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Abstract

Amos Nevo established the pointwise ergodic theorem in LP for measure-preserving
actions of PSLy(R) on probability spaces with respect to ball averages and every p > 1.

This paper shows by explicit example that Nevo’s Theorem cannot be extended to

p=1.
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1 Introduction

Birkhoff’s ergodic theorem is that if 7" : (X, ) — (X, ) is a measure-preserving transforma-
tion of a standard probability space and f € L'(X, i) then for a.e. x € X, the time-averages
(n+1)7' Y, f(T"x) converge to the space average E[f|J(T)](x) (this is the conditional
expectation of f on the sigma-algebra of T-invariant measurable subsets). In particular, if
T is ergodic then (n+ 1)7' 3" f(T'x) — [ fdpu for a.e. z.

To generalize this result, one can replace the single transformation 7" with a group G
of transformations and the intervals {0,...,n} with a sequence of subsets of G or more
generally, with a sequence of probability measures on G. To be precise, a sequence {n, }>°
of probability measures on an abstract group G is pointwise ergodic in L? if for every

measure-preserving action G (X, 1) on a standard probability space and for a.e. x € X,

/f gx) dna(g

converge to the space average E[f|J(G)](x) as n — oo where E[f|J(G)] is the conditional

the time-averages

expectation of f on the sigma-algebra of G-invariant measurable subsets. If the measure 7,

is uniformly distributed over a ball then the time-averages are called ball-averages.



Pointwise ergodic theorems for amenable groups with respect to averaging over Fglner sets
were established in a variety of special cases culminating in Lindenstrauss’ general theorem
[Lin01]. This theorem also holds for L!'-functions. Nevo and co-authors established the first
pointwise ergodic theorems for free groups [Nev94al, [NS94] and simple Lie groups [Nev94bl,
Nev97, INS97, MNS00] with respect to ball and sphere averages. See also [Nev06, [GN10] for
surveys. These results hold in L? for every p > 1. It was open problem whether ball-averages
could be pointwise ergodic in L! for any non-amenable group.

Terrence Tao showed by explicit example that the pointwise ergodic theorem fails in L*
for actions of free groups with respect to ball averages [Taol5|]. His technique was inspired
by Ornstein’s counterexample demonstrating the failure of the maximal ergodic theorem in
L' for iterates P™ of a certain well-chosen self-adjoint Markov operator [Orn69).

This note proves the analogous theorem for PSLy(R) in place of free groups. Our approach
is based on the geometry of hyperbolic surfaces. In the abstract, there is a lot in common
with Tao’s approach but the details of the construction are significantly different. It seems

likely that our methods will generalize beyond PSLy(R).

1.1 The main theorem

To make the result precise, we need to introduce some notation. The hyperbolic plane H?
is a complete, simply-connected Riemannian surface with constant curvature —1. It is unique
up to isometry. Its orientation-preserving isometry group is isomorphic to G := PSLy(R).
Fix a base-point py € H?. Let F, C G be the set of all g such that dg2(po, gpo) < 7.

Given a probability-measure-preserving (pmp) action G ~ (X, u), » > 0, a function
f e LYX,u) and z € X the ergodic average is defined by

(Acf)(@) = ME)T [ flg-2)dMg)
Fr

where A is the Haar measure on (. The terminal maximal average is defined by

(Mf)(x) = sup,>;(A;| f|)(z). Nevo proved [Nev94b]:

Theorem 1.1 (Nevo). Let G ~ (X, ) be an ergodic pmp action, p > 1 and f € LP(X, ).
Then

lim (A, f)(x /f ) dpa(z



for p-almost every x € X.
The main theorem of this paper is that Nevo’s Theorem does not extend to p = 1:

Theorem 1.2. There exists an ergodic pmp action G ~ (X, ) and a nonnegative function
f € LY (X, ) such that (Mf)(x) is infinite for almost every x € X. In particular, for almost

every x € X the averages (A, f)(x) fail to converge as r — oc.

1.2 A rough overview of the construction

Ornstein’s counterexample in [Orn69] shows that the maximal ergodic theorem fails in L!
for powers of a certain self-adjoint operator P". The example consists of an L'-function f
with many components f;, each of which comes with a “time delay” which means that P" f;
is roughly singular unless n is very large (depending on 7). This allows the amplitude of f;
to be slightly smaller than would otherwise be necessary to make sup,, P" f large on a set of
significant measure.

The example here is similar in spirit although the implementation is based on the geom-
etry of hyperbolic surfaces. The measure space is the tangent space of a hyperbolic surface.
Each component function f; is constant on a neighborhood of a cusp and the time delays
are instituted by gluing surfaces together with narrow “bottlenecks”.

Here is more detail. For every ¢ > 0, a hyperbolic surface S = H?/T" (for some lattice
I' < G) and a non-negative f € L°°(S) are constructed to satisfy: (1) the L'-norm of f is
bounded by € and (2) there is a subset V' C S with area(V')/area(S) bounded from below
such that for all x € V| there is some radius r so that the r-ball average of f centered at x
is > 1. This latter property means: if 7 € H? is a point in the inverse image of z under the
universal cover 7 : H? — S and f: f o is the lift of 7 then the average of fover the ball
of radius r centered at x is at least 1. A small additional argument (which also appears in
Tao’s paper) finishes the proof.

These pairs (S, f) are constructed inductively. Given a pair (S, f) for some ¢ > 0 (with
some additional structure), a new pair (§ , J?) is constructed satisfying roughly the same
maximal function lower bounds as (S, f) so that ||f]l; < [|fl.(1 = || f]l1/6) (up to a small
multiplicative error). By iterating this construction, the L'-norm of the function can be

made arbitrarily close to zero.



The new pair (§ ) f) is constructed from (5, f) as follows. We take two isometric copies
of (S, f), deform them by stretching cusps into geodesics and then glue them to a pair of
pants with a cusp to obtain S. The new surface has two large subsurfaces S, S (each of
which is isometric to a large subsurface of S) connected by a long narrow “neck” which is
actually a pair of pants with a cusp. There are also two copies of f, denoted f® and f®
supported on S, S respectively. By choosing the neck to be very narrow, a continuity
argument shows that the ball averages of each f® in S are close to the ball averages of f
in S. Theorem shows that if t > 0 is chosen sufficiently large then for most p in S®),
the radius (r 4 t)-ball averages of f(!) around p are close to its space average i (1) dvg (for
every r > 0).

Finally, we replace f® by “flowing” it for time ¢ into the cusps of S and scaling it by a
factor of e![1 — [ fO) dvg]. Let f’ be the new function. The radius-(r +t) ball averages of f’
are, up to small errors, equal to the radius-r ball averages of ) multiplied by [1— [r M dvgl.
So let ]’"\: fM + f’. Then we have controlled the maximal ball averages of fon both S
and @ and the norm of f is bounded by || f|l1(1 = ||f||1/6), finishing the argument.

2 Quantitative counterexample

This section reduces Theorem to the next lemma (which is similar to [Taol5, Theorem
2.1)).

Lemma 2.1. There exists a constant b > 0 with the following property. For every ¢ > 0

there exists a weakly mixing pmp action G ~ (Y,n) and a nonnegative function f € L>=(Y,n)

such that ||f|1 < e and n{y € Y : (Mf)(y) > 1}) > b.

Proof of Theorem[1.9 from Lemmal[2.1. By Lemma R.1] for each k € N there exist a weakly
mixing pmp action G ~ (Y%, m) and a nonnegative function f;, € L*(Yj,n) such that
1l < (&)° and if By = {y € Yi : (MfL)(y) > 1} then mi(Ey) > b.

Let fr = 2"f,. So || filli < 5 and Ej, = {y € Vi, : (Mfi)(y) > 2F}. Let (X, p) be the
product measure space (X, p) := [[p—;(Yk, k). Because each action G (Y, ny) is weakly
mixing, the diagonal action G (X, u) is ergodic. Let pr : X — Y be the projection



onto the k" coordinate and define f, = f o py € L>(X,p). Let f = Zzozlﬁ Then
Ifells = Nl £l < 3¢ so that || flli < 320, & = 1.

Let B = pr (Er) € X and, for a point z € X, let N(z) = {k € N:z € Ek} Since
the events (Ek)gozl are independent and ZZilu(E\k) = Y o m(Eyx) = oo, the converse
Borel-Cantelli Lemma implies that N(z) is infinite for almost every = € X.

Since each fk is non-negative,

(Mf)(x) = sup(Mfi) ().

k>1

Therefore (Mf) (z) > 2 for every k such that z € Ej,. Since almost every z is contained in
infinitely many Ey, it follows that (Mf) (x) = oo for a.e. x.
[l

3 Geometric preliminaries

This section reviews some standard facts needed for the next section which reduces Lemma
to a geometric problem. It will be convenient to identify the hyperbolic plane with the
upper-half plane

H?:={z+iyeC: y>0}

equipped with the Riemannian metric ds? = dxzy;?dlﬁ. The group SLy(R) acts on H? by

fractional linear transformations:

a b az+b

c d Tt d

The kernel of this action is the subgroup {£/} < SLy(R). Therefore, the quotient PSLy(R) =
SLy(R)/{%I} acts on H? as above. By abuse of notation, we will write elements of PSLy(R)
as matrices with the implicit understanding that the matrices are taken modulo {+I}.

The action PSLy(R)~H? is transitive and the stabilizer of i € H? is the subgroup of

rotations

K cos(f) —sin(0) 9cR
sin(f)  cos(0)

Therefore H? can be identified with the quotient space PSLy(R)/K via the map g-i +— gK.

6



The action PSLy(R)~H? preserves the Riemannian metric. By taking derivatives, there
is an induced action of PSLy(R) on the unit tangent bundle, denoted by 7" (H?). This action
is simply-transitive. Therefore PSLy(R) is the group of all orientation-preserving isometries
of H2.

By choosing a unit vector vy in the tangent space of i € H?, we may identify PSLy(RR)

with T(H?) via the map g — gvg. Thus we have a commutative diagram:

PSLy(R) <« T'(H?)

\J 3
PSL,(R)/K +  H2

Moreover PSLy(R) acts by left translations on all four spaces and these actions commute
with the maps.

Suppose I' < PSLy(R) is a discrete torsion-free subgroup. Then the quotient I'\H? =
\PSLy(R)/K is a hyperbolic surface. More generally, for the purposes of this paper, a
hyperbolic surface is any Riemannian manifold isometric to a subset S of a quotient I'\H?
for some discrete torsion-free subgroup I' < PSLy(R) such that S is equal to the closure of
its interior.

By quotienting out the left-action of I' on the four spaces above, we arrive at the following
commutative diagram:

I\PSLy(R) <« T\T'(H?)
) !
M\PSLy(R)/K <  T\H?
The derivative of the covering map H? — I'\H? is [-invariant. Therefore the unit tangent
bundle of the surface I'\H? is canonically isomorphic with the quotient space I'\T"(H?).
Thus we have obtained an identification of I'\PSLy(R) with T*(T'\H?).

4 Reduction to geometry

This section reduces the ergodic theory problem of Lemma to a geometric problem.
Towards that goal, suppose that S = I'\H? is a hyperbolic surface where I' < PSLy(R) is a
discrete torsion-free subgroup. Let 7 : H? — S denote the quotient map. For f € L>(S) let
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Figure 1: Geodesic balls in the hyperbolic plane and in a finite area surface
f = for beits lift to H2. Define the geometric average Br(f) € L>=(S) by
(6:1)@) = area(5 @) [ Foyay
Br&
where T € X is any lift of x (so 7(z) = z) and B,(Z) denotes the ball of radius r centered
at . This does not depend on the choice of lift because 7 is invariant under the deck-
transformation group I'.

In the special case in which S has finite area, let vs denote the hyperbolic area form on

S normalized so that vg(S) = 1. Also let || f||; denote the L'(S,vs) norm.



Lemma 4.1. There exists a constant b > 0 such that for every e > 0 there exists a complete
connected finite-area hyperbolic surface S with empty boundary and a function f € L®(S,vg)

satisfying
L f>0,
2 Iflh <e

5. vs({r € 8 sup,oy(5,f)(x) > 1}) > b

Proof of Lemmal[2.1] from Lemma[/.1 The constant b is the same in both Lemmas [2.1] and
.1 Let € > 0be given and let S and f be as in Lemmalt.1] Then S = I'\H? = I'\PSLy(R)/K
where I' < PSLy(R) is a torsion-free lattice. Let ng be the probability measure on I'\PSLy(R)
given by integrating normalized Lebesgue measure on the unit circle K over vg. The right
action PSLy(R) on I'\PSLy(R) preserves ng. We take (Y, n) = (I'\PSL2(R), s). This action
is ergodic because there is only orbit. It is weakly mixing because every ergodic action of
PSL,(R) is weakly mixing by the Howe-Moore Theorem [BMO0Q].

If we write ¢ : ['\PSLy(R) — S = I'\PSLy(R)/K for the natural projection then f o ¢ is
an element of L°(I'\PSLy(R),ns) and ||foq|ly = || f]l:. Let x € S and let £ € ¢~ *(z). Then

(Ar(f o @))(€) = (Brf)(x).

So the action G (Y, n) and function f o g satisfy the conclusions of Lemma [2.1] O

5 Pants and cusps

This section introduces notation to describe pants and cusps that will be useful in the main
construction.

A right-angled hexagon is a hexagon H in the hyperbolic plane such that all of its
edges are geodesic segments and its interior angles are right angles. It will be convenient to
label the sides of a hexagon by fo, eo1, fi, €12, f2, €20 so that e;; is adjacent to both f; and f;.
See figure [f

By [Bus92, Theorem 2.4.2], for every triple (lo,l1,ls) € (0,00)* there is a right-angled
hexagon H = H(ly,l,l5) such that the length of f; is {; for i € {0,1,2}. Moreover, the
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Figure 2: A right-angled hexagon

lengths of the other edges (e;;) are determined by the lengths of fy, fi, fo so that H is
uniquely determined up to isometry. For example, by [Bus92, Theorem 2.4.1],

cosh(ly) = sinh(l;)sinh(ly) cosh(length(e;2)) — cosh(ly) cosh(ly). (1)

By taking limits, we can allow (lo,l1,l2) to be in [0,00]® [Bus92, §4.4]. For example, if
(lo,11,12) = (0,0,0) then H is an ideal triangle with its ‘vertices’ on the boundary at infinity.
We will still refer to H as a right-angled hexagon even if some of its sides have zero or infinite
length.

A pair of pants is a hyperbolic surface that is homeomorphic to a sphere minus three
disjoint open disks such that each boundary component is a closed geodesic. For example,
suppose for k € {1,2}, H* is a right-angled hexagons with edges efj, fk fori,j € {0,1,2}.

L

In addition suppose that the length of e;; equals the length of e?j for all 4,5 so that the

hexagons are isometric. Let P be the surface obtained by glueing e%j to e?j isometrically
for i,7 € {0,1,2}. This is a pair of pants (for details see [Bus92, §3.1] where it is called a
Y-piece). The lengths of the boundary components are twice the lengths of the sides fF.
Conversely, if P is any pair of pants with boundary components 0;P for i € {0,1,2} then
for every pair {i,j} € {0, 1,2} there exists a unique shortest geodesic segment +;; from 0;P

to 0;P. By cutting along these geodesic segments, we obtain two isometric right-angled

hexagons (the canonical right-angled hexagons of P). Thus for every triple of numbers
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(lo,l1,12) € (0,00) there exists a pair of pants P with boundary lengths equal to ly, [, > and
P is unique up to isometry. See [Bus92, Theorem 3.1.7] for a formal proof of this statement.

A pair of pants with k-cusps (for £ € {0,1,2,3}) is a hyperbolic surface that is
homeomorphic to a sphere minus k points and 3 — k disjoint open disks such that each
boundary component is a closed geodesic. They can be constructed exactly as in the previous
paragraph by allowing the lengths of the edges fF to take values in [0, 00). See [Bus92, Lemma
4.4.1] for a formal proof.

The canonical horoball is the subset
Hy:={r+iyeC: y>1} C H>.

For any z¢ € R, the map z — z4xq is an orientation-preserving isometry of the hyperbolic
plane and therefore is represented as an element of PSLy(R). A cusp is a surface isometric
to a quotient of the form C' := Hy/{z — z+xo} for some xy > 0. For example, if P is a pair
of pants with k& cusps as defined above, then there really are k disjoint cusps on P [Bus92,
Proposition 4.4.4].

By Gauss-Bonet, the area of a right-angled hexagon is 7. So the area of a pair of pants

is 27 [Bea95, p.153].

6 Deformations of surfaces

The proof of Lemma [4.1] constructs surfaces and L'-functions inductively by cutting, pasting
and deforming. The main result of this section is that the averages (,f vary continuously
under deforming the boundary of surfaces equipped with additional structure. To make this
precise, we need the following ad hoc definition.

A panted surface is a pair (5, P) such that S is a connected oriented hyperbolic surface

and P C S is a closed subsurface satisfying:
e P is a pair of pants with < 1 cusp,
e the complement S\ P has two connected components,

e two of the boundary components of P are contained in the interior of S. These are

11



S, Pt

Figure 3: The surface S,

denoted by 9'P,0%P. If there is a third boundary component then it is denoted by
o°P.

For a > 0, the a-deformation of (S, P) is a panted surface (S,, P,) defined as follows.
Let P, be the (compact) oriented hyperbolic pair of pants with geodesic boundary 0P, =
U2 ,0' P, satisfying

length(°P,) = «

length(0'P,) = length(0'P)

length(0°P,) = length(9°P).
This uniquely determines P, up to orientation-preserving isometry.

Define a local isometry v : 9P, U 9*P, — 0'P U 0?P as follows. There exists a unique
shortest geodesic v in P from 9'P to 9*P. Let p’ be the point of intersection of v with 9°P.

12



Similarly, let v, be the unique shortest geodesic in P, from 9'P, to 9*P,. Let p, be the
point of intersection of 7, with 9?P,. Finally, let ¢ be the map defined by

e for i = 1,2, the restriction of ¥ to 9°P, is an isometry onto 0°P,
o Y(p,) =7,
e 1) preserves orientation, where the orientation on 0P is induced from the given ori-

entation on P and the orientation on 0P, is induced from the given orientation on

P,.

This uniquely specifies .
Finally, let S, = (S \ int(P)) U P,/{z ~ ¢(x)} be the surface obtained from (S minus
the interior of P) and P, by gluing together along .

6.1 Continuity

This subsection studies how the averages (,f vary with a when f is a function on S,. To
make this precise, let i, : S\ int(P) — S, be the inclusion map. For f € L'(S \ int(P)),
define f, € L'(S,) by

fi ' (z)) z €8, \int(P,)

0 otherwise

Proposition 6.1. Let (S, P) be a panted surface and f € L*>(S \ int(P)). For any r > 0,
the map

(z, @) = Br falia(z))

is continuous as a map from (S '\ P) x [0,00) to C.

To begin, we introduce notation for describing the universal covers of the surfaces S, and
their deck-transformation groups. For ¢ = 1,2, let v, be the unit tangent vector based at
p., tangent to 7, and oriented so that geodesic flow moves v’ immediately into 7,.

Fix a unit tangent vector w! in the tangent bundle of H?. Because S, is connected, there

exists a unique orientation-preserving universal covering map 7, : X, — S, such that

e X, C H? is a closed simply-connected subset containing the base point of w?!,

13



e the derivative of 7, maps w' to v},

Let 7, be the component of ! (7,) that contains the basepoint of w!. Let w? be the unit

2

vector based at the other end point of v, so that geodesic flow moves w2

immediately into
Y- Then the derivative of 7, maps w? to v2. Let g, be the unique orientation-preserving
isometry of the hyperbolic plane that maps w? to w?.

Let S}, S2 be the two connected components of S, \ int(P,), indexed so that 9'P, C S
for i = 1,2. To make the notation uniform, set w! = w'. Then let X! C X, be the connected
component of 7, *(S%) that contains the base point of w’. So the restriction of 7, to X7 is

the universal cover of S’. Note that X! = X! and X2 = ~,X? for all a.

Define the deck-transformation groups

A, = {ge€lsom*(H*): my0g=m,and gX, = X/}

Ay = {ge€lsom™(H?): Th09 =74}

By Van Kampen’s Theorem, A, is generated by Al and A%. Indeed, it is the free product
of these subgroups. So there is a unique isomorphism ¢, : Ay — A, defined by
g if g € A

Qba(g) =
9a99," if g e A}

To simplify notation, we will drop the subscripts when they equal zero. For example, S =

So, A = Ag, and so on.

Lemma 6.2. For every T € X', radius v > 0, amax > 0 and 1 € {1,2} there exists a finite
subset F' C A such that the ball B,(T) has trivial intersection with ¢o(g) X! for all g € A
with g ¢ FAY,. In symbols,

J U U B.@nealg)X, =0.

1=1 0<a<amax ge A\ FA?

Proof. Let ig € {1,2}, 0 < a < amax and let A : [0,7'] — H? be a unit-speed geodesic from
T to a point in B,.(T) N ¢o(h) X  for some h € A (and v’ < r). It suffices to show there is a
finite set £ C A such that h € FA® and F does not depend on « (although it may depend

ON (pax and 7).
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If the image m,(\) C S, is contained in S! then ig = 1 and h € A'. So in this case, we
may let F' = {1,} and we are done.

So we assume 7, () is not contained in S}. This implies 7, () is transverse to 9! P,Ud? P,.
So there is a maximal discrete set 0 <ty <ty < --- < t, <71’ of times satisfying m,(A(t;)) €
O'P, U d?P,. Suppose m,(\(t;)) € &P, for some j € {1,2}. Then there exist one or two
elements g € A such that

dez2 (A1), @al9)BL) < length(97P) /2 (2)

where p7, is the basepoint of w/. Choose an element g; € A satisfying this inequality. Note

gn A = hA™ . So it suffices to prove: for each i with 1 < i < n:
1. there exists a finite set F C A (depending only on r and .y ) such that g; 'giy1 € F;
2. there is a g > 0 (depending only on r and quay) such that ¢, — t; > do.

Indeed, these claims imply g, € F™ and n < r/dy.
To begin, we translate the problem to a neighborhood of {p?

1.p2} as follows. To ease
notation, let ¢; € {1,2} be such that 7, (\(t;)) € 0% P, and let

¢ = max(length(9' P),length(5° P)).

By the triangle inequality,

x> (D, b (97 ' giv1) D) (3)
< dwp (B5, Palgr DAL)) + diz (da(gi AL, Palgs A(tir1)) (4)
iz (Ga(g; DAEir1), Galgi gir1) D) (5)
< U7 (6)

where the last inequality comes from two applications of (2)) and the fact that dgz (A(ti11), A(¢;))

T

Case 1. Suppose the geodesic segment 7, (A[t;, t;11]) is contained in S? for some j € {1,2}.
In this case, there is a positive lower bound on the length ¢;,.; — t; because the surface

S7 does not depend on « (up to isometry) and ;,; — t; is at least as large as the shortest

curve in 7 from &’ P to itself that is not homotopic into the boundary.
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If mo (A[ts, ti1]) is contained in S! = ST then (3 reduces to

A2 (', 97 'giaD") < L+

This is because g; 'giy1 € A, ¢4 is the identity on A! and p. = p'. Since A! is discrete,
there are only finitely many elements of A! that move p' by distance at most £ + 7.

If mo (A[ts, tir1]) is contained in S? then (3]) reduces to
d (P?, 9 ' gia D) < L+

This is because g; ' gis1 € A2, ¢a(g; ' Giv1) = 9ag; ‘gis195" and P2 = gop* (and the hyperbolic
metric is left-invariant so we can cancel the g,’s). Since A? is discrete, there are only finitely
many elements of A? that move p? by distance at most ¢ + r. This finishes Case 1.
Case 2. Suppose the geodesic segment 7, (A[t;, ti41]) is contained in P,.

Suppose T, (A[ti, tiv1]) = Va- Then g; = gi11, so we can choose F' to consist of the identity

element. By equation applied to either of the canonical right-angled hexagons inside P,,

cosh(a) = sinh(length(d'P)/2) sinh(length(9?P)/2) cosh(length(qy)) (7)
— cosh(length(9' P) /2) cosh(length(9%P) /2). (8)

Since cosh(a) > 1,

S Lt cosh(length(0' P)/2) cosh(length(9*P)

cosh(length(va)) = <G eneth (97 P)/2) sinh (length (92P) /2)

So the length of v, admits a positive lower bound that does not depend on «. Since
Ta(A[ti, tiv1]) = 7o this implies a positive lower bound on t;1; — t; that does not depend
on «.

So assume 7, (A[ti, tiv1]) # Ya- Let ejr be the shortest geodesic segment from &7 P, to
ok P, (for j,k € {0,1,2}). This is well-defined even when o = 0 by the requirement that e,
meets &’ P, in a right-angle for j € {1,2}. Note 15 = 7,.

Since o (Alti, tiv1]) # Vo, Ta(A[ti, tig1]) is transverse to U; zeji. So there exists a maximal
set of times ¢; < 51 < s3 < ... < 8§y, < ;31 and elements n; € {01,02,12} such that
Ta(A(85)) € €, for all j. Moreover, g;° gi11 is determined by the sequence 7y, . .., 1, of sides

and €;, €;11. So it suffices to show there are only finitely many such sequences possible. To
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do this, it suffices to show there is a lower bound on s;4; — s; that depends only on yax
and r (for all 1 < j < m). This also implies the required lower bound on t;1 — t;.

Suppose 12 € {n;, nj4+1}. In this case, m,(A[s;, sj41]) is a geodesic from a point in e12 = 7,
to a segment of the form eq for some k € {1,2}. But the shortest geodesic from , to eg
is along 9*P, and has length equal to half the length of 9*P,. Since this length does not
depend on a, it provides a positive lower bound on s;;; — s; independent of «.

We may now assume {n;,7,+1} = {01,02}. Let u;, be the point of intersection of 9" P,
with eg, (for k£ € {1,2}). Note that m,(A(s;)) and 7, (A(sj11)) each have distance at most r
from {uy,us}.

Suppose the claim is false. By considering the canonical right-angled hexagons associated
with P,, we see that for every € > 0 there exist a right-angled hexagon H. bounded by sides
frrem (k1€ {0,1,2}) and points ), € eg satisfying

1. length(f;) = length(9*P)/2 for k € {1,2},
2. length(fo) € [0, amax,
3. if uy is the vertex at the intersection of fi, and eo then dye(uy, uy) <7,

4. dye(uf,uh) < e

Here, the points u}, u} correspond with m4(A(s;)) and e (A(sj11)). See figure [6.1]

By , the length of e15 is bounded from above and below by positive constants depending
only on .. Thus the sides fi, e12, fo and points u}, uf are all contained in a ball B whose
radius is bounded in terms of .y, and the constants length(9*P) (k € {1,2}). Let us
consider u; to be fixed in the hyperbolic plane (independent of €) and consider taking a
subsequential limit of these hexagons as € \, 0 in the Fell topology. The limit polygon is
such that its sides eg; and egy intersect in H2. So it is a compact convex pentagon. However,
it is not possible to obtain a compact pentagon as a limit of right-angled hexagons (even
allowing that some of the sides of the right-angled hexagons have zero length). Indeed,
if it was possible then it would be possible to do it with right-angled hexagons of bounded
diameter such that at least one of the side-lengths tends to zero in the limit. But the formula

shows that for every D > 0 there is § > 0 such that if a right-angled hexagon H has a
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%P

Figure 4: The pair of pants P,.

side, say ej2, with length < ¢ then the diameter of H is > D. This contradiction shows that
there is a positive lower bound on s;;; — s; depending only on r and aupax as required. This

finishes the last case and therefore, finishes the proof.

]

Proof of Proposition [6.1. The quantity B, fs(in(x)) is uniformly continuous in z. Indeed,
suppose for some j € {1,2}, z,y € S7. Let 7, : X, — S, be the universal covering map and
let 7,7 € X, C H? be lifts of i,(x),i(y) such that dg,_ (ia(),ia(y)) = dy=(Z, 7). Then

8. Fu)ial)) = )o@ = | [ Fe)de- [ fo)
B (T) Br(y)

area(B,.(T)) 5
< r\f|rooareaf;;f;f(£@>

where A denotes symmetric difference. Because the map i, restricted to S7 is an isometry
the distance dg, (ia(2),ia(y)) = ds(z,y). Since the bound above tends to zero uniformly in
the distance dg, (ia(),ia(y)), this proves the claim. Therefore, it suffices to prove that for
any fixed x € S\ P, the map a — 5, fo(in(2)) is continuous.

Recall

By falia()) = area(B, (7)) / Faly) dy

B.(%)
where 7 is a preimage of i, (7). By symmetry, we may assume that z € S1. Since X! = X!

for all o, we can choose T € X! so that it does not depend on «.
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Note that the preimage of S} US2 in X, is the disjoint union of the translates of X! and
X2, In symbols,
2
U U ¢eX
i=1 gAiEA/AT

So

2

RSN | PR ALY

B () i=1 gAicA/Ai
By Lemma there are finite sets F'', F? C A (depending only on an upper bound for «
and r) such that

/T( faly) dy = Z Z/ faly) dy. 9)

i=1 geFi r(Z)Nalg) XE

The integrals can be rewritten as follows:

/ ) dy = / Fo(alg)y) dy = / Fwdy (10)
r(T)Nda(9) X a (97 1) Br(Z)NXE, da(g™1)Br(Z)NXE,

«

where the first equality follows from the change of variables y — ¢,(g)y and the second from
the A,-invariance of ﬁl If i =1 then f;(y) = f(y) for all y € X! = X', So

/ Fly)dy = / 7y dy.
(Z)Nga(9) X dalg™1)Br(Z)NX1T

[e3

If i = 2 then fa(gay) = f(y) for y € X2 (and go X2 = X2). By a change of variables

/ Fy)dy = / Flosty) = / ) dy.
(g~ 1) Br(T)NX2 (g~ 1) Br(Z)NX2 9ot dalg—1)Br(F)NX2

Combined with @D and this implies

wealB @) LG) = X [ Fa fw) v

geF!

/951¢a(91)3r(5)ﬂX2

geEF?

Observe that each of the integrals above is continuous in o because o — g, and a — ¢4(9)
are continuous (for fixed g). So we have expressed [, fo(in(2)) as a finite sum of functions

that are continuous in a. Thus B, fa(ia(2)) is continuous in .

]
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7 Averaging around cusps

The main result of this section is a comparison between the averages of the form S,.(f) and
Br(f1lc) where C'is a cusp of the surface. This is used in the proof of Lemma to control
the maximal function under these kinds of deformations of functions. To be precise, we need
the following definitions.

Let C'= Hy/{z + z + 0} be a cusp where Hy = {x + iy € H? : y > 1} is the canonical
horoball and xg > 0 is the length of the boundary of C' (which is a horocycle). For ¢ > 0, let

Clit]={x+iycH*: y>e'}/{z— 2+m} CC.

This is the unique cusp contained in C' such that the distance between the boundaries 0C

and OC|[t] is t.

Proposition 7.1. Let S be a hyperbolic surface with pairwise disjoint cusps C1,...,C, C S.
Let U = UF_,C; be the union of the cusps and U[t] = UY_,Ci[t] the union of the shortened
cusps fort > 0. Let f € L>®(S) be a non-negative function such that (1) f is constant on
C; for alli and (2) f(p) =0 for allp e S\ U. Then for allp € S\ U and t,r > 0,

Brit(flum)(p) = e7'(1 = 2¢7") B (f) (p)-

Proof. Because (3, is linear, it suffices to consider the special case in which f(p) = 1 for all
p € U. By passing to the universal cover, it suffices to prove: for any p € H? \ Hy,

area(B(r,p) N Hy)
area(B(r,p))

area(B(r+t,p)N{z+iy: y>e'})

area(B(r +t,p)) ze (1=27)

Before estimating the above, here are some general facts about areas of intersections of
balls and horoballs.

For R > T > 0, let g(R,T) be the area of the intersection of a ball B and a horoball H
such that the radius of B is R and the distance between the center of B and the boundary
of H is T. Then g(R,T) is well-defined (in that it depends on the choice of B and H only
through R and T') and for any fixed to, g(T + to,T) is monotone increasing in 7. To see
this, we may assume H = Hy and ¢, > 0 (since if ¢, < 0 then g(T + to,T) = 0). Set Br
equal to the ball of hyperbolic radius 7" + t, and hyperbolic center =74 in the upper half-

plane model H?. Recall that the hyperbolic distance between two points on the imaginary
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axis is the absolute difference between their logarithms (so dgz(e,€%) = |a — b]). So
g(T + t9,T) = area(Hy N Br). Also By coincides with the Euclidean disk centered on the
imaginary axis that contains €07 and e~27 %4 in its boundary. In particular, By C By for
any T <T". So g(T +ty,T) < g(T" + to,T").

It follows that

area (B(r +t,p)N{z+iy: y> et}) = g(r+t, dg=(p, Ho)+t) > g(r, dmz(p, Hy)) = area(B(r,p)NH,).

So it suffices to show
area(B(r,p)) > e~(1 — 2¢)
area(B(r +t,p)) — '
Since area(B(r,p)) = 2m(cosh(r) — 1),

area(B(r,p))  cosh(r)—1 e —2+e7"
area(B(r +t,p))  cosh(r+t)—1 ettr —2fe-t-r
e —2 —t —r
=€ (1—2e7").

8 The inductive step

To prove Lemma we will construct surfaces S with functions f € L*(S) by induction.

To be precise, we need the next two definitions.
Definition 1. A tuple (S, P,{C;}F_, U, f) is good if
1. (S, P) is a panted surface,
2. S is a complete hyperbolic surface with finite area and no boundary,
3. C1,...,Cy C S are pairwise disjoint cusps,
4. P is disjoint from U = U,;C},
5. f € L'(9) is non-negative,

6. f is constant on each cusp C},
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7. f(p)=0foralpeS\U,
8. |Ifllh <2

Definition 2. For p > 0 and f € L'(9), let

M,.f(p) = sup B.(| f])(p)

p<r

be the p-truncated maximal function of f.
The next result forms the inductive step in the proof of Lemma [4.1]

Proposition 8.1. Let (S, P {Ci} U, f) be a good tuple and let p,e be parameters such
that 10 < p and 0 < e < 1/10. Let

V={peS\(PUU): M,f(p)>1}.

Then there exists a good tuple <§, ﬁ, {@}% ﬁ, f) satisfying

J=1
1. area(S) = 2area(S) + 27,
2. if
V= {pe S\(PUD): M,f(p) > 1}
then area(V) > 2area(V) — 3e,

1AL = [[fl1/6)
1—4e —4e—r

3. \flh <

Proof. By definition of V', there exist R > 0 and a compact subset W C V such that
area(W) > area(V') — € and

sup G.(f)(p) 21—

p<r<R

forall p e W.
By Proposition there exists a > 0 such that if S, and f, are defined as in then

sup ﬁr(foz)(p) >1—2¢

p<r<R

for all p € W. Here we are identifying W with a subset of S,. This makes sense because

S\ P is naturally isometric to S, \ P, and W C V C S\ P.
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Let S, S®) be two isometric copies of S,. Fori=1,2 and 1 < j < k, let C’]@ c SO be
the copy of the cusp C; in S® and let f@ € L'(S®) be a copy of f,. Define VW U® W
S similarly.

The surface S, has a single boundary component which is of length «. Let Y, be the
pair of pants with one cusp and two geodesic boundary components 'Y, and %Y, both of
length . For i = 1,2, let @ : 9Y,, — 9S™ be an isometry and let v : 9Y, — (S L S?)

be the union of these two maps. Finally, let
S=(SVUSPUY,) Hz ~b(x)}

be the result of gluing Y, to S 11.5® via 1. Let P be the copy of Y, in S. Conclusion (1)
is immediate.

Extend f® to all of S by setting f®(p) = 0 for all p € §\ S® . By Nevo’s Pointwise
Ergodic Theorem (Theorem applied to f), there exists t > 0 and W’ C W such that
area(W’) > area(W®) — ¢ and for all p € W' and r > t,

5 (F0) () = —e+ [ £ du,
Define cusps
Cp=C, Cppy=CP[1]
for1 <j<k.
Define f € LY(S) by

f=r"+ {1 - /f(l) d’/g} 'Ly fP

where U [t] = Ué?:lC](?) [t] is as defined in .
Because || f]|1 < 2 (by definition of a good tuple), it follows that

1— /f<1> dvg=1— area(5) /f dvg > 0.
area(S)

So both summands defining f are non-negative. In particular, f > 0.
Set ~
~ f
S = T de—de
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It is immediate that <§, P, {@ % U, f) is a good tuple.

=1
The next step is to verify the maximal function estimates. We claim that if p € WO UW’
then M pf(p) > 1. So suppose p € W Then the definition of W implies

M, f(p) > M, fV(p) > 1 — 2.

Therefore

~ 1— 2¢

M,f(p) = T de—ter =1 (11)

If pe W c WP, then there exists r > p such that
B (fP)(p) = 1-e
By Proposition [7.1]
Bt Lo/ @) (p) = e (1 = 2616, (/@) (p) 2 e (1 = 2¢7)(1 - o).
Therefore,

Mpf(p)

v

Brat(H)(®) = Brse (FV) (p) + [1 — /f(l) dvg} e'Brat Ly f?) (p)
—e+/f<1> dvg + [1 — /f<1> dV§:| (1—2e7")(1—¢)
= —e+(1—-2")(1—¢€)+ (/ fo dl/§> [1—(1—2e")(1—¢)]

> 1—-3e—4e™">1—4e—4e”

v

where the lower bound on S, ( f(l)) (p) follows from the definition of W’. Therefore,

M,f(p) > 1. Together with inequality this implies M, f(p) > 1 for all p € WD U W".
So V > WO UW’ which implies

arca(V) > 2arca(V) — 3e.

This verifies conclusion (2).
Next, we verify conclusion (3). Recall that our normalization conventions imply area(§ MWD =

area(S)|| f]|1 (for example). Because area(C|[t]) = e *tarea(C) for any cusp C,
area(:S'\) ||1U(2>[t]f(2)H1 = area(S)e” || f|1-
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So

0)

MFl = areaBOl +area(S) [1- [ 50 dog] e o),

area(

= area(S)||f||; + area(S) {1 — /f(l) dug} £l

= area(S)|| f[|, (2 - Zi:g\lflh) < area(S)|| flly (2 = [[f11/3)

where the last inequality comes from the fact that area(S) = 2area(S) + 27 and since S

contains a pair of pants, area(g) > 2. Therefore, ZEZZ% > 1/3.

Divide both sides by area(?) and use the estimate area(S)/area(S\) < 1/2 to obtain

£l < W1 (X = 11£112/6)

which implies conclusion (3).

9 The end of the proof

The next lemma establishes the base case of the induction in the proof of Lemma 4.1]

Lemma 9.1. For every p > 0, there exists a good tuple (S, P,{C;}}_,,U, f) such that

vs({p € S\ (PUU): M,f(p) > 1}) > 1/2.

Proof. Let a > 0 and let Y7 be a pair of pants with two cusps and one geodesic boundary
component of length v > 0. Let Y5 be an isometric copy of Y;. Let P be a pair of pants with
one cusp and two geodesic boundary components each of length a. Let v : 0P — 9Y; L 9Y5
be an isometry and let

S=MUY,UP|/{z~(r)}

be the surface obtained by gluing Y7, Y5 and P together by way of 1. Then (.S, P) is a panted
surface with area 67.

For i = 1,2, let V; C Y; be a compact subsurface with
area(V;) > 3area(Y;)/4 = 3w /2.
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Let C’fi), Oéi) C Y; be disjoint cusps such that for any p € V; and ¢ € C’fi) U C’éi), ds(p,q) > p.

Let f € L'(S) be any non-negative function such that (S, P,{C;}_,,U, f) is a good tuple

and || f||; = 1. For example, one could define f by
area(S)

fp) = 4 area <C’]@>

0 otherwise

(4)
pE Cj

By Nevo’s Pointwise Ergodic Theorem [L.1] for a.e. p € S, Mf(p) > 1. Since 3, f(p) = 0
for all r < p and p € V4 U V4, it follows that M, f(p) > 1 for all V; U V4. Since

area(Vy U V,) > 31 = area(S)/2

this finishes the proof.
]

Lemma 9.2. Let ty,ts,. .. be a sequence of real numbers t; € [0,2) such thatt;,; < t;(1—t;/6)

for allv. Then lim; .o t; = 0.

Proof. Since 1 —t;/6 < 1, the sequence is monotone decreasing. So the limit exists L =

lim; o t; exists, L € [0,2) and L = L(1 — L/6). This implies L = 0. O

Proof of Lemmal[{.1. For b, p > 0, let X(b, p) be the set of all numbers § > 0 such that there
exists a good tuple (S, P, {C;}}_,, U, f) satisfying

1. f>0,
2. [[fllh <6,

3. vs({p e S\ (PUU) :M,f(p) 2 1}) = b.

Also let (b, p) denote the closure of (b, p) in [0, 00). It suffices to prove that 0 € ¥(b, 10)
for some b > 0.

Note that if ¥ < b and p' > p then X(b,p) C X(V,p'). Lemma proves that 1 €
¥(1/2, p) for all p. Proposition proves: if § € X(b, p) for all p > 10 then §(1 — §/6) €
m for all € > 0 and p > 10. By iterating and using Lemma , this implies
0€X(1/2—¢,p) for all € > 0 and p > 10 which finishes the lemma.

[
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10 Two open problems

The main counterexample does not have spectral gap. This is because we are forced to

make the “necks” in the construction of the surface arbitrarily narrow. Similarly, Tao’s

construction does not have spectral gap. This raises a question: does Nevo’s Pointwise

Ergodic Theorem [1.1 hold in L' if G~ (X, ) has spectral gap? It also raises the converse

question:

if G(X, ) is ergodic but does not have spectral gap then does the Pointwise

Ergodic Theorem necessarily fail in L' for this action?
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