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Abstract

Kolmogorov-Sinai entropy is an invariant of measure-preserving actions of the group
of integers that is central to classification theory. There are two recently developed
invariants, sofic entropy and Rokhlin entropy, that generalize classical entropy to ac-
tions of countable groups. These new theories have counterintuitive properties such
as factor maps that increase entropy. This survey article focusses on examples, many
of which have not appeared before, that highlight the differences and similarities with

classical theory.
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1 Introduction

Subsections [LIHI.3 of this introduction set notation, give a brief review of classical entropy
theory and motivate entropy theory for actions of general countable groups. Subsections [[.4
[L7 provide an intuitive approach to the f-invariant, sofic groups, sofic and Rokhlin entropy.

The last subsection [I.8 summarizes the contents of this article.

1.1 Classical entropy theory

To set notation, let (X, i), (Y, v) denote standard probability spaces. An automorphism of
(X, p) is a measurable map 7" : X — X with measurable inverse that preserves the measure
. Two such maps T': X — X, §:Y — Y are measurably conjugate or isomorphic
if there exists a measure-space isomorphism ® : X — Y such that ? oT = S o & almost
everywhere. The main motivating problem of this article is to classify automorphisms (and
more generally, group actions) up to measure-conjugacy.

A special type of automorphism, called a Bernoulli shift, plays a central role. To define
it, let K denote a standard Borel space and K% the infinite direct power. An element z € K*
is a sequence T = {Z, }nez With values x, € K. Let 0 : KZ — K% denote the shift map

defined by o(z), = z,-1. If K is a probability measure on K then the shift map preserves
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the product measure xZ. The triple (o, K%, k%) is called the Bernoulli shift over the
integers with base space (K, k). In the early days of ergodic theory, von Neumann asked
for a classification of these Bernoulli shifts. At the time, it was known that all Bernoulli
shifts are spectrally isomorphic (that is, the induced operators on L*(K%, k%) are unitarily
isomorphic). However not a single pair of Bernoulli shifts was known to be non-isomorphic
and there were no nontrivial tools for proving isomorphism.

Motivated by this problem, Kolmogorov introduced dynamical entropy theory [Kol58,
Kol59]. Here is an intuitive explanation: suppose that a system is under observation. At
each unit of time, a measurement is made and recorded. The measuring device can only
take on a finite number of distinct values. The entropy of the system is the amount of new
information gained per unit time, on average and in the long run.

In this interpretation, (X, u) represents all possible states of the system and T': X — X
represents time evolution. The measuring device is represented by a measurable partition P

of X. The Shannon entropy of P is defined by

H,(P)i= 32 p(P)1(P) = = 3 u(P)log(u(P)).

Pe? Pep
To motivate the above, suppose z € X is random. The amount of information gained by
learning which part P of P contains z is defined by I,(P) := —logu(P). So H,(P) is
the average amount of information gained from learning which part of P contains z. (The

definition of I,(P) is chosen so that if P,) C X are independent events then I,(PN Q) =
L(P) + 1.(Q))-

The coarsest common refinement of two partitions P, Q is denoted P V Q. The entropy

rate of 7' with respect to P is

1 "o
h (T, P):= lim —H TP |.
u( ,P) nl_)ngon " <z\=/o )

This is average quantity of information gained per unit time (represented by T') when ob-
serving the itinerary of a py-random point x through the partition P.

The entropy rate of 7' is defined by

h,(T) := sup h,(T,P).
P



A partition P is generating if the smallest sigma-algebra containing T-"P for all n € Z
is the sigma-algebra of all measurable sets, up to sets of measure zero. Kolmogorov proved
the crucially important result that if P is any generating partition with finite Shannon
entropy then the entropy rate of 1" is h, (7T, P). Therefore, to compute entropy of 7" one can
choose any convenient generating partition. In the special case of the Bernoulli shift with
base (K, k), if K is countable then the time 0 partition P = {P, : k € K} defined by
Py = {x € K% : xy =k} is generating. The entropy rate of the Bernoulli shift coincides
with the Shannon entropy of P. The latter is also called the Shannon entropy of (K, k):

H(K k) = — 3 r({k}) log ({k})

keK

if k is purely atomic and H (K, k) := +o0o otherwise. This shows that Bernoulli shifts with
different base space entropies are not measurably conjugate.

In 1970, Ornstein proved the converse: two Bernoulli shifts with the same entropy are
isomorphic. Moreover, he developed a deep set of tools for determining whether a given
automorphism is Bernoulli. With these tools, he and co-authors proved that many automor-
phisms are isomorphic to Bernoulli shifts including mixing Markov chains, hyperbolic toral
automorphisms, the time 1 map of geodesic flow on a hyperbolic surface and more.

In 1964, Sinai proved that every ergodic automorphism is a zero-entropy extension of a
Bernoulli shift (which may be trivial). This explains why Bernoulli shifts are so important

to the classification of automorphisms in general.

1.2 General groups and naive entropy

Now let I" be a countable group. An action of I' on a set X is a collection T = (79)4er of

transformations 79 : X — X satisfying 79" = T9T" T~

1 _ .
= (T9)~. For convenience we may

write g for T92 when there is only one action of I' on X under consideration. An action 7" on
a probability space (X, i) is probability-measure-preserving (pmp) if each 7Y preserves
p. We also denote an action by '~ (X, u) or simply '~ (X, u) when T is implicit. A pmp
action T" of I" on (X, u) factors onto an action S of I' on (Y, v) if there is a measurable
map ¢ : X — Y that pushes p forward to v and intertwines the action (so ®79 = S9

up to measure zero). Such a map is called a factor map. If, in addition, ® is invertible



with measurable inverse then the two actions are said to be measurably conjugate or
isomorphic. The main motivating problem is to classify actions up to measure-conjugacy
and determine which actions factor onto which.

The Bernoulli shifts described above generalize to this context. To be precise, let K be
a standard Borel space and K be the set of all functions = : I' = K. When convenient we
may represent x € K' as a collection x = (z,)ger of elements z, € K. The shift action of

I is denoted S = (59)yer where S9: KU — KU is the transformation

(SYz)p = xg-1p.

If  is a probability measure on K then S preserves the product measure x'. The action

I~ (K, k)" is called the Bernoulli shift over I' with base space (K, k).
There is a large difference between the entropy theory of amenable group actions and that
of non-amenable groups. So it is worthwhile to review the definitions. A countable group I

is amenable if there exists a sequence {F,} of non-empty finite subsets of I" satisfying

I |KFnﬁFn| 1
i —
n—o0 |Fn‘

for every non-empty finite K C I". Such a sequence is called a Fglner sequence. There are
many other equivalent definitions of amenability [KL16, [BAIHV0S]. For example, abelian,
nilpotent and solvable groups are amenable while non-abelian free groups, SL(n,Z) (n > 2),
mapping class groups (with a few exceptions) and fundamental groups of closed hyperbolic
n-manifolds (n > 2) are not.

Now suppose I' is amenable with Fglner sequence {F,} and T is a pmp action of I" on

(X, pt). The standard definition of entropy is:

h(T,P) = lim |F,|'H, < \ TflfP>

n—o00
fEF,

h,(T) = suph,(T,P)
P

where P is an arbitrary countable measurable partition of X with finite Shannon entropy.
By a sub-additivity argument it can be shown that the limit defining h,, (7', P) exists, does
not depend on the choice of Fglner sequence and moreover, if P is a generating partition

(this means that the smallest I'-invariant sigma-algebra containing P is the sigma-algebra of
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all measurable sets up to measure zero) with finite Shannon entropy then h,, (7, P) = h,(T).
In particular, the entropy of the Bernoulli shift action '~ (K, )" equals the Shannon entropy
of the base space H (K, k). Entropy for amenable groups was first considered in [Kie75]. See
also [MO85, [(OWS0].

Moreover the above entropy coincides with the so-called naive entropy defined by:

naive L -1 ft
hi* (T, P) = inf |F| HM<\/T ?)

feFr
hzaive (T) — Sl{)l)p hzaive (T, ﬂ))

where F' €@ I' means F' is a non-empty finite subset of I'. This definition makes sense for
arbitrary countable groups I'. However if I" is non-amenable then Theorem 2.13] below shows

that hﬁaive(T) € {0, 00} so naive entropy cannot distinguish Bernoulli shifts in this case.

1.3 The Ornstein-Weiss example

The next example convinced many researchers that entropy theory could not be extended
to non-amenable groups. To explain, first suppose I' is amenable. Consider the full n-shift
over I'; this is the Bernoulli shift with base space (Z/n, u,,) where Z/n is the cyclic group of
order n and w, is the uniform probability measure. The entropy of the full n-shift is log(n).
Because entropy is non-increasing under factor maps, the full 2-shift cannot factor onto the
full 4-shift. However, Ornstein and Weiss showed in [OWS8T7] that when Fy = (a,b) is the
rank 2 free group, the full 2-shift does indeed factor onto the full 4-shift. Their example is
as follows: define ¢ : (Z/2)¥2 — (Z/2 x Z/2)** by

P(7)g = (Tg + Tga, Ty + Tgp).

The spaces (Z/2)¥2 and (Z/2 x Z/2)F? are compact abelian groups under pointwise addition.
With this interpretation, ¢ is a group homomorphism. It is a good exercise to show that it
is surjective. Surjectivity implies that ¢ takes Haar measure to Haar measure. Therefore, it
is indeed a factor map. In fact the kernel consists of the constants, so it is a 2-1 factor map.
In the setting of Z-actions, entropy is preserved under finite-to-1 maps. So this example led
some researchers to speculate that the 2-shift and the 4-shift over FFy could be isomorphic.

The f-invariant (and later, sofic entropy) was developed to prove that they are not.
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In work in progress [Bow17], the author has shown that if I" is any non-amenable group
then all Bernoulli shifts over I' factor onto each other. This is based on a generalization
of the Gaboriau-Lyons Theorem [GL09] and is reviewed in §5.21 So there does not exist a

monotone invariant that distinguishes Bernoulli shifts over a non-amenable group.

1.4 The f-invariant

The f-invariant is a measure-conjugacy invariant for actions of free groups that distinguishes
Bernoulli shifts. To explain, it will be convenient to use probabilistic notation as follows.
Suppose X is a random variable that takes values in a Borel space K. Let Prob(K) denote
the set of all Borel probability measures on K. The law of X is the probability measure
Law(X) € Prob(K) satisfying

Law(X)(E) = P(X € E)

for E C K where P(-) denotes probability. If Y is also a random variable taking values in a

Borel space L, then Law(X,Y") € Prob(K x L) is the probability measure satisfying
Law(X,Y)(E x F) = P(X € E,Y € F).
Also Law(XY) is the random variable taking values in Prob(K') defined by
Law(X|Y)(E) = P(X € EJY).

In general, a stationary I['-process is a [-indexed family of random variables X =
(Xy)ger such that each X, takes values in some Borel space K and the law of X is invariant
under left-multiplication of the indices. So the law of X is a I'-invariant Borel probability
measure on K and stationarity means that the law of (X,),er is the same as the law of
(Xhg)ger for any h €T

The f-invariant is motivated by way of Markov chains over free groups. Before getting
into that, it makes sense to recall Markov chains over the integers. A stationary Z-process

X = (X;)iez is Markov if

LaW(X()‘X_l, X_g, c. ) = LaW(X0|X_1).
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The law of a stationary Markov process is uniquely determined by the time-0 distribution
Law(Xj) and the transition probabilities P(Xy = ko|X_1 = k_1) (for k_1, ko € K). More-
over, the Markov process uniquely maximizes entropy over all stationary processes that have
the same time-0 distribution and transition probabilities.

If X = (X;)iez is an arbitrary stationary process with values in a finite or countable set
K then its n-th step Markov approximation is the Markov process Y = (Y;("))Z-Ez

taking values in the Cartesian power K" satisfying
Law(Y\™") = Law(Xo, .. ., Xn_1)

Law (YO(")

Y_(Tll) = (I_l, o, - - - ,l’n_2)> = Law (X(], Ce ,Xn_1|(X_1, ey Xn_g) = (I_l, Loy -y .C(fn_2>)

for any x_4,...,x,_92 € K. The entropy rate of X satisfies

A(X) = Tim h(Y™) = lim H (V" [Y).

n—o0 n—oo

(Recall that the Shannon entropy of a random variable X conditioned on another random

variable Y that takes on only countably many values is
H(X|Y): ZP =2,V = y)log(P(X = z|]Y =y)).

Since
H(Yb(n)\Y_(?)) =H(Xo,..., X0 1| X 1, ., Xy 2) = HXp1|Xno, ..., X 1) = H(Xo|X_1,..., X )
we arrive at the familiar formula

h(X) = H(Xo|X_1,X o,...).

This generalizes to free groups as follows: let F, = (s1,...,s,) be a free group of rank
r and X = (X,)er, a stationary process over F,. The process X is Markov if for every
1< <r
Law (Xe|(Xg)gepre(s;)) = Law(Xe|X,)

where Pre(s;) C F, is the set of all elements with prefix s;. In other words, g € Pre(s;) if and
only if |s; 'g| < |g| where |- | : F, — N denote the word length (so || is the smallest natural

number n such that 4 can be written as a product of n elements of {sy, ..., s,, 51_1, s,

»er
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Define .,
F(X) = —(r = DH(X.) + ) H(XJX,)).
i=1
The intuition for this formula is as follows: the term H(X.|X;,) measures the entropy in
the s;-direction. The sum Y ., H(X.|X},) “counts” the entropy at the identity r times. To
compensate for this, substract (r — 1)H(X.) to obtain the formula above.
Now suppose X = (X,)ger, is an arbitrary stationary F,-process taking values in a

finite or countable set K. The n-th Markov approximation to X is the Markov process

Y™ = (}/g(n))gelﬁ‘r taking values in K?™ (where B(n) C F, is the ball of radius n) satisfying
LaW(Ye(")) = Law((Xg)geB("))’ LaW(Ye(n)D/:e(in) =1) = Law((Xg)gEB(n)|(X8¢g)g€B(") =)
for any function x : B(n) — K. Define

f(X) == lim F(Y™).

n—oo

In §2.5] a proof is sketched that this does indeed define a measure-conjugacy invariant, called
the f-invariant. Moreover, the f-invariant of the Bernoulli shift F,~ (K", ") is H(K, k).
This proves the 2-shift over IF, is not isomorphic to the 4-shift.

The f-invariant is a particularly nice invariant: it can be computed exactly for Markov
chains (§3.3), it satisfies an ergodic decomposition formula (§6.11), a subgroup formula (§4.2]),
an Abramov-Rokhlin type formula (§10.1]), a Yuzvinskii-type addition formula (§3.4.4) and
is additive under direct products. However, it can increase under factor maps and it can
take on negative values (§3.1.3). It can be generalized to some other groups (§2.5.1]) and is
related to sofic entropy (§2.5.2).

1.5 Sofic groups via Benjamini-Schramm convergence

The sofic concept provides a new perspective on the f-invariant and extends entropy theory
beyond amenable groups. The most intuitive definition of sofic groups is based on Benjamini-
Schramm convergence [BSO1]. Only what is needed for sofic group theory will be explained
here; for the more general theory see [HLS14].

Suppose I" has a finite symmetric generating set S C I'. The Cayley graph of (I',5)
is a directed graph with edge labels in S, denoted by Cay(I',S). Its vertex set is I and for
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every s € S and g € I' there is an s-labeled directed edge from g to gs. These are all of the
edges. Because the edges of the Cayley graph are directed and labeled, the group can be
recovered from the Cayley graph. This would not be true otherwise since there are groups
with Cayley graphs that are isomorphic as unlabeled graphs.

Now consider a finite S-edge-labeled directed graph G = (V, E). For r > 0, let 7,.(G)
be the set of all vertices v € V such that there exists a graph isomorphism from the ball of
radius r centered at v to the ball of radius r centered at the identity element in the Cayley
graph Cay(I',S). This isomorphism is required to map v to the identity, preserves edge
directions and preserves labels. The graph G is called an (r,€)-sofic approximation to
(I,S) if [%.(G)| > (1 — €)|V]. So with probability > 1 — ¢, a uniformly random vertex’s
radius r-neighborhood looks the same as the radius r-neighborhood of the identity in the
Cayley graph Cay(I",S).

By definition, a sequence {G;} of finite S-edge-labeled directed graphs Benjamini-
Schramm converges to the Cayley graph Cay(T", S) if

(G
lim ——=— =1

for every r > 0. Such a sequence is called a sofic approximation to I'. The group I is

sofic if there exists a sofic approximation to I'.
Exercise 1. Show that soficity does not depend on the choice of generating set S.
Exercise 2. Show that Z¢ and finitely generated free groups are sofic.

For example, if (), is the directed n-cycle then C),, Benjamini-Schramm converges to the
standard Cayley graph of Z as n — oo. For another example, suppose I is a finitely generated
residually finite group. Residual finiteness means there exists a decreasing sequence N; < I’
of finite-index normal subgroups with N;V; = {e}. Let S be a finite generating set for I" and
consider the associated Cayley graphs G,, with vertex set I'/NV,, and edges {(gNV,,, gsN,,) : s €
S}. This sequence Benjamini-Schramm converges to the Cayley graph of I" with respect to
S. Therefore all residually finite groups are sofic.

The above definition is the most intuitive. However, it has the unfortunate drawback
that it applies only to finitely generated groups. The section §2.2.1] presents a more general

definition based on maps from I' into the symmetric group.
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It is a major open problem whether all countable groups are sofic. For further reading,

there are several surveys on sofic groups [Pes08], [PK12), [CL15al.

1.6 Sofic entropy: a probabilistic approach

A more thorough account of sofic entropy is presented in §2.3-§2.4l Here is an intuitive
approach under simplifying conditions. Let X = (X,)ger be a I'-stationary process taking
values in a finite set K. Assume I' has a finite generating set S. Fix a sequence ¥ = {G;}2,
of finite S-labeled directed graphs G; = (V;, E;) that Benjamini-Schramm converge to the
Cayley graph Cay(I',S). The sofic entropy of X with respect to 3, denoted hyx(X), is the
exponential rate of growth of the number of microstates for X on G;. Intuitively, a microstate
is a function ¢ : V; — K that approximates X in a local statistical sense. To be precise,
fix a radius r > 0 and let vertex v € V,.(G;) be a uniformly random vertex. Consider the
restriction of ¢ to the ball of radius r centered at v. Because X is a sofic approximation,
this ball is isomorphic to the ball B,(I', S) of radius r centered at the identity in Cay (I, S)
with high probability. So the law of the restriction ¢ | B,.(v) determines a (sub-)probability
measure on the set K 5 5 of all functions from B, (T, S) to K. If this law is J-close in total
variation distance to the law of (X;)sep, r.s) then ¢ is said to be an (r, §)-microstate of X.
The sofic entropy of X is
hs(X) = inf inf lim sup |V;| ™! log(#(r, §) — microstates on G;).

0>07r>0 ;oo

This is also called the ¥-entropy. In [Bowl10b] it was shown that this entropy is invariant
under measure-conjugacy and the entropy of an i.i.d. process is the Shannon entropy H(X,.).

A few words about the definition of hy(X): if I' is amenable then the sofic entropy agrees
with classical entropy. However, if I' is non-amenable then it is possible that there are no
(r,0)-microstates for any graph G; in the sofic approximation. In this case, hy(X) = —oo.
Examples of such behaviour are presented in §3.J1 Also the limsup can be replaced with
liminf or by an ultralimit. These changes give apriori different invariants (when I' is non-
amenable). In 3.1 and §4.T] examples are presented of sofic approximations ¥, >’ to a group
I' and an explicit action such that the Y-entropy is —oo but the ¥ entropy is non-negative.

The following is a major open problem:
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Problem 1. Suppose X, are two sofic approximations to I' and the Y-entropy and X'-

entropy of X are both positive. Are they necessarily equal?

Other expositions of sofic entropy include [Weil5, [Gab17, [KL16].

The concept of sofic approximation can be generalized by replacing the finite graphs with
random finite graphs. That is, the i-th approximating graph G is allowed to be random,;
but the number of vertices |V;| is required to be determined. Now define

hs(X) = inf inf lim sup |V;| ' log E[(#(r, §) — microstates on Gj)].

0>0r>0 ;oo

In the special case in which I' = (sq,..., s,) is a free group, this leads to a new interpretation

of the f-invariant:
f(X) = hs(X)

where ¥ = {G;}2, is the “permutation model” of the random 2r-regular graphs. To be
precise, let o : I' — Sym(n) be a homomorphism chosen at random uniformly amongst all
(n!)” homomorphisms where Sym(n) is the symmetric group on [n] := {1,...,n}. Then G,
is the graph with vertex V,, = [n] and s;-labeled edges (p, o (s;)p) for 1 < i < r and p € [n].
This is Theorem 210 below.

1.7 Rokhlin entropy

Suppose T = (19),er is a pmp action of I' on (X, x) and P is a generating partition for
the action. It follows immediately that the sofic entropy of 7" is bounded by the Shannon
entropy H,(P). This leads to the following idea: let hR°(T") denote the infimum of H,(%P)
over all generating partitions P. If T" is ergodic then this is called the Rokhlin entropy of
the action (the non-ergodic case is slightly different; see §2.6] for details). Some basic facts:

e Rokhlin entropy is a measure-conjugacy invariant. Moreover, it is well-defined for every

action of every countable group (even non-sofic ones, if they exist!).
e Rokhlin entropy is an upper bound for sofic entropy.
e Rokhlin entropy agrees with classical entropy for amenable groups [STD16].
Moreover, in recent groundbreaking work, the following results have been obtained:
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e [STDI6] For every € > 0, every essentially free ergodic action with positive Rokhlin

entropy admits a factor that is essentially free and has Rokhlin entropy < e,

e [Sewl4b] Every ergodic action with Rokhlin entropy < log(n) admits a generating

partition with n parts,

o [Sewl8] Every essentially free ergodic action with positive Rokhlin entropy admits a

Bernoulli factor.

See §2.0] and §7] for more details.

Problem 2. Suppose T is ergodic and essentially free. If the Y-entropy of T"is not —oo then
is it equal to the Rokhlin entropy?

1.8 What’s in this article?

g2 reviews the fundamental aspects of sofic groups, sofic entropy, the f-invariant, Rokhlin
entropy and naive entropy.

g3l covers a list of examples in which entropy has been computed. Perhaps the most
interesting cases are the Bernoulli shifts, Markov chains over free groups and principal alge-
braic actions (in which the entropy is related to the Fuglede-Kadison determinant). There
are also degenerate cases in which the entropy is non-positive. This includes (under mild
conditions) trivial actions, distal, smooth and non-free actions. One surprising case is that
of lattices I', A in a totally disconnected locally compact group G such that '»G /A has
positive entropy (Example @l in §3.3)).

About § and 6t much of the usefulness of classical entropy theory derives from a list
of formulas and inequalities expressing how entropy changes as the system is perturbed or
combined with other systems. This includes: inducing to a subgroup, co-inducing a subgroup
action, continuity or semi-continuity in the measure, the partition or the action or passing to
an orbit-equivalent action. It also includes direct products, ergodic decomposition, relative
entropy and inverse limits. In the sofic case, we usually have an inequality where in the
classical case an equality holds. Moreover, there are counterexamples. For example, in §6.2]

we present an example showing that sofic entropy need not be additive under direct products.
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g5.1] presents a finite-to-1 factor map from a zero entropy action to a Bernoulli shift,
§5.2 sketches a proof that if I' is non-amenable then all Bernoulli shifts factor onto each
other, §5.3] sketches a proof that if I' is non-amenable then every free ergodic action has a
zero-entropy extension, 5.4l explores how entropy varies under finite-to-1 factor maps.

J7 covers generalizations of Ornstein theory for non-amenable groups including the Iso-
morphism Theorem, Krieger’s generator Theorem and Sinai’s Factor theorem. It also con-
tains counterexamples such as Popa’s example of a non-Bernoulli factor of a Bernoulli shift,
and a non-Bernoulli d-limit of Bernoulli shifts.

g8 sketches a proof of the variational principle for sofic entropy. This naturally leads
to the question of whether measures of maximal entropy exist and whether or not they are
unique. The existence problem is similar to that of the classical case: namely, existence
occurs under weak forms of expansitivity that imply upper semi-continuity of entropy with
respect to weak™ topology on the space of measures. Regarding uniqueness: an example is
presented in §8.2] of a mixing Markov chain over the free group with multiple measures of
maximum f-invariant.

9] defines sofic pressure and equilibrium states (measures) for actions of sofic groups and
relates them to Gibbs measures on random regular graphs.

g0l is a short section on relative entropy. This includes an Abramov-Rokhlin formula for
actions of free groups.

JIT]defines and explores outer sofic and Rokhlin entropy. For example, outer sofic entropy
of a factor map is the exponential rate of growth of the number of microstates for the target
action that lift to microstates for the source action. When I' is amenable, this is just the
entropy of the target. However, when I' is non-amenable it can be different; for example the
outer sofic entropy of the Ornstein-Weiss map is log(2), not log(4). Using outer entropy, we
define outer Pinsker algebra and completely positive outer entropy. For example, Bernoulli
shifts and a large class of algebraic actions are known to have completely positive outer
entropy. This notion is also related to uniform model mixing which is a generalization of
uniform mixing to the sofic context.

Acknowledgements. I am most grateful for discussions with Tim Austin, Peter Burton,
Ben Hayes, David Kerr, Hanfeng Li, Sorin Popa, Brandon Seward, Jean-Paul Thouvenot,

Robin Tucker-Drob and Benjy Weiss. Many of these researchers have contributed examples
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which appear in this article, some for the first time.

2 Preliminaries

2.1 Notation and conventions

Throughout this article, all measure spaces are standard and all maps measurable unless oth-
erwise specified. We often ignore measure zero phenomena without explicit mention. Also, I'
denotes a countable group, (X, u), (Y, v) probability spaces and I'~nT (X, u), T~(Y,v) are
probability-measure-preserving (pmp) actions of I' (unless otherwise specified). This means
T = (T9),er is a collection of measure-space automorphisms of (X, u) such that 79" = T9T"
and 79" = (T9)~" almost everywhere.

A factor map between these actions is a measurable map ® : X — Y such that ®,u = v
and ®(gx) = gP(x) for a.e. x and every g € I'. There is a natural correspondence between
factors of the action I'v(X, u) and T'-invariant sigma-algebras of X (up to measure zero
sets). Namely, if & : X — Y is a factor map and By is the Borel sigma-algebra on Y
then ®~!(By) is a [-invariant sigma-algebra of X. We will call this the sigma-algebra
associated with ®. Conversely, if we are given a I'-invariant sigma-algebra & C Bx (where
Bx is the Borel sigma-algebra on X) then by the Mackey realization Theorem there is a
Borel space Y and a factor map ® : X — Y such that F = &~1(By).

If P is a measurable partition of X then the factor associated to P is the factor
associated to the smallest [-invariant sigma-algebra containing P.

The notation X € Y means that X is a finite subset of Y.

2.2 Sofic groups

The next definition might be less intuitive than the definition of soficity in the introduction;

however it is the most useful.
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2.2.1 Soficity via maps into symmetric groups

Let T" be a countable group. Throughout, V' denotes a finite set and Sym(V') the group of

bijections from V' to itself.
Definition 1. Given F' C G and § > 0 we say that a map o : I' — Sym(V) is
e (F,d)-multiplicative if

L=0<|V|'3{p e V: a(g)o(h)p = o(gh)p} Vg,h€F

e (F,0)-trace-preserving if
0> |VIT#{p eV olgp=p} Vg€ F\{e}

A sofic approximation of a group I is a sequence ¥ = {0; };en of set maps o; : I' — Sym(V;)
such that for every finite /' C I" and 0 > 0 there exists I such that ¢ > [ implies o; is (F, ¢)-
multiplicative, (F,d)-trace-preserving and lim;_,, |V;| = +00. A group I is sofic if it admits

a sofic approximation.

Exercise 3. Show that the definition above is equivalent to the definition in §I.5in case I' is

finitely generated.

Ezercise 4. Suppose that I' is residually finite. So there exist finite-index normal subgroups
I' > Ny > Ny > --- such that N;NV; is trivial. Show that the canonical homomorphisms

I' = Sym(G/N;) form a sofic approximation.

Ezercise 5. Suppose that I' is amenable and {F;} is a Fglner sequence. Show that for every
i there is a map o; : I' — Sym(F;) such that 0;(g)f = gf whenever gf € F,. Show that

these maps form a sofic approximation.

2.2.2 Soficity via ultraproducts

Suppose Y is a sofic approximation to I' as above. Let U be a non-principal ultrafilter
on N. Let []
[ Ly Sym(V;) is the direct product [[, Sym(V;) modulo the equivalence relation (x;) ~ (v;)

. Sym(V;) denote the ultraproduct of symmetric groups. To be precise,
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iff {i e N: x; = y;} € U. This is a group. Let N < [, Sym(V;) be the set of all

U-equivalence classes of sequences (71, o, ...) (with m; € Sym(V;) ) such that

lim [V~ [Fix(x)| = 1
where Fix(m;) is the set of fixed points of m; in V;. Then N is a normal subgroup of
[T, Sym(V;) and the map
g€l = (01(9),02(9),- )

determines an injective homomorphism from I' into the quotient group [], ., Sym(V;)/N.

i—U
FEzercise 6. Prove that I is sofic if and only if for some (any) increasing sequence {V;}2, of

finite sets, I' admits an injective homomorphism into [], ., Sym(V;)/N.

From this description it can be shown that the group von Neumann algebra of I' satisfies
Connes’ embedding conjecture (see [ES05]). This point of view is elaborated on in [Pes08|
PK12, [CL15a].

2.2.3 Which groups are sofic?

Theorem 2.1. The class of sofic groups is closed under

1. subgroups, direct products, direct limits, inverse limits (so a residually sofic group is

sofic), free products,
2. extensions by amenable groups,
3. free products with amalgamation over an amenable subgroup,

4. certain graph products and wreath products.

For detailed proofs of (1-2) see [ES06]. There are 3 different proofs of (3) in [DKP14,
Paulll [ESTI]. Soficity of graph products is studied in [CHR14] and wreath products in
[HS16, [HS18].

Proof sketch of (1). Suppose X = {0;} is a sofic approximation to a group I' as in Definition
2.2.1l Restricting to a subgroup A < I yields a sofic approximation to A. This shows soficity

is closed under subgroups. If ¥’ = {o}} is a sofic approximation to a group I'” then the direct
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product o; x o : I' x I'' — Sym(V;) x Sym(V/) < Sym(V; x V) gives a sofic approximation
to I' x I, So soficity is closed under direct products. Diagonalization arguments show that
soficity is preserved under direct limits and inverse limits.

To see that soficity is preserved under free products, consider I',I" as above. Suppose
Vi = V! and let m; € Sym(V;) be a uniformly random permutation. Define o] : I' — Sym(V})
by conjugation: o7 (g) = m04(g)m; *. Now we define 07" * o/ : T % " — Sym(V;) by

if g1,...,9, € T'\ {e} and ¢},..., ¢, € I'"\ {e} for example. It can be shown that, with
probability 1, {¢]" % 0.} is a sofic approximation to I' x I,

O

Remark 1. Mal’cev proved that all finitely generated linear groups are residually finite
[Mal40] and therefore they are sofic. Because soficity is preserved under direct limits it

follows that all countable linear groups are sofic.

It is open whether all countable groups are sofic. However the soficity of the following
groups is unknown: free Burnside groups (this was pointed out by Benjy Weiss [Wei(()]),
Tarski monsters, SL(3,Z) g -, SL(3,7Z) where Fy, F, < SL(3,7Z) are isomorphic non-
abelian free groups, and the Burger-Mozes groups from [BM97, BM00]. On the other hand,
A. Thom constructed a non-residually finite property (T) sofic group [Thol(] and Y. de
Cornulier constructed a sofic group that is not a limit of amenable groups in the space of
marked groups [Corll]. Elek and Szabo show that there exists a non-amenable simple sofic

group [ES05]. There are several recent surveys on sofic groups [Pes08, [PK12] [CL15a].

2.2.4 The space of sofic approximations

Problem 3. For a given interesting group I', describe the set of all sofic approximations to I'.

Here we will make the above problem more precise and explain some partial results and
specific questions.
To begin we observe that it is possible to perturb a sofic approximation in an inessential

way. To be precise, let ¥ = {0;},¥" = {0/} be two sofic approximations to I" and suppose

21



that
o, : T —= Sym(V;), o, :T — Sym(V}).

In the special case that V; =V for all i we can define the edit-distance between ¥ and >
with respect to a finite set F' C ' by:
d"(2, %) = limsup |Vi| '#{v € Vi 3f € F, o;(f)v # ai(f)v}.
i—00

Strictly speaking this is a pseudo-distance since it is entirely possible that two different sofic
approximations satisfy d¥ (3, %) = 0 for all F C I". If d¥'(3,%) = 0 for every finite ' C T’
then an exercise shows that the sofic entropy with respect to ¥ equals the sofic entropy with
respect to X', So we call two sofic approximations that have this property equivalent.

If T" is amenable then in [ES11] it is shown that every sofic approximation to I is equivalent
to one obtained from finite unions of Fglner sets in a natural way. This completely describes
all sofic approximations to I'.

We will say that ¥ is by homomorphisms if each o; : I' — Sym(V};) is a homomorphism.
For example, if ¥ = {0;}$°, is any sofic approximation to a free group I' = (S) and ¥’ =
{o/}52, is the sofic approximation defined by: o} : I' — Sym(V;) is the unique homomorphism
satisfying
ol(s) =o0i(s) Vs e S

then ¥’ is by homomorphisms and it is equivalent to X.

Problem 4. If T' is an interesting group, such as the fundamental group of a surface, Fy x
Z,Fy x Fy, SL(2,7Z) x Z? or SL(3,7), is every sofic approximation to I' equivalent to one by

homomorphisms?

2.3 Topological sofic entropy

Given a countable group I', a sofic approximation ¥ to I', a compact metrizable space X,
and an action T' = (T9)4er on X by homeomorphisms, we will define the topological sofic
entropy hs (7). In a nutshell, the entropy is the exponential rate of growth of the number
of approximate partial orbits that can be distinguished up to some small scale.

First, we recall some basic concepts. A pseudometric on a space X is a function

p: X x X — [0,00) satisfying all of the properties of a metric with one exception: it is
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possible that p(x,y) = 0 even if x # y. If p is a pseudo-metric then a subset S C X is
(p, €)-separated if p(sq,s2) > € for all s1,89 € S with s1 # s9. Let N.(S,p) denote the
maximum cardinality of a (p, €)-separated subset of S. We also let py and p., denote the

pseudometrics on X< (for any integer d > 1) defined by

1/2
pm(zay) = mzaxp(xzayz)a /02 x, y ( ZP zzayz )

where z = (z1,...,24),y = (Y1,...,94) € X%
Given an action T' = (1Y),er on X, a map o : I' = Sym(d), a finite subset F* C I" and
§ > 0, let Map(T, p, F, §,0) denote the set of all z € X9 such that

po(Tlx,x00(f)<d YfeEF

where (TVz); = T'z; and (z 0 0([)); = @o(s); for all i.
In the literature, an element z € Map(7, p, F, §, o) has been referred to as a microstate,
a good model or a good map. These terms will be used informally and will not be defined

rigorously. The entropy of 7" with respect to p is

(T, p) = sup inf inf limsup Vi log (N.(Map(T, p, F. 5,7, poc))

e>0 FEL6>0 400
where F' € I' means that F' is a finite subset of I'. We will also write
hs(P~X, p) = hs(T, p)

if T is implicit.

Ezercise 7. Suppose I' is residually finite and has finite-index normal subgroups I' > N; >
Ny > -+ with \;N; = {e}. Let o; : I' = Sym(I'/N;) be the canonical homomorphisms.
By exercise d, ¥ = {o;} is a sofic approximation. Now suppose that z € X is stabilized
by (T9)4en, (so z is (T, N;)-periodic). Show that if z € X'/"i is defined by z,n, = T92

then z € Map(T, p, F, 9, 0;) for every F.§. It follows that the Y-entropy of 7" is at least the
exponential rate of growth of the (7, NV;)-periodic points.

A pseudometric p on X is generating for the action if for every x,y € X with = # y
there exists g € I with p(gz, gy) > 0.
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Theorem 2.2. Let '~ X be an action by homeomorphisms on a compact metrizable space.

If p1, po are continuous generating pseudometrics on X then

hE(Tu Pl) = h’E(Tv /)2)-

This theorem (and the definition of topological sofic entropy) is due to Kerr-Li [KL11b].
See also [KL13bl Proposition 2.4] and [KL16] for a simplified exposition.

Proof sketch. The first step is showing that we can replace a generating pseudometric p with
a metric p'. To be precise: let ¢ € £1(T") be a strictly positive function. Define
P (,y) =Y p(T%, To)é(g).
gel’

Then p’ is a continuous metric on X and
hE(Ta p) = hy (T’ Pl)-

Informally, this is because any microstate for '»X with respect to p is a microstate with
respect to p’ and vice versa, although the parameters F' and 0 may change.

We can now assume that p; and ps are metrics. The statement can now be derived from
the observation that for any € > 0 there is a § > 0 such that p;(z,y) < § = p2(x,y) < € and

vice versa. O

Definition 2. The Y-entropy of T is hy(T) := hx (T, p) where p is any continuous gener-

ating pseudometric.

Remark 2. The p,, appearing in the formula for hx (T, p) can be replaced with py without
affecting the definition of hx(T,p). Also the limsup can be replaced by a liminf or an
ultralimit; however these replacements can lead to different invariants because sofic entropy

depends on the choice of sofic approximation in general (see §4.T).

Ezercise 8 (Symbolic dynamics). Suppose A is a finite set. An element x € A" is written
as either a collection x = (x,)4er or a function x : I' = A. Let T' = (179)4er be the shift

action on Al defined by T9x(f) = x(g71f).

1. Let p be the pseudo-metric on AY given by p(x,y) = 1 if x, # y. and p(x,y) = 0

otherwise. Show that p is generating for the shift-action.
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2. Suppose X C Al is closed and shift-invariant. Given x € A%+, its pullback name is
i (x) € A, II7'(x)(g) = x(0:(9)""v).

Also let
PZ = Vi7" " dpyzi € Prob(A")

veV;

be its empirical distribution. Show that the entropy of the restriction of 7" to X

simplifies to

he(T | X) = inf inf lim sup Vit log #{x € AV : P%(0) > 1—6}.
>

1—00

where the first infimum is over all open neighborhoods © of X in A"
3. Show that hx(T") = log |A.
4. Show that if X C A" is not A" then hx(T | X) < log|A|.

5. Suppose I' is residually finite and has finite-index normal subgroups I' > Ny > Ny > - --
with M;V; = {e}. Let o; : I' = Sym(I'/N;) be the canonical homomorphisms. Let O
be an open neighborhood of X in A" and 6 > 0. Show that hx(T | X) is at most the

exponential rate of growth of the number of (T, N;)-periodic points z € A" such that
#{gN; € U'/N;: gz € O} > (1 —0)|'/N|.
Compare with the lower bound in exercise [7|

Theorem 2.3. [KL130] If " is amenable then topological sofic entropy agrees with classical
topological entropy.

Remark 3. The main tool involved in the proof of this theorem is a Rokhlin Lemma for sofic
approximations of countable amenable groups. This lemma allows us to express any sofic

approximation to an amenable group I' as essentially equivalent to a Fglner sequence.

Topological sofic entropy can also be defined in terms of open covers [Zhal2] (in a manner
similar to the original definition of topological entropy [AKMG65]) or in terms of sequences

of continuous functions [KLI1D].
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2.3.1 An application: Gottschalk’s conjecture and Kaplansky’s conjecture

Any self-map of a finite set satisfies the following property: if it is injective then it must be
surjective. This fundamental property is called surjunctivity. It has been generalized to
algebraic varieties and regular maps [Ax68] and proalgebraic varieties satisfying a soficity

condition [Gro99].

Conjecture 1 (Gottschalk’s Surjunctivity Conjecture). Suppose A is a finite set (called an
alphabet), T a countable group and ¢ : A¥ — AU a continuous I'-equivariant map. If ¢ is

imjective then it must be surjective.

It was this conjecture that inspired Gromov to invent sofic groups (although the name
‘sofic’, derived from the Hebrew word for finite, was coined by Benjy Weiss [Wei00]). Gromov
proved the conjecture holds for all sofic groups. A new proof, obtained by D. Kerr and H.

Li [KLI1Ib] goes as follows: assuming ¢ is injective,
hs(TAg(AY)) = hg(TAT) = log |A.

However, if ¢ is not surjective then hs(I'~g(AY)) < log |A| (because the image ¢(AY) has
trivial intersection with some finite cylinder set). This implies the Conjecture.

Now suppose that A is a finite field and ¢ is A-linear. In this case, we can think of ¢ as
an element of the group ring AI'. The theorem implies that the group Al is directly finite:
that is xy = 1 implies yx = 1 for all z,y € AI'. More generally, because all fields can be
embedded into an ultraproduct of finite fields, the same result holds when A is an arbitrary
field. This proves Kaplansky’s Direct Finiteness Conjecture for sofic groups. Actually, more

is true: Al is directly finite whenever A is a matrix algebra over a division ring [ES04].

2.4 Measure sofic entropy

There are two equivalent definitions of measure sofic entropy: one via pseudo-metrics (similar
to topological entropy) and one via partitions.

2.4.1 The pseudometric definition

Suppose X is a compact metrizable space, T' = (1) jer is an action on X by homeomorphisms

and p is an invariant Borel probability measure on X. Let Prob(X) denote the space of Borel
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probability measures on X. Recall that the weak™ topology on Prob(X) is defined as follows:

a sequence {fi, }nen converges to a measure i, if and only if for every continuous function

f: X —=C,
[ #duw s [ £ dns

as n — 0o0. By the Banach-Alaoglu Theorem, Prob(X) is compact in the weak* topology.

Given a pseudo-metric p on X, a finite subset FF C I, § > 0 and o : I' — Sym(V'), define
Map(T, p, F,0,0) as in §231 In addition, if O C Prob(X) is an open neighborhood of pu
then let Map(T', p, O, F’, §,0) denote the set of all z € Map(T, p, F’, §, o) such that z,uy € O
where uy denotes the uniform probability measure on V. These are the microstates that are
approximately equidistributed.

The sofic entropy of 7' with respect to p and X is

hs, (T, p) = sup i:%f Féfr ('151>1£ lim sup |V;| " log (N.(Map(T, p, O, F, 6, 0;), pos)) -

>0 i—o0
Intutively, this measures the exponential rate of growth of the number of microstates for the
action that are approximately equidistributed with respect to pu.

As in the topological case, a pseudometric p on X is generating with respect to T if for

every x,y € X with x # y there exists g € I with p(T9z,T9y) > 0.

Theorem 2.4. [KL11] For i = 1,2 let T; be pmp actions of T' by homeomorphisms on
compact metrizable spaces X; and p; be continuous generating pseudometrics on X;. If these

actions are measurably conjugate then

by (T, p1) = hiss g (T, p2).

Proof sketch. As in the proof of Theorem 2.2] we can assume, without loss of generality that
p1 and po are metrics, not just pseudometrics. Let ® : X; — X5 be a measure-conjugacy. By
Lusin’s Theorem, for every n > 0 there exists a compact set Y; C X; such that ® restricted
to Y) is uniformly continuous and p;(Y;) > 1 —n.

Recall that a subset Z C X is a continuity set if 11(07) = 0 where 07 = ZNX, — Z.
For simplicity suppose that Lusin’s set Y; defined above is a continuity set and that its image
®(Y)) =: Y, is also a continuity set. This does not have to be true but since the continuity

sets form an algebra that is dense in the measure algebra it is approximately true.
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The portmanteau Theorem states that a sequence {v,} of Borel probability measures in
Prob(X;) (say) converges to v, in the weak™® topology if and only if lim,, v,(Z) = v (Z) for
every continuity set Z C Xj. It follows that any microstate for I'\(X7, p1) pushes forward
under ¢ to a microstate for I'\( Xy, 11o) although the parameters qualifying how good (or
bad) the microstate is may change. The theorem follows from this.

O

Remark 4. The proof sketch above is very different from the proofs in [KL11b] which are
operator-algebraic. See also [KLI13b, Proposition 3.4].

Remark 5. In [Hay18] Ben Hayes relaxes the condition that X is compact to being merely

completely metrizable and separable assuming the measure satisfies a ‘tightness’ condition.

Definition 3 (Measure sofic entropy). The measure sofic entropy of the action 7" with

respect to X is

hz,u(T) = hz,m (Th Pl)

where I'~T1 (X1, p11) is any compact topological model for T~T (X, 1) and p; is any gener-

ating pseudo-metric on Xj.

Theorem 2.5. IfT" is amenable then measure sofic entropy agrees with classical Kolmogorov-

Sinai entropy.

Remark 6. There are two very different proofs of this result. The one in [KL13b] is based
on the sofic Rokhlin’s Lemma for amenable groups. The other in [Bow12b] is based on a
sofic-version of the Rudolph-Weiss Theorem that relative entropy is preserved under orbit-

equivalence with respect to the orbit-change sigma-algebra.

Remark 7. As in the topological case, the p., appearing in the formula for hy, ,(T', p) can be
replaced with py without affecting its value. Also the limsup can be replaced by a liminf
or an ultralimit; however these replacements can lead to different invariants because sofic

entropy depends on the choice of sofic approximation in general (see §4.1]).

Theorem 2.6. If T~ (K, k)" is a Bernoulli shift and ¥ is an arbitrary sofic approvimation
to I' then
hs o (CAKY) = H(K, k).
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The case in which H(K,k) < oo is proven in [Bowl0Ob]. The infinite entropy case is
handled in [KL11a].

Proof sketch. The lower bound is obtained as follows: fix an open neighborhood O, finite
FcTl'and § > 0. Let ¢ : V; & K be a random map with law equal to the product measure
ki, Let 5 : Vi = KT be the “pullback” defined by

6(v)(9) = d(0i(9) " v).
Then using Chebyshev’s inequality it is shown that with high probability, when ¢ is large,
¢ € Map(T, p, 0, F,d,0;). Here p is the pseudometric given by p(x,y) = px (z(e), y(e)) where
Pk is an arbitrary metric on K (which may be assumed to be a compact metrizable space).
The law of large numbers now gives the lower bound.

In the case H(K,k) < oo, the upper bound is shown as follows. Let ¢ : V; — K' be
any microstate. Let m : K¥ — K be projection to the identity coordinate. Then if ¢ is a
good enough microstate the composition 7 o ¢ pushes the uniform measure uy, forward to
a measure on K that is close to x in total variation distance. On the other hand, observe
that ¢ is essentially determined by 7 o ¢. So it suffices to observe that the number of maps
¢ . Vi = K such that ¢Luy, is close to k is approximately exp(H (K, x)|V;|). This is an

application of elementary combinatorics and Stirling’s formula. O

2.4.2 The partition definition

Definition 4. If ¥;, 3, are sigma-algebras on sets X, X5 respectively then a homomor-

phism between them is a map ¢ : ¥ — X5 such that for all A, B € ¥,

(AU B) = ¢(A) Uo(B), ¢(AN B) = ¢(A)Né(B), ¢(0) =0, (X1) = Xo.

Suppose I'~T(X, 1) is a pmp action. For simplicity, 79z is denoted by gz for g € I',x €
X.

Definition 5. Let P be a finite measurable partition of X, F' C I' a finite set with 1r € F',
and § > 0. Let P" = \/ ;. f~'P be the coarsest partition containing f~'P for f € F. If Q
is any partition, let o-alg(Q) be the smallest sigma-algebra containing Q. Also let 2" denote

the sigma-algebra of all subsets of V' and uy be the uniform probability measure on V.
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Given ¢ : I' = Sym(V), let Hom, (P, F,d,0) be the set of all homomorphisms ¢ :
o-alg(PF) — 2V such that

L. Y pepuyv(osd(P) & ¢(sP)) <6 forall s € F~' and

2. X aepr luv (9(A)) — u(A)] <.

The sofic entropy is defined as the exponential rate of growth of the number of such ho-
momorphisms that can be extended to a more refined partition. To be precise, if Q < P is
a partition coarser than P and ¢ : o-alg(PF) — 2V is a homomorphism then let ¢ | Q be
the restriction of ¢ to Q. Let | Hom, (P, F,d,0)|o be the cardinality of the set of restrictions
{¢1Q: ¢ € Hom,(P, F,§,0)}. Finally, for a sigma-sub-algebra 8§ C B define

hs w(T,8) = hy (I X, 8) = sup 1%f }I&fp (1$r>1£ lnzriigp | Z|

log | Hom,, (P, F, 0, 0;) o

where the sup is over all finite partitions Q C 8, the first inf is over finite partitions P with

Q < P C 8 and the second inf is over all finite subsets of I".

Recall that a sigma-sub-algebra 8§ C By is generating for T if By is the smallest

T'(T")-invariant sigma-algebra containing 8 up to sets of measure zero.

Theorem 2.7. [Kerld] If § C Bx is a generating sigma-sub-algebra then hy, ,(T,8) =
s, (T).

Remark 8. In the special case in which 8 is the sigma-algebra generated by a finite partition,

the definition above is easily seen to be equivalent to the one given in the introduction.

2.5 The f-invariant

Let S be a finite or countable set and I' = (S) the free group generated by S. Let I~ (X, p)
be a pmp action and P a measurable partition of X with finite Shannon entropy. Define

Fu(T,P) == H,(P)+ > _ (Hu(PV sP) - 2H,(P)),

ses

fu(T,P) := inf F,(T,P")

Wwer

where PV = Vwew w~tP. For simplicity, we have written sP instead of T*%P.
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Theorem 2.8. [Bowl0d] If P,Q are generating partitions each with finite Shannon entropy
then f,(T,P) = f.(T,Q).

The f-invariant of the action is defined by f,(T') = f.(T,P) where P is any generating
partition with finite Shannon entropy. The f-invariant is undefined if no such partition

exists.

Remark 9. This was proven in [Bowl0d] under the assumption that S is finite. The proof

when S is countable is essentially the same.

Proof sketch. Given two partitions P, Q, their Rokhlin distance is defined by
d(?,9) = H,(P|Q) + H,(Q|P).

Partitions that agree up to measure zero sets are identified. With this convention, the
Rokhlin distance really is a distance function on the space of all partitions with finite Shannon
entropy, which is denoted by Part(X, u).

Two partitions P, Q are combinatorially equivalent if there exist finite subsets F, K C
I such that Q < PF and P < QF. The first step is showing that if P € Part(X, u) is a
generating partition then its combinatorial equivalence class is dense in the subspace of all
generating partitions with finite Shannon entropy. Since F' is continuous on Part(X, u), f
is upper semi-continuous. It now suffices to show that if P, Q are combinatorially equivalent
then f,(T,P) = f.(T,9Q).

The partition Q is a simple splitting of P if there is an element s € SU S™! and a
partition R < P such that Q = PV sR. We say Q is a splitting of P if there is a sequence
P =90,9,...,9, =9 such that Q;,; is a simple splitting of Q; for 0 < i < n. The second
step is showing that if Py, Py are combinatorially equivalent then there exists a common
splitting Q of both of them. Moreover, splittings preserve the combinatorial equivalence class.
Therefore, it suffices to show: if Q is a simple splitting of P then F,(T,Q) < F,(T,P). This
fact follows from a short calculation. For simplicity, assume R < P, ¢t € S and Q = PV tR.

31



Then

F(T,Q) = Hu(Q)+ Y H,(QVsQ)—2H,(Q)

seS
= Hy(P)+ H,(QP) + > H,(PV sP) — 2H,(P) + H,(QV sQPV sP) — 2H,,(Q|P)
ses
= Fu(T.P)+ H,(QP) + > H,(QV sQPV sP) — 2H,(Q|P)
seS

= Fu(T,P)+ H,(QP) + > H,(QPV sP) + H,(sQPV sPV Q) — 2H,(Q|P)

ses
— E(T,P)+ (HH(QKP VHP) + H,(tQ|P VPV Q) — Hu(Q\iP)>
+ Y H,(QIPV sP) + H,(sQIPV sPV Q) — 2H,(QP).
seS—{t}
Observe that H,(Q|PVsP)+H,(sQ|PVsPVQ)—-2H,(Q|P) <0 for every s € S and moreover
if s =t then H,(Q|PV sP) =0. So

F.(T,Q) < F,(T,P) + H,(tQ|PV tPV Q) — H,(Q|P) < F.(T,P).
]

Remark 10. The proof shows a little more: partitions can be partially ordered by P < Q if Q
is a splitting of P. Then f,(7T,P) is the limit of F),(T, Q) as Q tends to infinity in this partial
order. Moreover,

fu(T,P) = lim F,(T,P"")

n—oo
where W, is any increasing sequence of finite subsets of I" such that (1) the induced subgraph
of W, is connected in the Cayley graph of (I',S) and (2) U,W,, = I'. Using this last fact,
a direct computation shows that the f-invariant of the Bernoulli shift T~ (K, x)" is the

Shannon entropy H (K, k).

Why do we care about the f-invariant? In contrast to sofic entropy, the f-invariant
tends to be easy to compute. For example, for Markov processes f = F (see §3.3]). Morever,
it is additive under direct products, satisfies an ergodic decomposition formula, a subgroup
formula, has a relative entropy theory and satisfies some cases of Yuzvinskii’s formula. These

results do not hold for sofic entropy in general.
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2.5.1 Other formulations and other groups

If P is a Markov partition then F), (T, P) = f,(T,P). Using this fact, the following alternative

formula for the f-invariant was found in [Bow10c]. Define

FX(T,P) )+ > (hy — H,(P)).

seS

Theorem 2.9. [Bowl(d

fu(T,P) = mf F(T, PY) = lim Fi(T , PV

n—oo

where the limit is with respect to any increasing sequence of finite subsets of T' such that (1)

the induced subgraph of W, is connected in the Cayley graph of (I',S) and (2) U,W,, =T.

The theorem above leads to the following idea: suppose for ¢ = 1,2, I'; are amenable
groups, A; <T'; are subgroups and ¢ : A; — A, is an isomorphism. Let I' = I'; %, I'y be the
amalgamated free product. Let I'~T(X, ) be a pmp action and P a partition of X with

finite Shannon entropy. Define
FT,?) = h,(I''nX,P) + h,(Tonn X, P) — h, (AnNX, P)

where A < T is the subgroup corresponding to A;, A, and, for example, h,(I';~X,P) is the

classical entropy rate of P with respect to I';-action. Also let
_ W
fu(T,P) = I/%/n@fp F.(T,P").

As above, it can be shown that if P, Q are generating partitions with finite Shannon entropy

then f,(T,P) = f,(T, Q) and so this determines a measure-conjugacy invariant for I'-actions.

Problem 5. This idea has not appeared yet in the literature and is worthy of further ex-
ploration: can one extend it to other graphs of groups? Does it depend on how the group
is represented as a graph of groups? Can one obtain results for such invariants similar to
the results for the f-invariant of free group actions (for example, the sofic interpretation,
the ergodic decomposition formula, the subgroup formula, and so on)? For example, the
fundamental group of a closed surface of genus g > 2 can be written as a free product of free

groups amalgamated over an infinite cyclic subgroup.
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2.5.2 The sofic interpretation of the f-invariant

In order to interpret the f-invariant as a kind of sofic entropy, we introduce random sofic
approximations and their sofic entropies. Let {V;}; be a sequence of finite sets and for
each i, let P; be a probability measure on the space of maps I' — Sym(V;). The sequence
P = {P;}s°, is a random sofic approximation to I' if for every finite set F' C I" and

0 >0,

1= lim P{o: " = Sym(V;) : o is (F,0d)-trace preserving},

1—>00

e there exists I such that i > [ implies P;-a.e. o is (F,d)-multiplicative,

Each definition of ¥-entropy given above can be generalized to P-entropy by replacing N,(-)
or |Hom,(-)| with its expectation with respect to P;. For example, suppose InTX is a
continuous action on a compact space, p an invariant probability measure on X and p
a continuous generating pseudo-metric. Then the topological P-entropy and measure P-
entropy are:

hIP(Tv p) ‘= sup inf inf lim sup H/i|_1 lOgEZ (NE(Ma‘p(T7 Ps Fv 57 Ui)? poo))

i
>0 FELO>0 00

hIP,,u(Tu p) ‘= sup inf inf inf lim sup H/i‘_l log EZ (NE(Map(T7 Ps Ov Fv 57 Ui)v poo))

>0 O FEN6>0 ;4o
where E; denotes expectation with respect to P;. The obvious analogs of Theorems [2.2], 2.4]
and 2.7 remain true and the proofs are essentially the same.
Now let I' = (S) be a free group where S is finite or countable. The set of homomorphisms
from T to Sym(n) is naturally identified with the set Sym(n)® of all maps from S to Sym(n).
Let 7, be the uniform probability measure on Sym(n) and P,, = 72 be the product measure

on Sym(n)?.

Ezercise 9. P = {IP,}°°, is a random sofic approximation to I'.
Theorem 2.10. If P is a generating partition with finite Shannon entropy then

fu(T) = e (T).
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That is, the f-invariant of the action is the same as the sofic entropy with respect to the

random sofic approximation P.

Remark 11. This is proven in [Bowl0a] when S is finite. The case of countably infinite S is

similar.

Proof sketch. For simplicity, assume S is finite, P is finite and p(P N T°Q) is rational for
every P.(Q € P and s € S. Given o : I' — Sym(n), let Part(o,P) be the set of all maps
¢ : [n] — P such that

nu(P s~ Q) = #{v € [n] : ¢(v) =P, ¢(o(s)v) = Q}.

By direct combinatorial arguments, one can obtain an exact formula for E[| Part(o, P)|] where

o : ' = Sym(n) is uniformly random. An application of Stirling’s formula shows

E,(T,P) = limsupn " log E[| Part(c, P)]].

n—oo

To handle the case in which u(P NT*Q) is irrational, let Part(o, P, €) be the set of all maps
¢ : [n] = P such that

pPNsT'Q) —nT4H{v € [n]: ¢(v) = P g(o(s)v) = QY| <e.
A perturbation argument and Stirling’s formula implies

F.(T,?) = li\:zn limsupn ! log E[| Part(o, P, €)|] = lim lim inf n~! log E[| Part (o, P, €)|].

0 nooo e\0 n—oo

The Theorem follows by replacing P with P" and taking the infimum over finite W c I'. O

Problem 6. Unlike the f-invariant, hp ,(T) is well-defined even if T~" (X, 1) does not have
a generating partition with finite Shannon entropy. The f-invariant satisfies many useful
identities: it is additive under direct products, satisfies an ergodic decomposition formula, a

subgroup formula and possesses a relative version. Can any of these results be extended to

hp . (T)?
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2.6 Rokhlin entropy

Let Bx denote the sigma-algebra of measurable subsets of X. For any subcollection F C
By, let o-alg(F) C Bx denote the sub-sigma-algebra generated by F and, if T~?X is
a measurable action then let o-alg(7T,F) denote the smallest sub-sigma-algebra containing
TIF for every g € I' and F' € F. We do not distinguish between sigma-algebras that agree

up to null sets. Thus we write F; = F; if F; and Fy agree up to null sets.

Definition 6 (Rokhlin entropy). The Rokhlin entropy of an ergodic pmp action I~ (X, p)
is defined by
RRO(T) = inf H,(P)

where the infimum is over all partitions P with o-alg(T,P) = By. For any F C By the
relative Rokhlin entropy is defined by

RO (T|F) = inf 7 (P|5)

where the infimum is over all partitions P such o-alg(T,P U F) = Bx. If T is non-ergodic

then the Rokhlin entropy is defined by
hROk(T) — hROk(T‘jT>
where Jr denotes the sigma-algebra of T'(I')-invariant Borel sets.

Rokhlin entropy is clearly a measure-conjugacy invariant. Moreover, in case I' is amenable,
it agrees with Kolmogorov-Sinai entropy [STDI16] (the special case in which A = Z was han-
dled earlier by Rokhlin [Roh67]). However, it can be difficult to compute. For example, it is
not known whether every countable group has an ergodic essentially free action with positive

Rokhlin entropy. The only known lower bound is:

Proposition 2.11. For any pmp action T~T (X, p) and any sofic approzimation 3, R (T) >
hs, . (T).

Exercise 10. Use the partition definition of ¥-entropy to prove Proposition 2.11]

Question 1. Suppose T' is an essentially free ergodic pmp action. Does hy ,(T) # —oo

necessarily imply hy ,(T) = hR5(T)?
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Question 2. Suppose I is a finitely generated free group, T is an essentially free ergodic pmp

action with a finite generating partition P. Is the difference
fu(T) = B°(T)

an invariant of the weak equivalence class of the action? The notions of weak containment
and equivalence for group actions were introduced by A. Kechris as an analogues of weak

containment and equivalence for unitary representations [Kecl0, I1.10 (C)].

2.6.1 Applications to the classification of Bernoulli shifts

By Theorem 2.6] if I is sofic then the sofic entropy of the Bernoulli shift I~ (K, k)! is the
Shannon entropy of the base H(K, k). It is clear that the Rokhlin entropy of this shift is
< H(K, k) since the partition P = {P, : k € K} defined by P, = {x € K" : z(e) = k} is
generating and H,(P) = H(K, k). So in this case at least, the Rokhlin entropy agrees with
the sofic entropy.

What if ' is non-sofic? Of course, we do not know whether non-sofic groups exist but
even in this case there are some very interesting results. To describe them, let h?j;‘(F) be

the supremum of hR°%(T") over all essentially free, ergodic actions T of I' with finite Rokhlin

entropy. Of course, when I is sofic then hgf;‘(f‘ ) = 4+00. We do not know whether or not

hRok

e (I') = +oo for all countable groups. However:

Theorem 2.12. [Sewl5b] hR* (T~ (K, k)V) = min(H (K, k), hREX(T)).

sup

Remarks on the proof. The full proof is quite intricate and the reader is encouraged to see
[Sew15b] for details. It is a proof by contradiction. Assuming the result is false, there exists

an essentially free ergodic action T" with
R (K, k)Y < BRNT) < H(K, k).

From this, one constructs a I-equivariant Borel map ® : X — K' such that (1) ® is an
isomorphism onto its image, (2) @, is close to xT in the weak* topology. Using upper semi-
continuity of Rokhlin entropy this implies a contradiction. The construction of ® is highly

non-trivial. It combines tools from Seward’s generalization of Krieger’s Generator Theorem

[Sew14b] with an Abert-Weiss factor map [AW13]. O
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It follows that if AR°%(I") = +oo then Rokhlin entropy distinguishes Bernoulli shifts.

sup

hRok

sup

Moreover, Seward proves in [Sewl5b] that if (I') < oo and H is any infinite locally

finite group then hgf;f(l“ x H) = 0. This is a most interesting condition! It implies that all
ergodic actions of I' x H have Rokhlin entropy zero, even the Bernoulli shift with base space
([0, 1], Leb)! Thus if it is true that for every countable group I' there exists some ergodic
essentially free action with positive Rokhlin entropy, then Bernoulli shifts are distinguished

by Rokhlin entropy.

2.7 Naive entropy

Definition 7. Let T (X, ) be a pmp action and P a partition of X. The naive entropy
of P is
naive o -1 w
h, (T,P) = V%/n@fF|W| H(P™Y)

where PV =\/, ,,(T*)"*P. The naive entropy of T is
hEalVe (T) — S_l;)p hEalVe ({277 iP)
where the supremum is over all finite-entropy partitions P.

It is an exercise to show that if I' is amenable then naive entropy coincides with Kolmogorov-

Sinai entropy. However if I' is non-amenable the situation is very different:

Theorem 2.13. If ' is non-amenable and T~"(X, ) is a pmp action then R(T) €
{0, +00}.

Proof. Suppose there is a finite-entropy partition P of X with hzaiVC(T, P)>0. Let W
be finite. Then

- s e H(PWVE)|WF
naive _ -1 Fy _ M
(T, P™) = }IéfF\F| H,(P"") = }Iéfp | BEEE

Since I' is non-amenable, for every real number r > 0 there is a finite W C I" such that

nf |WF|
l}ﬁ@F |F|

>7r

Hence supyycr hzaiVC(T, PW) = +o00 proving the theorem. O
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In many respects naive entropy behaves better than sofic entropy. For example, it is
monotone under factor maps and additive under direct products. Moreover, the naive Pinsker
algebra is naturally defined as the collection of all measurable subsets A C X such that the
partition P = {A, X — A} has zero naive entropy. An exercise shows that this really is a

sigma-sub-algebra that contains all zero-naive-entropy factors. Moreover:
Proposition 2.14. For ergodic actions, naive entropy is an upper bound for Rokhlin entropy.
The proof of this requires the following surprising result due to Brandon Seward:

Theorem 2.15. [Sewl5b] Let T' be an ergodic pmp action with a generating partition P with
finite Shannon entropy. Then
hROk(T) < hzaive(T’ ﬂ))

Proof of Proposition[2.1]. Let T be an ergodic pmp action with naive entropy zero. It
suffices to show that, for every € > 0, there exists a generating partition with Shannon
entropy < e.

Let P be a countable generating partition for 7. Such a partition always exists by a
general result due to Rokhlin [Roh67]. It might, however, be the case that P has infinite
Shannon entropy. In any case, there exist finite partitions Q; < Qy < --- < P such that
P =V, Q. We apply Theorem [2ZT5 to the factor generated by Q;. So there exists a partition
R; such that H,(R;) < €/2' and R; generates the same factor as Q;. It follows that if
Reo =V, R;, then H,(R) < € and R is generating. O

2.7.1 Applications to Gottschalk’s Conjecture

Theorem 2.16. [Sewl5l] If hRX(T') = +oo then Gottshalk’s Conjecture (from §2.31) is

sup
true for T.

Proof sketch. Let A be a finite alphabet and let u4 denote the uniform probability measure
on A. Assuming ® : A" — Al is continuous, I' equivariant and injective, Theorem 212
implies

AR (A, ug)") = log |[A] = WRM(T (AT, ,uY)).
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Using Theorem with the canonical partition, it can be shown that if ® is not surjective
then
RRR (T (AT, d,u))) < log | Al

This contradiction proves the theorem. O

2.7.2 Topological naive entropy
Recent work of Peter Burton [Burl7] introduced the following topological counterpart:

Definition 8 (Topological naive entropy). Let I'~T X be a continuous action on a compact
metrizable space. Given an open cover U of X, let N(U) be the smallest cardinality of a

subcover. The naive entropy of U is
R™e(T U = inf |F|™log(N(UF))
Ferl
where U” is the open cover V er(T7)~'U. The naive entropy of T is
hnaive(T) = sup hnaive (T, u)
u
where the supremum is over all finite open covers.

Burton shows that topological naive entropy provides an upper bound for measure naive
entropy and that distal systems have zero naive entropy in both measure and topological
senses when I' has an element of infinite order. He also shows that the generic action of
the free group by homeomorphisms on the Cantor set has zero topological naive entropy.

However the following question appears to be open:

Question 3. Does every countable group admit an essentially free pmp action with zero naive

entropy?

3 Special classes of actions

3.1 Trivial actions

[t might come as a surprise that the trivial action of I on (X, i) is interesting, from the point

of view of sofic entropy theory. To explain, fix a sofic approximation ¥ = {0, },en to I' and
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a standard probability space (X, p) (which may be atomic). The trivial action 7x = (7% )ger
on X is defined by 7%y =y for all y € X and g € I'. We will show that hy ,(7x) € {—00,0}
and that both cases occur. The upper bound hsy, ,(7x) < 0 can be derived directly.

3.1.1 Expanders

For simplicity, suppose I' is finitely generated and let S C I' be a finite generating set.
Let ¥ = {0, : I' = Sym(V},)} be a sofic approximation. Let G, = (V,,, E,,) be the graph
with edges {v,0,(s)v} for v € V,,, s € S. The sequence of graphs {G,}, is an expander
sequence if there is an € > 0 such that for every subset A C V,, with |A,| < |V,|/2,

|0A,| > €|A,|

where 0A,, is the set of edges e € E,, with one endpoint in A,, and one endpoint not in A,,.

In this case, we say X is a sofic approximation by expanders.

Remark 12 (Actions on ultraproduct spaces). The set V,, can be thought of as a probability
space endowed with the uniform probability measure. The ultraproduct of the V,,’s forms a
nonstandard probability measure space on which I' acts by measure-preserving transforma-
tions [ES12]. If ¥ is by expanders then the action I' on this ultraproduct is ergodic. On the
other hand, if the action is ergodic then there is an equivalent sofic approximation >’ such
that > is by expanders. In this case, Y is said to be an ergodic sofic approximation

[Hay17b].

Ezample 1. G. Margulis showed that if I' has property (T) and N; < IT' is a decreasing
sequence of finite-index normal subgroups of I" then the Schreier coset graphs of I'/N; form
an expander sequence. Therefore, the sofic approximation ¥ = {o; : I' = Sym(I'/N;)};
given by the canonical actions of I' on I'/N; by left translation is by expanders. Gabor Kun
recently proved every sofic approximation of a Property (T) group is equivalent (in the sense

of §2.2.4)) to one that is a disjoint union of expanders [Kunl6].

Proposition 3.1. If ¥ is a sofic approximation by expanders and (X, i) is non-trivial (this
means: for every x € X, p({z}) < 1) then the trivial action of I' on (X, ) has hy ,(Tx) =

—0Q.
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Proof sketch. Let A C X have 0 < u(A) < 1/2. If ¢ : V,, — X is a microstate then ¢—1(A)
should have cardinality approximately j(A)|V,|. Moreover the boundary of ¢~'(A) should
have small cardinality relative to |V,| because A is an invariant set. However this contradicts
the expander property. So no such microstates exist. More precisely, Map(7x, p, O, F, d, 0,,)
is empty if F' C I' contains a generating set, 6 > 0 is sufficiently small, O is sufficiently small

and n is sufficiently large. Here p is any metric on X. O

3.1.2 Diffuse sofic approximations

Next we define a sufficient condition on a sofic approximation implying the trivial action has

sofic entropy zero.

Definition 9. Let ¥ = {0,,} be a sofic approximation to I'. The density of a sequence
{A,} of subsets A, CV,, is
A
density({4,}) := lim A

n—oo |V,,|

provided the limit exists.
A sequence A, C V, is asymptotically invariant if for every g € I' the sequence of
symmetric differences {A,, A 0,(9)A,} has density zero. If {A,} is asymptotically invariant

and has positive density then there exist maps o/, : I' — Sym(A,,) satisfying

o [0 €40t a(a)o = on(g)0}] _

n—o0 ‘An|

1

for every g € I'. The sequence ¥’ = {0/} is a sub-sofic approximation of ¥. It is well-
defined only up to edit distance zero (see §2.2.4)). It is called proper if the density of {4, }
is strictly less than 1. The sequence X is diffuse if every sub-sofic approximation ¥’ admits

a proper sub-sofic approximation.

Ezample 2. Sofic approximations can be amplified as follows. Let {WW,,} be a sequence of

finite sets. Given ¥ = {0,} as above, define
ol : I'= Sym(V,, x W,)

by o/.(9)(v,w) = (o.(g)v,w). If [W,| = oo as n — oo then ¥’ = {0} } is a diffuse sofic

approximation.
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Proposition 3.2. If 3 is diffuse then the trivial action of I" on (X, u) has zero X-entropy.

Proof sketch. The upper bound can be obtained directly. To prove the lower bound, let G
be the set of all numbers p € [0, 1] such that p is the density of {A,,} for some asymptotically
invariant {A,}. We claim that G = [0,1]. To see this, let p € [0, 1] be arbitrary and let
a=sup{z € G: x < p}. A diagonalization argument shows G is closed. Therefore, a € G
and there exists asymptotically invariant {A,} with density a.

Another diagonalization argument shows there exists an asymptotically invariant se-
quence {B,} with A,, C B,, and density({B,}) = b where b > p is minimal subject to these
conditions. Note that B, \ A, is asymptotically invariant. Because ¥ is diffuse, either a = b
(in which case a = p € G) or there exists an asymptotically invariant sequence {C,} with
A, Cc C, C B, and

a < density({C,,}) < b.

This contradicts the choice of a,b. So G = [0, 1] as claimed.

Now let P = {P,..., P} be a finite partition of X with 0 < u(P;) < 1 for all i. By the
claim above there exists an asymptotically invariant sequence {Q1,}, with density p(Fy).
Apply the claim again to the complement of ()1 ,, in V,, to obtain an asymptotically invariant
sequence {Qan}n with @1, N Q2, = 0 and density p(P,). Continue in this fashion to
obtain a sequence {Q,} of partitions Q,, = {Q1, ..., Q. } such that each sequence {Q;}n
is asymptotically invariant and has density u(P;). This shows there exist microstates (with
respect to the partition definition) for the trivial action of I" on X and therefore hy, ,(7x) > 0.

O

3.1.3 The f-invariant

Theorem 3.3. Let (X, i) be a probability space with finite Shannon entropy H(X, ). Then
f,u(TX> = _(T - 1)H(X7 :U’)

Proof. Because H(X, 1) < oo we may assume X is countable. Let P be the partition into
points. Then f,(7x) = F,(7x,P) = —(r — 1)H,(P). O
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3.2 Bernoulli shifts

Theorem 3.4. For any countably infinite group T, if (K, k), (L, \) are probability space with
the same Shannon entropy then the corresponding Bernoulli shifts T~ (K, k)' and T~ (L, )T
are measurably conjugate. In particular, if T is sofic or hR%(T") = +o0o then Bernoulli shifts

sup

over I' are completely classified up to measure-conjugacy by Shannon entropy of the base.

The first statement is outlined in §7.1 The second statement follows from Theorems
and 2.121 It is unknown whether the second statement holds for all countably infinite

groups.

3.3 Markov chains

Recall the definition of a Markov chain over a free group from §I.4l

Theorem 3.5. Let X = (X)) er be a stationary process over the free group I' = (sq,...,s,).
Suppose the state space K is countable and H(X.) < oco. Let p = Law(X) and T~K" the
shift action. Then

fM(FmKF) < FM(?) = H(X.) + ZH(X6|XS) — H(X.)
seS
where P is the canonical "time 07 partition of K'. Moreover equality holds if and only if X

1s Markov.

Remark 13. In the case the rank r = 1, this formula reduces to the well-known formula for
the entropy of a Markov chain as the entropy of the present conditioned on the immediate

past: h(X) = H(X(]‘X_l)

Proof sketch of Theorem 3.3 (details in [BowI0d]). Since f,(I'~K")is the infimum of F),(Q)
over all splittings Q of P, the inequality < is immediate. So it suffices to show that if Q is
a simple splitting of P then F,(Q) = F,(P) if and only if X is Markov in the direction of
the simple splitting. This can be achieved by direct computation following the steps in the
proof sketch of Theorem [2.8]

]
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Ezample 3 (The Ising Model). Let K = {—1,1}. Given € > 0 we consider the Markov chain
X = (Xg)ger over I' = (sq, ..., s,) with state space K satisfying:

P(X,=-1)=P(X.=1)=1/2

P(X,=kX,=k)=1—¢, P(X.2kX,=k) =c¢

for every k € K and s € {sy,...,8.,5]",...,5'}. The f-invariant of this process, denoted

f(X), is
f(X)=—(r—1)log(2) — relog(e) — r(1 — €) log(1 — ¢).

In the limiting case ¢ = 0, the law of X is equally distributed on only two atoms: all
0’s and all 1’s. In this case, f(X) = —(r — 1)log(2) < 0. From the sofic interpretation of
the f-invariant §2.5.2] this means that for most homomorphisms ¢ : I' — Sym(n), there are
no good models/microstates for this process. This is because the graph (V) E) defined by
V =[n]and E = {(v,0(s;)v) : v € [n],1 < i < r} is typically an expander. As in §3.0]
expansitivity implies there are no good models for a non-ergodic action.

If € is positive but small and r > 1 then the f-invariant is still negative and so it cannot
be measurably conjugate to a Bernoulli shift. However the Markov chain is mixing. By
contrast, every mixing Markov chain over the integers is isomorphic to a Bernoulli shifts

[FO70].

Problem 7. Classify mixing Markov chains up to measure-conjugacy. If two mixing Markov
chains are spectrally isomorphic and have the same f-invariant are they measurably conju-

gate?

While it is straightforward to compute the f-invariant for Markov chains, there are no
known methods for computing the sofic entropy with respect to a given sofic approximation.

In particular the following is open:

Question 4. Does the sofic entropy of the Ising model depend on the choice of sofic approxi-
mation? To avoid trivialities, we assume the approximation is such that the sofic entropy is

non-negative.

Remark 14. Markov chains are used for counterexamples. In §IT.4.2)it is shown that the Ising

model with small transitive probabilities is uniformly mixing but does not have completely
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positive entropy (CPE). By contrast it was shown in [RW00| that for Z-actions, CPE and
uniformly mixing are equivalent properties. In §8.2la topological Markov chain is constructed

that has multiple measures of maximal f-invariant. This is impossible if I' = Z.

Remark 15. Markov chains have also been used to obtain positive general results by using
that an arbitrary invariant measure can be approximated (in the weak™ sense) by measures
that are multi-step Markov chains. These results include: a relative entropy theory for the f-
invariant §I0] a partial Yuzvinskii’s formula §3.4] a formula for the restriction to a subgroup

§4.2 and an ergodic decomposition formula §6.11

Ezxample 4 (Tree Lattices). Let Ty be the 2d-regular tree and A < Aut(7,) a lattice.
Because the free group F, of rank d is also a lattice in Aut(75y), it acts by measure-preserving
transformations on the quotient Aut(754)/A. In general, it is an open problem to compute
either the sofic entropy or the f-invariant for these homogeneous actions. However there is
at least one special case in which the action is isomorphic to a Markov chain and therefore
its f-invariant can be computed explicitly. For simplicity, let us assume d = 2. We consider
the case A = Fy = (a, b).

We assume Fy acts simply transitively on the vertices of T;. By fixing a vertex vy, we
identify I, with the set of vertices via the map g — gvy. Let E (Ty) be the set of directed
edges of Ty and Loy : E(Ty) — S the standard labeling: Lo((guvo, gsvg)) = s for s € S.
Note that if e € E(T4) and € denotes the same edge with the opposite orientation then
Lo(¢) = Lo(e)™t.

More generally, a legal labeling of 7T}, is any map L : E (Ty) — S satisfying the following.

e Forv e V(Ty), let N*(v) and N~ (v) denote the set of edges directed out and directed
into v (respectively). Then L is 1-1 on NT(v) and on N~ (v).

o for every e € E(T}), L(¢) = L(e)™ 1.

Aut(Ty) acts on the set of legal labelings, denoted £, by gL = L o g~!. This action is
transitive and the stabilizer of Ly is Fy. Therefore we can identify £ with Aut(T})/Fs.
Let K = Sym(S). For L € £, let 2, € K" be the map

z1(9) = Loo (L | N*(gug)) ™"
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It is straightforward to verify that z,, = gzr. So the map L — x gives an embedding
of £ into KT. Moreover it pushes forward the Haar measure on Aut(7y)/F, = £ onto a
Markov measure on KT denoted by p. If X = (X,),er is a stationary process with law p
then for any s € S, the pair X, and X is uniformly distributed over the set of pairs of
permutations (7, ) € K X K with the property that if ¢ € S is such that m(tf) = s then
mo(t7') = s7!. The number of such pairs is 4!3!. So H(X., X,) = log(4!3!). Moreover X, is
uniformly distributed over K. So H(X.) = log(4!). So

F(Far Aut(Ty)/Fy) = £(X) = —3log(4!) + 2log(413) = log(3/2) > 0.

It is an open problem whether Fo~ Aut(7y)/F, is isomorphic to a Bernoulli shift or to a

factor of Bernoulli shift.

3.4 Algebraic dynamics

Let X denote a compact group and Aut(X) the group of all automorphisms of X. Nat-
urally, any automorphism preserves the Haar measure p. Therefore any homomorphism
[' = Aut(X) induces a measure-preserving action I'» (X, ). The goal of algebraic dynam-
ics is to relate dynamical properties of the action I'» X to algebraic and analytic properties
of the homomorphism I' — Aut(X). Such actions have been explored in great detail when
I’ = Z¢ (see the book [Sch95]).

A general procedure for computing the entropy of algebraic Z-actions was obtained by
Yuzvinskii in the 1960s [Juz65al, [Juz65b] and extended to Z¢ by Lind-Schmidt-Ward [LSW90].
This procedure rests on Yuzvinskii’s addition formula and the special case of principal al-
gebraic actions. These are explained next along with (partial) results in the non-amenable
case. We also present recent results on: Pinsker algebras of algebraic actions, CPE, mixing
properties and the coincidence of measure entropy and topological entropy. This area is

rapidly developing!

3.4.1 The case ' =7

This section is meant to motivate the results for more general groups by explaining the case

I' = Z in detail.
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Theorem 3.6. Suppose
1Y ->X->X/Y -1

is an exact sequence of compact metrizable groups and Tx € Aut(X) is an automorphism

that leaves Y invariant. Then
h(Tx) = h(Ty) + h(Tx)y)

where Ty € Aut(Y), Tx/y € Aut(X/Y) are the induced automorphisms and the entropy is

either topological or with respect to Haar measure (these two cases coincide).

This theorem was first proven by Yuzvinskii [Juz65b].

We will apply the above theorem to principal algebraic actions. If f =37 ¢’ € Zz]
is a polynomial and z € T? (where T = R/Z is the 1-torus as an additive group) then the
convolution f * z € T? is defined by

(f * Z)n = Z CmZn—m
mEeZL

where we set ¢, = 0if m <0 or m > s. Let
X;={(z)€Tl: f**z=0}

Note that X is a compact abelian group and the shift action Ty : Xy — Xy, Ty(x); = zip1
is an automorphism.

If f, g € Z[z] are non-zero polynomials then there is an exact sequence
0= Xy — Xy = Xyg—0

where the map X,y — X, is convolution with f. So Yuzvinskii’s addition formula implies
h(Tyy) = h(Ty) + h(Ty). In other words, the map f +— exp(h(1y)) is multiplicative. There
are only a few multiplicative functions on polynomials. For example, the leading coefficient
is one. The product of all roots contained in some fixed subset of C is another. So perhaps

it is not too suprising that

h(Ty) = log|cs| + Z max(0, log|r;|)

i=1
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where ¢, is the leading coefficient of f and rq,..., 7, are its roots.
This formula is most easily confirmed in the special case that ¢, = 1 and ¢y = £1 (where

¢o is the constant term of f). In this case the map
(LL’Z) S Xf — (SL’(], S ,S(Zs_l) e T*

induces a measure-conjugacy between the shift 7 and the linear map

The latter map has entropy equal to Y _, max(0,log|\;|) where Ay, ..., A, are its eigenvalues
(by Pesin’s entropy formula). These eigenvalues are exactly the roots of f because f is its
characteristic polynomial.

Using Jensen’s formula, we can rewrite the above formula as

W(Ty) = /0 log | (exp(2miz))| dz.

We will now show how to generalize the formula on the right to arbitrary countable groups.
We view f as an element of the group ring CZ (by identifying f with > ¢,n). We can
view CZ as a subring of B({*(7Z)), the algebra of bounded operators on ¢*(Z), via

E Cpn > Cpo™
n

where >~ ¢,n € CZ is a formal sum and o : (*(Z) — (*(Z) is the shift-operator o(z); = x;_;.
The von Neumann algebra of Z, denoted LZ, is the weak operator closure of CZ in B(¢*(Z)).
The trace on LZ is defined by

tr(x) = (xdo, do)

where &y € (*(Z) is the Dirac function supported on 0 € Z.

The Fourier transform F : (2(Z) — L*(T) is the continuous linear map such that F(4,)
is the function z — 2" € T where T = {z € C : |z| = 1} is the unit circle. This is an
isomorphism. Next we show that F conjugates LZ to L>(T).

For ¢ € L>°(T), define the multiplication operator M, : L*(T) — L*(T) by



The map ¢ — My embeds L>(T) into algebra of bounded operators B(L*(T)). Moreover,
FoF ' = M,. So F(CZ)F ! is the algebra of Laurent polynomials. Tts weak operator closure
is L>°(T). Thus FLZF ! is naturally identified with L°°(T). Moreover for any x € LZ, the
trace of x, tr(x) equals the integral of FxF ! over T. In particular, if f € Z[z] is a polynomial,

then
/T log |£(2)| d= = tr(log f])

where log |f| € LZ is defined via spectral calculus. The Fuglede-Kadison determinant
of f is defined by

det( ) = exp(talog ) = exp /[ Tog(t) (1))

where (| is the spectral measure of |f|. If | f| has a nontrivial kernel then the determinant
is 0. So we modify the definition slightly: the positive Fuglede-Kadison determinant
of fis
det®(f) := exp (/( )log(t) dCf|(t)) :
0,00

In this way we are naturally led to the conjecture that, for general groups I' and f € ZI',

the entropy of 'y Xy should be the logarithmic positive Fuglede-Kadison determinant of f.

3.4.2 Group rings

To discuss algebraic actions, we will need some background on certain group rings. Let CI'
denote the complex group ring of I'. Formally, CT is the set of all sums > | ger Cgg with ¢ € C
such that all but finitely many of the ¢,’s are zero. Addition, multiplication and the adjoint

operator are given by

g+ dg= (cgtd)g

gel gel gel
<Z cgg> (Z c'gg) = Z Z CgChah.
g€l gel g€l hel
gel gel

where ¢, is the complex-conjugate of c,.
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We view ZI' as a subring of CI'. Also consider T' where T = R/Z is the additive group
of the circle. If z € T" and f = 3" f,g € ZT" then fr,zf € T" are well-defined via:

(fx>g = Z fghthly (xf)g = nghfhﬂ.
hel hel

These are finite sums. The inner product of f with x is defined by
(f,z) = ngzvg eT.
g

Note
(af,x) = (a,zf*) = (f,a"x).
(By linearity, it suffices to check this formula when each of a,x, f is supported on a single

element). This inner product allows us to identify Hom(ZI', T) with TT.

3.4.3 Principal algebraic actions

There is a simple procedure for associating to any f € ZI" a dynamical system. First consider
the left ideal ZI' f and the associated quotient ZI'/ZI" f. We consider the latter as a countable

abelian group on which I" acts by automorphisms (namely, left multiplication). Let
X; = ZU/ZT f = Hom(ZL/ZI' f,T)

be the Pontryagin dual. By identifying Hom(ZT', T) with T" as above, we can identify X
with the subgroup
X;={xeT" : af* =0}

For g € T, let T{ : X; — X be the automorphism (T7z)(p) = z(g~'p). Then Ty =
(T]‘Z)gep is an action on Xy by automorphisms. It preserves the Haar measure, which we
denote by js. The action T is called a principal algebraic action.

When I' = Z?, we identify ZI' with the ring Z[u!, ... ,ujl] of Laurent polynomials. This

way we may view f € ZI' as a polynomial function f : C? — C. With this identification,
Lind-Schmidt-Ward proved in [LSW90] that for non-zero f,

BT = b (Ty) = | Tox (™)) do (1)
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where T¢ = {(z1,...,24) € C?: |z]| =1 Vi} denotes the d-dimensional torus. This extends
earlier work of Yuzvinskii in the case d = 1 [Juz65al [Juz65b]. The right hand side of the
equation above is the log-Mahler measure of f.

Christopher Deninger noted that there is a generalization of the Mahler measure to
non-abelian I' known as the Fuglede-Kadison determinant [Den06] and conjectured that,
for amenable I, the entropy of I'» X equals the log of the Fuglede-Kadison determinant.
Special cases were confirmed in [Den06, [DS07, [Li12] before the general amenable group case
was handled in |[LT14]. The case of expansive principal algebraic actions of residually finite
groups was handled in [Bowl1la| and extended in [BL12] to some non-expansive actions. Then

in a stunning breakthrough Ben Hayes obtained the most general result for sofic groups:

Theorem 3.7. [Hayl6l, Theorem 1.1] Let T' be a sofic group with sofic approximation 3.
Let f € ZT' and let det™ (f) = exp(f(0 00) log(t) dj(t)) denote the positive Fuglede-Kadison
determinant of f where (g denotes the spectral measure of | f| = (f*£)Y? . Then

1. he(T~X}) < +o0 if and only if f is injective as a convolution operator on ¢*(T').

2. If f is injective as an convolution operator on (*(T), then

hg(Fme) = hE,,uf (Fme) = lOg det+(f).

Remark 16. The paper [Hay16b] also handles the more general case in which f is a finite-
dimensional matrix over ZI', I; C Z(I')®" is its range and X; is the Pontryagin dual of
Z()*m /1.

Question 5. Does the Rokhlin entropy of a principal algebraic action equal the logarithm of

the Fuglede-Kadison determinant?

3.4.4 Yuzvinskii’s addition formula

Let G be a compact metrizable group and I'~G an action by continuous automorphisms.
Suppose that N < G is a closed I'-invariant normal subgroup. We will compare the entropy
of I'»G with that of the restricted action '»/NV and the induced action '»G/N. More
precisely, we say the addition formula holds for ('»G, N) if the entropy of '»G equals
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the sum of the entropy of '~V with the entropy of '~G/N. In general, this might depend
on which entropy is intended.

In [Juz65b] Yuzvinskii proved the addition formula for G = Z with respect to both
topological and measure entropy. The proof has been extended to more general kinds of
skew-products [Tho71], to Z? [LSW90], various other amenable groups [MB09, [Mil08] and to
arbitrary amenable groups |Lil2] (and independently in unpublished work of Lind-Schmidt).
Using this, Li-Thom obtained a general procedure for computing the entropy of algebraic
actions of amenable groups on compact abelian groups |[LT14] under very mild conditions.
The formula shows that entropy can be viewed as L-torsion.

However it fails for non-amenable groups. Indeed the Ornstein-Weiss example (§L.3)) is
algebraic. Recall that Fy = (a,b) acts on the compact abelian group G = (Z/2)™ with
invariant normal subgroup N = Z /2 consisting of the constants and quotient G/N = G x G.
With respect to any sofic approximation, the entropy of FonG is log(2), the entropy of
Fy~N is 0 or —oo and the entropy of FonG/N is log(4). Rokhlin entropy behaves similarly.
Recent work of Bartholdi [BK17] shows that for any non-amenable I" and field K there are
n € N and injective KT-module homomorphism KT®®+) — KI'®" Consider the case
when K is finite. Then the action T~AKT®" has entropy nlog |K| while the I™-action on the
quotient group PAKTE0) hag entropy (n + 1)log|K|. Thus the addition formula fails

In a different direction, Gaboriau and Seward consider the following construction: let I"
be a finitely generated group, K a finite field, T~K' the shift action, K < K" the constants.
Then:

Theorem 3.8. [GS15] For any sofic approzimation X,
(1+ Bz (1)) log |K| < hs(PAK'/K) = hy ), (AKT/K) < Cup(T) log K]

where p denotes Haar probability measure on K /K, ﬁ(12)(F) is the first L?-Betti number of
I' and Cyup (L) is the sup cost of T'.

Conjecturally, 1 + B(12) (I') = Cyp(I"). In spite of these negative results, the following

remains open:

Problem 8. Does the f-invariant satisfy an addition formula?

!'Thanks to an anonymous reviewer for pointing this out.
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In [Bow10c| a positive answer is claimed. However, there is a serious flaw. It was partially
corrected in [BGI14] which proved that indeed the f-invariant does satisfy an addition formula
whenever X is totally disconnected and there exists a special kind of generating partition.
When X is a connected finite-dimensional Lie group, the f-invariant of ' X is minus

infinity and an addition formula also holds for degenerate reasons.

Problem 9. Is there any formula or algorithm for computing the sofic entropy of I'» X; where
I C 7ZI is a finitely generated ideal and X; = Z/F\/I is the Pontryagin dual? Such a formula

is known when T is amenable [LT14] but unknown for non-amenable groups.

3.4.5 Further results

In recent stunning work, Ben Hayes has shown that for any algebraic action 'y X of a sofic
group, there is a closed I'-invariant normal subgroup Y < X such that the outer Pinsker
algebra is the sigma-algebra of Y-invariant Borel subsets (whenever the action satisfies the
mild condition of admitting an lde-convergent sequence of model measures) [Hay16¢c|. Outer
Pinsker algebras are defined in §I1] below. The proof uses the product formula for outer
Pinsker algebras (Theorem [TT.T]).

It follows that if ' X/Y} has positive outer entropy for every closed normal I'-invariant
subgroup Yy < X with Yy # X, then 'y X has completely positive outer entropy. In
[Hay17a] Ben Hayes uses local sofic entropy theory (developed in [KL13al) to show that if
f € ZT is invertible in the group von Neumann algebra LI" but not in ZI" then every k-tuple
of points in X7y is a X-IE-k-tuple. This implies positive sofic entropy. So the Fuglede-Kadison
determinant of f is > 1 (answering a question of Deninger) and the Y-entropy of I'mvXy
is positive. Moreover, in [Hayl6c] it is shown how this implies completely positive outer
entropy (assuming the same mild condition as above). In [Hay] it is shown that completely
positive outer entropy implies the Koopman representation embeds into the countable sum

of left-regular representations.

Question 6. If f € ZI" is invertible in the group von Neumann algebra LI" but not in ZI" is
the action '\ (X7, p15) orbit-equivalent to a Bernoulli shift? Is it measurably conjugate to
a Bernoulli shift? The latter is open even in the special case of amenable I'. It is known to

be true when I' = Z¢ [Sch95]. (More precisely, one should consider I'/N~ (X, piy) where N
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is the kernel of ' Xy. This kernel is finite and therefore trivial if I" is torsion-free.)

Finally, Ben Hayes has used Tim Austin’s lde-X-entropy to prove that the topological
Y-entropy of 'y X agrees with the measure Y-entropy whenever the action satisfies the
above-mentioned mild condition [HayI6a]. The case in which I' is amenable was handled

earlier in [Den06, Theorem 3].

Question 7. Suppose I' is sofic, ¥ is a sofic approximation to I' and f € ZI' is such that
the action I~ (X, piy) has completely positive Y-entropy (abbreviated CPE*). Is the Haar
measure on Xy the unique measure of maximal ¥-entropy? By [CL15b, Theorem 8.6], if I'
is amenable, then Haar measure is the unique measure of maximal entropy if and only if

Fm(Xf, ,uf) is CPE.

3.5 Gaussian actions

Associated to any orthogonal representation p : I' — O(H) on a real Hilbert space H is a
Gaussian action I'(X,, 11,). The details of this construction can be found in [Kecl(] for
example. For intuition, if JH is finite-dimensional then the Gaussian action is the action of
I' on H with respect to the standard Gaussian measure. Ben Hayes computed the entropy

of Gaussian actions in [Hay17b]:

Theorem 3.9. The representation p decomposes as p = py & pa where py s singular with
respect to the left-reqular representation (so no nontrivial subrepresentation of p; embeds into
the left reqular representation) and py embeds into the countable power of the left-reqular

representation. Moreover,

—00 if hs i, ('nX,,)=—o0
hs ., TX,) = 0 if p» =0 and hg,, (I'~X,,) # —oco
+oo  if po #0 and hy,, (I~X, ) # —oc0.

The proof uses a Polish model for the action (this is a continuous action 'Y where Y
is a completely metrizable separable space with a measure v that is measurably conjugate
to the original action). It also uses a weak form of Sinai’s factor theorem [HaylI§]: if the
Koopman representation of I'v(X, i) is singular to the left regular representation then the

sofic entropy is nonpositive. To see the connection, let o : I' — Sym(V) be given. Then
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there is an induced map from I" into the unitary group of CV. If o is regarded as a sofic

approximation to I', then this map approximates the left regular representation.

3.6 Distal actions

Definition 10. An action I'~% (X, d) by homeomorphisms on a compact metric space is
distal if inf e d(T92, T9y) > 0 for every pair of distinct points z,y € X. Note that profinite,
compact and equicontinuous actions are distal [CZI5, Lemma 4.1]. A pmp action I~ (X, p)

is measure distal if it is measurably-conjugate to a distal action.

Theorem 3.10. [KL13d, [Hay/ Measure distal actions have zero Rokhlin entropy. Therefore
they have non-positive sofic entropy. Also, distal actions have non-positive topological sofic

entropy with respect to every sofic approrimation.

Remarks on the proof. The paper [KL13a] shows that if the topological sofic entropy of
I'~T X is positive (with respect to some sofic approximation) then the action is Li-Yorke
chaotic. This condition means there is an uncountable subset Z C X such that every

non-diagonal pair (x,y) € Z X Z satisfies

limsup d(T°z, T°y) > 0, liminf d(T°z,T%y) = 0.

G3s—00 G3s—00
It follows that distal actions have non-positive topological sofic entropy.
]
The special case of topological Z-actions was handled earlier by Keynes [Key70]. Recall

that naive entropy is an upper bound for sofic entropy. This motivates:

Question 8. Do distal actions have zero topological naive entropy? The measure version of

this question is also open.

Partial progress has been made by Peter Burton:

Theorem 3.11. [Burl7] If I contains an infinite cyclic subgroup then every distal action

has zero topological naive entropy (and therefore non-positive topological sofic entropy).
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3.7 Smooth actions

The purpose of this section is to show that, under mild conditions, the entropy of an action
of a large group by diffeomorphisms on a smooth manifold is nonpositive. The starting point
is a bound on the topological entropy of a single Lipschitz map. So let (X, d) be a compact

metric space. The ball dimension of (X, d) is

1 (X, d
dimpan (X, d) = limsup log 5.(X, d)
NG | log €|

where S.(X, d) is the minimum cardinality of an e-spanning subset of (X, d). Given any map

T : X — X, the Lipschitz contant Lip(T) is

: d(Tx, Ty)
Lip(T) := sup ———=
( ) XAy d(Xv Y)

Lemma 3.12. Let (X, d) be a compact metric space and T : X — X a continuous map. If
dimpan(X, d) < 0o and Lip(T) < oo then

hiop(T') < dimpan (X, d) max(0, log Lip(T))

where hyop(T') is the topological entropy of T'. In particular, if X is a smooth Riemannian

manifold and T is a diffeomorphism then hio,(T) < 0.
Proof. This is [KH95, Theorem 3.2.9]. O

The next result shows that if the induced action of an infinite index amenable subgroup

has finite entropy then the action of the group has nonpositive entropy.

Lemma 3.13. Let ' be a group with an infinite index amenable subgroup A <T'. LetTnTX
be a continuous action on a compact metrizable space. Also let p be an invariant probability
measure on X that is ergodic with respect to T'. Let Ty denote the restriction of the action
to A. Then

hiop(Th) < 00 = hx(T) < 0 = h™¥(T),

hu(Ty) < 00 = hg W (T) < 0= h(T)

for any sofic approximation X to I'.
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Proof. The proofs in the topological and measure settings are similar, so we will just give
the proof in the measure setting. Let P be any partition of X with finite Shannon entropy.
Let F' C T" be any finite set of coset representatives of I'/A. So if f; # fo with fi, fo € F
then fiAN foA = 0. Let K C A be an arbitrary finite set. Then

1 FK

where the limit is along any Fglner sequence for A. So

. 1
naive < FK
(T, P) < [1<1;H‘A 7 |H L(PE) =

1

kG hyu(Th).

Taking the supremum over all P proves hi(T) < ‘ F|h (Tx). Since |F| is arbitrary, this
implies 2*"°(T') = 0. The rest follows from Propositions 214 and 2.1

O

Theorem 3.14. Suppose I' is a countable group with an infinite cyclic subgroup of infinite
index. If TX is a continuous action by Lipschitz maps on a compact metric space (X, d)
that has finite ball dimension then '~ X has non-positive sofic entropy with respect to every
sofic approximation. In particular, smooth actions on manifolds have non-positive sofic

entropy.
Proof. This follows immediately from the previous two lemmas. O

There is a similar result for the f-invariant [BG14, Lemma 3.5].

3.8 Nonfree actions

Given an action I'~T (X, ) and o € X, let Staby(z) = {g € I': T92 = z} be the stabilizer.
An action is non-free if there is a positive measure set of x such that Staby(x) is non-trivial.

There are two results concerning the entropy of non-free actions:

Theorem 3.15. Suppose T~T (X, i) is an ergodic T-action with positive sofic entropy with

respect to some sofic approxzimation. Then Stabp(z) is finite for a.e. x.

This result is [Mey16, Theorem 2.3]. The special case of amenable groups is handled in

a remark in the last section of [Wei03].
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Theorem 3.16. [Sewi6d, Theorem 1.1] Let FAT (X, p) be a pmp action of a finitely gen-
erated free group. Suppose the action has a finite-entropy generating partition, f,(T") # —oo
and F~S(Y,v) is a factor action. Then for v-a.e. y €Y either

e Stabg(y) is trivial or
e Stabg(y) has finite-index in I' and y is an atom (i.e. v({y}) > 0).

An anonymous reviewer pointed out that there are ergodic actions I'»T (X, u) with pos-
itive Rokhlin entropy such that Staby(z) is infinite for a.e. x. For example, let Z~5(X, p)
be any ergodic action with positive Rokhlin entropy. Thinking of Z as a quotient of Z?, we
obtain an ergodic action Z?~T (X, u). Moreover, the Rokhlin entropy of this action is the
same as the Rokhlin entropy of Z~5 (X, 1) since the two actions have the same generating

partitions.

Question 9. If TAT (X, i) is ergodic and has positive naive entropy (topological or measure)

then is Stabr(z) finite for a.e. z?

4 Perturbations

4.1 Perturbing the sofic approximation

When I' is amenable the sofic entropy agrees with classical entropy and therefore does not
depend on the choice of sofic approximation. This is not true in the non-amenable case even
when the action is trivial (§3]). This subsection provides another explicit counterexample
which works for both topological and measure entropy. However, the example is not entirely

satisfying because it leaves open a major problem:

Question 10. Suppose I'vX is a continuous action on a compact metrizable space by home-
omorphisms. Let 1, X5 be two sofic approximations of I'. Suppose Ay, (I'X) is not minus
infinity for ¢ = 1,2. Is it true that hy, (I'nX) = hy,(I'»X)? The measure entropy version
of this question is also open. In fact, it is open even in the special case of the Ising model
on the free group (§3.3)). It is possible that if the measure sofic entropy of an action is not

minus infinity then it must equal the Rokhlin entropy.

29



Theorem 4.1. There exists a sofic group I' with sofic approximations ¥1,Y, and a contin-

uwous action I'> X on a compact metric space such that
hy,(TAX) # hy,(TX).
Moreover there exists an invariant probability measure v on X such that
hs, (TAX) # hy, (X)),

Proof. Let Fy = (a,b) be the rank 2 free group and let FoZ/2 be the action in which each
generator in {a, b} acts non-trivially. Recall that if o : Fo — Sym(V') is any map then the
associated graph G, has vertex set V and edges {v,o(a)v}, {v,o(b)v} for v € V.

Let 31 = {01, }nen be a sofic approximation whose associated graphs are far from bi-
partite. To be precise, we require the existence of an € > 0 such that if P = {P;, P»} is a
partition of V,, with

[P = (1=e)|Val/2, [P 2 (1= €)|V3|/2

then the number of edges {v,w} of the associated graph I';, & with either v,w € P or
v,w € Py is at least €|V,|. For example, we could choose o1, : F; — Sym(V,,) uniformly at
random (among all homomorphisms from Fy to Sym(V},)). With probability 1 the resulting
sofic approximation satisfies the above property. This can be proven using the f-invariant
for example or directly with combinatorial estimates.

The strong non-bipartiteness of the graphs of ¥; immediately implies hy, (' X) = —o0.
On the other hand, if 35 is a sofic approximation whose associated graphs are bipartite, then
hs, (' X) > 0 since the bipartition of the graphs yields two microstates for the action. In
fact, hy,(I'X') = 0 since any microstate must be close to one of the two bipartitions of the
graphs. If p is the unique invariant probability on Z/2 then hy, ,(I'X) = hy,(I'nX) for

1 = 1,2 which proves the last statement. O

Problem 10. Does the sofic entropy of either a topological action or a measure-preserving
action vary upper semi-continuously with respect to the edit distance on sofic approximations
(§2.2.4)7 This seems likely but it has not been worked out. It is unknown whether entropy

varies continuously (excluding the value negative infinity).
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4.2 Subgroups

It is well-known that if 7" is an automorphism of (X, ) and n € Z — {0} then
BT = Inlh(T).

More generally, if ' is an amenable group, I'»(X, i) is a pmp action and IV < T' has finite
index then

h(T'AX) = [T T (DAX).

See [Dan01, Corollary 3.5]. This is called the subgroup formula.

In the case of the f-invariant, a similar formula holds:

Theorem 4.2. [Sewljd, Theorem 1.1, Corollary 1.2] Let I' be a finitely generated free group,
A < T and T'~(X, ) be a pmp action with a finite-entropy generating partition. If A has
finite index in T' then the induced action A~(X, ) also has a finite-entropy generating
partition and

Fu(AAX) = 02 Al (TAX).
If [I' : Al = 400, there are infinitely many finite index subgroups I'" with A < IT" < T and
there is a finite-entropy generating partition for the action A~ (X, ) then f,(I'nX) <0.

For Rokhlin and sofic entropy we have:

Theorem 4.3. [Sewl6l, Theorem 1.7] Let I' be a sofic group with sofic approzimation X.
Suppose that for all finite-index normal subgroups N < I', the 3-entropy of T'~(I'/N, ur/n)
is mot minus infinity. Then for every finite index subgroup A < T' and aperiodic pmp action
TAT(X, ),

[T Alhs(T) < BR(T | A) < [Tz AJRR(T)

where T' | A is the restriction of the action to A.

Theorem 4.4. If A < T and I'nX is a continuous action on a compact metrizable space
then
hg(FmX) < hgrA(AmX)

where X | A denotes the restriction of 3 to A. A similar inequality holds in the measure-

entropy case.
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Proof. This follows immediately upon realizing that for any continuous pseudometric p on

X, any finite £ C T, 6 >0 and o : I' = Sym(d),
Map(T, p, F,0,0) C Map(T' | A, p, F, 0,0 [ A).
The argument for the measure-entropy case is similar. O

Question 11. Are the bounds in Theorems 3] and 4] tight?

Next we present a counterexample:

Theorem 4.5. There exist a finite-index subgroup A < T' of a sofic group I, a sofic approz-
imation ¥ to I' and a pmp action TAT (X, ) such that

hZ,u(T) = —00, hZMM(T rA) = 0

Proof. Let A = (a,b) be the rank 2 free group, I' = A x Z/2. We identify A with the
subgroup A x {0} of I'. Let (X, u) = (Z/2,us) and let T' be the trivial action of I' on Z/2.
Let ¥' = {0} : F — Sym(V;)}32, be a sofic approximation to F = A by expanders as in §3.1.11
Define o; : F x Z/2 — Sym(V; x Z/2) by

O'i(fv SL’)(’U, y) = (O-z/'(f>vv T+ y)

Then ¥ = {0;}$°, is a sofic approximation to I' = F x Z/2.
Because ¥’ is by expanders, ¥ is also by expanders. So Proposition B.Ilimplies hy ,,,(T") =

—o0. However, the restriction ¥ | F is the disjoint union of two copies of ¥'. So the function
O:VixZ|]2—7)2, o¢v,x)==x
is a microstate for the trivial action AZ/2. This shows that hyau, (T [ A) > 0. The upper

bound can be derived directly or via naive entropy. O

4.3 Co-induction

Definition 11. Let A < I' be countable discrete groups. Let X be a compact metrizable

space and A~ X an action by homeomorphisms. Let
Y={f:T—=X: f(ghy=h""f(g) VYgeTl,hecA}c X"
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and give Y the subspace topology (and X' the product topology). So Y is a compact

metrizable space and 'Y by

(gf)(z) = f(g7'z) Vg,x €T, feY.
The action 'Y is the action of AnX co-induced to I'.

For example, if A is the trivial subgroup, then the co-induced action is a Bernoulli shift

over [

Theorem 4.6. [Hayl6b, Proposition 5.29] Let A <T' and X be a sofic approximation to I'.
Let A X be an action on a compact metrizable space by homeomorphisms and U'\Y the

co-induced action. Then hy (YY) = hyia(ANX).
Question 12. Is there a measure entropy version of Theorem [4.6] or a Rokhlin entropy version?

Results have been obtained by Tim Austin for a variant of sofic entropy [Aus16al.

4.4 Perturbing the partition

Definition 12 (The space of partitions). Let (X, 1) be a standard probability space. Given

countable partitions P, Q of X the relative Shannon entropy of P given Q is
H,(P|Q) = H,(PV Q) - H,(Q).

The Rokhlin distance between P and Q is
d(?,9) = H,(P|Q) + H,(Q|P).

This is a metric on the space of (mod 0 equivalence classes of) partitions of (X, u) with finite

Shannon entropy.

Notation 1. Let T~T(X, ) be a pmp action. Given a measurable partition P of X, the
Mackey Realization Theorem implies the existence of a factor T ~T?(Xp, up) of T such that
if ®: X — Xp is the factor map then ®~!(By,) is the sigma-algebra Vger T9P (up to

measure zero).
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Proposition 4.7. Let ¥ be a sofic approzimation to a countable group T' and T~ (X, ) a
pmp action. Then both the sofic entropy hx ., (Ts) and the Rokhlin entropy h®%(Ty) vary
upper semi-continuously in P with respect to the Rokhlin metric. If I' is amenable then the
entropy varies continuously in P. In the non-amenable case, neither entropy is continuous

i general.

Proof. The first statement is contained in [Bow10b| Corollary 6.3] (sofic entropy) and [Sew15b]
(Rokhlin entropy). The amenable case is handled in [MOS85, Proposition 4.3.13]. For the
last statement, we perturb the Ornstein-Weiss example as follows. Let I' = Fy = (a, b) be
the rank 2 free group, X = (Z/2)" be the full 2-shift and pu = u} be the product measure
on X. So T is the usual shift action (T9)z(f) = (g7 f). Let ¢ : X — Z/2 x Z/2 be the
observable

¢(x) = (z(1r) + x(a), (1r) + z(b))

and P = {¢71(i,7) : 4,5 € Z/2} be the corresponding partition. For every n > 0, choose a
subset A, C {x € X : z(1p) = 0} such that 0 < u(A,) < 1/n. Finally, let

P, =PV {A, X\ A,}.

The Ornstein-Weiss example (§L.3]) shows that I'»(Xp, up) is isomorphic to the full

4-shift. In particular,
hs: iy (Tp) = log 4 = BR5(T).

Moreover, the factor map from (X, u) to (Xp, up) is 2-1. Indeed, if 1 € (Z/2)" denotes the
constant function then for any x € X, 2 and 1 + x have the same image in (Xp, jup).

We claim that P, is generating for all n. It suffices to show that for a.e. x € X there
exists ¢ € I such that 79z and T9(1 + z) lie in different parts of P,. Since the action is
ergodic, there exists g € ' such that 792 € A,. This implies (79z)(1r) = 1 and therefore
(T9(z+1))(1r) = 0. In particular, T79(1+x) cannot be in A,,. So P,, is generating as claimed.

Because P, is generating,
hEvlﬁyn (T:Pn) = log 2 = hROk(T:Pn)

for all n. Since p(A,) — 0 as n — oo, P, — P in the Rokhlin metric.
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4.5 Perturbing the measure

Let K be a finite set, T~T KT the shift action and Probr(K") the space of all T'(T')-invariant

Borel probability measures on KT with the weak* topology.

Proposition 4.8. Let ¥ be a sofic approzimation to I'. Then both the YX-entropy and the
Rokhlin entropy of the action TAT(KY, 1) vary upper semi-continuously in u € Probr (K1)

with respect to the weak™ topology. In general, these are not continuous (even when I' = 7).

Proof remarks. The Rokhlin entropy case is handled in [Sew15b]. For sofic entropy, a more
general statement is proven in [CZ15]: whenever I' acts expansively on a compact metric
space X then Y-entropy varies upper semi-continuously with respect to the measure p. In
fact, this is proven for a weak form of expansitivity called asymptotic h-expansitivity.

In [Bow09] it is shown that if F is a finite rank free group (including Z) then the set
of shift-invariant measures u that have finite support are dense in Probp(KY). If a shift-
invariant measure has finite support then it has zero naive entropy and therefore non-positive
sofic and Rokhlin entropy (by Propositions and [2.10]). So entropy is not a continuous
function of p € Probp(KY) (even when F = Z). O

Remark 17. In §7.4] we discuss a stronger topology on Probr (K1) called the d-bar topology.
If I is amenable then entropy varies continuously in the d-bar topology but there are explicit

counterexamples when I is a rank 2 free group.

4.6 Orbit-equivalence

Two actions I'>(X, ), An(Y, v) are orbit-equivalent (abbreviated OE) if there exists a
measure space isomorphism ® : X — Y such that ®(I'z) = A®(x) for a.e. z. By work of Dye
and Ornstein-Weiss [Dye63], Dye59, [OW8()], all ergodic essentially free pmp actions of infinite
amenable groups are OE. In particular, entropy is not an OE-invariant. However, every non-
amenable group admits uncountably many non-OE actions [Eps08|, IK'T09]. Moreover, there
are many groups for which Bernoulli shifts are OE-rigid in the sense that OE implies measure-
conjugacy. These include ICC groups with property (T) [Pop06b] and direct products of
non-amenable groups with infinite groups that have no nontrivial finite normal subgroups

[Pop08]. So for these actions, entropy is automatically an OE-invariant.
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This leads to the general question:

Question 13. Under what conditions on a group action can one conclude that entropy

(whether sofic/Rokhlin/naive) is an OE-invariant?

For example in [Kid08] it is proven that I' is a non-exceptional mapping class group
then any pmp action in which all finite-index subgroups acts ergodically is OE-rigid. It
follows that entropy is an OE-invariant for such actions. In §4.6.1] below, we show there is
a property of actions called weak compactness which is an OE-invariant and implies zero

entropy whenever the group is non-amenable.

4.6.1 Weakly compact actions

(The ideas of this section have been gracefully provided by Ben Hayes.)

If (X, ), (Y, v) are standard probability spaces and f: X — C,g: Y — C are measurable
then f®g: X xY — Cis defined by (f ® g)(z,y) = f(x)g(y). If I~(X, u) is a pmp action
then : I' — U(L?*(u)) (where U(-) is the unitary group) denotes the Koopman representation
given by

(kg€)(x) =&(g7 ') V€€ LP(n),geT,ze X,
The map ry ® ry: ' = U(L*(p x p)) is the Koopman representation of I' on X x X. Define
Kg(€), kg ® K,4(C) by the same formula for & € L' (u),( € L' (u x p).

Definition 13. [OP10] A pmp action I'»(X, 1) is weakly compact if there is a sequence
1,8, ... € L?(u X p) such that each &, > 0,

o [|& — (v®D)&l2 = 0 asn — oo for allv: X — ST measurable,

lo =0 asn — oo forall g €T,

o [[6n = (1 © Kg)(&n)
o (f® &, &) = [y fdu={1® f)&, &), forall f € L%(X, ).

It is shown in |[OP10, Proposition 3.2] that compact actions are weakly compact. More-
over, weak compactness is an OE-invariant (see the remarks after [OP10, Proposition 3.4]). It
is shown below that all weakly compact actions of non-amenable groups have zero Rokhlin
entropy. Moreover, because weak compactness is preserved under factors, no factor of a

weakly compact action has positive entropy.
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Set ¢, = £ to see that weak compactness is equivalent to saying that there exists ¢, €

L' (p x p) so that ¢, > 0 and:

e ||¢, — (v®D)Cu|li = 0 as n — oo for all measurable v: X — S' C C,

o [[G— (kg ® Kg)(Cn)|i = 0asn —ooforall gel,

o [f@)Cula,y)du x w(z,y) = [y fdu= [ f(y)Cu(x,y) du x p(x,y) for all f e L>(u).
Proposition 4.9. All factors of weakly compact actions are weakly compact.

Proof. Let T~ (Y, v) be a factor of I'»(X, ) and Eyy(f) be the conditional expectation
of f € L' (ux u) onto L*(v x v) (which we identify with the obvious subspace of L' (u x p)).
Let ¢, € L'(u x p) be as in the remarks after Definition and set 7, = Ey«y((,). It is
straightforward to check that

170 — (v @ V)N, || — 0 for all measurable v: Y — St C C,

110 = (kg @ rig)(na)|[s = O for all g € T,

[ @t yvx via) = [ fav= [ fme.g)dv vie,y) tor al £ € LY p).
Y
Thus {n,} witnesses that I'\(Y,v) is weakly compact. O

Proposition 4.10. If I" is non-amenable then no nontrivial Bernoulli action of ' is weakly

compact.

Proof. Weak compactness of I'»(X, i) tautologically implies the product action ' (X x
X, pux ) does not have spectral gap. However, if ' (X, u1) is Bernoulli then so is the product

action. It is well-known that Bernoulli actions of non-amenable groups have spectral gap. O

Corollary 4.11. If T is non-amenable and T'~(X, p) is essentially free and weakly compact
then it has zero Rokhlin entropy. Moreover, every action OF to this action has zero Rokhlin

entropy.

Proof. 1f I'\(X, ) has positive Rokhlin entropy then it factors onto a Bernoulli shift by
Seward’s generalization of Sinai’s Theorem (Theorem [7.4)). The Corollary now follows from

Propositions and 410 0
Question 14. Do all weakly compact actions of non-amenable groups have zero naive entropy?
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4.6.2 Orbit equivalence and relative entropy

Rudolph and Weiss showed that while entropy is not an OE-invariant, entropy relative to the
orbit-change sigma-algebra is [RW00]. They developed this tool to prove that CPE actions
of amenable groups are uniformly mixing. It has since been used to show that CPE actions
of amenable groups have countable Lebesgue spectrum [DG02] and to give an alternative
development of Ornstein theory [Dan01, [DP02]. We give the precise statement next.

Suppose essentially free actions I'v(X, u) and A~ (Y, v) are orbit-equivalent via an iso-
morphism ® : X — Y. Then we can define cocycles a : ' x X - Aand §: AxY = T
by

a(g,x)®(z) = ®(gx), Hlh,y)® ' (y) = &' (hy).

These satisfy the cocycle equations

a(gh,z) = a(g, hr)a(h,z), B(gh,y) = B(g, hy)B(h,y).

Let Fx C Bx be the smallest sigma-subalgebra such that a(g,-) : X — A is Fx-measurable
for all ¢ € I'. If Fy C By is defined similarly, then ® maps Fx to Fy. These are the

orbit-change sigma-algebras.

Theorem 4.12 (Rudolph-Weiss Theorem). [RW0O0] Let ', A be amenable groups and '~ (X, ), A(Y, v)

essentially free pmp actions as above. Then
h,(PAX[Fx) = h(ANY|Fy).

This theorem has been generalized to Rokhlin entropy and arbitrary countable groups
[Sew14b]. It plays a major role in Seward’s extension of Krieger’s Theorem. It also inspired

sofic entropy theory for actions of groupoids [Bow14].

Question 15. Is there an analogue of the Rudolph-Weiss Theorem for arbitrary sofic groups
if one takes for entropy the supremum over all sofic entropies? Perhaps one should use Ben

Hayes’ definition of relative sofic entropy [Hay16¢]?

68



4.6.3 Integrable orbit-equivalence
With notation as in §4.6.2] suppose that I' and A are endowed with word lengths || - ||r, || - || a-

Then the orbit-equivalence is said to be integrable if for every g € I' and h € A,

[llatg.0)l du(w) <0, [ 1)l dviy) < oc.

Tim Austin proved in [Ausl6b| that if I' and A are amenable then entropy is invariant under

integrable orbit-equivalence (abbreviated IOE).

Question 16. Is either Rokhlin entropy, Y-entropy, naive entropy or the f-invariant IOE-

invariant? Is the supremum of Y-entropies over all ¥ an IOE-invariant?

5 Factors and extensions

5.1 A variant of the Ornstein-Weiss example

The Ornstein-Weiss example (§1.3)) is an entropy-increasing finite-to-1 factor map of a
Bernoulli shift action of the free group onto another Bernoulli shift. It was generalized
by Gaboriau-Seward via an algebraic construction that applies to all groups (§3.4.4]). Their
entropy bounds show that the map is entropy-increasing whenever I' has positive first L2-
Betti number. Next we present an example which is even more extreme: a zero entropy

action with a finite-to-1 factor map onto a Bernoulli shift.

Theorem 5.1. Let F = (a,b). Then there exists an ergodic essentially free pmp action

FAT(X, 1) such that
1. hy  (T) = fu(T) = hR%(T) = 0 for every sofic approzimation ¥;
2. FAT(X, 1) admits a 2-1 factor map onto a Bernoulli shift.
3. Moreover the action is algebraic and the factor map is a continuous homomorphism.

Proof. Let A = (a) denote the subgroup of IF generated by a. We regard (Z/2)¥ as a compact
abelian group under pointwise addition. Let X < (Z/2)¥ denote the subgroup consisting of
all z € (Z/2)¥ such that zym = x4am for every g € F and n,m € Z. Let (T9),er be the

69



shift action on X. So (T9)x(f) = x(¢g~'f). This action is by group-automorphisms and so
preserves the Haar measure.

The action FAT X is measurably conjugate to the trivial action of A on Z/2 co-induced to
IF. Because co-induction preserves topological entropy (Theorem 6] the action FAZ X has
zero topological sofic entropy with respect to every sofic approximation. By the variational
principle (Theorem B]), the measure sofic entropy is also zero. The time-0 partition is a
Markov partition on X (when viewed as a subset of (Z/2)F). So its f-invariant can be
computed directly and shown to equal zero.

To see that the Rokhlin entropy is zero, define ¢,, : X — {0,1} by ¢,(x) = 0 if (') =0
for all |i| < n and ¢,(x) = 1 otherwise. We claim that ¢,, is generating in the sense that the
smallest F-invariant sigma-algebra containing ¢ 1(0) is the sigma-algebra of all Borel sets
(modulo measure zero).

If € X is Haar random then for any g € I', {(gb") : n € Z} are iid random variables
uniformly distributed on {0, 1}. It follows that for a.e. x € X if g € I is such that z(g) =0
then there exists m € Z such that ¢, (T°"9 'z) = 0 (i.c., z(ga~™b") = 0 for all |i| < n).

Now suppose x,y € X satisfy the condition above and x # y. It suffices to show there
exists ¢ € F such that ¢,(T9x) # ¢,(T%). Since = # vy, there exists h € I' such that
x(h) # y(h). Without loss of generality, z(h) = 0,y(h) = 1. By the condition above there
exists m € Z such that ¢,(T*"" 'z) = 0. However ¢,(T*"" 'y) = 1 since y is constant on
A-cosets. Setting g = a™h™! shows ¢,(T9z) # ¢,(T%) and so ¢, is generating.

Since the measure of ¢,,!(0) tends to zero as n — oo, the Shannon entropy of {¢,1(0), ¢, (1)}
also tends to zero as n — oo. This shows hR*(F~ (X, u)) = 0.

Let ® : X — (Z/2)F be the map ®(x), = x, + 4. This is a surjective homomorphism
with kernel N = {0, 1}. It is F-equivariant. So it is a 2-1 factor map onto the Bernoulli shift
with entropy log(2). O

Question 17. Is it true that all proper factors of the system described above have positive
entropy? If so, then this action has zero sofic entropy but is ‘almost’ CPE (completely

positive entropy).

Question 18. In [Rud78] D. Rudolph showed that every finite-to-1 extension of a Bernoulli

shift over Z is either Bernoulli or has a nontrivial factor map onto a finite action. By Theorem
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(.1, Rudolph’s Theorem does not extend to non-abelian free groups. Is there some other

classification of finite-to-1 extensions of Bernoulli shifts over a non-abelian free group?

5.2 Bernoulli factors of Bernoulli shifts

This section sketches a proof of:

Theorem 5.2. [Bowl17] Let I" be a non-amenable countable group. Then all Bernoulli shifts

of T factor onto each other.

The first step is to prove the theorem when I' = Fy = (a,b) is the rank 2 free group
(details are in [Bowl11h]). Let ® : (Z/2)" — (Z/2 x Z/2)¥2 denote the Ornstein-Weiss map.
Now consider the map U : (Z/2xZ/2)" — (Z/2xZ/2x Z/2)¥? given by ¥ (z,y) = (z, P(y)).
By composing ¥ with ®, we see that Fo(Z/2)F2 factors onto Fo(Z/2x Z/2x Z/2)F2. This
construction can be iterated to show that (Z/2)F2 factors onto ((Z/2)V)F2. Since the latter
has a diffuse base space, it factors onto all Bernoulli shifts over Fy. Therefore For(Z/2)52
factors onto all Bernoulli shifts.

A co-induction argument using Sinai’s Factor Theorem for Z shows that whenever (K, k)
is a probability space with H (K, ) > log2, the corresponding Bernoulli shift Fo (K, k)52
factors onto Fo(Z/2,u2)" and therefore factors onto all Bernoulli shifts (the factor map
for the Fa-action is constructed by applying the factor map for Z-actions to each (a) coset).
Another co-induction argument (due to Stepin [Ste75]) applied to Ornstein’s Isomorphism
Theorem shows that whenever two probability spaces have the same Shannon entropy then
their corresponding Bernoulli shifts over Fy are isomorphic.

It now suffices to show that for any ¢ > 0 there is a probability space (K, k) with
Shannon entropy < e such that the corresponding Bernoulli shift Fo (K, )2 factors onto
a Bernoulli shift with base entropy > log2. This is possible by a variant of the Ornstein-
Weiss map. Consider the space K = Z/2 U {x} with a probability measure r; satisfying
k1({0}) = r1({1}). Such a measure can be found to have Shannon entropy < e. Let
L =7/2 x Z/2 U {+} with the probability measure \; € Prob(L) satisfying A\;({(¢,7)}) =
k1({1})/2 for all 4,j € Z/2.

The factor map ® : K2 — [F2 is defined by: ®(x)(g) = ¢(g~'x) where ¢ : K™ — L is
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defined by ¢(z) = * if z(1p,) = * and otherwise
¢(x) = (2(1r,) + x(a"), 2(1g,) + 2(0™))

where n, m € N are the smallest natural numbers such that z(a™) # *, x(b™) # *. It can be
shown ® pushes the product measure /<511F2 forward to the measure )\Ile_ Therefore, entropy

increases. Note
H(L, M) = H(K, k) + (1 — k1 ({x}))log(2) > H(K, ky).

If H(L, ;) > log?2 then we are done. Otherwise, there exists an isomorphism from Fy~ (L, A;)F?
to a Bernoulli shift of the form Fon (K, ky)¥2 where ks is a probability measure satisfying
k2({0}) = Kao({1}). So we can find a new factor map from Fo(K, k2)F2 to Forn(L, X)F?
where H(L,\y) > H(K, k). By composing, we obtain a factor map from the original action
Forn (K, k)2 onto Fon (L, A2)¥2. After a finite number of similar steps, Fory (K, r1)? fac-
tors onto a Bernoulli shift with base space entropy > log(2). This is because after the i-th
step the entropy of the base increases by (1 — k;({*}))log(2) and r;({*}) is decreasing to
zero. This concludes the case I' = [F,.

The general case proceeds by a measurable co-induction argument. The key new ingredi-
ent is a generalization of the Gaboriau-Lyons Theorem [GL09] to arbitrary Bernoulli shifts.
That theorem states that if I' is an arbitrary non-amenable group then there exists a proba-
bility space (K, %) and there exists an ergodic essentially free pmp action Fo(K, k) whose
orbits are contained in the orbits of the Bernoulli action '~ (K, k). The generalization
proves the same statement with “there exists a probability space (K, k)" replaced by “for
every nontrivial probability space (K, k)”. Details will appear in [Bow17]. This generalizes
previous work of Ball [Bal05] who proved for every non-amenable group I" there exists some

Bernoulli shift with finite base entropy that factors onto all Bernoulli shifts over T'.

5.3 Zero entropy extensions

This section sketches a proof of:

Theorem 5.3. [Bowl6] Let T' be a non-amenable countable group and I'mv(X, p) a free
ergodic action. Then there exists a free ergodic action T~ (X, i) that factors onto T (X, 1)

and has zero Rokhlin entropy.
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Remark 18. Seward’s generalization of Krieger’s Generator Theorem, (Theorem [7.3]) implies
Fm(f( , i) admits a generating partition with 2 parts. This improves an earlier result of
Seward [Sewl4a] which proved, under the same hypotheses as Theorem [5.3] the existence
of an extension Fm(f( ,11) that admits a generating partition with at most n parts where
n = n(I') depends only on I'.

The next lemma is the key step. The proof given here is simpler than the one in [Bow16]

(which was written before Theorem [£.2] was known).

Lemma 5.4. Let I' be any countable non-amenable group. There exists a pmp action

IAT(Z,¢) satisfying:
o T is an inverse limit of Bernoulli shifts,
o hRK(T) =0
o T (Z () factors onto all Bernoulli shifts over T'.
In particular, if T is sofic then T (Z, () is not isomorphic to a Bernoulli shift.

Proof. Let (K,, k,) be a sequence of probability spaces with Shannon entropy bounds 0 <
H(K,, f,) < 27" By Theorem [5.2] there exist factor maps ®; : K} — K[ | for i > 2. Let
I'~T(Z,¢) denote the inverse limit of this system. Since T factors onto all the Bernoulli
shifts T~ (K, k,)", Theorem implies it factors onto all Bernoulli shifts. So it suffices
to show hR°K(T') = 0. This follows from [Sew15b, Corollary 3.9]. Alternatively, let o, be a
generating partition of K with H(a,) < 27™. By pulling back, we may consider a,, as a
partition of Z. Let 3, = \/'— «a,. Then H(f,,) < 2=™"! and 8, is generating for T". So

n=m

hROK(T) = 0. O

Proof of Theorem[5.3. By Seward’s generalization of Sinai’s Factor Theorem (Theorem [7.4)),
there exists a Bernoulli factor T(Y, v) of T~ (X, 1) such that

BT A(X, )] By) = 0

where By denotes the pullback of the Borel sigma-algebra of Y.
Let '»(Z,¢) be as in Lemma 5.4l Fix a factor map of '»(Z, () onto I'»(Y,v). Let
I'~(X, i) be the independent joining of I~ (Z,¢) and T~ (X, 1) over TA(Y, ).
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It suffices to show hR(I'~(X, 1)) = 0. To see this, let € > 0, o be a generating partition
of Z with H(a)) < € and /8 be a partition of X with H(/) < e such that c—algp(UBy) = Bx
(up to measure zero). By pulling back, o and 8 may be thought of as partitions on X. Clearly
oV (3 is generating for the action I~ (X, 1) and H(a V 8) < 2¢. Since € > 0 is arbitrary,
this implies the claim.

O

Remark 19. The paper [Bow16] uses Theorem [5.3]to prove that the generic measure-preserving
action of I" on a fixed probability space (X, u) has zero Rokhlin entropy. The special case
when I' is amenable was handled earlier by Dan Rudolph (see the Subclaim after Claim 19
in [FWO04]).

5.4 Finite-to-1 factors

A factor map ¢ : X — Y is finite-to-1 if for a.e. y € Y, ¢~1(y) is finite. It is well-known that,
for Z-actions, finite-to-1 factor maps preserve entropy. This fact readily extends to actions
of amenable groups. However it does not hold for non-amenable groups. The Ornstein-Weiss
map is one counterexample §I.3l For another, suppose I' has a sofic approximation ¥ by
expanders (as in §3.1.0)). Then the trivial action on a two point space has entropy —oo (with
respect to X). However the trivial action on a one-point space has entropy zero. Nonetheless

there are some positive results:

Theorem 5.5. [Bowl0d] If F, denotes the rank r free group and F,~(Y,v) is an n-to-1
factor of F.~ (X, 1) then

f(EAY) = (r—1)log(n) + f.(F,~X).

Proof remarks. The proof is almost immediate from the Abramov-Rokhlin formula for the

f-invariant (§T0.T]). O

Remark 20. Theorem [5.5 gives new examples of entropy-increasing factor maps. For example,
if F.~T(X,p) is any pmp action and ¢ : F, x X — G a cocycle (where G is a finite group)

then one can form the skew-product action F, %X x G defined by
Se(x,h) = (T9x,c(g,2)h).
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Since the factor map X x G — X is |G|-to-1, Theorem [5.5] implies

JulT) = (r = 1)10g(|G]) + fuxue(Se)-

If T"is Bernoulli and G = Z/2 say, are there simple conditions on the cocycle ¢ such that S,

is also Bernoulli? Note the Ornstein-Weiss example is of this form.

Proposition 5.6. Assuming ergodicity, Rokhlin entropy does not decrease under a finite-to-1

factor map.

Proof. Let T\(Y,v), I'\(Z, () be ergodic pmp actions and 7 : Y — Z a finite-to-1 factor
map. Let P be a generating partition for T'»(Z, (). Because 7 is finite-to-1 there exists a
measurable partition {Y7,...,Y,} of Y such that 7 restricted to Y; is injective for all i. For
€ >0, let Y/ CY; be asubset with 0 < v(Y/) < eandlet Q={Y/,Y],...,Y Y \UY/} be

the coarsest partition containing every Y/. Finally, let
R=QV 71 HP).

We claim that R is generating for the action Y. It suffices to show that for a.e. pair of
distinct elements x,y € Y there exists g € I' such that gz, gy are in different parts of R. So
let z,y € Y be distinct. By ergodicity, we may assume ['z intersects Y, for some i.

If m(x) # w(y) then, because P is generating there exists g € I" such that g (z), g7 (y)
are in different parts of P and therefore gz, gy are separated by R.

Now assume 7(z) = 7(y). Let g € T" be such that gz € Y. Because 7 restricted to Y is
injective and w(gx) = m(gy) it follows that gy ¢ Y/. So R separates gz and gy and we are
done.

Because R is generating,
RRR(CA(Y,v)) < H,(R) < H(P) + H,(Q).

The partition Q depends on € > 0 and H,(Q) N\, 0 as e \, 0. So it follows that hR*(T'~(Y,v)) <
H:(P). Since P is an arbitrary generating partition for '»(Z, (), the proposition follows. [

Remark 21. In work-in-progress by Alpeev-Seward, the Rokhlin entropy of an action is the
convex integral of the Rokhlin entropies of its ergodic components. So the previous remains

true without the ergodicity assumption.
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Question 19. Is there an upper bound for the (sofic or Rokhlin) entropy of a finite-to-1 factor

in terms of the entropy of the source?

Proposition 5.7. Sofic entropy does not decrease under a finite-to-1 factor map. More
precisely, suppose U (Y,v), '~ (Z,() are pmp actions and there is a finite-to-1 factor map

7Y — Z. Then hy(I'nnZ) > hy,(I'\Y). The Variational Principle (Theorem [81)

implies a similar result for topological sofic entropy.

More generally, whenever '\(Y, v) is a compact extension of 'v(Z, ¢) then hy, ((I'nZ) >
hs.,(I'~Y'). This follows from [Hay, Theorem 1.1] although it might not be obvious. Ben
Hayes graciously provided the following explanation.

For each g € T' and measurable function f: Z — C, define a new measurable function
ay(f): Z— Chy

ag(f)(h) = f(g~'h).
Let L>°(Z) X I' be the set of all formal sums - fyu, where f, € L>(Z) and f, = 0 for
all but finitely many g. The set L>°(Z) X, ' has a x-algebra structure: addition is defined

in the obvious manner, multiplication and the x-operation are defined by

() () - ()

We need to consider representations of L>(Z) X, I". A natural oneis Az: L®(Z) X" —
B(L*(ZxT,(xn)), (where n is the counting measure and B(-) denotes the algebra of bounded
operators) defined by

(Az(£)E)(z,9) = f(2)&(z, g) for f € L2(Z),§ € L*(Z xT),z€ Z,g €T
Az(up)é)(z,9) = E(h 'z, htg) for £ € LAH(Z x 1),z € Z, h,g e T.

Given an extension I'»(Y,v) — I'v(Z, () with factor map 7: Y — Z, there is a natural

representation p: L®(Z) X, I' = B(L*(Y,v)) given by
(p(Ey) = f(x(y))E(y) for f € L¥(Z),§ € L*(Y) (2)
(p(ug)§)(y) = E(g™y) for g € T, & € LA(Y). (3)
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Definition 14. Suppose that for i = 1,2, p; : L>°(Z) xa, ' — B(H;) is a representation. A
bounded linear map 7" : H; — Hy is L>®(Z) Xu I'-modular if

T(p1(9)€) = p2(D)T(E), Vo € L=(Z) xag I, € € Hi.

The representations py, po are mutually singular if every L>(Z) X, '-modular map T :

Hy, — H, equals zero. An exercise shows this definition is symmetric in py, po.

We will prove that if Tv(Y,v) — I'v(Z,() is a compact extension, then p as defined
above is mutually singular with respect to Az. To simplify the proof, we introduce a few
definitions. Recall that if (X, d) is a metric space, A, B C X, and ¢ > 0 then we write
A C, B if for every a € A, there is a b € B with d(a,b) < .

Definition 15. Let H be a Hilbert space and p : L(Z) X, I' = B(H) a *-representation.
We say that p is:

e compact over L>*(Z) if for every & € H and every e > 0, there are ny,...,m € H so
that

k
p(L)E Se i {Z p(fin; = [ € L=(Z), [ fills < 1} :
j=1
e mixing if for every &,m € H

lim sup [(p(f)p(ug)€,m)| = 0.

9770 feL>=(Z),[|flle <1

The idea for each of these definitions is that we are replacing the usual complex scalars
with L*(Z). So an element in L>°(Z) of norm at most one should be thought of as a
replacement for a complex number of size at most 1. Proposition [5.7] now follows from

Theorem 1.1 of [Hay| and the next result.

Proposition 5.8. Let ' be a countable discrete group, (Z, () a probability space and T'~(Z, ()

a measure-preserving action.

1. Let H;,j = 1,2 be Hilbert spaces and let p;: L(Z) X I' = B(H;),j = 1,2 be two *-
representations. If py is mixzing and py is compact over L (Z), then py, ps are mutually

singular.
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2. The representation Ay is mixing.

3. IfT(Y,v) = T (Z,() is a compact extension and p: L®(Z) X, I' = B(L*(Y)) s
defined by (3),(3), then p is compact over L*>®(Z).

Proof. ([{l): Let T € B(Hq,H;1) be L®(Z) X, -modular. This means that T'(p2(¢)§) =
p1(@)T(€) for all ¢ € L®(Z) Xae I, € € Hy. Let £ € Hy and € > 0. Let ny,..., 1, € H be
as in the definition of compact over L*(Z). Given g € I, there exist f,1,..., fox € L>(2)
with || fyjllec <1 for j =1,...,k so that

k
p2(ug)€ = > pa(fy)n

j=1

We have, for any g € I :

IO = KT(). T(€))] = [(pr(ug-1)T(p2 ug)ﬁ) ()]
<e|TITEN + Z(pl Dp(fe)T (), T(€)>‘

= | T|NT )]l + Z<pl 1 (fg.5))p1(ug )T(nj),T(£)>'

< e|ITIITE)] + Z sup  [{pr(F)r ()T (), T(E))]-

=1 reL= ()|t

Letting g — oo we find that
1T < el TINTE)]-

Letting ¢ — 0 proves that T'(¢) = 0 and, as £ was arbitrary, that T' = 0.
@) Given & € L*(Z),n € (*(T') we define £ @ € L*(Z xT) by (€ @n)(z2,9) = £(2)n(g).
Let
D =span{¢ ®6,: £ € L*(Z),g €T}
By the fact that )\Z‘ L(2) is contractive and the density of D, it is enough to show that for
every &,m € D we have

lim sup [(Az(F)Az(ug)€,m)| = 0.
970 feL>(Z):|| flloo<1
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Let £,m € D and write £ =), £, ® 6,1 = Y, h @ 0p,. Let E be a finite subset of I' so that
& =0and n, =0if h € T\ E. It is then straightforward to see that if g € '\ EE~!, then

(Az([)Az(ug)é,m) =0

for any f € L*°(Z). This proves (2.
B): L2(Y']Z) is the set of £ € L*(Y) with Ez(|£]?) € L>=(Z). Tt is a Banach space under

the norm
1€l z2viz) = VIEZ(I€12)]] o

See [KL16, Chapter 3] for more detail.

Given f € L>®(Y) and € > 0, compactness of the extension ' (Y, v) — I'»(Z, ) implies
the existence (see [KL16, Definition 3.8]) of vectors (i, ...,y € L*(Y|Z), a subset Yy C YV
with v(Yy) > 1 —¢ and Z, C Z with ((Zy) > 1 — € so that

k
j=1

Since
1o(ug) (f = xvo F)ll2 = [xrvvo fll2 < Vel flloo

and || - [l2 < || - || z2(v|2) we have

k
PV et el flloes e {Z p(kj)G + kj € L2(Z), |[Kjlloo < 1,5 =1,.. k:} .
j=1

Since ¢ > 0 is arbitrary and L>°(Y') is dense in L?(Y), this proves part (3.

6 Combinations

6.1 Ergodic decomposition

For any pmp action I'v(X, 1) there exists a map z — v, from X to Probr(X), the space of

[-invariant ergodic probability measures on X, such that

= /I/x du(x).
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See [GS00b] for example. If I' is amenable then it is well-known that

h,(InX) = /h,,x(FmX) du(z).
This is known as the ergodic decomposition formula [MO85]. In general such a formula
cannot hold for non-amenable I" with an arbitrary sofic approximation. For example, trivial
actions can have entropy minus infinity (§3.0]). Nonetheless there are some positive results

for uniformly diffuse sofic approximations and for the f-invariant as explained next.

Definition 16. Let ¥ = {0, },en be an arbitrary sofic approximation to I". Also let {p, }nen
be a sequence of positive integers with lim,, o, p, = +o0o. For each n, define oo~ : ' —
Sym([dn] x [pn]) by

a7 (9) (4, k) = (on(9)4, k).
Then Y := {0%P"}, oy is a uniformly diffuse sofic approximation. This is stronger than

being diffuse (which was considered in §3.1.2)).

Ezercise 11. Let ' (X, ), %, Y be as above. Then

hsy y(IAX) = /hzzvym(FmX) du(x) = /hz,yx(FmX) du(x).
In §6.2.5 below, a variant of sofic entropy, called average-local sofic entropy is introduced.
It is almost immediate that it satisfies the ergodic decomposition formula. It also agrees with
hsy ,(I'X) which proves the exercise.
The next result shows that the f-invariant satisfies the ergodic decomposition formula

with a correction term.

Theorem 6.1. [Sewl6d, Theorem 1.4] Let F~(X, 1) be a pmp action of a rank r free group.
Assume F (X, p) admits a finite-entropy generating partition. Then F~(X,v,) admits a

finite-entropy generating partition for p-a.e. x and

FuBAX) = [ £ (FAX) duta) = (= DH()
where T € Prob(Prob(X)) is the law of v, (so T = [4,, du(z).)

Proof sketch. The statement is directly verified for Markov chains. The general case can be

obtained from approximating by Markov chains. O

In work-in-progress, Alpeev and Seward have proven that Rokhlin entropy satisfies the

ergodic decomposition formula.
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6.2 Direct products

It is well-known that if [' is amenable then topological and measure entropy are additive

under direct products:
htop(T" X S) = htop(T') + htop (:S)
Py (T % S) = h,(T) + h,(S)

where TT(X, u), TR~5(Y,v) and T x S is the action on X x Y defined by
(T x SY(x,y) = (T92,5%) Vgel,xe X yeY.

Here is a brief summary of this section: topological sofic entropy is also additive under
direct products. However, measure sofic entropy is only subadditive and there are explicit
counterexamples to additivity. The f-invariant is additive under the restriction that all
actions involved have finite generating partitions. However, it is unknown whether Rokhlin
entropy is additive. There are several variants of sofic entropy introduced by Tim Austin, one
of which is additive under direct products. In fact, these variants “explain” how additivity

can fail.

6.2.1 Direct products and topological entropy

Theorem 6.2 (Topological entropy product formula). Let I" be a sofic group with a sofic ap-
proximation ¥ and fix a nonprincipal ultrafilter W on N. For continuous actions TX, 'Y

on compact metrizable spaces define (%, U)-entropy by

hyy(I'X) = sup inf inf li1r111i |Vi| " log (N.(Map(T, p, F, 6, 0:), psc))

>0 FEl 6>0i—

for any continuous generating pseudo-metric p on X. That is, the definition of sofic entropy

s modified by replacing limsup,_, . with the ultralimit along U. Then
hg,u(FmX X Y) = hgu(rmX) + hgu(rmY)
where, by convention, +00 4 (—00) = —00.

The proof is a straightforward exercise. The crux of the argument is that if ¢ : V' —

X,V =Y are good microstates then ¢ x ¢ : V — X X Y is also a good microstate.
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6.2.2 Subadditivity

Theorem 6.3 (Subadditive product formula). Let T" be a sofic group with a sofic approxi-
mation 3 and pmp actions U (X, p), (Y, v). Then

by (TAX xY) < hy (,(TX) + by, (IAY).
If one of these actions is a Bernoulli shift then equality holds.

The proof is a direct exercise. The key observation is that if v : V' — X x Y is a good
microstate for p x v then the projections ¢x : V- — X and ¢y : V — Y are good microstates
for the marginals. The special case of actions with finite-entropy generating partitions was

handled in [Bow10b]. The general case can be proven similarly using the partition definition

of sofic entropy (§2.4.2]).

6.2.3 Direct products and the f-invariant

It is a brief exercise to show that the f-invariant is additive under direct products in the fol-
lowing sense: if F,~T (X, ), F.~°(Y, v) are both pmp actions with finite-entropy generating
partitions then

Susw (T x S) = fu(T) + fu(5).
Question 20. Does this formula extend to actions that do not have finite-entropy generating
partitions? In this case the f-invariant is defined via a random sofic approximation as in

§2.5.21 Examples below show there is reason to be cautious.

In the next two examples, we consider sofic entropy with respect to the random sofic
approximation P defined in §2.5.21 Recall that P-entropy extends the f-invariant to actions

that need not admit finite generating partitions.

Ezample 5 (The infinite entropy Bernoulli shift and the trivial action). The P-entropy of
the Bernoulli shift F,~([0,1], Leb)¥" is +00. The P-entropy of the trivial action of IF, on
([0, 1], Leb) is —oo (for example this follows from Theorem [B.5]). The direct product of these
two actions has P-entropy —oo. The reason is that the number of e-separated microstates
¢ : [n] = [0,1]F x [0, 1] for this action is roughly bounded by exp(n/e). On the other hand,
with high probability a random sofic approximation ¢ : F,, — Sym(n) admits no microstates

at all.
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Ezample 6 (Countable direct products). The P-entropy is not additive under countable direct
products. To see this recall that the trivial action Fo(Z/2,us) has f-invariant — log(2)
while the Bernoulli shift Fo~(Z/2, u2)*2 has f-invariant log(2). So the direct product action

Forn(Z)2 X 7)252 uy x u5?)

has f-invariant 0. The infinite direct power of this action is measurably conjugate to the
direct product of the trivial action F,~([0, 1], Leb) with the Bernoulli shift F,.~([0, 1], Leb)*.

By the previous example, the P-entropy of this action is —oo.

6.2.4 A counterexample to additivity

Theorem 6.4. There exists a sofic group I with a sofic approzimation A and a pmp action
IAT(X, p) such that
hA,,uxu(T X T) = —00 75 0= 2hA,u<T)-

Proof. Let Fy = (a,b) be a rank 2 free group and ¥ = {o; : F; — Sym(V;)} be a sofic
approximation to Fy by expanders as in §3.1.11 For each i, define o : Fy — Sym(V; x{0,1})
by

0i%(g9)(v, i) = (o (g)v, 1)

(as in Definition [[6) and let A = ¥® = {5},

Let T be the trivial action of Fy on {0,1} (so 79z = z for all g € Fy,x € {0,1}). By
Proposition B, hy, ,(T") = —oo where 1 is the uniform probability measure. An exercise
shows that hy ,(T') = 0. An argument similar to Proposition B.Ilshows Ay ., (T X T) =
—00.

O

6.2.5 Variants of sofic entropy and direct products

In [Ausl6a] Tim Austin introduced two variants of sofic entropy, one of which is additive
under direct products. Both variants replace the number of microstates with covering num-
bers of measures on model spaces. The idea to use measures on model spaces goes back to

[Bowlla] where yet another variant of sofic entropy was introduced.
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The starting point is to assume our action has the form I'~ (XY, 1) where (X, dy) is a
compact metric space and p is a shift-invariant measure. This special form does not lose
generality: any pmp action has a topological model and therefore we can assume it has
the form I'~(X, ) where (X, dy) is as above. We can equivariantly embed X into X' via
z + (g7 'x)4er. This pushes v forward to a shift-invariant measure on X'.

Let V be a finite set. A point in the product space X" is represented as x = (,)yev-

This space is endowed with the normalized Hamming metric
v _
a6 y) = VI3 dalw o).
veV

Given x € XV and a map o : I' — Sym(V), the pullback name of x at v is
17 (x) := (To(g)-1v)ger € X"
This defines a map I19 : XV — X'. The empirical distribution of x is
P = V™'Y dngey € Prob(Xh).
veV

If 0 is a homomorphism then P is shift-invariant. In general if O C Prob(X') is any
weak* open neighborhood of the subspace Probr(X") of shift-invariant probability measures,
% = {0,} is a sofic approximation and x,, € X' then PZ" € O for all sufficiently large n.

If O is any weak* open neighborhood of y in Prob(X"), then we let Q(0, 0,,) denote the
set of all microstates x € X" such that P7» € O. The metric space (Q(O,an),dgcv”)) is a
model space. It plays a role here that is very similar to the role played by Map(:--) in
24Tl

In order to avoid taking limsups and liminfs, we will work with ultralimits. So let U be
a nonprincipal ultrafilter on N. A sequence {ju,} of probability measures on X' is said to

converge to p with respect to (32, U)
e locally on average if lim,_y [ P7" du,(x) = p,
e locally if for every weak™ open neighborhood O of p it is the case that

lin%L|Vn\_1#{v eV, (07).p, € O} =1,
n—
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e locally and empirically if it converges locally and for every weak™* open neighborhood
O of u
lim 1, (£2(0,0,)) =1,

n—U

e locally and doubly-empirically if u,, x u,, locally and empirically converges to p X .

The notions above are listed in order of increasing strength. In [Ausi6a], local and empirical
convergence is called quenched convergence. The new terminology has been chosen to avoid
a conflict with common statistical physics language.

Every notion of convergence above corresponds to a variant of sofic entropy in which the
number of microstates in the usual formula for entropy is replaced with a covering number.
To explain, suppose (Y,dy) is a metric space and 6 > 0. Then the j-covering number
of (Y,dy), denoted covs(Y,dy), is the minimum cardinality of a subset S C Y whose 0-
neighborhood is all of Y. If u is a probability measure on Y then cov, s(u, dy) is the infimum
of covs(Z,dy [ Z) over all subsets Z C Y with measure pu(Z) > 1 —e.

The local-on-average sofic entropy of I' (X', i) (with respect to (X, U)) is defined by

hg"i;“”g(rm(xﬂ @) = sup {sup lim |V,,| ! log cov, 5 (,un, dgcv“)> }

€,6>0 n—=U

where the first supremum is over all sequences {u,} that locally-on-average converge to
p with respect to (X,U). The definitions of local sofic entropy, local and empirical
sofic entropy and local and doubly-empirical sofic entropy (denoted A5 (-), hiSy(-),
hlzdeu()) are similar. Local and empirical is abbreviated to le- and local and doubly-empirical

to lde-.

Proposition 6.5. The four notions of entropy defined above are measure-conjugacy invari-

ants.

Remarks on the proof. The fact that le- and lde-sofic entropy are measure-conjugacy invari-
ants is proven in |[Ausl6a]. The proof there generalizes to local-on-average and local sofic
entropy. The main idea is that any factor map gives rise to a sequence of “almost Lipschitz”
maps between model spaces. These maps essentially push-forward a sequence {u,,} converg-
ing to u to a new sequence {v,} converging to v in such a way that the type of convergence

is preserved. O
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Any sequence {y,} of probability measures i, on (0, 0,) converges locally-on-average
to u whenever {0, } is a sequence of weak® open sets that decrease to pu. Therefore sofic
entropy lower bounds hlzofu_“”g (+). On the other hand, the increasing strength of the notions

of convergence imply
Bt () 2 BE() 2 P () = B ().

Proposition 6.6. Let Tn~T(X, 1) be a pmp action.
e IfT is ergodic then hy ., (T) = hlzofu_’zvg(T).

o [fT is ergodic then any sequence {p,} that locally converges to p must also le-converge

to . So hIE"ﬁW(T) = hlze,u,u(T)-

o [f T is weakly mizing then any sequence {u,} that locally converges to p must also

lde-converge to j. So hlzofu,u(T) = hl§7u,u(T) = hlzd,eu,u(T)-

Proof. The first statement is proven in [Bowlla] (under unnecessarily restrictive simplifying
hypotheses). In fact the proof shows that if yu, locally-on-average converges to u then for
any weak™ open neighborhood O of u, 11,(2(0,0,)) — 1 as n — U. This also explains the
second statement. The third statement follows from the second since weak mixing implies
that u x u is ergodic and it can be shown directly that if u,, — p locally then g, X p, — X i

locally. The second and third statements are proven in [Aus16al. O

Theorem 6.7. [Ausi6d, Theorems B and C] Let TART (XY, 1), TS (YT, v) be pmp actions.

As above, let X2 be a sofic approzimation to I' and W a non-principal ultrafilter on N. Then
he (T % S) = hi5 (T) + heuw(S)

hide (T'x S) = hlgii,u(T) + hlg@,y(S).

XU puxy

Remarks on the proof. The statements of Theorems B and C in [Ausl6al differ from the
above. Instead of using ultrafilters one quantifies over all subsequences. The proof of the
version above can be derived from the proof in [Ausi6a] with only minimal changes. The
main idea is that if {yx,} is a sequence of measures on model spaces that locally and doubly-

empirically converges to p then for any weak* open neighborhood N of px v in Prob(X' x Y
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there is a weak™ open neighborhood O of v in Prob(Y") such that
inf ., ({xeX": (x,y) € QN,0,)}) = 1
st ({x (x,¥) € AN, 02)})

as n — U. This is reminiscent of the well-known fact that if ;1 x p is ergodic and v is ergodic

then p x v is ergodic. U
Finally, in order to further justify the notion of lde-entropy we have:

Theorem 6.8. [Ausi6d, Theorem D] Given a pmp action T~T (X, i), sofic approzimation
Y and a non-principal ultrafilter W on N, the power-stabilized (X, U)-entropy is defined

by
s .1 n
h';;],u,,u(T) = lim _hE,u,uX” (TX )

n—oo N
where TAT™" (X, u)*™ is the n-fold Cartesian power of T. The limit exists by sub-additivity.
Then

hgﬁu,u(T> Z hlEd,eu,p(T>

and equality holds if TAT (X, u) admits a finite-entropy generating partition.

One further justification:

Theorem 6.9. [Ausi6d, Corollary D’] Given a pmp action U™ (XY 1) with a finite-entropy

generating partition, sofic approximation ¥ and a non-principal ultrafilter U on N,
7550, (T) = 10f g (T % S) = s (S)

where the infimum is over all pmp actions TS (YT v).

7 Ornstein Theory

In 1970, Donald Ornstein introduced a powerful set of tools, known collectively as the “Orn-
stein machine” | for proving that a given automorphism is measurably conjugate to a Bernoulli
shift [Orn70al, [Orn70d, [Orn70b]. This machine also unifies the proofs of the following major

results:
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e (Sinai’s Factor Theorem): every ergodic automorphism 7" with positive entropy factors

onto every Bernoulli shift Z~ (K, )% with H (K, x) < h,(T) [Sin64];

o (Krieger’s Generator Theorem): every ergodic automorphism 7" admits a generating

partition P with |P| < 1+ exp(h, (7)) [Kxi70];

e (Ornstein’s Isomorphism Theorem): Bernoulli shifts are classified up to measure-

conjugacy by entropy.

See [Gla03, [Dowl11l [Pet89, Rud90] for modern treatments.

These results were generalized by Ornstein and Weiss [OWS80] to arbitrary countable
amenable groups via quasi-tiling machinery. Alternatively, this generalization can be made
via orbit-equivalence theory [Dan01], DP02].

In recent work, all three major results have been partially generalized to all countable
groups. These generalizations are discussed next, followed by a section on the d-metric that

plays a crucial role in Ornstein theory.

7.1 The Isomorphism Theorem

Ornstein’s Isomorphism Theorem has recently been extended to all countable groups. The

final piece was put in by Seward in work that is still in progress.

Theorem 7.1. Let ' be a countably infinite group. Let (K, k), (L, X) be two probability spaces
with the same Shannon entropy. Then the corresponding Bernoulli shifts T (K, k)Y, T~ (L, \)F

are measurably conjugate.

Proof sketch. Following Stepin, we say that a group I' is Ornstein if whenever (K, k), (L, \)
are any two probability spaces with the same Shannon entropy then the Bernoulli shifts
I~ (K, k)Y, T~ (L, \)T' are measurably conjugate. So our goal is to prove that all countably
infinite groups are Ornstein.

Stepin showed that if I' contains an Ornstein subgroup then I' must be Ornstein itself
[Ste75]. This is because if H < I' is an Ornstein subgroup then an isomorphism from
I~ (K, k)Y to T~ (L, \)F can be built out of an isomorphism from H~ (K, k) to H~(L, \)#

coset-by-coset. In other words, it is a co-induction argument (the details are spelled out in
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[Bowl11b]). By Ornstein-Weiss [OWS80] all infinite amenable groups are Ornstein. So any
group that contains an infinite amenable subgroup must be Ornstein.

On the other hand, Ol’'shankii proved the existence of countable non-amenable groups
that contain no proper infinite subgroups |Ol'91]. Stepin’s trick cannot be directly applied
to such groups. Nonetheless there is a measurable version of Stepin’s trick that works and
is applied in [Bowl12a].

Suppose there is a non-trivial probability space (M, u) such that both (K, k) and (L, \)
factor onto (M, p). Nontrivial means that u({z}) < 1 for every x € M. Then the Bernoulli
shifts T~ (K, k)'' and T~ (L, \)' both factor onto T~ (M, p)'. By Zimmer [Zim8&4], there
exists an ergodic automorphism T of (M, )" whose orbits are contained in the '-orbits. We
lift 7' to automorphisms Ty, Ty, of (K, k)", (L, \)' respectively. Using Thouvenot’s relative
version of Ornstein’s Isomorphism Theorem [Tho75] we see that Tk and T}, are isomorphic
via an isomorphism compatible with 7". This isomorphism is used in a manner similar to
Stepin’s trick to build an isomorphism from I' (K, k)" to T~ (L, \)' (see [Bowl2a] for
details).

Next suppose that neither (K, k) nor (L, \) is a 2-atom space. For example, this means
that for any ko, k1 € K, k({ko, k1}) < 1. Then an elementary argument shows the existence
of a third probability space (IV,v) such that

H(K,k) = H(L,\) = H(N,v)

and (K, k) has a nontrivial common factor with (/V, v) which has a nontrivial common factor
with (L, \). So the previous result shows that T~ (K, x)! is isomorphic to [~ (L, )L

The final piece to the puzzle is to handle the case when K is a 2-atom space. This is
handled in work-in-progress by Brandon Seward. The main idea is to find a common factor
between ' (K, k)F and T~ (L, \)! for a specific choice of (L, \) and then apply arguments

similar to the above. ]

By contrast, it is trivial to check that no finite group is Ornstein. So among countable

groups, the Ornstein property characterizes the infinite groups.
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7.1.1 Non-Bernoulli factors of Bernoulli shifts

In the special case I' = Z, many natural actions are known to be isomorphic to Bernoulli
shifts. This includes mixing Markov chains, inverse limits of Bernoulli shifts, factors of
Bernoulli shifts, algebraic actions with completely positive entropy, hyperbolic toral auto-
morphisms, the time 1 map of geodesic flow on a negatively curved surface of finite volume.
All of these results were obtained using Ornstein theory. By contrast, when I' = Fy we gave
in §3.3] Example [3] an example of a mixing Markov chain that is not Bernoulli and in §5.4] an
example of an inverse limit of Bernoulli shifts that is not Bernoulli. Next we give an example,
due to Popa-Sasyk of a factor of a Bernoulli shift that is non-Bernoulli. Moreover this factor

is algebraic and has completely positive sofic entropy by the main result of [Ker14].

Theorem 7.2. [PS07, [Pop06d, [Aus16d] Let T be a countably infinite group with an infinite
normal subgroup H such that (I', H) has relative property (T). Then I' admits a Bernoulli
action with a non-trivial factor that is non-Bernoulli. In fact, the factor action is not even

orbit-equivalent to a Bernoulli shift.

Proof outline. The idea is to compute the cohomology of the actions taking values in the
circle R/Z. To be precise, let (X, ) be a standard measure space with an action 'y X. A
1-cocycle is a map ¢ : I' x X — R/Z satisfying

c(g2091, ) = (g2, 1) + (g1, x)

for g1,90 € I" and a.e. x € X. A cocycle ¢ is a coboundary if there is a map ¢ : X — R/Z
such that
c(g, x) = p(gx) — o(x).

Two cocycles are cohomologous if their difference is a coboundary.

The first cohomology group is H' (T~ (X, u)) = Z(P~ (X, 1))/ BT~ (X, 1)) where Z(-)
is the additive group of 1-cocycles and B(-) is the additive group of coboundaries.

In [PSQ7], it is shown that for any Bernoulli shift over I', every cocycle is cohomologous to
a homomorphism I' — R/Z. Therefore the cohomology group is isomorphic to Hom(I', R/Z).
This has been vastly generalized by Popa’s cocycle superrigidity Theorem [Pop07].

Now let K be a compact abelian group. K is embedded into KT by k — the constant

function (g — k). This is a closed T-invariant subgroup. So I~ K" /K is an algebraic action
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(called an Ornstein-Weiss factor in [GS15] where bounds on its entropy are obtained). In
[Pop06al, it is shown that the cohomology group of T~AK' /K (with respect to Haar measure
on K''/K) is isomorphic to Hom(I', R/Z)x Hom(K, R/Z). So if Hom(I', R/Z)x Hom(K,R/Z)
is not isomorphic to Hom(I',R/Z), then this action cannot be orbit-equivalent to a Bernoulli
shift, let alone measurably conjugate to one.

The group Hom(I", R /Z) is compact while Hom (K, R/Z) is countable. As K varies over all
compact abelian groups, Hom(K, R/Z) varies over all countable abelian groups. Since there
are uncountably many countable abelian groups, there are uncountably factors of Bernoulli
shifts over I' that are not Bernoulli.

The proof in [Ausl6d]| differs from the above. It assumes I' is sofic and shows that the
model spaces of Bernoulli shifts have an asymptotic connectivity property that the model

spaces of I~ KT /K lacks. O

Question 21. Does there exist a non-Bernoulli factor of a Bernoulli shift over the free group?

Question 22. If a factor of a Bernoulli shift is orbit-equivalent to a Bernoulli shift, must it
be Bernoulli? This is true if I" is an ICC property (T) group by Popa’s cocycle super-rigidity
Theorem [Pop07].

Question 23. Let K be a finite set and Proby(K%) denote the space of shift-invariant Borel
probability measures on KZ with the weak* topology. Let 0 < ¢ < log |K| and consider the
subset X, C Probz(K?) of all measures with entropy rate > ¢. By upper semi-continuity,
X, is closed. In unpublished work, Dan Rudolph proved the subset X! C X, of all measures
p € X, such that the shift action Z~ (K%, 1) is Bernoulli and has entropy = c is a dense G
subset of X,.. Density is a consequence of Rokhlin’s Lemma. The statement that X! is Gs
can be derived from the fact that a process is Bernoulli if and only if it is finitely determined.
It uses the full strength of Ornstein theory. Is there an analogous result for any or every

non-amenable group?

7.2 Krieger’s Generator Theorem

Seward generalized Krieger’s Generator Theorem to all countable groups using Rokhlin en-

tropy:
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Theorem 7.3. [Sewlfl] Let AT (X, 1) be a countably infinite group acting ergodically, but
not necessarily freely, by measure-preserving bijections on a non-atomic standard probability

space (X, p). If p = (p;) is any finite or countable probability vector with
hRN(T) < H(p) = — Zpi log ps,

then there is a generating partition o = {A;} with u(A;) = p; for alli.

The proof works almost entirely within the pseudo-group of the orbit equivalence relation
of the action. It also uses previous (very accessible) work of Seward [Sewlba] to show that
there exists a finite generating partition of the action whenever it has finite Rokhlin entropy.
There is also a relative version of Theorem [7.3in [Sew14b|] and a non-ergodic version is being

written [AS16].

7.3 Sinai’s Theorem

Seward recently generalized Sinai’s Factor Theorem:

Theorem 7.4. [Sewl8| Let I' be an arbitrary countable group and I'm*(X, u) an ergodic
essentially free pmp action. Let (K, k) be a probability space and suppose

0 < H(K, k) < h¥*(a).
Then the action T2(X, 1) factors onto the Bernoulli shift T~ (K, k)L

Remarks on the proof. This is only a light sketch of the proof of this deep result in the
special case in which H(K, k) < h®¥(a). By [STDI6] there exists an essentially free action
I'~A(Y,v) with

h(B) < h(a) — H(K, k)

such that I'~%(X, ) factors onto '~?(Y,v). Let By denote the Borel sigma-algebra of Y,
which we consider to be a sub-sigma-algebra of B via this factor map.

There exists a Borel map f : Y — [0,1] and an aperiodic automorphism 7" € Aut(Y,v)
such that f,v is Lebesgue measure and each orbit of T is the intersection of an orbit of I'

with the preimage of a point under f. Let f: X — [0,1] and T € Aut(X, z1) denote the lifts
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of f and T respectively. Note that every T-orbit is the intersection of an orbit of I’ with the

preimage of a point under f.

Given a countable partition £ of X and S C [0, 1] let

denote its quasi-restriction (this is the smallest partition of X containing all sets of the form

Z N fY8) for Z € €). If F is a sigma-algebra of X, we define Fg similarly. Also let

Pe=Byv \/ (o —alge(Gon) FI(11)).

te(0,1]

This is called the external past of £. It is T-invariant and importantly
hE(ar | o — algp(€)|By) < hu(T,€|P)

where o [ o — algp(§) denotes the factor of the action « generated by the partition &.
Therefore

H(Kv ’%) < hu(Tv 5‘?5)

So we can apply the Relative Sinai Factor Theorem (due to Thouvenot [Tho75]) to T relative
to P¢ to obtain a Bernoulli factor for T that is independent of P¢. This Bernoulli factor can

be “put together” to obtain a Bernoulli factor for the I'-action. O

As spectacular as the result above is; it might not be the ‘best possible’. As explained
in §5.1] there exist actions with zero Rokhlin entropy that factor onto Bernoulli shifts. This

leads us to the following:

Question 24. Suppose I'»(X, u) is an ergodic pmp action and (K, k) is a probability space
whose Shannon entropy lower bounds the naive entropy of I'»(X, ). Then does I''v(X, )
factor onto the Bernoulli shift I~ (K, x)'? By Sinai’'s Theorem, if I' is amenable then the
answer is ‘yes’. When I' is non-amenable then the naive entropy of I'v(X, p) is in {0, c0}.
When the naive entropy is zero, the action cannot factor onto any Bernoulli shift since naive

entropy is monotone under factor maps.
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7.3.1 Spectral theory implications

Given a measure space (X, u), let LE(X, u) C L*(X, u) denote the orthogonal complement
of the constant functions. Given a pmp action I'~T (X, i) there is a corresponding homo-

morphism of T into the unitary group of L3(X, 1) given by
kD — La(X, ), kef=fog

This is called the Koopman representation. It is well-known that the Koopman represen-
tation of a Bernoulli shift is isomorphic to the countable sum of left regular representations
which means that it has countable Lebesgue spectrum. So it follows from Sinai’s Factor
Theorem that the Koopman representation of a positive-entropy action of an amenable group
I necessarily contains a subrepresentation isomorphic to a countable sum of left-regular rep-
resentations. A more difficult result to obtain is that any action with completely positive
entropy has countable Lebesgue spectrum. This was first proven for I' = Z using the Rokhlin-
Sinai Theorem and then extended to all amenable groups by [DG02] using orbit-equivalence
techniques.

We now have versions of these results for arbitrary groups:

Theorem 7.5. [SewlS] Suppose T (X, 1) is an essentially free ergodic pmp action. Let
H C Li(X,p) be a T-invariant closed subspace and F C Bx be the smallest T-invariant
sigma-algebra such that all functions in H are F-measurable. If H has no non-zero subrep-
resentation that embeds into the left regular representation T l?(T), then the factor corre-

sponding to F has zero Rokhlin entropy.

The sofic entropy version of this theorem was obtained previously by Hayes [Hay18| with

a completely different proof relying on von Neumann algebra machinery.

Corollary 7.6. [Sewl8] Suppose T (X, ) is an essentially free ergodic action with com-
pletely positive outer Rokhlin entropy as defined in §11.2. Then the Koopman representation

LALE(X, ) is unitarily isomorphic to the countable sum of left reqular representations.

The sofic entropy version of the above corollary is stated as Theorem [T1.5] below.
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7.3.2 Markov chains factor onto Bernoulli shifts

We do not know whether every mixing Markov chain over a free group has positive Rokhlin
entropy. So Theorem [7.4] cannot be applied. However, the existence of a Bernoulli factor for

these systems can be obtained directly:

Theorem 7.7. Every mizing Markov chain over a non-abelian free group factors onto a

Bernoulli shift.

Proof. Let F = (S) be a non-abelian free group and X = (X,),er be a mixing Markov chain
taking values in a finite or countable state space K. Let p be the law of X so that F~ (K, 1)
is a pmp action. Without loss of generality, we assume that the law of X, is fully supported
on K.

Let a,b € S be distinct elements. Let A < T be the cyclic subgroup generated by a. The
law of (X,)gen conditioned on X, = k is non-atomic (for any k& € K). Denote this law by

wr, € Prob(K™). So there exists a measure-space isomorphism
(bk : (KAvluk) — (Tv >\)

where the latter denotes the circle with Haar measure. Define ¢ : K* — T by ¢(x) = ¢p()
where k = z..

Define processes Y = (Y,)er and Z = (Z;) jer by
Yy =o(a" = Xgan),  Zg =Yg+ Y.

Since Z is a factor of X, it suffices to show that it is iid (independent and identically
distributed). Before doing that, let us consider some general properties of the variables Y,
and Z,,.

The Markov property of X implies that if U C I' is any set of left-coset representatives
of A then (Y,)gep is iid. The former condition means that the cosets {gA} ey are pairwise
disjoint. This is because for any g € U, (Xgan)nez is independent of (Xpen)neun(g}nez
relative to X,. Therefore, Y, is independent of (Y3)nern fg) relative to X,. Since the law of

Y, conditioned on X, is Haar measure, Y, is independent of X,. So Y, is independent of

(Yi)nev\(g}-
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In general, if A, B, C' are random variables satisfying: (1) A, B are independent and (2)
B, C take values in the circle then A and B + C are independent. It follows that if U C T’
and g € I' are such that
gA U gbA ¢ UN U UDA

then Z, is independent of (Zj)ner.

Now let W C F be a finite set such that the induced subgraph of W in the Cayley graph
Cay(F, S) is connected. To finish the proof, it suffices to show that (Z;)ew is iid.

Let f,g € W be such that there exists s € SUS™! with fs = ¢ and the induced subgraph
of U := W \ {g} is connected. By induction, we may assume that the variables (Z,),cr are
iid.

We claim that

gA U gbA ¢ UN U UDA.

Indeed, if gAUgbA C UAUUBbBA, then since the induced subgraph of gAU gbA consists of two
lines connected by the single edge {g, gb} and the induced subgraph of U U Ub is connected,
it follows that U U Ub D {g, gb}. Since g ¢ U, this implies ¢ € Ub and gb € U. Therefore
gb~! and gb € U. But this implies the induced subgraph of W \ {g} is disconnected (since
gb™! and gb are in different components).

This contradiction implies gA U gbA ¢ UA U UbA, which as explained previously, implies
Z, is independent of (Z},)nep as required.

O

7.4 The d metric

Let (K,dg) be a compact metric space. The metric d induces a new metric, denoted d, on
the space of I-invariant probability measures on K'. Intuitively, this new metric measures
how closely two measure pu, v can be “joined”. More precisely, recall that a joining between
measures p,v € Probp(K') is a I-invariant Borel probability measures A on the product

space KU x KT whose marginals are y and v. The d-distance between j and v is

d(u, 7/) = ir){f/dK(xeaye) d)\(l’,y)
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where the infimum is over all joinings A of p and v. If K is finite then it is usually assumed
that dk is the trivial metric dg (ki, ko) = 1 if ky # ky. This metric plays a key role in most

developments of Ornstein theory.

Theorem 7.8. IfI' is amenable and K 1is finite then:
1. entropy function p > h,(T~K") is continuous in the topology induced by d,
2. the set of Bernoulli measures in Probr(KT) is d-closed.

Proof. The first statement is an exercise in [Rud90] (for I' = Z). The last statement is
contained in [ST75] (again for I' = Z) although it is also follows from the characterization

of Bernoulli shifts as finitely determined processes (see e.g. [Rud90] for details). O

Here we will show that both statements above fail for at least some non-amenable groups.
This is interesting because the first statement is a key ingredient in Ornstein theory and the
last is a consequence. The next theorem is due to Tim Austin. It improves on an earlier

example due to myself and Brandon Seward.

Theorem 7.9. If ' contains a non-abelian free group then there exists a sequence {j,}5°,

of D-invariant measures i, € Probr(KY) for some finite K such that
o I~ (KT, ) is isomorphic to the Bernoulli shift T~((Z/2),us)" for all n

e the sequence {y1,} converges in the d-metric to a measure i (as n — 00) such that

LK o) is isomorphic to the Bernoulli shift T~((Z/2 x Z/2), us X us)T.

In particular, neither sofic entropy, the f-invariant nor Rokhlin entropy is continuous in the

d-metric.

Proof. Let K = (Z/2)*. Let 3, : (Z/2)" — {0,1} be any sequence of measurable functions
such that
lim uy(8,(1)) =0

n—oo

and u5(3;1(1)) > 0 for all n.
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Let a,b € T generate a rank 2 free subgroup. Define factor maps a, : (Z/2)" — K' by

(g + Tga, Ty + T45,0,0) if B,(g7 2) =0

(), = . 1y
(g + Tga, Tg + Tgp, 14, 1) if Bu(g7w) =1

Let j, = (ay,).ub. To verify the conclusions, let 7 : KT — (Z/2 x Z/2)" be the projection
map onto the first two coordinates. Observe that 7w, is the Ornstein-Weiss factor map. Since
this map is 2-1 (when restricted to the free subgroup generated by a,b) and ub (8, (1)) > 0
it follows that «, is an isomorphism onto its image.

Define an, : (Z/2)F — K" by aoo(n), = (24 + Tga, Ty + g5, 0,0). The d-limit of y,, is the
MeASUTe [l 1= QooxUh. The Ornstein-Weiss example shows that T~ (KT, pio,) is isomorphic

to the Bernoulli shift over the base space with entropy log(4). O

Question 25. Is the f-invariant finitely observable in the sense of [OW07]? The Theorem

above suggests the answer may be ‘no’.

Theorem 7.10. Let I' be an infinite property (T) group. Then there exists a finite set K

and a sequence {y,} of T'-invariant measures on K such that

o '~ (KT, ) is isomorphic to a Bernoulli shift for all n

e the sequence {ji, }n converges in the d-topology to a measure jio (asn — o) such that

LK i) is isomorphic to a non-Bernoulli factor of a Bernoulli shift.

Proof. This example is similar to the previous one. To be precise, let S C I' be a finite
generating set and K = (Z/2)% x Z/2 x 7Z/2. Let B, : (Z/2)' — {0,1} be any sequence of
measurable functions such that

lim 5 (5,(1)) = 0

and ul (3;1(1)) > 0 for all n.
Define factor maps a, : (Z/2)" — K' by

((ZEQ + $95)8€S> Oa O) if ﬂn(g_lz) =0

an(m)g - ((l'g + l’gs)seSa Lg, 1) if 5n(g_ll’) =1

Let i, = (a,).ul. To verify the conclusions, let 7 : KT — ((Z/2)°)F be the projection map.
Observe that ma, is the Ornstein-Weiss factor map. Since this map is 2-1 and u} (8, 1(1)) > 0,

it follows that «, is an isomorphism onto its image.
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Define oo, @ (Z/2)' — Kb by an(r)y = (x4 + 24s)ses,0,0). The d-limit of p, is
the measure fio := Qoostiy and T (KT, piy) is isomorphic to the Ornstein-Weiss factor
I (Z)2)Y /(Z]2).

By the proof of Theorem [7.2], the cohomology group of any Bernoulli shift over I' with
values in the circle R/Z is Hom(I',R/Z) while the cohomology group of the Ornstein-Weiss
factor T~(Z/2)'/(Z/2) is Hom([',R/Z) x Z/2. Since I" has property (T), Hom(T', R/Z) is
finite. Therefore, these cohomology groups are non-isomorphic and so T~ (KT, 4,) is not

orbit-equivalent to a Bernoulli shift and so cannot be measurably conjugate to one. O

Remark 22. Corollary [£.4] shows that for any non-amenable group there exists an inverse
limit of factors of Bernoulli shifts that has zero Rokhlin entropy. This inverse limit can
be realized as a d-limit of factors of Bernoulli shifts (with K = [0, 1] for example). This
provides another example of a non-Bernoulli d-limit of Bernoulli shifts although in this case,

K is infinite. Is it possible to modify this example using finite K7

8 The variational principle

Theorem 8.1 (The variational principle). Let '\ X be a continuous action on a compact

metrizable space. Let 3 be a sofic approximation of I'. Then
hy,('X) = sup hy, , (I X)
“w
where the supremum is over all I'-invariant Borel probability measures pv on X . In particular,
if there does not exist a I'-invariant probability measure on X then hy(I'nX) = —o0.

Remark 23. For Z-actions, this theorem was obtained over several papers [Goo69, [(Goo72,
Din70, [GooT1]. The proof that now appears in most textbooks is due to Misiurewicz [Mis76].
A number of other variational principles in entropy theory are provided in [Dowll]. The
case of general sofic groups is [KL11b, Theorem 6.1]. There are versions of this result for
sofic pressure [Chul3]|, sofic groupoids [Bowl4] and a local version (with respect to a finite

open cover) in [Zhal2].
Proof sketch. The inequality

hs,('X) > sup hy , (I X)
m
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is immediate from the pseudo-metric definition of sofic entropy (§2.4.T)). The opposite in-
equality is achieved in the following way. Fix a finite partition P of Prob(X), the space of
probability measures on X. Fix a scale ¢ > 0. Each microstate ¢ : V,, — X has an empirical

measure

PJ" = Va7 ) 64) € Prob(X).

veEVR
By pulling back the partition P, we obtain a finite partition P on the space of topological
microstates. It follows that the exponential growth rate of the maximum cardinality of
an e-separated subset of topological microstates is approximated by the same growth rate
only restricted to microstates whose empirical measures lie in a fixed part of the partition.
By refining this partition and taking Benjamini-Schramm limits we can build an invariant
measure whose sofic entropy is bounded below by the exponential rate of growth of the

maximum cardinality of an e-separated subset of the topological microstate space. Sending

€ \( 0 finishes the proof. O

8.1 Measures of maximal entropy: existence

The variational principle naturally leads to two problems: under what conditions does there
exist a measure of maximal entropy and if one exists is it unique? If sofic entropy is upper
semi-continuous as a function on Probr(X) with respect to the weak* topology then com-
pactness of Probr(X) implies existence. Upper semi-continuity is discussed in §4.5 and in
greater depth in [CZ15]. For example, it holds whenever X is a closed I'-invariant subpace

of A" for some finite alphabet A.

8.2 Measures of maximal entropy: uniqueness

It appears that there are no general results concerning uniqueness of measures of maximal
entropy outside of I' = Z?. However, there is a counterexample to a natural conjecture in

the case of I' = Fy and subshifts of finite type which we will go over next.

Definition 17 (Subshifts of finite type). Let I' be a countable group, K a finite set and
'~ K" the shift action: (gz)(f) = (g7 1f) for g, f € I',x € K'. Let F € I be a finite set
and Q C K¥ be a collection of maps from F to K. Let X be the set of all x € K' such
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that for every g € I', gx restricted to F' is in 2. Then X is the subshift of finite type
determined by €. Because subshifts of finite type are expansive, they admit measures of

maximal entropy.

It is a well-known fact that if X is a subshift of finite type (over Z) which is topologically
transitive, then X admits a unique measure of maximal entropy. Indeed more is true - for
any continuous potential ¢ : X — R, there is a unique equilibrium measure on X [Bow08§].
By contrast, Burton et al proved in [BS94] that Z? admits strongly irreducible subshifts of
finite type with more than one measure of maximal entropy. See also [BS95] for further

constructions and general criteria for uniqueness in the Z9-setting.

Theorem 8.2. There exists a topologically transitive subshift of finite type over the free

group Fy = (a,b) that admits more than one measure of mazximal f-invariant.

Proof. Let n > 4 and define X C [n]*2 by: an element z € X if and only if for every
g € Fy and s € {a,b} there is an € € {0,1} such that z(gs) = x(g) + ¢ mod n. This is a
topologically transitive subshift of finite type.

Let T' = (T9),er, denote the shift action 79z(f) = x(g~*f) on X. Because the f-invariant
is an infimum of continuous functions (namely, f,(T) = infwer, F,(T,P") where P is the
canonical partition on [n]f?) it is upper semi-continuous in p with respect to the weak*
topology. Therefore, a measure of maximal f-invariant exists. Let u be such a measure.

Let v be the Markov approximation to u. To be precise, v is the law of a Markov process
X = (Xj)ger, with values in [n] satisfying the following: if Y = (Y),er, is a stationary
process with law p then the law of the pair (X., X;) equals the law of (Y,,Y;) for every
s € {a,b,a™*,b~'}. By Theorem [3.5,

fu(T) < FM(Ta j)) = FV(T7 j)) = fV(T)

Moreover equality holds if and only if 4 = v. So p is a Markov measure.

Let A : [n]" — [n]™ be the +1 map: A(z), = ¥, +1 mod n. This map commutes with
Fo-action and preserves X. Therefore A, p is also a measure of maximal f-invariant. Let us
assume to obtain a contradiction that y is the unique measure of maximal f-invariant. Then

A, = g which implies the existence of a parameter 0 < o, < 1/n (for s € {a, b}) such that
p{reX: z.=1i})=1/n
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p{re X : z.=i,xs =1}) = ay
p{re X: zo=d, 2, =i+ 1}) =1/n — as.
Recall
fulT) = =3H,(P) + Y H,(PVT*P).
seS

In our case, H,(P) = log(n) and H,(P Vv T*P) is uniquely maximized by a; = 5- in which
case H,(P Vv T*°P) =log(2n). Therefore,

fu(T) = —3log(n) + 2log(2n) = log(4) — log(n).

Because n > 4, this is non-positive. However, X admits fixed points; for example the element
zy = 0 Vg € Fy. The Dirac measure concentrated on a fixed point is also an invariant

probability measure and its f-invariant is zero. This contradiction proves the theorem. [

Problem 11. The example above is not completely satisfying because it uses the f-invariant
instead of sofic entropy. It would be interesting to find a sofic example or prove that one

does not exist.

Remark 24. The example above exploits the fact that F),(P) is not concave in p and therefore
fu(P) is also not concave. By contrast, Shannon entropy H,(P) is concave in p (this is
important in proving uniqueness of measures of maximal entropy for topologically transitive

subshifts of finite type over the integers).

Question 26. Christopher Hoffman constructed a subshift of finite type over Z? that has
a measure of maximal entropy that has completely positive entropy but is non-Bernoulli

[Hof11]. Does an analogous example exist for the free group?

9 (ibbs measures, pressure and equilibrium states

9.1 Motivation: finite graphs

To motivate the notion of sofic pressure, we begin by recalling Gibbs measures in the setting

of finite graphs. Let X be a finite set of “spins” and G = (V, E) a finite graph. A spin
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configuration is a function ¢ : V' — X. A vertex potential is a function ¥,¢; : X — R
and an edge potential is a symmetric function ¥egee : X X X — R. The energy of a spin

configuration ¢ (with respect to yert and Vedqe) is

E() =) (@) + Y tutge(9(v), $(w)).

veV e={v,w}eF

Consider the following problem: given E, € R, find a probability measure z on X" such that

the p-average energy is Fy:

S E(@)u({e}) = Eo
]

and so that p maximizes entropy over all measures satisfying the above. By way of Lagrange

multipliers, it can be shown that the unique measure solving this problem has the form

n({o}) = Z7" exp(~BE(9))

for some constants Z, 3. Moreover,
Z =Z(G)=)_exp(—BE(¢))
¢

is called the partition function. It is central importance to understand the exponential
growth rate of Z(G) as the graph G = (V, E') Benjamini-Schramm converges to a fixed graph
of interest (for example, the Cayley graph of Z¢ or IF,.). See [DMI0al, [GeolTl [Kel9g].

In the next two sections we define the sofic pressure of a given topological action I'v X
together with a potential function ¥ : X — R and sofic approximation > as the exponential

growth rate of an analogous partition function.

9.2 Pressure

Let (X, p) be a compact metric space, ’~T X an action by homeomorphisms, ¥ : X — R a
continuous function which we will call a potential function and ¥ = {o,, : I' = Sym(V},)}
a sofic approximation to I'. Given ¢ : I' — Sym(V') and a microstate ¢ : V' — X define its

energy by

E(9) = 3 (6 (v)).

veV
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Now suppose Z C XV is a collection of microstates. Then define the associated partition

function by

Z(2) =Y exp(E(¢))
Given FF€I',6,¢ > 0, let
Ze(\IIaFmX> Ps F> 5) U) = Sup Z(Z’)

where the sup is over all (po, €)-separated subsets of Map(T, p, F,d,0). The Y-pressure of
(X, ) is

Ps(T~AX, W) := sup inf inf limsup |V,,| "' log Z.(V,T~X, p, F, 6, 0,,).

>0 FEr6>0 500

This definition was introduced in [Chul3] where it is also proven to be independent of the
choice of metric p (one can even use a generating pseudometric and p,, can be replaced by
p2). For example, when W = 0 the pressure is the same as the sofic entropy.

If T is amenable then there is another definition of pressure given in terms of a Fglner
sequence. In [Chul3], Chung proves that this definition agrees with the above. There is also

a variational principle for pressure generalizing the one for entropy:

Theorem 9.1 (The variational principle). [Chul3] Let TATX be a continuous action on a

compact metrizable space and ¥ : X — R be continuous. Let X3 be a sofic approximation of

I'. Then
PE(T, \If) = sup hg”u(T) —|—/\I] d,u
n

where the supremum is over all T'(I')-invariant Borel probability measures on X.

9.3 Pressure in symbolic systems

Here we specialize to the following set-up: let X be a finite set and I ~X" be the action by
shifting: (gz)(f) = z(g7'f). Let ¥ : X' — R be a continuous potential function. In this
case, the sofic pressure admits a more intuitive formulation. Given ¢ : I' — Sym(V), v € V

and ¢ : V — X, let 119(¢) € X' be the pullback name of ¢:

I17(¢)g = ¢(0(g)"v)-



The energy of ¢ is

E(¢) =) W(II7(¢))

veV

and the partition function associated to o, ¥ is

Z(0,0) = 3 exp(E(@)).

peXV

Finally, the ¥-pressure of (I'~X", ¥) is

Ps(PAXY, W) = limsup |V,,| " log Z (0, ¥).

n—oo

It is straightforward to show that this definition agrees with the previous definition.

9.4 Equilibrium states

A measure p is called an equilibrium state for (I'»X, W) if it realizes the supremum in

the variational principle:
Py(I'nX,¥) = hy ,(FnX) + / U du.

For example, if the action I'» X is expansive then entropy is upper semi-continuous in the
measure 1 and therefore there exists an equilibrium state. In the special case of I' = Z, if X
is a subshift of finite type (over Z) which is topologically transitive, then there is a unique

equilibrium measure on X [Bow(0§].

Example 7. Suppose X is a finite set and ¥ : X' — R depends only on the time 0 coordinate:
U(x) = Wo(ze)

for some function ¥y : X — R. Because X! is expansive, there exists an equilibrium

state u for the pair ([~XY, ¥). Let s be the 1-dimensional marginal on X:
K,({k‘o}) = ILL({[L’ € X' Lo = k‘o}) Vky € X.

We claim that k" = p. Because ¥ depends only on the time 0 coordinate, k' (¥) = u(¥).
So it suffices to show that ' uniquely maximizes entropy over all invariant measures with

the given 1-dimensional marginal. This follows from Seward’s Theorem 2.15]
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So we have shown that every equilibrium measure is a product measure. In fact, there is

a unique equilibrium measure given by

~exp(Yo(ko))
k({ko}) = > rex exp(Wo(k))”

This is proven in [Chul3]. Alternatively, it follows from Lagrange multipliers. We have now

answered Question 5.4 from [Chul3| by demonstrating the uniqueness of the equilibrium

measure.

9.5 The Ising model

The Ising model is a well-studied model of magnetism in statistical mechanics. In the
notation of §9.1 it amounts to choosing constants B, € R and setting X = {—1,+1},
Uyert(k) = Bk, Veqge(k, 1) = Bkl so that for any spin configuration ¢ : V' — {—1,+1},

E(¢):=B) o()+8 > o)dw)

veV e={v,w}eFE

and

Z=27G) = Y  exp(—E(9))

¢V —{—1,41}
(we have employed a small change of variables). If G, = (V,, E,) is a sequence of finite

graphs then the asymptotic free energy density (or free entropy or pressure) is the limit
lim |V,| 'log Z(Gy)
n—o0

if it exists. In the special case in which {G,} Benjamini-Schramm converges to a locally
finite tree, an exact formula for the above limit is computed in [DMI10b]. Here we will see
that asymptotic free energy density can be re-interpreted as sofic pressure whenever the
sequence {G,} arises from a sofic approximation.

So let I" be a group, ¥ = {0, : I' = Sym(V},)} a sofic approximation to I"and S C I" a
finite symmetric generating set. Let G, = (V,,, E,,) be the graph with edges (v, 0,(s)v) for
s € S,v € V. Because X is a sofic approximation, {G,,} Benjamini-Schramm converges to

the Cayley graph of (I',S).
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Consider the potential function ¥ : {—1,1}'' - R

U(z) = Bx(e) + Z x(e)x(s).

seS

By §9.3

Py(PA{—1,+1}" ) = limsupn~'log Z(G,,). (4)

n—oo

In the special case in which I' = F, is a rank » > 1 free group and S is a free generating
set, it follows from the analysis in [DMI0b] that the sofic pressure of (I~ {—1,+1}!, ¥) does

not depend on the choice of sofic approximation and an explicit formula is known.

9.6 Gibbs measures

Let X be a finite set. A potential function ¥ : XI' — R has finite range if there is a finite
subset J C I' such that W(z) depends only on the restriction of  to J. In this setting,
a Gibbs measure is any Borel probability measure ;1 on X' satisfying the following. Let
Y = (Y,)ger be a I'-indexed process with law p. Then p is a Gibbs measure if for any fixed
z € X' and finite A € T, the law of (V}),en conditioned on Yy = z(f) for all f € I'\ A is
given by: for any z € X' with z(g) = z(g) Vg € '\ A,

p(Y = zY, =x(g) Vg € T\ A) = Z " exp (Z ‘I’(Q_lz)>

geN

where

7 = Z exp (Z \If(g_lz)> :
(9) Vg&A

2€XT:2(g)=x geA
It is well-known, in the case of ' = Z? that every equilibrium measure for (T~XY, ¥) is
a Gibbs measure |Geoll]. It appears that this question has not been explored in the context
of sofic entropy. However, Alpeev proved in [Alp15] that when IT" is sofic, Gibbs measures
exist. Moreover, if there is a unique Gibbs measure for (I'~X", 3¥) and all 8 € [0,1]
then the modified sofic entropies for these measures do not depend on the choice of sofic
approximation. Modified sofic entropy refers to the sofic entropy defined in [Ausl6a] via

measures on model spaces.
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10 Relative entropy

Suppose I' is an amenable group, I'>(X, 1) a pmp action, P a partition of X and F a I'-
invariant sigma-sub-algebra of the sigma-algebra of Borel sets. Then the entropy rate of

the process I'v(X, i, P) relative to J is
h,(TAX,P|F) = JL@O|F,1|—1H“(:PF”|3”)

where {F,} is a Folner sequence in I'. The relative entropy of the action with respect to F
is
h,(IPX|F) = sgp h,(P~X, P|F)
where the sup is over all finite partitions P of X. This is a measure-conjugacy invariant in
the sense that if '~ (Y, v) is another pmp action and ¢ : X — Y is a measure-conjugacy,
then
Bu(CAX|F) = hy (DAY [6(5)).

10.1 The Abramov-Rokhlin formula

Theorem 10.1 (Abramov-Rokhlin formula). If ' is amenable and T~ (Y, v) is a factor of
(X, ) then
hy(~X) = h,(I'nY) + h, (T~ X|By)

where By C Bx is the pullback sigma-sub-algebra.

Remarks on the proof. In the case I' = Z, this result was obtained in [AR62]. The general
amenable case, due to Ward-Zhang, makes heavy use of the Ornstein-Weiss quasitiling ma-
chinery [WZ92]. Another proof, due to Danilenko, uses orbit-equivalence theory [Dan01]. A
new short proof appears in [KL16, Section 9.7] O

The Ornstein-Weiss example shows this formula does not extend to Rokhlin entropy.
However, it does extend to the f-invariant. To describe this let F, = (s1,...,s,) denote
the rank r free group. Suppose F,~T(X,u) is a pmp action, F C Bx an F,-invariant
sub-sigma-algebra and P finite-entropy partitions of X. Define

F,(T,P|F) = H,(P|F)+ Y (H,(PVT*P|F) — 2H,(P|F)),

ses
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R w
fulT.PIF) = inf F(T,PV|F).

In [Bowl0c| it is shown if P, P" are generating partitions then f,(7,P|F) = f,(T,P'|F). So
it makes sense to define

fu(ﬂg) = fH(Tv P|F)
for any finite-entropy generating partition P.

Theorem 10.2. [Bowl(d] With notation as above, if Q is a finite-entropy partition of X

contained in the sigma-algebra \/ _z TIP = o-alge (P), then

gEF,
Ju(T,P) = fu(T,9Q) + fu(T,Plo-alge (Q)).

So if P is generating and F,~5(Y,v) is a Mackey realization of the sigma-algebra corre-

sponding to o-algg (Q) then

fu(T) = fu(S) + fu(T]o-algg, (Q))-

Remarks on the proof. The proof is obtained from the alternative formulation of the f-

invariant in §2.5.T] and the classical Abramov-Rokhlin formula for Z-actions. O

Remark 25. The Abramov-Rokhlin formula is used to prove the entropy formula for finite-
to-1 factor maps (Theorem [5.5]) and can be used to prove the ergodic decomposition formula
(Theorem [6.T]). Tt is also used in the proof of (special cases of) Yuzvinskii’s formula §3.4.4

The Ornstein-Weiss map gives an example where the relative f-invariant is negative.

Remark 26. Ben Hayes has recently defined a notion of relative sofic entropy [Hay16¢].

11 Outer/extension entropy

In classical entropy theory, one considers the entropy of an action with respect to a factor.
In the new non-amenable theory, we also have to consider the entropy of a factor relative
to the source! This gives a non-trivial concept that has been called extension entropy,
outer entropy and entropy in the presence. It is the exponential rate of growth of the
number of microstates of the target action that lift to microstates of the extension. The ideas
originated in David Kerr’s partition definition of sofic entropy (§2.4.2)) and were developed
in [LL16, Hay], Hay16c, [Sew15bl [Sew16b].
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11.1  Outer sofic entropy

Let TnTX and I'~°Y be continuous actions on compact metrizable spaces and suppose
® : X — Y is a continuous factor map. The outer X-entropy of ® is defined by

hs(®) = sup inf inf lim sup [V;| " log (Ne(®" (Map(T, px, F, 6, 0,), py.cc))

>0 FELS>0 00

where px, py are generating continuous pseudo-metrics on X, Y, Map(---) is as defined in
§2.3, N.(-, py.so)) denotes the maximum cardinality of an e-separated subset and ®%i : XVi —
YVi is the map

oY (x)o = ()

for x = (x,)ey; € XYi. Tt can be shown that this definition does not depend on the choice
of generating pseudo-metrics px, py.

If 14 is a [-invariant measure on X, v is a ['-invariant measure on Y and ®,u = v then
define the outer Y-measure-entropy of ¢ by

hs,.(®) = supinf inf inf limsup |V;| ' log (NE ((IDVZ'(Map(T, px,0,F, 6 0;), pym)))

e>0 O Fel'é>0 ;o0

where O varies over all weak™® open neighborhoods of p in Prob(X). There is an equivalent

definition based on partitions:

hs ,(®) =supinf inf inflimsup
w(®) g P Ip€FEl >0 o0 |V

log | Hom,, (P, F, 6, 0)|a

where the supremum is over all finite partitions Q that are measurable with respect to
®~!(By) and the infimum is over all finite partitions P > Q.

This equivalence shows that outer sofic entropy is a measure-conjugacy invariant in the
following sense. Suppose that '~ (X', i) and T~5 (Y, /) are pmp actions, ® : (X', ') —
(Y1) is a factor map and there are measure-conjugacies 7 : X — X' 75 : Y — Y’ that
make the diagram commute:

X 2 X

o b

Y —=Y'
then hy ,(®) = hy v (P’). For details justifying these claims see [Hay, Theorem 1.20]. There
is also a relative notion of outer sofic entropy developed in [Hay16¢].
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The definition implies the outer sofic entropy is bounded from above by the sofic entropies
of both the target and source. If I' is amenable then every microstate for the factor action
I'~Y lifts to a microstate for the source I'»X. For this reason, outer sofic entropy agrees
with the classical entropy of the target whenever I' is amenable [Hayl Appendix A]. If I is

non-amenable then this no longer holds. Consider the Ornstein-Weiss map
FQ@(Z/2, UQ)F2 %q) FQ@(Z/2 X Z/2, Ug X UQ)F2.

Because it is finite-to-1, it can be shown that its outer sofic entropy agrees with the sofic

entropy of the source, which is log(2) instead of the entropy of the target which is log(4).

Question 27. Is there a variational principle connecting outer topological sofic entropy with

outer measure sofic entropy?

As the Ornstein-Weiss example shows, sofic entropy is not necessarily monotone under

factor maps. However, outer sofic entropy is: if X —® Y —¥ Z are factor maps then

This is because any microstate for I'vZ which lifts to a microstate for I'vX via ¥ o &

necessarily lifts to a microstate for 'Y via W.

11.1.1 Outer sofic Pinsker algebras

Let '~ (X, ) be a pmp action and ¥ a sofic approximation to I'. The X-Pinsker algebra
is the sigma-sub-algebra of By generated by all factors with zero Y-entropy. Because of
sub-additivity, it has zero Y-entropy itself. However, it does not have good monotonicity
properties because there exist actions with zero Y-entropy that factor onto actions with
positive Y-entropy (Theorem [5.1I). A better alternative is the outer X-Pinsker algebra.

The outer Y-Pinsker algebra of the action '»(X, i1) is the largest sigma-sub-algebra
I1*(1) C By such that the corresponding factor has outer ¥-entropy zero. Because outer
Y-entropy is monotone, any invariant sub-sigma-algebra of I1¥(u) also has zero outer Y-
entropy.

It is an important classical result that the Pinsker algebra of a direct product of transfor-

mations is the direct product of the Pinsker algebras. This follows from the Rokhlin-Sinai
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Theorem that the Pinsker algebra is the one-sided tail sigma-algebra of any generating par-
tition. The case of general amenable groups is handled in [GTWO0| using Sinai’s Factor

Theorem and joinings arguments. The case of sofic groups is new:

Theorem 11.1. [Hay16d] Suppose that T~ (X, u), T (Y, v) are pmp actions, 3 is a sofic
approzimation to I’ and there exist model measures {pn},{v,} that lde-converge to p,v re-

spectively in the sense of §6.2.8. Then 1T*(u x v) = I1*(u) vV II=(v).

11.2 Outer Rokhlin entropy

Let T (X, u), T~®(Y,v) be pmp actions and suppose there is a factor map ® : X — Y.
The outer Rokhlin entropy of the ® is

hRK(®) = inf H,(P)

where the infimum is over all measurable partitions P of X such that ®~!(By) C o-algp(P)
and By is the Borel sigma-algebra of Y.

This outer Rokhlin entropy is bounded above by the Rokhlin entropy of the factor and
by the Rokhlin entropy of the source. In the special case in which I' is amenable, the outer
Rokhlin entropy equals the Rokhlin entropy of the target because of monotonicity of entropy
under factor maps.

As in the case of outer sofic entropy, the Ornstein-Weiss factor map has outer Rokhlin
entropy log(2). The Ornstein-Weiss example shows Rokhlin entropy is not necessarily mono-
tone under factor maps. However, outer Rokhlin entropy is: if X —® Y —¥ Z are factor
maps then

RO () > hROK (W o B),
This is because any partition P of X satisfying @1 (By) C o-algp(P), also satisfies @11 (B,) C

o-algp(P).

11.2.1 Outer Rokhlin Pinsker algebras

The outer Rokhlin Pinsker algebra of the action I'»(X, ) is the largest sigma-sub-
algebra IIR°%(;1) € By such that the corresponding factor has outer Rokhlin entropy zero.
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Because outer Rokhlin entropy is monotone, any invariant sub-sigma-algebra of ITRk(p)
also has zero outer Rokhlin entropy. The action is said to have completely positive outer

Rokhlin entropy if ITR(y) is trivial.

Theorem 11.2. [Sewl6l] If T~ (X, u) and T (Y,v) are essentially free pmp actions that

are weakly contained in all essentially free pmp actions of I' then
HROk(,u % I/) — HROk(,u) v HROk(V).

Remark 27. The notions of outer Rokhlin entropy and the Theorem above admit relative

versions. See [Sewl6b] for details.

11.3 Completely positive outer entropy

An action has completely positive outer Y-entropy, denoted CPE*, if every nontrivial
factor has positive outer Y-entropy. Because outer Y-entropy is bounded from above by
Y-entropy, this implies that every nontrivial factor has positive ¥-entropy.

It follows from the Rokhlin-Sinai Theorem that Bernoulli shifts over the integers have
completely positive entropy. The case of amenable groups follows from the fact that Bernoulli
shifts are uniformly mixing and uniform mixing implies CPE. This is the easy half part of
[RW00] which proves that CPE is equivalent to uniformly mixing. The main result of [Ker14]
is that if ' is any sofic group, then every nontrivial factor of a Bernoulli shift over I' has
positive Y-entropy (for every X). This is obtained via a positive lower bound on the local
entropy that is uniform over all good enough sofic appoximations. The proof shows more:
that Bernoulli shifts over I' are CPE* for every Y. Similarly, every nontrivial factor of a
Bernoulli shift over a free group has positive f-invariant.

In [Hay16c|, Theorem [I1.]is used to show that a large class of algebraic actions are

CPE* (see §3.4 for details).

11.4 Uniformly mixing

Definition 18. A sequence {F;};cn of finite subsets of I' is said to spread out if for every

ge '\ {lp}, g ¢ F,F;! for all but finitely many i.
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Definition 19. A pmp action I'»(X, i) is uniformly mixing if for every finite partition

P of X and any sequence F; C I' of finite subsets that spread out,

1 1
lim |Fi|HM (\/ g fP) = H,(P).

geF;

The main result of [RWO00] is that if I' is amenable group then CPE implies uniform
mixing. The converse was proven earlier (see [GS00a] or [DGRS08, Theorem 4.2]). In [AB16]
a new concept, called uniform model mixing, that is adapted to a sofic approximation,
is shown to imply completely positive le-X-entropy (le-X-entropy is defined in §6.2.5]). This
is used to prove that if I' is sofic and contains an infinite cyclic subgroup, then there exist
uncountably many completely positive le->-entropy actions that are not factors of Bernoulli
shifts.

The goal of this section is to show that uniform mixing does not imply completely positive
sofic entropy (Corollary I1.7). In fact, all mixing Markov chains over a free group are
uniformly mixing (Theorem [[T.3]). However, with a spectral criterion due to Ben Hayes
(Theorem [IT.5) we show that the Ising model with small transition probability does not

have completely positive sofic entropy with respect to any sofic approximation.

11.4.1 Markov chains

Theorem 11.3. If ' =, is the free group then all mizing Markov chains with finite state

space over I' are uniformly mizing.

We need a lemma first. Recall that a tree is a simply connected graph and a leaf of a

tree is a vertex with degree 1.

Lemma 11.4. Let T denote a finite tree with at least 2 vertices. For each leaf v of T, let
T, C T denote the smallest subtree that contains every leaf of T except for v. Suppose that
for some n > 0 every pair of distinct leaves of T are at a distance > n apart (in the path

metric). Then there exists a leaf v such that the distance between v and T, is at least [n/2].

Proof. A Let u,v be leaves of T' that are a maximum distance apart. Notice that T, is the

union of the paths from u to w, where w ranges over all leaves of T except for v. Fix a leaf

2This proof, which is shorter than my original, was gracefully provided by an anonymous reviewer.
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w # v. Let z be the point on the path from w to u that is closest to v. Then z must also lie

on the path from v to u. Because u and v are at maximum distance apart, d(v,u) > d(w,u).

Since d(v,u) = d(v, z) + d(z,u) and d(w,u) = d(w, z) + d(z,u), d(v, z) > d(w, z). Therefore,
n <d(v,w)=d(v,z)+d(z,w) < 2d(v, 2).
This holds for all leaves w # v and therefore, n < 2d(v, T,). O

Proof of Theorem[I1.3. Let d(-,-) denote the word metric in I with respect to a free gener-
ating set. Let T~ (K", 1) be a mixing Markov chain with state space K. Let P be the time
0 partition: P = {P;: k € K} where
P.={rcK": z. =k}

Because P is a Markov partition of a mixing Markov chain for every € > 0 there exists
n =n(e) € N such that if g, h € T satisfy d(g,h) > n then H,(¢7'*P|h'P) > H,(P) — .

Suppose F' C I is a finite subset such that the word distance between any two distinct
elements g,h € F is at least 2n. Recall that PF = er » [P, By the previous lemma,

there exists a w € I such that if 7" denotes the smallest subtree containing /' — {w} then

d(T,w) > n. Let g € T minimize the distance to w. The Markov property implies

Hu(?F) = Hu(w_lﬂ?F_{W}) + Hu(?F_{w}) 2 Hu(w_lj)m)T) + Hu(?F_{w})
= H,(w 'Plg~'P) + Hu(?F_{U)}) > H,(P) + Hu(?F_{W}) -6
So by induction on |F| we obtain, H,(P¥) > |F|(H,(P) — €). This implies uniform mixing
with respect to P.

Now let Q be a partition that is contained in P. Note that if g, h € T" satisfy d(g,h) > n
then H,(¢g~'Q|h~*P) > H,(Q) — e. Therefore, if F,T,w, g are as above then

H,(QF) = H,(w Q0" () + H,(Q"0)) > H,(wQ|Q") + H, (2"~}
= Hu(w_lqu_lQ) + HM(QF_{M}) > H,(Q) + HM(QF_{M}) — €
Uniform mixing with respect to Q now follows from induction on |F|.
Observe that for any finite K C I' with the property that the induced subgraph of the

Cayley graph is connected, the partition P¥X is Markov. So the previous paragraphs imply:
for any Q < PK . the action I'~(X, i) is uniformly mixing with respect to Q.
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Now let R be an arbitrary partition. Let 6 > 0. Because the partition P is generating,
there exists a partition Q < PX (for some finite K C I') such that

d(Q,R) := H,(QIR) + H,(R|Q) <

where d(-,-) denotes the Rokhlin distance on partitions (as defined in §4.7]).
It follows that d(QF,RF) < §|F| for any finite F. Therefore if {F;} spreads out then

because the action is uniformly mixing with respect to Q,

lim inf ﬁHu(RFi) > lim inf |F1,—‘HM(QF1') —§ = H,(Q) — 5 > H,(R) — 2.

Because 6 > 0 is arbitrary, this implies the theorem. O

11.4.2 A spectral criterion for CPE

Theorem 11.5. [Hayl8, Corollary 1.4] Let T~ (X, i) be ergodic and let k° : T — U (L3 (X, 1))
be the Koopman representation on the orthogonal complement of the constants. If T~ (X, p)
is CPE with respect to some sofic approximation then k° embeds into the countable sum of

the left reqular representation of .
Remark 28. The Rokhlin entropy version of the above theorem is Corollary [7.6l

Corollary 11.6. Let F, = (sq,...,s,) denote the rank r > 2 free group. Let A € CI' denote

the “discrete Lapacian”
1 T
A=—) s +st.
2r ; !

There is some €. > 0 such that if T~ (X, ) is CPE with respect to some sofic approzimation
then
[ro(A)] <1 — 6.

Proof. The operator norm of A, considered as an operator on £*(T") is 1 — ¢, for some €, > 0
by Kesten’s criterion (Theorem G.4.4 [BAIHVO0S]). Therefore, the operator norm of A,
considered as an operator on ¢?(I")®* is also 1 —¢,. So this corollary follows from Theorem

ML.3l O
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Corollary 11.7. Let Fy = (s1,...,s,) denote the rank r free group. If € > 0 is sufficiently
small then the Ising model (see Examplel3 §3.3) is not CPE with respect to any sofic approx-

mation.

Proof. Let . € Prob({0,1}') denote the law of the Markov chain X = (X,),er, with state
space {—1, 1} satisfying
PX.=-1)=P(X.=1)=1/2
P(X,=k|X,=k)=1—¢, P(X.£klX,=k) =¢

forall s € S :={s1,...,s.}U{s;',...,s7'}. Then E[X,] = 0,E[X?] = 1 and E[A(X.)X,] =

»er

1 — 2¢. This last computation requires some explanation: we consider X, € L2(.). Then

AX) =187 Xeokols) = ST X,

ses ses
Because (X., Xs) = (1 —€) —e = 1 —2¢ for all s € S, it follows that (A(X,), X.) =
E[A(X.)X] = 1—2¢e. Thus ||ko(A)|| > 1 —2¢. The previous corollary now implies this one.
U
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