping-pong lemma from [I4] this suffices to

establish the claim.

Suppose first that 7,k € {1,...,4}. Then BI3) follows from (BI1]). Suppose now that j € {1,...,4}
and k € {5,...,8}. The definitions of s; and Uy imply (BI3]) is equivalent to h;-tNgO_MOk_4 c U;.
This is true because BI2) implies gy ™ Of_4 C Oy and FII) implies h;-tN Op C U;j.

Suppose now that k& € {1,...,4} and j € {5,...,8}. The definitions of s; and Uy imply [BI3) is
equivalent to gg M gji_14gé‘/[ U, C 9o M Oj—4. This is true because ([BI2]) implies gé‘/l U, C Og and the
fourth item in Definition Bl implies gf_1400 C Oj_4.

Finally, suppose j, k € {5,...,8}. The definitions of s; and Uy, imply (BI3) is equivalent to

9092490 90 M Ok—a € 95 MO 4.

This simplifies to gj-c_140k_4 C Oj—4. This is true by the fourth item in Definition B.Il This completes
the proof of Lemma [3.11 O
3.2 Expansion in quotients of PSL,(Z)

Lemma 3.2. Let d > 3. Let A be a finitely generated profinitely dense subgroup of PSLy(Z). Then A
has property (1) with respect to the family

{KNA: K <PSLyZ),[PSLq(Z) : K] < 0o}

Proof. Because A is profinitely dense, it is Zariski dense. Let S C A be a finite generating set. Write
7g : PSL4(Z) — PSL4(Z/qZ) for reduction modulo q. Theorem 1 in [5] asserts that the Cayley graphs

14



of m4(A) with respect to S form a family of c-expanders for some ¢ > 0. Let K < PSL4(Z) have finite
index. By the congruence subgroup property as established in [12], there exists a ¢ € N such that K
contains the kernel I'; of the natural surjection PSL4(Z) — PSL4(Z/qZ). It follows that the quotient
map 7m4(A) - A/(AN K) induces a covering space

Schreier(my(A), S) — Schreier(A/(ANK),S)

Therefore the preimage of a subset D of A/(AN K) has the same edge isoperimetric ratio as D. Since
Schreier(my(A), S) is a c-expander, so is Schreier(A/(A N K), S). O

3.3 Bounds on the density of PSLy(Z)-orbits in finite quotients of PSL,(Z)

The main result of this section is Lemma [3.5 which provides an upper bound on densities of PSLa(Z)-
orbits in finite quotients of PSLy(Z). First we prove two lemmas that allow us to reduce the general

case to the PSL4(Z/pZ) case.

Lemma 3.3. Let G = Hy X -+ X Hy, be a direct product of simple groups H;. Identify each group H;
with the corresponding subgroup of G. For each subset S C {1,...,k} let Hg < G be the product of the
subgroups H; over i € S and let mg : G — Hg be the projection. Also write m; = ;. Suppose that for
each i # j, H; is not isomorphic to H;. Then the following statements hold.

1. If N < G is normal then there exists a subset S such that N = Hg.

2. If K < G is mazximal then there exists an index i such that m;(K) < H; is a proper subgroup of
H;.

Proof. We prove this lemma by induction on k. The base case (k = 1) is vacuous. For S C {1,... k},
let S¢={1,...,k}\ S be the complement.

Suppose, for some proper S C {1, ..., k} that NN Hg is nontrivial. The induction hypothesis applied to
the inclusion NN Hg < Hg implies that NN Hg = Hyp for some nonempty 7" C S. Apply the induction
hypothesis to the inclusion N/Hp < G/Hp = Hrpe to obtain a subset R with T'C R C {1,...,k} such
that N/Hy = Hr/Hyp. Therefore N = Hp. This proves the lemma in the special case that N N Hg is
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nontrivial for some proper S. So we may assume without loss of generality that N N Hg is trivial for

all proper S.

Without loss of generality, we assume N is nontrivial. Since the kernel of 7; is Hy;e and Hye NN
is trivial, the restriction of m; to N is injective. Since H; is simple and m;(N) < H; is a nontrivial
normal subgroup, this implies that N surjects onto H; for all i. Thus N is isomorphic to H; for all 7.
In particular, there exist ¢ # j such that H; is isomorphic to H;. This contradiction proves the first

part of the lemma.

Now suppose K < G is maximal. Let S C {1,...,k} be proper. If ng(K) # Hg then apply the
induction hypothesis to the inclusion 7g(K) < Hg to obtain the lemma. So we may assume without

loss of generality that mg(K) = Hg for all proper subsets S.

Again, let S C {1,...,k} be proper. Since Hg is normal in G, Hg N K is normal in K. Since 7g
maps K onto Hg, this implies mg(Hg N K) is normal in Hg. However, mg restricts to the identity on
Hg. So HsN K is normal in Hg. So the first part of this lemma implies Hg N K = Hp for some subset
TCS.

Suppose K contains Hp for some non-empty 7" C {1,...,k}. Then we can apply the induction
hypothesis to the inclusion K/Hr < G/Hr = Hre to finish the lemma. Therefore, we may assume
without loss of generality that K does not contain Hr for any non-empty 7. The previous paragraph
now implies Hg N K is trivial for all proper subsets S. Therefore, the map m; : G — H; is injective on
K. Since it is also surjective (by the second paragraph before this one), this implies K is isomorphic
to H; for all 7. In particular there are different indices ¢ # j such that H; is isomorphic to H;. This
completes the proof.

O

Lemma 3.4. Let ¢ € N and let K < PSLy4(Z/qZ) be a proper subgroup. Then there is a prime factor
p of q such that the image of K under reduction mod p is a proper subgroup of PSLq(Z/pZ).
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Proof. It suffices to consider the special case in which K is a maximal proper subgroup. Suppose
toward a contradiction that the proposition fails for K. We may assume without loss of generality that
q has the minimal number of distinct prime factors among all € N such that the proposition fails for

some subgroup of PSL4(Z/rZ).

Recall that if G is a finite group then the Frattini subgroup ®(G) is the intersection of all maxi-
mal proper subgroups of G. If G and H are finite groups we have ®(G x H) = ®(G) x ®(H).

Let ¢ = p}*-- -pZ’“ be the prime factorization of ¢q. By the Chinese remainder theorem, we have
that PSLy(Z/qZ) is isomorphic to PSLq(Z/p*Z) x - - - x PSL4(Z/pp*Z). So ®(PSL4(Z/qZ)) is isomor-
phic to ®(PSL4(Z/p*Z)) x - - x ®(PSL4(Z/p.*7)).

We claim that for any prime p and natural number n, the Frattini subgroup ®(PSL4(Z/p"Z)) is
the kernel of the surjective homomorphism PSL4(Z/p"7Z) — PSL4(Z/pZ). We denote this kernel by
A;. Note that Aj is a p-group. Therefore it is nilpotent. Since PSLy(Z/pZ) is simple, this implies that
PSL4(Z/p"7Z) has one composition factor equal to PSLy(Z/pZ) and all of its other composition factors
are abelian. However, PSLy(Z/p™Z) has no nontrivial abelian quotients. Therefore PSL4(Z/pZ) is
the only simple group quotient of PSLy(Z/p"7Z). However, the Frattini subgroup is the intersection

of all maximal normal subgroups (because if H < G is maximal then NggH gt

is maximal normal).
Therefore, the Frattini subgroup is the intersection of all kernels of homomorphisms to simple groups.
This proves the claim.

So PSL4(Z/qZ)/®(PSL4(Z/qZ)) is isomorphic to
PSLy(Z/p1Z) % - x PSLq(Z/pyZL). (3.14)

Since ®(PSL4(Z/qZ)) < K we may assume without loss of generality that n; = 1 for all j € {1,...,k}.
Thus we can apply Lemma [33] to the inclusion K < G to finish this lemma. ]

Lemma 3.5. Let d > 5 and let B be a subgroup of the image in PSLy(Z) of the copy of SLa(Z) in
the upper left corner of SLy(Z). Let K be a proper finite index subgroup of PSLy(Z). Then we have
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16|BhK| < |PSL4(Z)gK)| for all g,h € PSL4(Z), where the cardinality is taken in PSL4(Z)/K.

Proof. Using the congruence subgroup property we see that it suffices to show that if ¢ > 2 then for
any proper subgroup K of PSL;(Z/qZ) the maximal size of a PSLy(Z/qZ)-orbit in PSL4(Z/qZ)/ K is
at most =|PSLy(Z/qZ)/K|.

Using Lemma B.4] we see that there exists a prime factor p of ¢ such that if we write © for the
projection of PSL4(Z/qZ) onto PSLy(Z/pZ) then 7(K) is a proper subgroup of PSLy(Z/pZ). The
map 7 sends PSLgy(Z)-orbits in PSL4(Z/qZ) to PSLa(Z)-orbits in PSLy(Z/pZ). Moreover is m-to-1
for some fixed m. Therefore it suffices to show that if L is a proper subgroup of PSLy4(Z/pZ) for some
prime p then the maximal size of a PSLg(Z)-orbit in PSL4(Z/pZ)/L is at most 1—16|PSLd(Z/pZ)|.

The PSLy(Z)-orbits in PSLy(Z/pZ)/ L are the double cosets PSLy(Z/pZ)x L for x € PSLy(Z/pZ). In [7]
it is shown that the maximal size of a proper subgroup of PSLy(Z/pZ) for a prime pis (p®—1)(p—1)"".
For any d € N we have

1 d—1 _
PSLu(Z/p2)| = =5 j];[o(pd — )
so that in particular , ,
- -1
’PSL2(Z/pZ)‘ - gcd(d,p _ 1)(]9 _ 1) .
Therefore if d > 5 we have
PSLa(Z/pZ) _ 1 (' -p)e’-1) Ty »
PLEE - e -peE-D L) (349)
1 d—1 '
> i " —p) (3.16)
=2
_jl d—1
>y 116 =)
j=2
d_ 2\(nd _ 23 d—1 _
SR )y 1o (3.17)



> (p—1) H(pd—pj) (3.18)

Here, (316 follows from (BI5) and (BI8) follows from (BI7) since in each case the factor dropped is
at least one. It follows that any double coset PSLo(Z/pZ)xL has size at most 1—16|PSLd(Z/ pZ)| and so
the proof of Lemma is complete. O

Theorem [Llis obtained by applying Theorem 2.1l to the subgroups A and B constructed in Proposition
Bl Because A is profinitely dense, it surjects onto every finite quotient. In particular, every B-orbit
in a finite quotient of PSL4(Z) is contained in an A-orbit. To define the automorphism w : C' — C,
let A be freely generated by {a1,a2,as,a4} and B be freely generated by {b1,bs,bs,bs}. Then C' is
freely generated by {aj,bj};*:l. So there is a unique order 2 automorphism defined by w(a;) = b;
and w(bj) = a; for j € {1,...,4}. By Lemmas and the subgroups A and B satisfy the other
conditions of Theorem 211
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