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Abstract

Amos Nevo established the pointwise ergodic theorem in Lp for measure-preserving

actions of PSL2(R) on probability spaces with respect to ball averages and every p > 1.

This paper shows by explicit example that Nevo’s Theorem cannot be extended to

p = 1.
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1 Introduction

Birkhoff’s ergodic theorem is that if T : (X,µ)→ (X,µ) is a measure-preserving transforma-

tion of a standard probability space and f ∈ L1(X,µ) then for a.e. x ∈ X, the time-averages

(n + 1)−1
∑n

i=0 f(T ix) converge to the space average E[f |I(T )](x) (this is the conditional

expectation of f on the sigma-algebra of T -invariant measurable subsets). In particular, if

T is ergodic then (n+ 1)−1
∑n

i=0 f(T ix)→
∫
fdµ for a.e. x.

To generalize this result, one can replace the single transformation T with a group G

of transformations and the intervals {0, . . . , n} with a sequence of subsets of G or more

generally, with a sequence of probability measures on G. To be precise, a sequence {ηn}∞n=1

of probability measures on an abstract group G is pointwise ergodic in Lp if for every

measure-preserving action Gy(X,µ) on a standard probability space and for a.e. x ∈ X,

the time-averages ∫
f(gx) dηn(g)

converge to the space average E[f |I(G)](x) as n → ∞ where E[f |I(G)] is the conditional

expectation of f on the sigma-algebra of G-invariant measurable subsets. If the measure ηn

is uniformly distributed over a ball then the time-averages are called ball-averages.
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Pointwise ergodic theorems for amenable groups with respect to averaging over Følner sets

were established in a variety of special cases culminating in Lindenstrauss’ general theorem

[Lin01]. This theorem also holds for L1-functions. Nevo and co-authors established the first

pointwise ergodic theorems for free groups [Nev94a, NS94] and simple Lie groups [Nev94b,

Nev97, NS97, MNS00] with respect to ball and sphere averages. See also [Nev06, GN10] for

surveys. These results hold in Lp for every p > 1. It was open problem whether ball-averages

could be pointwise ergodic in L1 for any non-amenable group.

Terrence Tao showed by explicit example that the pointwise ergodic theorem fails in L1

for actions of free groups with respect to ball averages [Tao15]. His technique was inspired

by Ornstein’s counterexample demonstrating the failure of the maximal ergodic theorem in

L1 for iterates P n of a certain well-chosen self-adjoint Markov operator [Orn69].

This note proves the analogous theorem for PSL2(R) in place of free groups. Our approach

is based on the geometry of hyperbolic surfaces. In the abstract, there is a lot in common

with Tao’s approach but the details of the construction are significantly different. It seems

likely that our methods will generalize beyond PSL2(R).

1.1 The main theorem

To make the result precise, we need to introduce some notation. The hyperbolic plane H2

is a complete, simply-connected Riemannian surface with constant curvature −1. It is unique

up to isometry. Its orientation-preserving isometry group is isomorphic to G := PSL2(R).

Fix a base-point p0 ∈ H2. Let Fr ⊂ G be the set of all g such that dH2(p0, gp0) ≤ r.

Given a probability-measure-preserving (pmp) action G y (X,µ), r > 0, a function

f ∈ L1(X,µ) and x ∈ X the ergodic average is defined by

(Arf)(x) = λ(Fr)
−1

∫
Fr

f(g · x) dλ(g)

where λ is the Haar measure on G. The terminal maximal average is defined by

(Mf)(x) = supr≥1(Ar|f |)(x). Nevo proved [Nev94b]:

Theorem 1.1 (Nevo). Let G y (X,µ) be an ergodic pmp action, p > 1 and f ∈ Lp(X,µ).

Then

lim
r→∞

(Arf)(x) =

∫
X

f(x) dµ(x)
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for µ-almost every x ∈ X.

The main theorem of this paper is that Nevo’s Theorem does not extend to p = 1:

Theorem 1.2. There exists an ergodic pmp action Gy (X,µ) and a nonnegative function

f ∈ L1(X,µ) such that (Mf)(x) is infinite for almost every x ∈ X. In particular, for almost

every x ∈ X the averages (Arf)(x) fail to converge as r →∞.

1.2 A rough overview of the construction

Ornstein’s counterexample in [Orn69] shows that the maximal ergodic theorem fails in L1

for powers of a certain self-adjoint operator P n. The example consists of an L1-function f

with many components fi, each of which comes with a “time delay” which means that P nfi

is roughly singular unless n is very large (depending on i). This allows the amplitude of fi

to be slightly smaller than would otherwise be necessary to make supn P
nf large on a set of

significant measure.

The example here is similar in spirit although the implementation is based on the geom-

etry of hyperbolic surfaces. The measure space is the tangent space of a hyperbolic surface.

Each component function fi is constant on a neighborhood of a cusp and the time delays

are instituted by gluing surfaces together with narrow “bottlenecks”.

Here is more detail. For every ε > 0, a hyperbolic surface S = H2/Γ (for some lattice

Γ < G) and a non-negative f ∈ L∞(S) are constructed to satisfy: (1) the L1-norm of f is

bounded by ε and (2) there is a subset V ⊂ S with area(V )/area(S) bounded from below

such that for all x ∈ V , there is some radius r so that the r-ball average of f centered at x

is ≥ 1. This latter property means: if x̃ ∈ H2 is a point in the inverse image of x under the

universal cover π : H2 → S and f̃ = f ◦ π is the lift of π then the average of f̃ over the ball

of radius r centered at x is at least 1. A small additional argument (which also appears in

Tao’s paper) finishes the proof.

These pairs (S, f) are constructed inductively. Given a pair (S, f) for some ε > 0 (with

some additional structure), a new pair (Ŝ, f̂) is constructed satisfying roughly the same

maximal function lower bounds as (S, f) so that ‖f̂‖1 ≤ ‖f‖1(1 − ‖f‖1/6) (up to a small

multiplicative error). By iterating this construction, the L1-norm of the function can be

made arbitrarily close to zero.
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The new pair (Ŝ, f̂) is constructed from (S, f) as follows. We take two isometric copies

of (S, f), deform them by stretching cusps into geodesics and then glue them to a pair of

pants with a cusp to obtain Ŝ. The new surface has two large subsurfaces S(1), S(2) (each of

which is isometric to a large subsurface of S) connected by a long narrow “neck” which is

actually a pair of pants with a cusp. There are also two copies of f , denoted f (1) and f (2)

supported on S(1), S(2) respectively. By choosing the neck to be very narrow, a continuity

argument shows that the ball averages of each f (i) in Ŝ are close to the ball averages of f

in S. Theorem 1.1 shows that if t > 0 is chosen sufficiently large then for most p in S(2),

the radius (r+ t)-ball averages of f (1) around p are close to its space average
∫
f (1) dνŜ (for

every r > 0).

Finally, we replace f (2) by “flowing” it for time t into the cusps of S(2) and scaling it by a

factor of et[1−
∫
f (1) dνŜ]. Let f ′ be the new function. The radius-(r+ t) ball averages of f ′

are, up to small errors, equal to the radius-r ball averages of f (2) multiplied by [1−
∫
f (1) dνŜ].

So let f̂ = f (1) + f ′. Then we have controlled the maximal ball averages of f̂ on both S(1)

and S(2) and the norm of f̂ is bounded by ‖f‖1(1− ‖f‖1/6), finishing the argument.

2 Quantitative counterexample

This section reduces Theorem 1.1 to the next lemma (which is similar to [Tao15, Theorem

2.1]).

Lemma 2.1. There exists a constant b > 0 with the following property. For every ε > 0

there exists a weakly mixing pmp action Gy (Y, η) and a nonnegative function f ∈ L∞(Y, η)

such that ‖f‖1 ≤ ε and η({y ∈ Y : (Mf)(y) ≥ 1}) ≥ b.

Proof of Theorem 1.2 from Lemma 2.1. By Lemma 2.1 for each k ∈ N there exist a weakly

mixing pmp action G y (Yk, ηk) and a nonnegative function f ′k ∈ L∞(Yk, ηk) such that

‖f ′k‖1 ≤
(

1
2k

)2
and if Ek = {y ∈ Yk : (Mf ′k)(y) ≥ 1} then ηk(Ek) ≥ b.

Let fk = 2kf ′k. So ‖fk‖1 ≤ 1
2k

and Ek = {y ∈ Yk : (Mfk)(y) ≥ 2k}. Let (X,µ) be the

product measure space (X,µ) :=
∏∞

k=1(Yk, ηk). Because each action Gy(Yk, ηk) is weakly

mixing, the diagonal action Gy(X,µ) is ergodic. Let pk : X → Yk be the projection

5



onto the kth coordinate and define f̂k = fk ◦ pk ∈ L∞(X,µ). Let f̂ =
∑∞

k=1 f̂k. Then

‖f̂k‖1 = ‖fk‖1 ≤ 1
2k

so that ‖f̂‖1 ≤
∑∞

n=1
1
2k

= 1.

Let Êk = p−1
k (Ek) ⊆ X and, for a point x ∈ X, let N(x) =

{
k ∈ N : x ∈ Êk

}
. Since

the events (Êk)
∞
k=1 are independent and

∑∞
k=1 µ(Êk) =

∑∞
k=1 ηk(Ek) = ∞, the converse

Borel-Cantelli Lemma implies that N(x) is infinite for almost every x ∈ X.

Since each f̂k is non-negative,

(Mf̂)(x) ≥ sup
k≥1

(Mf̂k)(x).

Therefore (Mf̂)(x) ≥ 2k for every k such that x ∈ Êk. Since almost every x is contained in

infinitely many Êk, it follows that (Mf̂)(x) =∞ for a.e. x.

3 Geometric preliminaries

This section reviews some standard facts needed for the next section which reduces Lemma

2.1 to a geometric problem. It will be convenient to identify the hyperbolic plane with the

upper-half plane

H2 := {x+ iy ∈ C : y > 0}

equipped with the Riemannian metric ds2 = dx2+dy2

y2
. The group SL2(R) acts on H2 by

fractional linear transformations:  a b

c d

 z =
az + b

cz + d
.

The kernel of this action is the subgroup {±I} ≤ SL2(R). Therefore, the quotient PSL2(R) =

SL2(R)/{±I} acts on H2 as above. By abuse of notation, we will write elements of PSL2(R)

as matrices with the implicit understanding that the matrices are taken modulo {±I}.
The action PSL2(R)yH2 is transitive and the stabilizer of i ∈ H2 is the subgroup of

rotations

K =


 cos(θ) − sin(θ)

sin(θ) cos(θ)

 : θ ∈ R

 .

Therefore H2 can be identified with the quotient space PSL2(R)/K via the map g · i 7→ gK.
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The action PSL2(R)yH2 preserves the Riemannian metric. By taking derivatives, there

is an induced action of PSL2(R) on the unit tangent bundle, denoted by T 1(H2). This action

is simply-transitive. Therefore PSL2(R) is the group of all orientation-preserving isometries

of H2.

By choosing a unit vector v0 in the tangent space of i ∈ H2, we may identify PSL2(R)

with T 1(H2) via the map g 7→ gv0. Thus we have a commutative diagram:

PSL2(R) ↔ T 1(H2)

↓ ↓
PSL2(R)/K ↔ H2

Moreover PSL2(R) acts by left translations on all four spaces and these actions commute

with the maps.

Suppose Γ ≤ PSL2(R) is a discrete torsion-free subgroup. Then the quotient Γ\H2 ∼=
Γ\PSL2(R)/K is a hyperbolic surface. More generally, for the purposes of this paper, a

hyperbolic surface is any Riemannian manifold isometric to a subset S of a quotient Γ\H2

for some discrete torsion-free subgroup Γ ≤ PSL2(R) such that S is equal to the closure of

its interior.

By quotienting out the left-action of Γ on the four spaces above, we arrive at the following

commutative diagram:

Γ\PSL2(R) ↔ Γ\T 1(H2)

↓ ↓
Γ\PSL2(R)/K ↔ Γ\H2

The derivative of the covering map H2 → Γ\H2 is Γ-invariant. Therefore the unit tangent

bundle of the surface Γ\H2 is canonically isomorphic with the quotient space Γ\T 1(H2).

Thus we have obtained an identification of Γ\PSL2(R) with T 1(Γ\H2).

4 Reduction to geometry

This section reduces the ergodic theory problem of Lemma 2.1 to a geometric problem.

Towards that goal, suppose that S = Γ\H2 is a hyperbolic surface where Γ ≤ PSL2(R) is a

discrete torsion-free subgroup. Let π : H2 → S denote the quotient map. For f ∈ L∞(S) let

7



Figure 1: Geodesic balls in the hyperbolic plane and in a finite area surface

f̃ = f ◦ π be its lift to H2. Define the geometric average βr(f) ∈ L∞(S) by

(βrf)(x) := area(Br(x̃))−1

∫
Br(x̃)

f̃(y) dy

where x̃ ∈ X is any lift of x (so π(x̃) = x) and Br(x̃) denotes the ball of radius r centered

at x̃. This does not depend on the choice of lift because π is invariant under the deck-

transformation group Γ.

In the special case in which S has finite area, let νS denote the hyperbolic area form on

S normalized so that νS(S) = 1. Also let ‖f‖1 denote the L1(S, νS) norm.
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Lemma 4.1. There exists a constant b > 0 such that for every ε > 0 there exists a complete

connected finite-area hyperbolic surface S with empty boundary and a function f ∈ L∞(S, νS)

satisfying

1. f ≥ 0,

2. ‖f‖1 ≤ ε,

3. νS({x ∈ S : supr≥1(βrf)(x) ≥ 1}) ≥ b.

Proof of Lemma 2.1 from Lemma 4.1. The constant b is the same in both Lemmas 2.1 and

4.1. Let ε > 0 be given and let S and f be as in Lemma 4.1. Then S = Γ\H2 = Γ\PSL2(R)/K

where Γ ≤ PSL2(R) is a torsion-free lattice. Let ηS be the probability measure on Γ\PSL2(R)

given by integrating normalized Lebesgue measure on the unit circle K over νS. The right

action PSL2(R) on Γ\PSL2(R) preserves ηS. We take (Y, η) = (Γ\PSL2(R), ηS). This action

is ergodic because there is only orbit. It is weakly mixing because every ergodic action of

PSL2(R) is weakly mixing by the Howe-Moore Theorem [BM00].

If we write q : Γ\PSL2(R)→ S = Γ\PSL2(R)/K for the natural projection then f ◦ q is

an element of L∞(Γ\PSL2(R), ηS) and ‖f ◦ q‖1 = ‖f‖1. Let x ∈ S and let ξ ∈ q−1(x). Then

(Ar(f ◦ q))(ξ) = (βrf)(x).

So the action Gy(Y, η) and function f ◦ q satisfy the conclusions of Lemma 2.1.

5 Pants and cusps

This section introduces notation to describe pants and cusps that will be useful in the main

construction.

A right-angled hexagon is a hexagon H in the hyperbolic plane such that all of its

edges are geodesic segments and its interior angles are right angles. It will be convenient to

label the sides of a hexagon by f0, e01, f1, e12, f2, e20 so that eij is adjacent to both fi and fj.

See figure 5.

By [Bus92, Theorem 2.4.2], for every triple (l0, l1, l2) ∈ (0,∞)3 there is a right-angled

hexagon H = H(l0, l1, l2) such that the length of fi is li for i ∈ {0, 1, 2}. Moreover, the
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Figure 2: A right-angled hexagon

lengths of the other edges (eij) are determined by the lengths of f0, f1, f2 so that H is

uniquely determined up to isometry. For example, by [Bus92, Theorem 2.4.1],

cosh(l0) = sinh(l1) sinh(l2) cosh(length(e12))− cosh(l1) cosh(l2). (1)

By taking limits, we can allow (l0, l1, l2) to be in [0,∞]3 [Bus92, §4.4]. For example, if

(l0, l1, l2) = (0, 0, 0) then H is an ideal triangle with its ‘vertices’ on the boundary at infinity.

We will still refer to H as a right-angled hexagon even if some of its sides have zero or infinite

length.

A pair of pants is a hyperbolic surface that is homeomorphic to a sphere minus three

disjoint open disks such that each boundary component is a closed geodesic. For example,

suppose for k ∈ {1, 2}, Hk is a right-angled hexagons with edges ekij, f
k
i for i, j ∈ {0, 1, 2}.

In addition suppose that the length of e1
ij equals the length of e2

ij for all i, j so that the

hexagons are isometric. Let P be the surface obtained by glueing e1
ij to e2

ij isometrically

for i, j ∈ {0, 1, 2}. This is a pair of pants (for details see [Bus92, §3.1] where it is called a

Y -piece). The lengths of the boundary components are twice the lengths of the sides fki .

Conversely, if P is any pair of pants with boundary components ∂iP for i ∈ {0, 1, 2} then

for every pair {i, j} ∈ {0, 1, 2} there exists a unique shortest geodesic segment γij from ∂iP

to ∂jP . By cutting along these geodesic segments, we obtain two isometric right-angled

hexagons (the canonical right-angled hexagons of P ). Thus for every triple of numbers
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(l0, l1, l2) ∈ (0,∞) there exists a pair of pants P with boundary lengths equal to l0, l1, l2 and

P is unique up to isometry. See [Bus92, Theorem 3.1.7] for a formal proof of this statement.

A pair of pants with k-cusps (for k ∈ {0, 1, 2, 3}) is a hyperbolic surface that is

homeomorphic to a sphere minus k points and 3 − k disjoint open disks such that each

boundary component is a closed geodesic. They can be constructed exactly as in the previous

paragraph by allowing the lengths of the edges fki to take values in [0,∞). See [Bus92, Lemma

4.4.1] for a formal proof.

The canonical horoball is the subset

H0 := {x+ iy ∈ C : y ≥ 1} ⊂ H2.

For any x0 ∈ R, the map z 7→ z+x0 is an orientation-preserving isometry of the hyperbolic

plane and therefore is represented as an element of PSL2(R). A cusp is a surface isometric

to a quotient of the form C := H0/{z 7→ z+x0} for some x0 > 0. For example, if P is a pair

of pants with k cusps as defined above, then there really are k disjoint cusps on P [Bus92,

Proposition 4.4.4].

By Gauss-Bonet, the area of a right-angled hexagon is π. So the area of a pair of pants

is 2π [Bea95, p.153].

6 Deformations of surfaces

The proof of Lemma 4.1 constructs surfaces and L1-functions inductively by cutting, pasting

and deforming. The main result of this section is that the averages βrf vary continuously

under deforming the boundary of surfaces equipped with additional structure. To make this

precise, we need the following ad hoc definition.

A panted surface is a pair (S, P ) such that S is a connected oriented hyperbolic surface

and P ⊂ S is a closed subsurface satisfying:

• P is a pair of pants with ≤ 1 cusp,

• the complement S \ P has two connected components,

• two of the boundary components of P are contained in the interior of S. These are

11



Figure 3: The surface Sα

denoted by ∂1P, ∂2P . If there is a third boundary component then it is denoted by

∂0P .

For α > 0, the α-deformation of (S, P ) is a panted surface (Sα, Pα) defined as follows.

Let Pα be the (compact) oriented hyperbolic pair of pants with geodesic boundary ∂Pα =

∪2
i=0∂

iPα satisfying

length(∂0Pα) = α

length(∂1Pα) = length(∂1P )

length(∂2Pα) = length(∂2P ).

This uniquely determines Pα up to orientation-preserving isometry.

Define a local isometry ψ : ∂1Pα ∪ ∂2Pα → ∂1P ∪ ∂2P as follows. There exists a unique

shortest geodesic γ in P from ∂1P to ∂2P . Let pi be the point of intersection of γ with ∂iP .
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Similarly, let γα be the unique shortest geodesic in Pα from ∂1Pα to ∂2Pα. Let piα be the

point of intersection of γα with ∂iPα. Finally, let ψ be the map defined by

• for i = 1, 2, the restriction of ψ to ∂iPα is an isometry onto ∂iP ,

• ψ(piα) = pi,

• ψ preserves orientation, where the orientation on ∂P is induced from the given ori-

entation on P and the orientation on ∂Pα is induced from the given orientation on

Pα.

This uniquely specifies ψ.

Finally, let Sα = (S \ int(P )) ∪ Pα/{x ∼ ψ(x)} be the surface obtained from (S minus

the interior of P ) and Pα by gluing together along ψ.

6.1 Continuity

This subsection studies how the averages βrf vary with α when f is a function on Sα. To

make this precise, let iα : S \ int(P ) → Sα be the inclusion map. For f ∈ L1(S \ int(P )),

define fα ∈ L1(Sα) by

fα(x) =

 f(i−1
α (x)) x ∈ Sα \ int(Pα)

0 otherwise

Proposition 6.1. Let (S, P ) be a panted surface and f ∈ L∞(S \ int(P )). For any r > 0,

the map

(x, α) 7→ βrfα(iα(x))

is continuous as a map from (S \ P )× [0,∞) to C.

To begin, we introduce notation for describing the universal covers of the surfaces Sα and

their deck-transformation groups. For i = 1, 2, let viα be the unit tangent vector based at

piα, tangent to γα and oriented so that geodesic flow moves viα immediately into γα.

Fix a unit tangent vector w1 in the tangent bundle of H2. Because Sα is connected, there

exists a unique orientation-preserving universal covering map πα : Xα → Sα such that

• Xα ⊂ H2 is a closed simply-connected subset containing the base point of w1,
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• the derivative of πα maps w1 to v1
α.

Let γ̃α be the component of π−1
α (γα) that contains the basepoint of w1. Let w2

α be the unit

vector based at the other end point of γ̃α so that geodesic flow moves w2
α immediately into

γ̃α. Then the derivative of πα maps w2
α to v2

α. Let gα be the unique orientation-preserving

isometry of the hyperbolic plane that maps w2
0 to w2

α.

Let S1
α, S

2
α be the two connected components of Sα \ int(Pα), indexed so that ∂iPα ⊂ Siα

for i = 1, 2. To make the notation uniform, set w1
α = w1. Then let X i

α ⊂ Xα be the connected

component of π−1
α (Siα) that contains the base point of wiα. So the restriction of πα to X i

α is

the universal cover of Siα. Note that X1
α = X1 and X2

α = γαX
2 for all α.

Define the deck-transformation groups

Λi
α = {g ∈ Isom+(H2) : πα ◦ g = πα and gX i

α = X i
α}

Λα = {g ∈ Isom+(H2) : πα ◦ g = πα}.

By Van Kampen’s Theorem, Λα is generated by Λ1
α and Λ2

α. Indeed, it is the free product

of these subgroups. So there is a unique isomorphism φα : Λ0 → Λα defined by

φα(g) =

 g if g ∈ Λ1
0

gαgg
−1
α if g ∈ Λ2

0

To simplify notation, we will drop the subscripts when they equal zero. For example, S =

S0,Λ = Λ0, and so on.

Lemma 6.2. For every x̃ ∈ X1, radius r > 0, αmax ≥ 0 and i ∈ {1, 2} there exists a finite

subset F ⊂ Λ such that the ball Br(x̃) has trivial intersection with φα(g)X i
α for all g ∈ Λ

with g /∈ FΛi
α. In symbols,

2⋃
i=1

⋃
0≤α≤αmax

⋃
g∈Λ\FΛi

Br(x̃) ∩ φα(g)X i
α = ∅.

Proof. Let i0 ∈ {1, 2}, 0 ≤ α ≤ αmax and let λ : [0, r′] → H2 be a unit-speed geodesic from

x̃ to a point in Br(x̃) ∩ φα(h)X i0
α for some h ∈ Λ (and r′ ≤ r). It suffices to show there is a

finite set F ⊂ Λ such that h ∈ FΛi0 and F does not depend on α (although it may depend

on αmax and r).
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If the image πα(λ) ⊂ Sα is contained in S1
α then i0 = 1 and h ∈ Λ1. So in this case, we

may let F = {1Λ} and we are done.

So we assume πα(λ) is not contained in S1
α. This implies πα(λ) is transverse to ∂1Pα∪∂2Pα.

So there is a maximal discrete set 0 ≤ t0 < t1 < · · · < tn ≤ r′ of times satisfying πα(λ(ti)) ∈
∂1Pα ∪ ∂2Pα. Suppose πα(λ(ti)) ∈ ∂jPα for some j ∈ {1, 2}. Then there exist one or two

elements g ∈ Λ such that

dH2(λ(ti), φα(g)p̃jα) ≤ length(∂jP )/2 (2)

where p̃jα is the basepoint of wjα. Choose an element gi ∈ Λ satisfying this inequality. Note

gnΛi0 = hΛi0 . So it suffices to prove: for each i with 1 ≤ i < n:

1. there exists a finite set F ⊂ Λ (depending only on r and αmax) such that g−1
i gi+1 ∈ F ;

2. there is a δ0 > 0 (depending only on r and αmax) such that ti+1 − ti ≥ δ0.

Indeed, these claims imply gn ∈ F n and n ≤ r/δ0.

To begin, we translate the problem to a neighborhood of {p̃1
α, p̃

2
α} as follows. To ease

notation, let εi ∈ {1, 2} be such that πα(λ(ti)) ∈ ∂εiPα and let

` = max(length(∂1P ), length(∂2P )).

By the triangle inequality,

dH2(p̃εiα , φα(g−1
i gi+1)p̃εi+1

α ) (3)

≤ dH2(p̃εiα , φα(g−1
i )λ(ti)) + dH2(φα(g−1

i )λ(ti), φα(g−1
i )λ(ti+1)) (4)

+dH2(φα(g−1
i )λ(ti+1), φα(g−1

i gi+1)p̃εi+1
α ) (5)

≤ `+ r (6)

where the last inequality comes from two applications of (2) and the fact that dH2(λ(ti+1), λ(ti)) ≤
r.

Case 1. Suppose the geodesic segment πα(λ[ti, ti+1]) is contained in Sjα for some j ∈ {1, 2}.
In this case, there is a positive lower bound on the length ti+1 − ti because the surface

Sjα does not depend on α (up to isometry) and ti+1 − ti is at least as large as the shortest

curve in Sj from ∂jP to itself that is not homotopic into the boundary.
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If πα(λ[ti, ti+1]) is contained in S1
α = S1 then (3) reduces to

dH2(p̃1, g−1
i gi+1p̃

1) ≤ `+ r.

This is because g−1
i gi+1 ∈ Λ1, φα is the identity on Λ1 and p̃1

α = p̃1. Since Λ1 is discrete,

there are only finitely many elements of Λ1 that move p̃1 by distance at most `+ r.

If πα(λ[ti, ti+1]) is contained in S2
α then (3) reduces to

dH2(p̃2, g−1
i gi+1p̃

2) ≤ `+ r.

This is because g−1
i gi+1 ∈ Λ2, φα(g−1

i gi+1) = gαg
−1
i gi+1g

−1
α and p̃2

α = gαp̃
2 (and the hyperbolic

metric is left-invariant so we can cancel the gα’s). Since Λ2 is discrete, there are only finitely

many elements of Λ2 that move p̃2 by distance at most `+ r. This finishes Case 1.

Case 2. Suppose the geodesic segment πα(λ[ti, ti+1]) is contained in Pα.

Suppose πα(λ[ti, ti+1]) = γα. Then gi = gi+1, so we can choose F to consist of the identity

element. By equation (1) applied to either of the canonical right-angled hexagons inside Pα,

cosh(α) = sinh(length(∂1P )/2) sinh(length(∂2P )/2) cosh(length(γα)) (7)

− cosh(length(∂1P )/2) cosh(length(∂2P )/2). (8)

Since cosh(α) ≥ 1,

cosh(length(γα)) ≥ 1 + cosh(length(∂1P )/2) cosh(length(∂2P )

sinh(length(∂1P )/2) sinh(length(∂2P )/2)
> 1.

So the length of γα admits a positive lower bound that does not depend on α. Since

πα(λ[ti, ti+1]) = γα this implies a positive lower bound on ti+1 − ti that does not depend

on α.

So assume πα(λ[ti, ti+1]) 6= γα. Let ejk be the shortest geodesic segment from ∂jPα to

∂kPα (for j, k ∈ {0, 1, 2}). This is well-defined even when α = 0 by the requirement that e0j

meets ∂jPα in a right-angle for j ∈ {1, 2}. Note e12 = γα.

Since πα(λ[ti, ti+1]) 6= γα, πα(λ[ti, ti+1]) is transverse to ∪j,kejk. So there exists a maximal

set of times ti < s1 < s2 < . . . < sm < ti+1 and elements ηj ∈ {01, 02, 12} such that

πα(λ(sj)) ∈ eηj for all j. Moreover, g−1
i gi+1 is determined by the sequence η1, . . . , ηm of sides

and εi, εi+1. So it suffices to show there are only finitely many such sequences possible. To
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do this, it suffices to show there is a lower bound on sj+1 − sj that depends only on αmax

and r (for all 1 ≤ j < m). This also implies the required lower bound on ti+1 − ti.
Suppose 12 ∈ {ηj, ηj+1}. In this case, πα(λ[sj, sj+1]) is a geodesic from a point in e12 = γα

to a segment of the form e0k for some k ∈ {1, 2}. But the shortest geodesic from γα to e0k

is along ∂kPα and has length equal to half the length of ∂kPα. Since this length does not

depend on α, it provides a positive lower bound on sj+1 − sj independent of α.

We may now assume {ηj, ηj+1} = {01, 02}. Let uk be the point of intersection of ∂kPα

with e0k (for k ∈ {1, 2}). Note that πα(λ(sj)) and πα(λ(sj+1)) each have distance at most r

from {u1, u2}.
Suppose the claim is false. By considering the canonical right-angled hexagons associated

with Pα, we see that for every ε > 0 there exist a right-angled hexagon Hε bounded by sides

fk, ekl (k, l ∈ {0, 1, 2}) and points u′k ∈ e0k satisfying

1. length(fk) = length(∂kP )/2 for k ∈ {1, 2},

2. length(f0) ∈ [0, αmax],

3. if uk is the vertex at the intersection of fk and e0k then dH2(uk, u
′
k) ≤ r,

4. dH2(u′1, u
′
2) ≤ ε.

Here, the points u′1, u
′
2 correspond with πα(λ(sj)) and πα(λ(sj+1)). See figure 6.1.

By (1), the length of e12 is bounded from above and below by positive constants depending

only on αmax. Thus the sides f1, e12, f2 and points u′1, u
′
2 are all contained in a ball B whose

radius is bounded in terms of αmax, r and the constants length(∂kP ) (k ∈ {1, 2}). Let us

consider u1 to be fixed in the hyperbolic plane (independent of ε) and consider taking a

subsequential limit of these hexagons as ε ↘ 0 in the Fell topology. The limit polygon is

such that its sides e01 and e02 intersect in H2. So it is a compact convex pentagon. However,

it is not possible to obtain a compact pentagon as a limit of right-angled hexagons (even

allowing that some of the sides of the right-angled hexagons have zero length). Indeed,

if it was possible then it would be possible to do it with right-angled hexagons of bounded

diameter such that at least one of the side-lengths tends to zero in the limit. But the formula

(1) shows that for every D > 0 there is δ > 0 such that if a right-angled hexagon H has a
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Figure 4: The pair of pants Pα.

side, say e12, with length < δ then the diameter of H is > D. This contradiction shows that

there is a positive lower bound on sj+1− sj depending only on r and αmax as required. This

finishes the last case and therefore, finishes the proof.

Proof of Proposition 6.1. The quantity βrfα(iα(x)) is uniformly continuous in x. Indeed,

suppose for some j ∈ {1, 2}, x, y ∈ Sj. Let πα : Xα → Sα be the universal covering map and

let x̃, ỹ ∈ Xα ⊂ H2 be lifts of iα(x), iα(y) such that dSα(iα(x), iα(y)) = dH2(x̃, ỹ). Then

|βr(fα)(iα(x))− βr(fα)(iα(y))| =
1

area(Br(x̃))

∣∣∣∣∫
Br(x̃)

f̃(z) dz −
∫
Br(ỹ)

f̃(z) dz

∣∣∣∣
≤ ‖f‖∞

area(Br(x̃) M Br(ỹ))

area(Br(x̃))

where M denotes symmetric difference. Because the map iα restricted to Sj is an isometry

the distance dSα(iα(x), iα(y)) = dS(x, y). Since the bound above tends to zero uniformly in

the distance dSα(iα(x), iα(y)), this proves the claim. Therefore, it suffices to prove that for

any fixed x ∈ S \ P , the map α 7→ βrfα(iα(x)) is continuous.

Recall

βrfα(iα(x)) = area(Br(x̃))−1

∫
Br(x̃)

f̃α(y) dy

where x̃ is a preimage of iα(x). By symmetry, we may assume that x ∈ S1
α. Since X1

α = X1

for all α, we can choose x̃ ∈ X1 so that it does not depend on α.
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Note that the preimage of S1
α∪S2

α in Xα is the disjoint union of the translates of X1
α and

X2
α. In symbols,

2⋃
i=1

⋃
gΛi∈Λ/Λi

φα(g)X i
α.

So ∫
Br(x̃)

f̃α(y) dy =
2∑
i=1

∑
gΛi∈Λ/Λi

∫
Br(x̃)∩φα(g)Xi

α

f̃α(y) dy.

By Lemma 6.2 there are finite sets F 1, F 2 ⊂ Λ (depending only on an upper bound for α

and r) such that ∫
Br(x̃)

f̃α(y) dy =
2∑
i=1

∑
g∈F i

∫
Br(x̃)∩φα(g)Xi

α

f̃α(y) dy. (9)

The integrals can be rewritten as follows:∫
Br(x̃)∩φα(g)Xi

α

f̃α(y) dy =

∫
φα(g−1)Br(x̃)∩Xi

α

f̃α(φα(g)y) dy =

∫
φα(g−1)Br(x̃)∩Xi

α

f̃α(y) dy (10)

where the first equality follows from the change of variables y 7→ φα(g)y and the second from

the Λα-invariance of f̃α. If i = 1 then f̃α(y) = f̃(y) for all y ∈ X1
α = X1. So∫

Br(x̃)∩φα(g)X1
α

f̃α(y) dy =

∫
φα(g−1)Br(x̃)∩X1

f̃(y) dy.

If i = 2 then f̃α(gαy) = f̃(y) for y ∈ X2 (and gαX
2 = X2

α). By a change of variables∫
φα(g−1)Br(x̃)∩X2

α

f̃α(y) dy =

∫
φα(g−1)Br(x̃)∩X2

α

f̃(g−1
α y) =

∫
g−1
α φα(g−1)Br(x̃)∩X2

f̃(y) dy.

Combined with (9) and (10) this implies

area(Br(x̃))βrfα(iα(x)) =
∑
g∈F 1

∫
φα(g−1)Br(x̃)∩X1

f̃(y) dy,+
∑
g∈F 2

∫
g−1
α φα(g−1)Br(x̃)∩X2

f̃(y) dy.

Observe that each of the integrals above is continuous in α because α 7→ gα and α 7→ φα(g)

are continuous (for fixed g). So we have expressed βrfα(iα(x)) as a finite sum of functions

that are continuous in α. Thus βrf̃α(iα(x)) is continuous in α.
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7 Averaging around cusps

The main result of this section is a comparison between the averages of the form βr(f) and

βr(f1C) where C is a cusp of the surface. This is used in the proof of Lemma 4.1 to control

the maximal function under these kinds of deformations of functions. To be precise, we need

the following definitions.

Let C = H0/{z 7→ z + x0} be a cusp where H0 = {x+ iy ∈ H2 : y ≥ 1} is the canonical

horoball and x0 > 0 is the length of the boundary of C (which is a horocycle). For t > 0, let

C[t] = {x+ iy ∈ H2 : y ≥ et}/{z 7→ z + x0} ⊂ C.

This is the unique cusp contained in C such that the distance between the boundaries ∂C

and ∂C[t] is t.

Proposition 7.1. Let S be a hyperbolic surface with pairwise disjoint cusps C1, . . . , Ck ⊂ S.

Let U = ∪ki=1Ci be the union of the cusps and U [t] = ∪ki=1Ci[t] the union of the shortened

cusps for t ≥ 0. Let f ∈ L∞(S) be a non-negative function such that (1) f is constant on

Ci for all i and (2) f(p) = 0 for all p ∈ S \ U . Then for all p ∈ S \ U and t, r ≥ 0,

βr+t(f1U [t])(p) ≥ e−t(1− 2e−r)βr(f)(p).

Proof. Because βr is linear, it suffices to consider the special case in which f(p) = 1 for all

p ∈ U . By passing to the universal cover, it suffices to prove: for any p ∈ H2 \H0,

area(B(r + t, p) ∩ {x+ iy : y ≥ et})
area(B(r + t, p))

≥ e−t(1− 2e−r)
area(B(r, p) ∩H0)

area(B(r, p))
.

Before estimating the above, here are some general facts about areas of intersections of

balls and horoballs.

For R > T > 0, let g(R, T ) be the area of the intersection of a ball B and a horoball H

such that the radius of B is R and the distance between the center of B and the boundary

of H is T . Then g(R, T ) is well-defined (in that it depends on the choice of B and H only

through R and T ) and for any fixed t0, g(T + t0, T ) is monotone increasing in T . To see

this, we may assume H = H0 and t0 > 0 (since if t0 ≤ 0 then g(T + t0, T ) = 0). Set BT

equal to the ball of hyperbolic radius T + t0 and hyperbolic center e−T i in the upper half-

plane model H2. Recall that the hyperbolic distance between two points on the imaginary
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axis is the absolute difference between their logarithms (so dH2(eai, ebi) = |a − b|). So

g(T + t0, T ) = area(H0 ∩ BT ). Also BT coincides with the Euclidean disk centered on the

imaginary axis that contains et0i and e−2T−t0i in its boundary. In particular, BT ⊂ BT ′ for

any T ≤ T ′. So g(T + t0, T ) ≤ g(T ′ + t0, T
′).

It follows that

area
(
B(r + t, p) ∩ {x+ iy : y ≥ et}

)
= g(r+t, dH2(p,H0)+t) ≥ g(r, dH2(p,H0)) = area(B(r, p)∩H0).

So it suffices to show
area(B(r, p))

area(B(r + t, p))
≥ e−t(1− 2e−r).

Since area(B(r, p)) = 2π(cosh(r)− 1),

area(B(r, p))

area(B(r + t, p))
=

cosh(r)− 1

cosh(r + t)− 1
=

er − 2 + e−r

et+r − 2 + e−t−r

≥ er − 2

et+r
= e−t(1− 2e−r).

8 The inductive step

To prove Lemma 4.1, we will construct surfaces S with functions f ∈ L1(S) by induction.

To be precise, we need the next two definitions.

Definition 1. A tuple
(
S, P, {Ci}ki=1, U, f

)
is good if

1. (S, P ) is a panted surface,

2. S is a complete hyperbolic surface with finite area and no boundary,

3. C1, . . . , Ck ⊂ S are pairwise disjoint cusps,

4. P is disjoint from U = ∪iCi,

5. f ∈ L1(S) is non-negative,

6. f is constant on each cusp Ci,
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7. f(p) = 0 for all p ∈ S \ U ,

8. ‖f‖1 ≤ 2.

Definition 2. For ρ ≥ 0 and f ∈ L1(S), let

Mρf(p) = sup
ρ≤r

βr(|f |)(p)

be the ρ-truncated maximal function of f .

The next result forms the inductive step in the proof of Lemma 4.1.

Proposition 8.1. Let
(
S, P, {Ci}ki=1, U, f

)
be a good tuple and let ρ, ε be parameters such

that 10 ≤ ρ and 0 < ε < 1/10. Let

V = {p ∈ S \ (P ∪ U) : Mρf(p) ≥ 1} .

Then there exists a good tuple
(
Ŝ, P̂ , {Ĉj}2k

j=1, Û , f̂
)

satisfying

1. area(Ŝ) = 2 area(S) + 2π,

2. if

V̂ =
{
p ∈ Ŝ \ (P̂ ∪ Û) : Mρf̂(p) ≥ 1

}
then area(V̂ ) ≥ 2 area(V )− 3ε,

3. ‖f̂‖1 ≤
‖f‖1(1− ‖f‖1/6)

1− 4ε− 4e−ρ
.

Proof. By definition of V , there exist R > 0 and a compact subset W ⊂ V such that

area(W ) ≥ area(V )− ε and

sup
ρ≤r≤R

βr(f)(p) ≥ 1− ε

for all p ∈ W .

By Proposition 6.1, there exists α > 0 such that if Sα and fα are defined as in §6.1 then

sup
ρ≤r≤R

βr(fα)(p) ≥ 1− 2ε

for all p ∈ W . Here we are identifying W with a subset of Sα. This makes sense because

S \ P is naturally isometric to Sα \ Pα and W ⊂ V ⊂ S \ P .
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Let S(1), S(2) be two isometric copies of Sα. For i = 1, 2 and 1 ≤ j ≤ k, let C
(i)
j ⊂ S(i) be

the copy of the cusp Cj in S(i) and let f (i) ∈ L1(S(i)) be a copy of fα. Define V (i), U (i),W (i) ⊂
S(i) similarly.

The surface Sα has a single boundary component which is of length α. Let Yα be the

pair of pants with one cusp and two geodesic boundary components ∂1Yα and ∂2Yα, both of

length α. For i = 1, 2, let ψ(i) : ∂iYα → ∂S(1) be an isometry and let ψ : ∂Yα → ∂(S(1)tS(2))

be the union of these two maps. Finally, let

Ŝ =
(
S(1) t S(2) t Yα

)
/{x ∼ ψ(x)}

be the result of gluing Yα to S(1) t S(2) via ψ. Let P̂ be the copy of Yα in Ŝ. Conclusion (1)

is immediate.

Extend f (i) to all of Ŝ by setting f (i)(p) = 0 for all p ∈ Ŝ \ S(i). By Nevo’s Pointwise

Ergodic Theorem (Theorem 1.1) applied to f (1), there exists t > 0 and W ′ ⊂ W (2) such that

area(W ′) ≥ area(W (2))− ε and for all p ∈ W ′ and r ≥ t,

βr
(
f (1)
)

(p) ≥ −ε+

∫
f (1) dνŜ.

Define cusps

Ĉj := C
(1)
j , Ĉk+j := C

(2)
j [t]

for 1 ≤ j ≤ k.

Define f̄ ∈ L1(Ŝ) by

f̄ = f (1) +

[
1−

∫
f (1) dνŜ

]
et1U(2)[t]f

(2)

where U (2)[t] = ∪kj=1C
(2)
j [t] is as defined in §7.

Because ‖f‖1 ≤ 2 (by definition of a good tuple), it follows that

1−
∫
f (1) dνŜ = 1− area(S)

area(Ŝ)

∫
f dνS > 0.

So both summands defining f̄ are non-negative. In particular, f̄ ≥ 0.

Set

f̂ :=
f̄

1− 4ε− 4e−ρ
.
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It is immediate that
(
Ŝ, P̂ , {Ĉj}2k

j=1, Û , f̂
)

is a good tuple.

The next step is to verify the maximal function estimates. We claim that if p ∈ W (1)∪W ′

then Mρf̂(p) ≥ 1. So suppose p ∈ W (1). Then the definition of W implies

Mρf̄(p) ≥ Mρf
(1)(p) ≥ 1− 2ε.

Therefore

Mρf̂(p) ≥ 1− 2ε

1− 4ε− 4e−ρ
≥ 1. (11)

If p ∈ W ′ ⊂ W (2), then there exists r ≥ ρ such that

βr
(
f (2)
)

(p) ≥ 1− ε.

By Proposition 7.1,

βr+t
(
1U(2)[t]f

(2)
)

(p) ≥ e−t(1− 2e−r)βr
(
f (2)
)

(p) ≥ e−t(1− 2e−r)(1− ε).

Therefore,

Mρf̄(p) ≥ βr+t(f̄)(p) ≥ βr+t
(
f (1)
)

(p) +

[
1−

∫
f (1) dνŜ

]
etβr+t

(
1U(2)[t]f

(2)
)

(p)

≥ −ε+

∫
f (1) dνŜ +

[
1−

∫
f (1) dνŜ

]
(1− 2e−r)(1− ε)

= −ε+ (1− 2e−r)(1− ε) +

(∫
f (1) dνŜ

)[
1− (1− 2e−r)(1− ε)

]
≥ 1− 3ε− 4e−r ≥ 1− 4ε− 4e−ρ

where the lower bound on βr+t
(
f (1)
)

(p) follows from the definition of W ′. Therefore,

Mρf̂(p) ≥ 1. Together with inequality (11) this implies Mρf̂(p) ≥ 1 for all p ∈ W (1) ∪W ′.

So V̂ ⊃ W (1) ∪W ′ which implies

area(V̂ ) ≥ 2 area(V )− 3ε.

This verifies conclusion (2).

Next, we verify conclusion (3). Recall that our normalization conventions imply area(Ŝ)‖f (1)‖1 =

area(S)‖f‖1 (for example). Because area(C[t]) = e−tarea(C) for any cusp C,

area(Ŝ)
∥∥1U(2)[t]f

(2)
∥∥

1
= area(S)e−t‖f‖1.
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So

area(Ŝ)‖f̄‖1 = area(Ŝ)‖f (1)‖1 + area(Ŝ)

[
1−

∫
f (1) dνŜ

]
et
∥∥1U(2)[t]f

(2)
∥∥

1

= area(S)‖f‖1 + area(S)

[
1−

∫
f (1) dνŜ

]
‖f‖1

= area(S)‖f‖1

(
2− area(S)

area(Ŝ)
‖f‖1

)
≤ area(S)‖f‖1 (2− ‖f‖1/3)

where the last inequality comes from the fact that area(Ŝ) = 2area(S) + 2π and since Ŝ

contains a pair of pants, area(Ŝ) ≥ 2π. Therefore, area(S)

area(Ŝ)
≥ 1/3.

Divide both sides by area(Ŝ) and use the estimate area(S)/area(Ŝ) ≤ 1/2 to obtain

‖f̄‖1 ≤ ‖f‖1(1− ‖f‖1/6)

which implies conclusion (3).

9 The end of the proof

The next lemma establishes the base case of the induction in the proof of Lemma 4.1.

Lemma 9.1. For every ρ ≥ 0, there exists a good tuple (S, P, {Ci}4
i=1, U, f) such that

νS ({p ∈ S \ (P ∪ U) : Mρf(p) ≥ 1}) ≥ 1/2.

Proof. Let α > 0 and let Y1 be a pair of pants with two cusps and one geodesic boundary

component of length α > 0. Let Y2 be an isometric copy of Y1. Let P be a pair of pants with

one cusp and two geodesic boundary components each of length α. Let ψ : ∂P → ∂Y1 t ∂Y2

be an isometry and let

S = [Y1 t Y2 t P ]/{x ∼ ψ(x)}

be the surface obtained by gluing Y1, Y2 and P together by way of ψ. Then (S, P ) is a panted

surface with area 6π.

For i = 1, 2, let Vi ⊂ Yi be a compact subsurface with

area(Vi) ≥ 3 area(Yi)/4 = 3π/2.
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Let C
(i)
1 , C

(i)
2 ⊂ Yi be disjoint cusps such that for any p ∈ Vi and q ∈ C(i)

1 ∪C
(i)
2 , dS(p, q) ≥ ρ.

Let f ∈ L1(S) be any non-negative function such that (S, P, {Ci}4
i=1, U, f) is a good tuple

and ‖f‖1 = 1. For example, one could define f by

f(p) =


area(S)

4 area
(
C

(i)
j

) p ∈ C(i)
j

0 otherwise

By Nevo’s Pointwise Ergodic Theorem 1.1, for a.e. p ∈ S, Mf(p) ≥ 1. Since βrf(p) = 0

for all r < ρ and p ∈ V1 ∪ V2, it follows that Mρf(p) ≥ 1 for all V1 ∪ V2. Since

area(V1 ∪ V2) ≥ 3π = area(S)/2

this finishes the proof.

Lemma 9.2. Let t1, t2, . . . be a sequence of real numbers ti ∈ [0, 2) such that ti+1 ≤ ti(1−ti/6)

for all i. Then limi→∞ ti = 0.

Proof. Since 1 − ti/6 < 1, the sequence is monotone decreasing. So the limit exists L =

limi→∞ ti exists, L ∈ [0, 2) and L = L(1− L/6). This implies L = 0.

Proof of Lemma 4.1. For b, ρ > 0, let Σ(b, ρ) be the set of all numbers δ > 0 such that there

exists a good tuple
(
S, P, {Ci}ki=1, U, f

)
satisfying

1. f ≥ 0,

2. ‖f‖1 ≤ δ,

3. νS ({p ∈ S \ (P ∪ U) : Mρf(p) ≥ 1}) ≥ b.

Also let Σ(b, ρ) denote the closure of Σ(b, ρ) in [0,∞). It suffices to prove that 0 ∈ Σ(b, 10)

for some b > 0.

Note that if b′ ≤ b and ρ′ ≥ ρ then Σ(b, ρ) ⊂ Σ(b′, ρ′). Lemma 9.1 proves that 1 ∈
Σ(1/2, ρ) for all ρ. Proposition 8.1 proves: if δ ∈ Σ(b, ρ) for all ρ ≥ 10 then δ(1 − δ/6) ∈
Σ(b− ε, ρ) for all ε > 0 and ρ ≥ 10. By iterating and using Lemma 9.2, this implies

0 ∈ Σ(1/2− ε, ρ) for all ε > 0 and ρ ≥ 10 which finishes the lemma.
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10 Two open problems

The main counterexample does not have spectral gap. This is because we are forced to

make the “necks” in the construction of the surface arbitrarily narrow. Similarly, Tao’s

construction does not have spectral gap. This raises a question: does Nevo’s Pointwise

Ergodic Theorem 1.1 hold in L1 if Gy(X,µ) has spectral gap? It also raises the converse

question: if Gy(X,µ) is ergodic but does not have spectral gap then does the Pointwise

Ergodic Theorem necessarily fail in L1 for this action?
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