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Abstract

Practice of a complex motor gesture involves motor exploration to attain a better match to target, but little is known about the neural
code for such exploration. We examine spiking in a premotor area of the songbird brain critical for song modification and quantify
correlations between spiking and time in the motor sequence. While isolated spikes code for time in song during performance of
song to a female bird, extended strings of spiking and silence, particularly bursts, code for time in song during undirected (solo) sing-
ing, or “practice.” Bursts code for particular times in song with more information than individual spikes, and this spike-spike synergy is
significantly higher during undirected singing. The observed pattern information cannot be accounted for by a Poisson model with a
matched time-varying rate, indicating that the precise timing of spikes in both bursts in undirected singing and isolated spikes in
directed singing code for song with a temporal code. Temporal coding during practice supports the hypothesis that lateral magnocel-
lular nucleus of the anterior nidopallium neurons actively guide song modification at local instances in time.

NEW & NOTEWORTHY This paper shows that bursts of spikes in the songbird brain during practice carry information about the
output motor pattern. The brain’s code for song changes with social context, in performance versus practice. Synergistic combi-
nations of spiking and silence code for time in the bird’s song. This is one of the first uses of information theory to quantify neu-
ral information about a motor output. This activity may guide changes to the song.

birdsong; information theory; motor performance; motor practice; temporal coding

INTRODUCTION

The vocalizations of songbirds represent a classic learned
sensorimotor skill: initially immature, variable sounds are
gradually refined through extensive rehearsal, and auditory
feedback is critical throughout life for song learning and
modification. A variety of evidence suggests that a cortico-
basal ganglia circuit dedicated to song (known as the ante-
rior forebrain pathway, AFP) is crucial for both juvenile and
adult plasticity. First, lesions or inactivation of the cortex-
like outflow nucleus of this circuit, the lateral magnocellular
nucleus of the anterior nidopallium (LMAN; see Fig. 1A),
cause an abrupt reduction in song variability and a failure to
progress toward a good match to the target song (1–6).

Second, even the subtle, trial-by-trial variations in the acous-
tic structure of adult song can be used to drive rapid, adapt-
ive changes in song (7–9), and inactivating LMAN blocks this
plasticity (7, 10). In addition, LMAN and the rest of the AFP
exhibit singing-related premotor activity (11–13), and stimu-
lation in subregions of these areas can alter targeted syllables
in a consistent manner (14). Together, these results suggest
that LMAN’s role in reinforcement learning is to drive vari-
ability in a biased (7, 8, 10, 14, 15), not purely random, man-
ner. An additional feature of this behavior and its neural
substrates is that both reveal precise attention to specific
locations in song. Here, we use information theory to explore
the neural code in LMAN to uncover spike patterns that cor-
relate with precise times in song.
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Prior work has shown that both song and neural variability
are strongly modulated by social context. When males sing
courtship song directed at females, both the acoustic structure
of individual syllables and syllable sequence are more stereo-
typed thanwhenmales sing alone [“undirected” song (2, 14, 16,
17)]. These context-dependent changes in song variability are
accompanied by striking changes in the singing-related activ-
ity of LMAN neurons: LMAN neurons exhibit more variable

spike timing and more frequent burst firing during undirected
singing [e.g., Fig. 1B (12, 13)]. Both spike timing variability in
LMAN and song variability are even higher in juvenile birds
actively engaged in sensorimotor learning (3, 4, 16, 18–20).
Strikingly, the same lesions or inactivation of LMAN that elimi-
nate song plasticity also reduce song variability during undir-
ected song to the level observed during directed singing (2, 3,
6). In addition, manipulations of the AFP circuit that
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Figure 1. Single-spike information about time in song is higher during directed song. A: schematic diagram of themain brain areas involved in song learning
and production and corresponding areas in the mammalian brain. (AFP, anterior forebrain pathway labeled in gray; GPi, internal segment of the globus pal-
lidus; HVC, used as a proper name; SNr, substantia nigra pars reticulata; VTA, ventral tegmental area. LMAN, RA, and X are defined in the main text.) B:
spike rasters (top) and corresponding averaged firing rates smoothed with a Gaussian kernel with standard deviation (SD) =2ms [peri-song time histograms
(PSTHs), bottom) for one LMAN neuron during directed (left) and undirected (right) singing show increased firing rate, more bursts, andmore apparent noise
during undirected singing. The PSTHs are in red for directed singing and blue for undirected, with the directed pattern overlaid in light red for comparison.
C: two sample traces to illustrate a PSTH that carries information about time in song (upper trace) vs. a (flat) PSTH that carries no such information (second
trace) The lower three traces are a schematic of the mutual information about time in song calculation, showing how the PSTH is processed to compute the
average signal-to-noise (SNR) ratio across time. D: information rate from single-spike arrival times in LMAN during directed song (DIR, red) and undirected
song (UNDIR, blue), measured using Eq. 1. Data are shown with a bin size, Dt =2ms. Lines connect data from single neurons with recordings in both condi-
tions. Black boxes indicate the single spike information for the neuron shown in B. Triangles indicate neurons from which recordings were made during
only one context. Stars and gray bars indicate the means ± standard error (SE) across all sites. ��P< 0.001, ���P< 0.0001.
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specifically eliminate LMAN bursts (but not single-spike firing)
also eliminate the bird’s ability to change song in response to
altered auditory feedback (21). The differential effectiveness of
burst firing versus single spikes for driving plasticity has been
demonstrated in a variety of in vivo and in vitro settings [see
(22) and (23) for reviews]. Together, these results suggest that
the variable LMAN bursting typical during undirected singing
drives song variability and plasticity. Moreover, they support
the idea that undirected song reflects a “practice” state, in
which behavioral variability enables maintenance and/or opti-
mization of song, whereas directed song reflects a “perform-
ance” state in which a male sings his current best version of
song (3, 16, 24–26).

Although previous work had hypothesized that LMAN
injects random variability in the motor pathway that enables
song change (4, 27, 28), recent studies demonstrate that LMAN
firing can target particular local variations in song output (7, 8,
10, 14, 15). Here we ask what code LMAN might be using to
drive this kind of motor variation, using a novel application of
information theoretic analysis to motor systems. Although in-
formation theory has been extensively used to study coding in
sensory systems, very little information-theoretic analysis has
been done for motor systems, with some notable exceptions in
the birdsong literature (29, 30). To quantitatively dissect the
neural code in LMAN for time in song, we compute themutual
information (31–33) between temporal patterns of spiking and
time in the motor sequence. We find specific, temporally
extended patterns of spiking carry information about song,
particularly during undirected singing, and that the neural
code is fundamentally different in these two behavioral con-
texts. We compare our analysis to Poisson models with a time-
varying firing rate matched to each cell’s activity and show
that rate fluctuations alone do not account for the coding we
see in the real data. Intriguingly, the temporal coding we
observe during practice contains a high degree of spike-spike
synergy; patterns of spikes carry more information than the
sumof their constituent spikes.

METHODS

Experimental Procedures

Recordings.
We analyzed single-unit recordings from 28 sites in LMAN in
nine adult male zebra finches, collected as part of a previous
study (13) approved by the Institutional Animal Care
and Use Committee at the University of California, San
Francisco. Spiking activity was measured during bouts of
singing both to a female bird and when the male bird was
alone, as well as when themale bird was silent.

Song warping.
Songs were segmented and aligned using linear warping, as
previously described (13). This warping allows us to align
spike trains across renditions but does not remove variability
in spectral features of song from rendition to rendition.
Warping primarily affects silent periods and does slightly
reduce the jitter in spike timing across trials. The difference
in the correlation coefficient between the trial-averaged raw
data and the time-warped data ranged between 0 and 0.12
(13). These changes did not quantitatively or qualitatively

change the differences in the pattern entropy we measure
between social contexts.

Defining spike patterns.
Time was binned in 0.5-, 1-, 2-, 3-, and 4-ms bins, and the par-
ticular bin size chosen did not affect our results. Data shown
in the figures are for 2-ms bins. Patterns of spikes were classi-
fied as bursts when the instantaneous firing rate exceeded
200 spikes/s at any time within the window, i.e., when any
two spikes were separated by fewer than two bins of silence.

Information in spikes, spike count, and spike patterns.
To quantify information contained in spikes, we computed
the information about time in song using the direct method
(33). For single spikes, the information about time in song is
related to the average modulation of the firing rate divided
by themean rate over the entire trial. To proceed beyond sin-
gle-spike information, we characterize the average entropy
in temporal patterns as a function of time in song. This so-
called noise entropy is subtracted from the total entropy of
patterns (vocabulary size minus noise), yielding Eq. 4 in
RESULTS. To relate this equation to the information contained
in single spikes computed via the peri-song time histogram
(PSTH) of the cell (Eq. 3 in RESULTS), we first write out explic-
itly the entropy quantities in Eq. 4:

Iðpatterns; tÞ ¼ SðpatternsÞ � hSðpatterns j tÞit
¼ �

X
wi

pðwiÞlog ðpðwiÞÞ þ 1
nT

X
t

X
wi

pðwi j tÞlog ðpðwi j tÞÞ

ð1Þ

where nT is the number of time bins in the song and, for brev-
ity, we have replaced the label “pattern” with wi , to denote
the binary “word” that defines that particular pattern of spik-
ing and silence. Noting that

P
wi
pðwiÞ ¼ 1

nT

P
t

P
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can gather terms such that
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where the similarity to Eq. 3 is evident if we identify the firing
rate of a particular pattern, ri(t), with its time-dependent prob-
ability per unit time, p(wijt)/Dt. The information components
in Eq. 2 are not proper information quantities on their own,
except if the absence of that particular pattern carries no infor-
mation, and should be thought of as components of the total
pattern information, which is a proper information quantity.

In a similar fashion to the computation of the total pattern
information, the total count in the length T window can
replace pattern, and this entropy can be computed both
overall and as a function of time in song. Other coding
schemes can be compared with the total pattern information,
as partitions of the patterns into different bins (count and time
of the first spike in the window, for example). All information
measures are prone to sampling biases. Sampling issues are a
function of both the length of the temporal window we use to
evaluate spike patterns in (with longer windows, with more
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bins, we have an exponential explosion in how much data we
need to properly measure information, which is why we
restrict our analysis to small snippets) and the vocabulary of
spike patterns for that site. Entropy is a measure of that vocab-
ulary. We need approximately 10 times the effective number of
patterns in the data, which is 2S. To correct for this and diag-
nose which sites to exclude from our analysis, we use linear
extrapolation (LE) to the infinite data size limit (31, 33–36),
using 50 random subsamples of the data, at each of the follow-
ing data fractions: 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.60, and
0.50. Error bars on information quantities were estimated by
extrapolating the standard deviation of the 50% data samples
and dividing by

ffiffiffi
2

p
. Here, we are assuming a 1/n “law of large

numbers” scaling of the variance.We used quadratic extrapola-
tion to diagnose sampling issues in these same data. When the
quadratic correction exceeded 5% of themeasured information
for 100% of the data, or if the linear correction exceeded 10%
of the measured information, we discarded the site from our
analysis. This left us with 24 total sites, which for directed song
had 12–59 repeats and for undirected song had 38–157 repeats.
A larger number of repeats is necessary for neural data
recorded during undirected singing, because neurons tend to
have more entropy in this social context. Information is also
computed for shuffled data, where all labels have been ran-
domly reassigned. Any residual information in these shuffled
data is due solely to data limitations. We exclude data when
the shuffle information is not within error bars of zero. We also
exclude sites for which the total number of observed patterns
of spiking and silence was greater than the number of trials.
These values are illustrated in Fig. 2. If we restrict our analysis
to the best-sampled sites, in which there are twice as many or
more trials as observed patterns, our results remain qualita-
tively intact.

We were also careful to check that our direct sampling
method, with LE to correct for bias, agreed with the many
other, sometimes more complex and sophisticated ways to
quantify information in spike trains. We compared our results
with that computed using the “best upper bound” or BUB
method (35, 37), the unbiased entropy estimator proposed by

Nemenman and colleagues or NSB method (37, 38), and the
most recent estimator proposed by Pillow and colleagues (39,
40), which adds a prior on the expected sparseness of firing in
the brain, the “centered Dirichlet mixture” or CDM estimator
(a comparisonwith the CDMmethod is shown in Fig. 3). On av-
erage, our information values were within 8% of that quanti-
fied using any of these methods (CDM showed the largest
differences), and none of our qualitative conclusions about
the changes in the spike code with social context are altered by
the information estimation method used. We do note that the
CDM information estimates are systematically lower than our
LE estimates.
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Figure 2. Selection of sites for inclusion in our analysis. The
number, M, of trials recorded for each site in each condition
versus the number, L, of observed patterns of spiking and
silence. This number, L, is always higher during undirected
than during directed singing, reflecting the increased pattern
entropy (see also Fig. 5B). Sites with fewer trials than
observed patterns (gray area) were excluded from our analy-
sis. Note that although L patterns is observed, the probability
of these patterns is not uniform, so that we still sample quite
well the more common patterns. The hard threshold on the
number of trials is related to 2S, where S is the pattern en-
tropy. Our pattern entropy is always less than 2N, so that our
sampling is relatively stable for N< 7. The dashed line in A
indicates the threshold for having twice as many trials as
observed patterns. If we restrict our analysis to these best-
sampled sites, our results remain qualitatively intact. As N
bins increases from 5, shown in A, to 6 (B), the number of sites
we use decreases from 24/28 to 15/28 (14 sites have data in
both behavioral contexts).
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Figure 3. Comparison of our information estimation method with the cen-
tered Dirichlet mixture (CDM) method shows similar results. The informa-
tion quantities estimated using the linear extrapolation method are plotted
versus the centered Dirichlet mixture estimation method. Sites recorded
during directed singing are in red and during undirected singing are in
blue. On average, these values are within about 8% of each other across
all sites included in our analysis. For those sites with higher linear extrapo-
lation (LE) information, the CDM method’s prior on the sparsity of the spik-
ing seems to be failing. Other entropy estimation methods were closer to
the LE method for these sites (data not shown).
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Poisson Model

We construct a Poisson model constrained to have the
same time-varying rate as a recorded cell. We sample spike
trains from the model by drawing random numbers and
comparing them with the firing rate in each time bin. Firing
in each bin is independent of previous bins, and we can con-
struct as many trials from this synthetic cell as we wish. We
either draw 1,000 trials or the same number of trials as were
collected in the real data set. Information quantities are
computed for the Poisson spike trains as for the data for each
neuron in our data set.

Statistical Tests

The significance of the observed differences in informa-
tion measures across the two conditions was assessed using
a Wilcoxon rank sum test for the total population data and a
paired sign test for the sites in which both directed and
undirected singing data were collected. Significance values
were denoted with asterisks: �P < 0.01, ��P < 0.001, ���P <
0.0001.

Synergy

The difference between the total pattern information and
the average information carried by individual spikes and
silences in the pattern was calculated as in Eq. 6 in RESULTS,
as proposed by Bialek and coworkers (31). We also compute
what fraction of the total pattern information is due to syn-
ergy, by summing over synergy values for each pattern,
weighted by that pattern’s probability.

RESULTS
To assess the nature of the neural code during motor prac-

tice and performance in the output nucleus of the anterior
forebrain pathway, we analyzed data from single LMAN neu-
rons in adult male zebra finches during interleaved bouts of
undirected singing and courtship (“directed”) singing. Song
is an extended motor sequence that maintains a stereotyped
structure from rendition to rendition in adult male birds.
Temporal position in the motor sequence is a learned song
feature that is represented in many brain areas (41, 42), and
the timing of syllables and gaps is actively controlled and
maintained (1, 43–50). To quantify the correlation between
spiking sequences and song, we compute the mutual infor-
mation between spiking patterns and time in song. We begin
by quantifying the mutual information between time in song
and the arrival time of single spikes both during directed
singing to a female and during undirected singing, a form of
song practice. Intuitively, for single spikes, this measures the
amount of ratemodulation during song repeats as quantified
by the time-varying firing rate of the neuron (see Fig. 1).
Since song is consistent from rendition to rendition in adult
zebra finches, time in song can be thought of as a proxy for
the particularmotor gesture expressed at that time (51–54).

Single Spike Information Is Higher during Directed than
Undirected Singing

As reported previously, inspection of the spike trains for
single LMAN neurons shows striking differences in the reli-
ability and precision of spikes across repeated renditions of

song depending on behavioral context, even though the song
is very similar, acoustically, across conditions (12, 13). For
example, in Fig. 1B, left, when a male sings songs directed to
a female, spikes align across song renditions, and the aver-
age firing rate for this cell (red trace) is strongly peaked
across repeated renditions of a stereotyped sequence of song
elements (“motif”). The targeting of spikes to particular parts
of song may reflect a refinement of the brain’s firing during
the task, akin to behavior-locked sharpening of response du-
ration during song learning (55–57). When we compute the
temporal jitter in the arrival times of the spikes, we find that
during directed singing, spikes from this site are timed with
a resolution of �2.6± 1.6ms, as calculated by the standard
deviation in timing of spikes during peaks in firing. In con-
trast, for the same neuron, the spikes recorded during undir-
ected song are more variable across renditions and have a
temporal jitter of 3.9±2.2ms (Fig. 1B, right). Indeed, across
the population of LMANneurons, single spikes have an aver-
age jitter of 2.8±0.6ms during directed singing versus
4.5± 3.1ms during undirected singing, indicating that the
timing of individual undirected spikes is less precisely
locked to a particular time in song. On average, however, the
firing pattern during undirected singing is similar to that
during directed singing (Fig. 1B, blue trace, with directed
pattern overlaid in light red for comparison).

To further quantify these observations, we use informa-
tion theory to compute a single number that measures the
correlation between the arrival time of single spikes and
time in song. This reveals where in song, spiking output
from LMAN is most keenly focused. Information theory has
been extensively used to study coding in sensory systems,
and the mutual information between neural activity and the
stimulus is usually computed using data collected across
repeated presentations of the sensory stimulus (31). Here, we
are using the same formalism to compute the information
about time during a repeated motor sequence. In this case,
the songs vary slightly from rendition to rendition. Some of
this variation is in acoustic features of the song, and some is
in the duration of syllables and pauses between syllables. To
remove the second source of variation, songs and spike
trains were time-warped so that all of the motifs and spike
trains are on a common and aligned time axis (see METHODS).
In this way, we measure how LMAN spiking correlates with
songmotor output. To do so, we compute the average log sig-
nal-to-noise ratio of the firing rate,

I ¼ 1
T

ðT
0
dt

rðtÞ
�r

� �
log 2

rðtÞ
�r

� �
; ð3Þ

where r (t) is the trial-averaged firing rate as a function of
time during song for each recorded unit, derived from bin-
ning spikes across trials and computing their peri-song time
histogram (PSTH). The procedure for computing this infor-
mation from the PSTH is illustrated in Fig. 1C. Observing
spikes from a neuron with a sharply peaked PSTH would
indicate with high fidelity that those parts of song were cur-
rently being sung. By contrast, a spike from a neuron with a
flat PSTH gives no information (no discriminability) about
time in song. Thus, the mutual information that we compute
quantifies how reliably peaked/inhomogeneous the firing of
the neuron is during song. Observing a spike from a neuron
with a high information content means that one can infer
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time in song with high reliability. For the bird, this could
mean that these particular parts of song are being targeted
for modification or reinforcement.

We computed information about time in song for all sites,
with a time resolution of 2ms, and find that there is signifi-
cantly more information in single spikes during directed
song than during undirected song at each site, as shown in
Fig. 1D, consistent with the greater temporal precision of sin-
gle spikes in the directed context. These results indicate that
in an individual trial, single spikes convey more information
about time in song in the directed condition (more bits per
spike) than in the undirected condition. Higher firing rates
during undirected singing (more spikes per second) do not
compensate for the lower information content per spike.
When context-dependent differences in firing rate are taken
into account, the single-spike information is still signifi-
cantly lower during undirected song (Fig. 1D shows informa-
tion in bits/s, Fig. 4A in bits/spike for comparison, and both
measures are significantly lower in undirected singing), con-
sistent with less temporal precision in single spiking during
song practice. We also computed the single-spike informa-
tion for many different temporal resolutions of the PSTH
and see that both directed and undirected spikes show a
steady climb in the information about time in song as resolu-
tion is increased, until jitter takes over below�1ms (Fig. 4B).
This indicates that the precision of spike timing matters,
down to�1ms resolution.

Pattern Information Is Similar during Undirected and
Directed Singing

The single-spike informationmeasure assumes that all suc-
cessive spikes are independent events, and thus explicitly
neglects any information that might be present in temporally
extended firing patterns. To analyze information from
sequences of spikes, we extract short temporal strings (see
METHODS) of activity from the binned spike data. We focus on
five bins at 2ms resolution for the majority of our analyses.
The number of spikes in the window (count) can range from 0

to 5, with 5 representing a spike in every 2-ms time bin (Fig.
5A, top). The higher total spike count in the undirected condi-
tion (Fig. 5A, blue) reflects both the observed bursts present in
these spike trains and the higher firing rate in undirected
singing. The probability of observing a spiking pattern with
more than two spikes in the full 10-ms window is much
smaller during directed song than during undirected song. As
the cartoon in Fig. 5B illustrates, individual spikes are
denoted by a “1” and silences by a “0” in 2-ms bins. We then
obtain the complete distribution of five-spike/no-spike pat-
terns observed in these 10-ms windows, taken from all parts
of song. The entropy of patterns for directed and undirected
spiking is shown in Fig. 5C, top, as a function of the window
length, from 2 to 12ms. The pattern entropy (the “vocabulary”
of LMAN spiking) is significantly greater in the undirected
condition for all of the bin numbersmeasured.

The mutual information contained in temporal patterns
about time in song computed using the direct method (33) is
defined by the overall entropy of patterns minus the variabil-
ity in spiking output at a particular time during song (the
“noise” entropy):

Iðpattern; tÞ ¼
X

ipattern

Pi � Xi

pattern
ð4Þ

To compute the entropy of patterns at a particular time
(the second term in the sum), we need to have enough sam-
ples at that time to estimate the full 2N parameters. Care is
taken to ensure that sampling bias does not affect this mea-
surement. For five-bin temporal patterns, we can estimate
pattern information for a total of 24/28 recorded sites (see
METHODS). As we increase the number of bins in our temporal
strings, we are restricted to sites with higher numbers of
repeated song renditions, and the exact minimum number
of song repetitions needed also depends on the entropy of
spiking in that site (Fig. 2, e.g., for n = 6, we include 15/28
recorded sites in our analysis). In addition, a particular pat-
tern might be very informative but also very rare. To
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time in song is lower in undirected activity
across different temporal resolutions. A:
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mitigate the relative contribution of highly informative but
infrequent patterns, the mutual information is expressed in
units of bits per second so that rare patterns do not make sig-
nificant contributions to the information rate. When tempo-
ral patterns of spiking are analyzed, information about time
in song increases in both contexts (Fig. 5C, bottom). The rela-
tive increase in information rates obtained for patterns ver-
sus single spikes is plotted in Fig. 6, as a function of the
length of the pattern. The temporal resolution within the
window does not affect count information, as expected, but
greatly influences pattern information until 2ms resolution
is reached, and this effect is more pronounced in undirected
spiking (Fig. 7). At 2ms resolution and forN bins=5 or 6, the
amount of pattern information in the two contexts is not
significantly different (Fig. 5C, bottom, and Fig. 6), indicating
that undirected spiking contains just as much information
about time in song as directed song when temporal strings of
at least 10ms in length are considered in the neural code. We
also see that spike patterns during undirected singing show
a greater gain in information from temporal patterns over
single spikes.

Pattern Information Is Conveyed by Different Spiking
Sequences in the Two Contexts

Given that the total information during undirected sing-
ing increases when we take temporal patterns into account,
there must be some patterns that exhibit greater precision in
their timing than that of the average undirected spike (Fig.
8). These specific patterns are obscured in the full spike ras-
ter, where all patterns that occur are plotted together. Figure
8, B and C, shows firing patterns from two different LMAN
neurons that are much more tightly locked to song than the
average spike (top). Sharp peaks in the pattern probability
(indicated by asterisks) occur at points in song where the sin-
gle-spike PSTH (top) was only weakly modulated above the
mean. We find that there are many such significantly peaked
patterns in each recorded neuron during undirected singing.
On average, 36% of the observed burst patterns in each neu-
ron (n = 19) had at least one significant peak in its PSTH. In
contrast, during directed singing, different temporal pat-
terns tend to peak at the same time(s) in song (Fig. 8D and
Fig. 9A), though one neuron out of 24 had patterns that
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peaked at different times in song during directed singing
(Fig. 9B).

To characterize these informative patterns, we next assess
whether the total pattern information is distributed uni-
formly across all possible patterns or whether it is clustered
around particular patterns. The full pattern information (Eq.
4) can be decomposed into a sum over all 2N possible strings
of spikes and silence,

Iðpatterns; tÞ ¼
X

ipatterns

Pi � Xi ð5Þ

where, Pi is overall probability of that pattern, and Xi is its
contribution to the information computed using its PSTH
using an expression analogous to Eq. 3 (see METHODS for deri-
vation). Figure 8A shows a typical example of the contribu-
tion of pattern information to the total information. We
group the observed patterns according to how many total
spikes are observed in the 10-ms window (count). For exam-
ple, we can compute howmuch information each of the two-
spike patterns carry about song by collecting the terms in
the sum in Eq. 5 that correspond to the 10 unique two-spike
patterns. There is just one zero-spike word, the pattern with
all zeros, five one-spike words in which the single spike

occurs in one of each of the five bins,
N
2

� �
two-spike words,

and so on. Grouping patterns in this way, we plot the total
pattern information across the entire population of neurons
decomposed according to K-spikes in the pattern in Fig. 8, E
and F, in both directed and undirected song. Single-spike
patterns account for most of the information observed dur-
ing directed song (70%±4%). These results are shown for the
average over all sites, but each individual cell also displayed
the same trend. The greater precision of single-spike timing
during directed song gives rise to larger information in these
patterns than in undirected song. In contrast, pattern infor-
mation during undirected song is dominated by two- and
three-spike strings, which are primarily bursts (59%±5% of
the total information is from two- and three-spike patterns,
all of which are classified as bursts when defined by an

instantaneous firing rate of >200 spikes/s). Figure 8F shows
that during undirected song, bursts are the primary contrib-
utors to information about time in song. This implies that
the coding scheme used by an individual neuron during
these two behavioral contexts is quite different: depending
on context, the same neuron can utilize a different set of
temporal patterns (Fig. 5, A and B), and these patterns con-
tain different amounts of information (Fig. 8, A and B).

Coding Changes with Behavioral Context

To investigate directly whether the same neuron can use
different coding schemes depending on social context, we
eliminate timing information within the window so that we
can compare the full pattern information to count informa-
tion (Fig. 10). We have already shown that the complement
of spiking patterns available to a neuron changes with be-
havioral context (Fig. 5, A and B), but we would like to quan-
tify how much of that change in “vocabulary” is used in
coding for time in song. To determine whether temporal pat-
terns carry more information than spike count alone, we
compare pattern information with count information,
grouped by count within the pattern (Fig. 10, A and B.) In the
directed case, a large fraction of the pattern information can
be summarized by count; simply noting whether zero, one,
or two spikes occurred in a 10-ms window yields more than
half (64%) of the total information about time in song. The
greatest difference between full pattern information and
count is explained by the timing precision of the first spike
in a window, for patterns containing a single spike (Fig. 10, E
and F). In contrast, count information is consistently low in
the undirected condition, even for high-count events, and
accounts for a smaller fraction (39%) of the complete pattern
information (Fig. 10, B and F). Moreover, higher firing rates
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during undirected singing do not yield more information in
spike counts (Fig. 10C, x-axis).

To the extent to which pattern information can be sum-
marized by simply counting spikes, the encoding is rate-like
with a time resolution equal to the length of the counting

window (here, 10ms). Figure 10C plots the pattern informa-
tion versus count information for each neuron and shows
that the data roughly cluster into two groups according to
social context. Information during directed singing (red
circles) trends along but slightly above the rate-coding line
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ected patterns (blue) is more spread out across patterns,
whereas mostly 1-spike patterns code for time in song dur-
ing directed singing (red). B–D: smoothed, average firing
rates for two different lateral magnocellular nucleus of the
anterior nidopallium (LMAN) neurons for single spikes (top)
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window. The black line indicates the mean firing rate, and
the gray area is ±1 SD from the mean. Peri-song time histo-
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directed singing are plotted in C and D. Significant peaks
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formation grouped by count for directed activity. The ma-
jority of pattern information comes from single-spike
patterns. F: same as E, but for undirected activity. During
undirected singing, pattern information arises predomi-
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(count info. = pattern info.), whereas pattern information in
undirected singing (blue circles) outstrips the very small
count information. This change is also evident in the ratio of
pattern to count information in the two behavioral contexts
(Fig. 10D). The change in the relative amount of count and
pattern information with behavioral context indicates that
single neurons switch between more rate-like coding during
directed song and more fully temporal coding during undir-
ected song.

We also consider a code in which the total count is com-
bined with the arrival time of the first spike in the window, as
illustrated in Fig. 10E, top. Total information from these three
different codes is compared in the two social contexts. The
gray bars in Fig. 10F, show the fraction of total pattern infor-
mation that can be summarized by counting the number of
spikes in the 10-ms window. Count information is a substan-
tially larger fraction of the total pattern information during
directed singing. If we keep track of both count and the timing
of the first spike in the window (a measure of temporal preci-
sion in the initiation of firing in the window), most of the in-
formation in directed spiking is accounted for. However,
nearly one-third of the total pattern information during
undirected singing is not recovered (Fig. 10F, white region).
This remaining information is the pure temporal sequence
part of the code. This means that the detailed timing of spikes
within bursts contributes substantially to the code for time in
song during undirected singing.

To summarize, breaking down the pattern information in
bursts reveals that, during undirected singing, bursts have
information contained in their count, the timing of the first
spike, and their within-burst pattern. In contrast, during
directed singing, information about time in song could
described largely by a count code plus alignment of single
spikes to particular times in song, without much temporal
pattern information.

A Poisson Model Does Not Explain Temporal Coding
during Undirected Singing

What elements of the firing in LMAN give rise to the tem-
poral code we observe during motor practice? Can the time-
varying firing rate account for all of the observed informa-
tion or do temporal correlations add significantly to the
code? To address these questions, we compute the mutual
information between time in song and spikes generated by a
time-varying Poisson process with a rate matched to the real
neurons, with varying temporal resolution (see METHODS). A
Poisson model with a rate varying at the timescale of our
temporal pattern window (10ms) does not contain any infor-
mation beyond the spike count in the window (Fig. 11) and
serves as a check on our procedure for generating synthetic
trials and computing information. We can also match the
rate in themodel to the real data at faster timescales (2ms re-
solution) and measure the information in temporal patterns
from these model responses. We find that although some
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information about time in song is coded in thismodel, it fails
to reproduce the qualitative changes in coding with behav-
ioral context and does not recapitulate the observed relative
ratio of count to pattern information in these data (Fig. 12).
Overall, the model fails to capture the details of the temporal
code for time in song, particularly during undirected song,
implying that temporal correlations between successive
spikes in these windows contribute significantly to temporal
pattern information.

Spikes within Bursts Code for Time in Song
Synergistically, More So during Undirected Singing

How can pattern information arise in undirected singing
from relatively uninformative single spikes? The answer
clearly has to do with the fact that subsequent spikes and
silences refine an estimate of time in song, adding up inde-
pendently at least. In addition, there is the potential for syn-
ergy in temporal sequences of activity. Figure 8C illustrates
how subsequent spikes in a burst carry additional informa-
tion about time in song, depending on exactly when in the
window they occur. During undirected song, this typical
LMAN neuron has several two-spike patterns in its vocabu-
lary, whose probability of occurrence peaks during different
parts of song. The particular time in song coded by the

pattern depends on the precise temporal pattern of spiking
and silence. For example, the pattern “01001” peaks at �150
ms in the motif, whereas “10001” peaks at a completely dif-
ferent time in song (�450 ms). These results indicate that
the larger repertoire of temporal patterns used to convey in-
formation during undirected singing is neither an artifact
of a higher firing rate nor a switch to random bursting but
rather is used to encode different times in song (see also
Fig. 8B).

To dissect this more carefully, we quantify how spikes and
silences combine to create the observed encoding. We com-
pute the information from the full string of spikes and silen-
ces in an observed pattern, minus the sum of the
contributions from each spike or silence individually,

Isynergy ¼ I frig; tð Þ �
X
i

I ri; tð Þ; ð6Þ

Where r is a binary variable for a spike (r = 1) or silence (r =
0) and {ri} is the 5-bit string of spikes and silences in the tem-
poral pattern. If this quantity is positive, the pattern synerg-
istically codes for time in song, meaning that spikes in the
pattern add information supralinearly. If negative, the spikes
and silences add redundantly, meaning that additional
spikes in the burst code for the same part of song. If spikes
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and silences independently code for time in song, their syn-
ergy is zero. We compute the synergy for each pattern, then
group patterns by count as in Figs. 8 and 10, and plot this
value as a function of the number (K) of spikes in the pattern
(Fig. 13, A and B). Most strikingly, we see significant synergy
in patterns with two or more spikes. In contrast, during
directed singing, most of the information from patterns
derive from combinations of single spikes and silence, long
silences (00000 pattern), and two-spike patterns. This rela-
tively nonsynergistic coding in spiking during directed song

is shown in Fig. 14. Across all sites, synergy contributes more
to pattern information during undirected song. This clearly
indicates that burst firing carries information about song in
an intrinsically temporal fashion. Indeed, if LMAN bursts
were generated by a cellular mechanism intrinsic to the cell,
we would expect subsequent spikes in a burst to form a
redundant code for time in song, since their pattern was
completely determined by burst initiation. LMAN neurons,
however, are not intrinsically bursting cells (21, 58), and
more recent data suggest that burst firing depends on signals
from the basal ganglia nucleus Area X (59, 60). Thus, the
observed bursts are the product of input activity and, to a
lesser extent, recurrent circuit dynamics and may contain
significant tunable temporal correlation structure. Put
another way, LMAN bursts are not unitary events that can be
combined into a single category or even subdivided by the
number of spikes within the burst. Rather, the particular pat-
tern of spikes within a burst conveys information about time
in song and does so synergistically.

Overall, our results support the idea that LMAN activity
locally modulates acoustic features of song. Bursts carry the
majority of information about time in undirected song via a
truly temporal pattern code. We observe that behavioral con-
text elicits a state change in the neural code from a primarily
single spike-timing code during directed singing to a tempo-
ral sequence code during undirected song.

DISCUSSION
Our analysis reveals that the precise timing of spikes and

silences of single LMAN neurons carries information about
time in song in both behavioral contexts but that the format
of the neural code is fundamentally different. Although it
has been hypothesized that the variable firing patterns in
LMAN inject noise into the song motor system to facilitate
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exploration for trial-and-error reinforcement learning (4, 27,
28), we find that LMAN firing patterns come in many forms,
each of which can reliably indicate particular times in song
depending on their internal spiking structure. Our findings
are consistent with the observation that microstimulation in
LMAN can have systematic, local effects on the acoustic
structure of song (14). When LMAN firing patterns are
lumped together, however, they appear to be noisy, making
it difficult to “read off’ the code from a spike raster.
Moreover, the diversity of patterns used to encode informa-
tion about song changes with behavioral context: informa-
tion is carried predominantly by precisely timed bursts
during undirected singing, a putative practice state, versus
the precise timing of single spikes during performance
directed at a female.

Changes in the firing mode in individual cells and entire
circuits can shape how signals are transformed within and
received downstream of that brain area. Bursts, in particular,
are thought to represent an important mode of neuronal sig-
naling. In comparison with single spikes, bursts have been
shown to transmit stimulus information in a way that is dis-
tinct from single spikes both in the neocortex and in the

midbrain of weakly electric fish (22, 61–64) and to enhance
the reliability of information transfer in the hippocampus
and in the lateral geniculate nucleus of the thalamus (23, 65,
66). In songbirds, a variety of evidence indicates that burst
firing in LMAN may be particularly important for driving
changes in song. First, manipulations of the AFP circuit that
specifically eliminate LMAN bursts (but not single-spike fir-
ing) also eliminate the bird’s ability to change song in
response to altered auditory feedback (21). Indeed, it is
harder to perturb song during directed singing than during
undirected singing (67), perhaps because isolated spikes in
LMAN do not facilitate downstream firing or plasticity as
well as bursting does. The suppression of burst firing and the
increased reliability and precision of spike timing in LMAN
that is elicited by the presence of a female is reminiscent of
the observed decline in neural variation with stimulus onset
inmany areas of the mammalian cortex (68).

The diversity of burst patterns deployed during undir-
ected song may help guide downstream motor behavior to-
ward a targeted, moment-by-moment exploration of song
space through multiple mechanisms. First, particular burst
patterns could specify the specific parts of song to modify as
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well as how to change their acoustic features by altering the
firing rates of neurons in the song motor cortex analog RA
[robust nucleus of the arcopallium, Fig. 1A (57)], which have
been shown to correlate with the pitch, amplitude, and local
entropy of individual learned song elements (20, 29, 69, 70).
Indeed, altering the relative timing of inputs from LMAN
and the premotor nucleus HVC is sufficient to drive jitter in
the timing of RA spikes (29, 71). Perhaps even more compel-
lingly, firing and plasticity in RA depend on burst firing in
LMAN as well as the fine timing between HVC and LMAN
inputs to RA (57, 71, 72).

The importance of temporal pattern coding for song has also
been recently quantified in RA (30). Indeed, acute alterations
of LMAN firing via microstimulation can drive systematic
changes in acoustic features of song (14). Second, the specific
temporal patterns within bursts could have different down-
stream effects via nonlinear dendritic (73) or network (74) inter-
actions. Third, burst firing in LMAN could facilitate plasticity
via NMDA receptor activation (75, 76) and increased calcium
influx in RA neurons. LMAN might also impact the sequence
of syllables sungmore indirectly via projections ontoHVC (77).

Bursting underlies the coding switch with behavioral state in
this system, which is the analog to the outflow of mammalian
basal ganglia circuitry. Although bursting is often thought of as
a pathological signal in basal ganglia circuits in disease states,
such as the increased bursting observed in Parkinson’s disease
(78), with therapies such as deep brain stimulation deployed to
suppress it (79), here we have shown that it might play a role in
shaping normal task-specific behavior, such as novelty-driven
exploration (80). In addition, context-triggered switches in cod-
ing like the one seen here may be a general feature of basal
ganglia circuits, which are well known to show sensitivity to
contextual cues such as reward (81, 82).

More broadly, this work speaks to how reinforcement
learning may be instantiated in any motor system. In con-
trast to models of reinforcement learning that use random
noise to generate behavioral variability to thoroughly explore
task space to achieve optimal behavior, avoiding the pitfalls
of local minima (83), we suggest that the nervous system
may actively sample motor space in a targeted manner. We
find that the precise timing of spikes in temporally extended
patterns can reliably signal particular times in a task and
potentially direct motor exploration toward the target. Our
results support theories of sensorimotor learning that permit
active sampling of motor space. Such “active learning” mod-
els are more efficient, displaying an exponential improve-
ment in the number of samples needed to reach target
generalization error as compared with random or batch-
learning models, and are gaining popularity in the machine
learning community (84–86). Our results support their gen-
eral applicability to neural systems (87).
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