
Aging-resilient SRAM design: an end-to-end
framework

Xuan Zuo and Sandeep K. Gupta
Ming Hsieh Department of Electrical and Computer Engineering,

University of Southern California, Los Angeles, CA, USA
{xzuo, sandeep}@usc.edu

Abstract—The performance of transistors degrades due to
aging. Bias temperature instability (BTI) is the most promi-
nent aging mechanism in nano-scale CMOS technologies. Aging
degradation causes lifetime failures and lowers the quality of
shipped chips. We have developed an end-to-end SRAM design
framework to maximize the aging resilience under the given
constraints. Specifically, we analyze the impact of aging in SRAM
peripheral circuits, including address decoder, precharge, write
circuit and sense amplifiers (SAs). We explore the efficiency of
error-correcting codes (ECC) to combat aging by quantifying
the area and delay overheads of ECC and estimating the lifetime
yield and DPPM of SRAMs with ECC, respectively. We also
calculate the soft error resilience when ECC is used to repair
aging failures. After comparing approaches based on cell sizing
and ECC in terms of overheads, lifetime yield and DPPM, we can
choose either one or a combination of these approaches to identify
the optimal design against aging under the given constraints. We
integrate our methods into an existing SRAM compiler, CACTI
[1], to provide the end-to-end capability to designers.

I. INTRODUCTION

The performance of a transistor degrades due to aging.
Bias temperature instability (BTI) is the most prominent
aging effect in nano-scale CMOS [2]. BTI aging degrades the
stability of SRAM cells over time [2]. Thus, some SRAM cells
functioning properly at fabrication may fail with usage. Aging
degradation leads to field failures and results in low quality
(typically described in terms of defective parts per million
(DPPM)) for the shipped chips over their desired lifetimes.

Aging can be slowed down via design at architecture and
circuit levels. Existing design techniques for aging mitigation
at architecture-level include workload balancing between dif-
ferent cores [3], dynamic voltage scaling, proactive use of
SRAM redundancies [4], periodically flipping data bits stored
in SRAMs [5], shutting down idle cache blocks [6], and so
on. Certain circuit-level design strategies, such as adaptive
body bias [7], can be used to compensate for the effects of
aging so that the circuit is more robust against transistor aging.
However, it does not take into account differential aging [8].
Also to have the ability to adjust body bias voltages of indi-
vidual transistors, this method requires a standalone threshold
voltage sensing circuit to estimate aging degradation. All these
methods require significant changes at the architecture-level or
expensive changes at the circuit-level.

In contrast, in our prior work [8], we consider different
stress conditions for different transistors in SRAM cells and
propose sizing approaches in SRAM cells to optimize the

lifetime yield-per-area under the tight constraints on aging
quality loss [8].

In this paper, we develop an end-to-end SRAM design
framework to maximize the aging resilience under the given
constraints to provide designers the capability for optimal
design of aging-resilient SRAMs. In addition to transistor
sizing, we study the use of error-correcting codes (ECC) to
improve the aging resilience. We also analyze the impact of
aging in SRAM peripheral circuits. By quantifying the area
and delay overheads of ECC and estimating the lifetime yield
and DPPM of SRAMs with ECC, we explore the efficiency
of ECC to combat aging. After comparing approaches based
on transistor sizing in SRAM cells and ECC in terms of
overheads, lifetime yield and DPPM, we can choose either one
or a combination of these approaches to identify the optimal
design against aging under the given constraints.

The rest of this paper is organized as follows. In Section II,
we introduce the background material, namely BTI aging and
transistor sizing approach. In Section III we analyze the aging
degradation for SRAM peripheral circuits. In Section IV, we
quantify the overheads of ECC and calculate DPPM and life-
time yield of SRAM using different ECC schemes. In Section
V, we present our end-to-end SRAM design framework for
lifetime yield-per-area optimization. We present design results
for two example cases in Section VI. Finally, we present our
conclusions in Section VII.

II. BTI AGING AND SRAM CELL SIZING APPROACH

BTI is the major reliability hazard in nano-scale CMOS.
Negative bias temperature instability (NBTI) and positive bias
temperature instability (PBTI) cause threshold voltage (Vth)
degradation for stressed pMOS and nMOS transistors, respec-
tively [9]. Logic values (0’s and 1’s) are typically stored in
SRAM array with different probabilities. Different transistors
in an SRAM cell suffer different stress conditions, thus their
Vth value degrade by different amounts. BTI aging degrades
the stability of SRAM cells over time [2].

The noise margin degradation caused by aging in SRAMs
depends on the workload applied to the cells. Some single-
purpose IoT systems have a specific workload, while more
general-purpose systems have a broader range of workloads.
The workload can be characterized based on the different types
of applications. We use four typical workloads to demonstrate
our design approach ahead, i.e., Gaussian 1, Gaussian 2 (a

2020 IEEE 38th VLSI Test Symposium (VTS)

978-1-7281-5359-9/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Southern California. Downloaded on March 02,2021 at 18:46:38 UTC from IEEE Xplore. Restrictions apply.

Gaussian distribution with a larger standard deviation com-
pared to Gaussian 1), Skew distribution (Signal probability
distribution in data caches extracted from [10]), Unknown
(specific distribution is unknown and can be arbitrary in
general; this is the worst-case in terms of sizing).

We proposed a transistor sizing approach to mitigate sta-
bility degradation caused by aging in SRAM cells [8]. After
studying the impact of aging on the stability of SRAM cells,
we identify which noise margin to increase. Via exploring
the relationship between transistor sizing and noise margins,
as well as the associated trade-offs, we identify how to size
the transistors to increase the aging resilience for different
workloads. We use two ways to size the transistors, i.e., skew-
size and up-size. Skew-size is asymmetric sizing and is more
efficient and effective for asymmetric workload, where one of
the read noise margin degradation is larger than the other one.
Up-size is to increase the size of both pull-down transistors
and is more expensive. Up-size is used when the workload is
symmetric or only using skew-size cannot achieve the target
DPPM,

Lifetime yield of an SRAM is the probability that an SRAM
is able to function correctly throughout its desired lifetime.
Aging quality loss of an SRAM is the probability that an
SRAM functions correctly at fabrication but fails during its
desired lifetime due to aging.

Our design target for SRAM is to optimize for lifetime
yield-per-area under a given aging quality loss target (mea-
sured in DPPM). The SRAM cell sizing approach is effective
at improving the aging resilience for various workloads with-
out power overhead.

III. AGING ANALYSIS FOR SRAM PERIPHERAL CIRCUITS

In Section II, we know that BTI aging degrades the stability
of SRAM cells. The transistor sizing approach can mitigate the
stability degradation of SRAM cells. To develop an end-to-end
SRAM design framework to increase the aging resilience, we
need to study the impact of aging in SRAM peripheral circuits.
In this section, we summarize our study of the impact of aging
on peripheral circuits of SRAM, including address decoder
(AD), write circuit, precharge circuit and sense amplifiers
(SAs). In the next section, we study the impact of using ECC
to improve the aging resilience. While most of our subsequent
framework for design of aging-resilient SRAMs focuses on
sizing (presented earlier in [8]) and ECC, the impact of aging
on delay of peripheral circuitry is used to ensure that the final
designs we select do meet the user constraints on SRAM delay.

After analyzing the circuit structures and stress conditions,
we understand the impact of aging in AD, SAs and so on. In
particular, BTI aging causes delay degradation in AD, write
circuit, precharge circuit and current-controlled latch sense
amplifier [11] (SA1). Aging causes both delay degradation
and stability degradation in latch based sense amplifier with
pass transistors [11] (SA2). The delay degradation in the write
circuit is not our concern since it is not (typically) in the
critical path. The same sizing approach as for SRAM cells
can be used to mitigate the stability degradation in SA2.

Fig. 1: Read delay degradation caused by aging over the lifetime

However, we can simply choose SA1 or other stability degra-
dation immune sense amplifiers to avoid stability degradation
caused by aging in such sense amplifiers. Via SRAM aging
analysis, we can conclude that aging causes delay degradation
in peripheral circuits and stability degradation in cells. We
quantify the delays of various SRAM components as well
as the corresponding aging-induced delay degradations. To
avoid failure caused by delay degradation, we can leave a
sufficient margin in the timing of control signals or increase
VDD. We can also redesign the peripheral circuits if the
timing constraint is tight. The overall read delay degradation is
the sum of address decoder delay degradation, cell discharge
delay degradation, and SA delay degradation. The cell delay
degradation caused by aging is small compared to that of
the peripheral circuits. The decoder delay accounts for a
large proportion of the read delay and hence decoder delay
degradation is the major component in the overall read delay
degradation, especially for large address decoders. Fig. 1
shows the read delay degradation caused by aging for a 12-
bit address SRAM over the lifetime. If the timing constraint is
tight, we can redesign the address decoder to reduce the delay.
Alternatively, we can either use high VDD at the beginning of
the operation or increase VDD gradually in the field to avoid
failures caused by delay degradation.

IV. USING ECC TO REPAIR AGING FAILURES

A. ECC background

ECC is a powerful technique used in memories to repair
failures caused in a limited number of cells in arbitrary
locations. In particular, Single-Error-Correction (SEC) code is
one of the most popular codes used in memories but can only
correct a single bit error [12]. Bose-Chaudhury-Hocquenghem
Double-Error Correction (BCH DEC) [12] can correct two-bit
errors. Conventionally, ECC is used to recover from soft errors.
In this section, we explore the capability of ECC to repair both
soft errors and aging failures. Adding ECC to memory incurs
area, latency, and power overheads. To analyze the efficiency
of ECC for combating aging, we quantify the overheads of
ECC and calculate the DPPM and lifetime yield of SRAM
using different ECC schemes. We also estimate the soft error
resilience (SER) to ensure that the designs using ECC to
combat aging also meet the soft error resilience constraint.

B. DPPM and lifetime yield estimation with ECC

Our design objective is to optimize the lifetime yield-per-
area of SRAM array while also satisfying a given DPPM
target. Thus, we first compute DPPM and lifetime yield when

!

!

Authorized licensed use limited to: University of Southern California. Downloaded on March 02,2021 at 18:46:38 UTC from IEEE Xplore. Restrictions apply.

ECC is used to correct aging failures. We define D as the
length of the data (in bits) corrected by ECC. For an SRAM
array consisting of N cells, R = N/D. We assume the failures
of SRAM cells caused by aging are independent from cell to
cell, and this assumption is valid for all the cases (workloads)
studied in this paper. If we use SEC code to handle aging
failures, the aging quality loss of an SRAM array (Qag−SEC)
can be calculated as follows:

Qag−SEC = 1−
R∏

m=1

[
D∏
i=1

(1− P c,m,i
f,ag)

+
D∑
i=1

P c,m,i
f,ag

D∏
j=1,j 6=i

(1− P c,m,j
f,ag)]

where P c
f,ag is the aging failure rate of an SRAM cell, i.e., the

probability that an SRAM cell functions properly at fabrication
but fails during its desired lifetime due to aging. This equation
calculates the probability of an SRAM array with at least one
block (D-bit word) having two or more cell failures caused by
aging. SEC code can correct one failure in each block. Thus,
a chip will function correctly if every block only contains
either zero or single failure. If any of the blocks contains
more than one aging failures during its desired lifetime, the
SRAM array fails due to aging. DPPM of the SRAM array =
Aging quality loss× 106.

The lifetime yield of an SRAM array (Ylife−SEC) can be
calculated as follows when we use SEC code to correct aging
failures:

Ylife−SEC =

N∏
i=1

(1− P c,i
f)

R∏
m=1

[

D∏
i=1

(1− P c,m,i
f,ag)

+
D∑
i=1

P c,m,i
f,ag

D∏
j=1,j 6=i

(1− P c,m,j
f,ag)]

where P c
f is the failure rate of an SRAM cell and is used in

the experiment to take into account the yield at the time of
fabrication.

DEC code can correct two aging failures in each block.
Thus, SRAM fails due to aging only when any of the blocks
contains more than two aging failures during its desired
lifetime. Thus, the aging quality loss of an SRAM array with
DEC code (Qag−DEC) can be calculated as follows:

Qag−DEC = 1−
R∏

m=1

[
D∏
i=1

(1− P c,m,i
f,ag)

+
D∑
i=1

P c,m,i
f,ag

D∏
j=1,j 6=i

(1− P c,m,j
f,ag)

+
1

2
(

D∑
i=1

D∑
j=1,j 6=i

P c,m,i
f,ag P c,m,j

f,ag

D∏
k=1,k 6=i,k 6=j

(1− P c,m,k
f,ag))]

The lifetime yield of an SRAM array when we use DEC
code to correct aging failures (Ylife−DEC) is calculated as
follows:

Ylife−DEC =
N∏
i=1

(1− P c,i
f)

R∏
m=1

[
D∏
i=1

(1− P c,m,i
f,ag)

+
D∑
i=1

P c,m,i
f,ag

D∏
j=1,j 6=i

(1− P c,m,j
f,ag)

+
1

2
(

D∑
i=1

D∑
j=1,j 6=i

P c,m,i
f,ag P c,m,j

f,ag

D∏
k=1,k 6=i,k 6=j

(1− P c,m,k
f,ag))]

C. Calculation of soft error resilience when using ECC to
repair aging failures

The probability that a soft error occurs, at a single cell
during the time interval [0, t] (Psf), is calculated as follows,

Psf (t) = 1− exp(−∇(t))

where ∇(t) = Fb × t×24hrs
109hrs . Fb is fit per bit.

When ECC is used to repair both aging failures and soft
errors, the bit error (to be corrected by ECC) occurs during
the time interval [0,t] with probability

Per(t) = 1− (1− Pag)(1− Psf (t))

where Pag is the error probability due to aging, Psf is the
error probability due to soft errors. Obviously, Per(t) =
Pag + Psf (t) − PagPsf (t) > Psf (t). That is, when ECC
is used to repair both aging failures and soft errors, ECC
essentially deals with a more error-prone situation even if
Psf (t) is assumed unchanged. Or equivalently, because ECC
is used to repair aging failures together with soft errors, the
same ECC, in general, has a smaller chance to recover from
soft errors compared with conventional scenarios where it is
solely used to correct soft errors. To characterize the potential
degradation, we study the soft error resilience of ECC after
using ECC to repair aging failures, which is the probability
that both soft error and aging failures can be repaired.

The soft error resilience of each word for SEC after aging
repair can be computed as,

PSEC−resilience(t) =
D∏
i=1

(1− P c,i
f,ag)exp(−∇(t))

+
D∑
i=1

[1− exp(−∇(t))

+ P c,i
f,agexp(−∇(t))]

D∏
j=1,j 6=i

(1− P c,j
f,ag)exp(−∇(t))

The soft error resilience of each word for DEC after aging
repair can be computed as,

!

!

Authorized licensed use limited to: University of Southern California. Downloaded on March 02,2021 at 18:46:38 UTC from IEEE Xplore. Restrictions apply.

PDEC−resilience(t) =
D∏
i=1

(1− P c,i
f,ag)exp(−∇(t))

+
D∑
i=1

[1− exp(−∇(t))

+ P c,i
f,agexp(−∇(t))]

D∏
j=1,j 6=i

(1− P c,j
f,ag)exp(−∇(t))

+
1

2
(

D∑
i=1

D∑
j=1,j 6=i

[1− exp(−∇(t))

+ P c,i
f,agexp(−∇(t))][1− exp(−∇(t))

+ P c,j
f,agexp(−∇(t))]

D∏
k=1,k 6=i,k 6=j

(1− P c,k
f,ag)exp(−∇(t))

In Table I, the DPPM and lifetime yield for SRAMs using
D0 are listed with different ECC schemes. D0 is the 6T SRAM
cell optimized for the yield-per-area at the time of fabrication.
In the table, the number associated with each ECC, e.g. SEC-
512, is the length of the data (in bits) corrected by ECC. For
G1 and Skew workloads, any of the ECC schemes in the table
can achieve the target DPPM, value of 50. When the DPPM
is small, the lifetime yield is close to the yield at fabrication.
Thus, the lifetime yield-per-area is determined by the area
overhead. For simplicity, we first ignore the aging in the ECC
circuit. For G2 workload, SEC-64 or SEC with smaller code
length or any DEC can achieve target DPPM. For Unknown
workload, DEC-512 or DEC with smaller code length can be
used to achieve target DPPM.

We can add extra ECC only for aging resilience to avoid
sacrificing the soft error resilience of the design. The better
approach for real design is to use the existing ECC for soft
error directly to handle aging failure, especially for the cases
with small aging failure rates (such as for G1 workload). This
results in infinitesimal degradation of soft error resilience.
However, for cases with large aging failure rates, the prob-
ability that multiple blocks have at least one aging failure
in each block is high. In such cases, using existing ECC
for soft error to correct aging failure decreases the soft error
resilience to unacceptably low levels. Thus, we also estimate
the soft error resilience when using ECC to combat aging. If
the existing ECC for soft error cannot meet the soft error or
aging constraint, a stronger ECC circuit needs to be used to
handle the aging failure. Table III shows the ECC schemes
considering both aging repair and soft error resilience for
different workloads.

D. Characterize the ECC implementation overheads

To optimize the design in terms of lifetime yield-per-area,
it is necessary to estimate the area overhead of ECC. The
major components of ECC implementation are encoder and
decoder logic, and storage for check bits. For example, SEC-
512 requires 11-bit check bits for every 512-bit. DEC almost
doubles the number of check bits as compared with SEC.

Table I: Lifetime yield and DPPM comparison for SRAMs using a cell
optimized for yield-per-area at the time of fabrication (D0) under four different
workloads with different ECC schemes

Workload
DPPM
(SEC-
512)

DPPM
(SEC-
64)

DPPM
(SEC-
16)

DPPM
(DEC-
1024)

DPPM
(DEC-
512)

Lifetime
yield
(SEC-
512)

Lifetime
yield
(DEC-
512)

Gaussian
1 0.00067 0.00091 0.00069 0.00067 0.00067 0.96643 0.96643

Gaussian
2 57.90 7.11 0.552 0.0010 0.00039 0.96637 0.96643

Skew 2.07 0.26 0.019 0.00018 0.00021 0.96643 0.96643
Unknown 18330.4 2283.6 544.3 56.1 6.53 0.94872 0.96642

Table II shows the number of check bits needed to imple-
ment SEC and DEC and the corresponding area overheads at
different correctable data lengths. The encoder and decoder
of SEC are constructed as XOR trees. BCH DEC are cyclic
codes and usually implemented by multi-bit Linear Feedback
Shift Registers (LFSR). Thus, the delay and area overheads
are larger than those of SEC. A single-cycle implementation
of DEC decoders incurs 55% to 69% latency penalty compared
to SEC codes. Thus, for similar area overhead, we first choose
SEC.

We consider that the extra area of ECC implementation is
caused by encoder and decoder circuits, and the memory cells
required to store the check bits. In Table II, the area overhead
of storage of check bits is calculated by the ratio of the area
of the memory cells needed to store check bits and the area of
correctable data cells. The encoder and decoder area overheads
are the ratio of the area of encoder and decoder circuits
to the total area of data cells in SRAM array. For a fixed
error-correcting capability, encoder and decoder complexities
increase with the length of the data corrected by ECC, while
the check bits area overheads decrease dramatically. For SEC,
the decoder and encoder logic occupy a much smaller area
compared to the storage of check bits. The major area overhead
for SEC is the storage bits. For a fixed code length, the
complexities of encoder/decoder logic and check bit array
both increase with the error-correcting capability. However,
the encoder/decoder logic complexities increase much faster
than check bit array. For example, the area overhead of check
bits array for data length of 512 grows from 2.15% to 3.91%,
while the area overhead of encoder/decoder logic grows from
0.05% to 4.09%. For DEC-512, the encoder and decoder logic
dominate the area.

We synthesize the ECC encoder and decoder circuits using
Design Compiler with 45nm PDK library and report the area
of encoder and decoder circuits for various correctable data
lengths and error correction capabilities. Then we characterize
the area of ECC decoder and encoder circuits in terms of
correctable data length, error correction capability. The soft
error rate is 5× 106 Fit/Mb.

The cell area is calculated based on a parametric layout of
an SRAM cell. We modify CACTI to add the bit cell area as a
function of transistor size and add ECC area including check
bits storage, and decoder and encoder circuits. The peripheral
circuits and interconnect area can be estimated using CACTI.
Thus, the modified CACTI is able to estimate the overall area

!

!

Authorized licensed use limited to: University of Southern California. Downloaded on March 02,2021 at 18:46:38 UTC from IEEE Xplore. Restrictions apply.

Table II: Number of check bits and area overhead (compared to the total area
of data cells in SRAM array) for SEC and DEC for different correctable data
lengths

SEC BCH DEC
The length
of data (in

bits)
corrected
by ECC

of
check
bits

Storage
of check

bits
area
over-
head
(%)

Encoder
+ de-
coder
area
over-
head
(%)

of
check
bits

Storage
of check

bits
area
over-
head
(%)

Encoder
+ de-
coder
area
over-
head
(%)

16 6 37.5 0.0012 10 62.5 0.0048
32 7 21.87 0.0025 12 37.5 0.0174
64 8 12.5 0.0052 14 21.87 0.066
128 9 7.03 0.011 16 12.5 0.26
256 10 3.91 0.024 18 7.03 1.028
512 11 2.15 0.050 20 3.91 4.09

Table III: Area overhead (relative to entire SRAM, computed using modified
CACTI) comparison for sizing and ECC approach under four different
workloads

Workload

Area
overhead
for sizing
approach

Area
overhead
for ECC
used only
for aging

SEC-512
was already

available
(SER>0.9)

DEC-256
was already

available
(SER>0.9)

Gaussian
1 (G1) 1.0222

1.0181
(SEC-512)

1 1

Gaussian
2 (G2) 1.0443

1.0659
(DEC-512)

1.0470
(DEC-512)

1

Skew 1.0329
1.0181

(SEC-512)
1 1

Unknown 1.0665
1.0659

(DEC-512)
1.0470

(DEC-512)
1

of SRAM including ECC implementation. Table III shows the
area overhead comparison of ECC approach and the sizing
approach for different workloads. For calculating the area
overhead in the second and third columns in Table III, the base
is the area of entire SRAM using D0 without ECC. Thus the
area overhead for the sizing approach is the ratio of the area of
entire SRAM using cells optimized through sizing approach
without ECC to the base respectively. The area overhead in
the third column is the ratio of the area of entire SRAM using
D0 with appropriate ECC schemes to the base respectively.
The base is the area of entire SRAM using D0 with SEC-
512 for the fourth column and using DEC-256 for the fifth
column. We assume the original ECC is replaced by the new
ECC scheme for area overhead calculation.

From Table III, we see that the area overhead of ECC
approach is lower than that of the cell sizing approach for
G1, skew, and Unknown workloads. SRAM design under G1
and Skew workloads can use SEC-512 to achieve the target
DPPM. The overall area overhead is only 1.81%. However,
ECC encoder and decoder circuits cause delay overheads.
From synthesis results, encoders for SEC incur a latency
penalty from 0.3ns-0.8ns for various correctable data lengths.
The delay overhead for decoders for SEC is more than two
times of that of encoders. The delay penalty for multi-cycle
implementation of BCH DEC code is dramatically high. Thus,
under a tight timing constraint, the sizing approach is chosen
over ECC approach to combat aging.

V. DESIGN APPROACH

A. An end-to-end SRAM design framework for lifetime yield-
per-area optimization

We have studied cell sizing and ECC approaches to increase
the aging resilience. Each approach has different overheads.
According to the constraints given by customers, we can
achieve the optimal SRAM design to maximize the lifetime
yield-per-area under the DPPM constraint via one of or the
combination of the two approaches. We propose an end-to-end
SRAM design framework to optimize the lifetime yield-per-
area under the given constraints as follows:

Given access time, power, area, DPPM, and soft error
resilience constraints. Assume ECC exists for soft error.

Step 1: Use CACTI to find candidate designs under the
given constraints on access time, power, and area. The base
cell D0 is the cell optimized for the yield-per-area at the time
of fabrication.

Step 2: Estimate the DPPM and SER of SRAM with the
existing ECC scheme for various workloads depending on the
application.

If both DPPM and SER meet the target, report the design.
If not, go to step 3.
Step 3: For the given DPPM for SRAM, using SRAM sizing

approach to achieve given DPPM constraint while optimizing
lifetime yield-per-area. The redesigned cell is called new
cell. DPPM is estimated without ECC. Perform binary search
across cell designs between the original cell and the new cell.
Estimate SER and DPPM with ECC. Choose the cell with the
smallest area overhead satisfied DPPM and SER constraints.
Report the area overhead. This area overhead bounds the ECC
approach.

Step 4: Explore ECC approach to achieve target DPPM. The
SRAM cell is the base cell D0 optimized for the yield-per-area
at the time of fabrication.

a) Starting with the original ECC, reduce the data length to
half.

If the starting ECC is SEC. Simply calculate the area
overhead of check bits.

If check bit area overhead of SEC with half-size data blocks
is larger than that of DEC with the largest data length, we
move to code with higher error correction capability (DEC).

b) Estimate the DPPM and SER of SRAM with the new
ECC scheme. Repeat 4a) if DPPM or SER does not satisfy the
target. We choose SEC over DEC for similar area overhead
when both can satisfy the target DPPM because SEC code
results in a lower delay penalty.

Report the area overhead of ECC using CACTI. Report the
access time and power of design with the new ECC.

If the access time or power exceeds the constrains, report
the design in step 3 as optimal design. End the process. We
need to add delay degradation caused by aging to the access
time when compare with user access time constraints.

Compare the area overhead with the area overhead in step
3. If the area overhead of ECC is smaller than that of the
cell sizing approach, we choose this ECC scheme. Report the

!

!

Authorized licensed use limited to: University of Southern California. Downloaded on March 02,2021 at 18:46:38 UTC from IEEE Xplore. Restrictions apply.

Table IV: Design results of 2MB SRAMs with 6T cells under four different
workloads

Workload Cell Add ECC DPPM Area overhead
Case 1: Access time < 5ns, SEC-512 exists, Soft error resilience > 0.9

G1 D0 No 0.00067 1
G2 D2 No 48.78 1.0435

Skew D0 No 2.07 1
Unknown D4 No 31.52 1.0653

Case 2: Access time < 10ns, no ECC exists
G1 D0 SEC-512 0.00067 1.0181
G2 D2 No 48.78 1.0443

Skew D0 SEC-512 2.07 1.0181
Unknown D0 DEC-512 6.53 1.0659

design as optimal design. Otherwise, report the design in step
3 as the optimal design. End the process.

If we assume ECC does not exist for soft error, the design
flow can be simplified. We can remove Step 2 and binary
search in Step 3. We also do not need to evaluate soft
error resilience since we assume original ECC does not exist
because soft errors are not important. In Step 4, instead of
starting with the original ECC, we starting with the largest
possible correctable data length (the size of cache line) and
the lowest error correction capability (SEC) and estimate the
DPPM of the design.

VI. EXPERIMENT RESULTS

For all the experimental evaluations, we use the aging model
proposed in [13]. The desired lifetime in the experiments is 60
months. We adopt the probability collective method proposed
in [14] to estimate the failure rate and aging failure rate. Our
design objective is to maximize the lifetime yield-per-area of
a 2MB SRAM with 6T SRAM cells under target DPPM (i.e.,
50). The block size is 64B.

Table IV shows the design results for two study cases.
Case 1 has a small access time specification and DEC cannot
be adopted in this case. In case 1, we assume SEC-512
already exists for soft error and need to consider soft error
resilience. D0 is the SRAM cell design optimized for yield-
per-area at the time of fabrication. D2 and D4 are the cell
designs produced by the transistor sizing approach for G2
and Unknown workloads. For G1 and Skew, the existing
ECC can achieve target DPPM and soft error resilience. For
G2, cell design D2 with up-sized pull-down transistors are
used. Both target DPPM and soft error resilience are satisfied
with minimum area overhead. For Unknown, D4 (larger pull-
down transistors compared with D2) is adopted, since DEC
cannot be used due to access time constraint. We assume a
larger access time limitation for case 2. We do not need to
evaluate soft error resilience since we assume original ECC
does not exist because soft errors are not important. DEC-512
is adopted for Unknown workload to achieve minimum area
overhead without exceeding the access time constraint.

VII. CONCLUSION

We developed an end-to-end SRAM design framework to
maximize the aging resilience under the given constraints.
Specifically, we analyzed the impact of aging in SRAM
peripheral circuits, including address decoder, precharge, write

circuit and sense amplifiers. We conclude that aging causes
delay degradation in peripheral circuits and stability degrada-
tion in cells. We explored the efficiency of ECC to combat
aging by quantifying the area and delay overheads of ECC
and estimating the lifetime yield and DPPM of SRAMs with
ECC, respectively. We also calculated the soft error resilience
when ECC is used to repair aging failures. We find that ECC
is efficient for repairing aging failures for workloads with
small aging failure rates without sacrificing the soft error
resilience. After comparing approaches based on cell sizing
and ECC in terms of overheads, lifetime yield and DPPM,
we can choose one or a combination of these approaches
to identify the optimal design against aging under the given
constraints. To provide the end-to-end capability to designers,
we integrated our cell sizing approach and our ECC approach
into an existing SRAM compiler, CACTI. Our new compiler
provides the design with the optimal lifetime yield-per-area
under given constraints.

REFERENCES

[1] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, pp. 22–31, 2009.

[2] T. T.-H. Kim, W. Zhang, and C. H. Kim, “An sram reliability test macro
for fully automated statistical measurements of degradation,” Circuits
and Systems I: Regular Papers, IEEE Transactions on, vol. 59, no. 3,
pp. 584–593, 2012.

[3] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The nbti-aware
processor,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pp. 85–96, IEEE, 2007.

[4] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston, “A proactive wearout
recovery approach for exploiting microarchitectural redundancy to ex-
tend cache sram lifetime,” in ACM SIGARCH Computer Architecture
News, vol. 36, pp. 353–362, IEEE Computer Society, 2008.

[5] S. V. Kumar, K. Kim, and S. S. Sapatnekar, “Impact of nbti on sram
read stability and design for reliability,” in 7th International Symposium
on Quality Electronic Design (ISQED’06), pp. 6–pp, IEEE, 2006.

[6] A. Ricketts, J. Singh, K. Ramakrishnan, N. Vijaykrishnan, and D. K.
Pradhan, “Investigating the impact of nbti on different power saving
cache strategies,” in Proceedings of the conference on design, automa-
tion and test in Europe, pp. 592–597, European Design and Automation
Association, 2010.

[7] H. Mostafa, M. Anis, and M. Elmasry, “Adaptive body bias for reducing
the impacts of nbti and process variations on 6t sram cells,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 12,
pp. 2859–2871, 2011.

[8] X. Zuo and S. K. Gupta, “Asymmetric sizing: An effective design
approach for sram cells against bti aging,” in VLSI Test Symposium
(VTS), 2017 IEEE 35th, pp. 1–6, IEEE, 2017.

[9] S. Natarajan et al., “A 32nm logic technology featuring 2 nd-generation
high-k+ metal-gate transistors, enhanced channel strain and 0.171µm 2
sram cell size in a 291mb array,” in Electron Devices Meeting, 2008.
IEDM 2008. IEEE International, pp. 1–3, IEEE, 2008.

[10] C.-C. Chen, T. Liu, and L. Milor, “System-level modeling of micropro-
cessor reliability degradation due to bias temperature instability and hot
carrier injection,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 8, pp. 2712–2725, 2016.

[11] S.-M. Kang, Y. Leblebici, and C. Kim, “Cmos digital integrated circuits:
analysis & design,” tech. rep., McGraw-Hill Higher Education, 2014.

[12] R. H. Morelos-Zaragoza, The art of error correcting coding. John Wiley
& Sons, 2006.

[13] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula,
“Predictive modeling of the nbti effect for reliable design,” in Custom
Integrated Circuits Conference, 2006. CICC’06. IEEE, pp. 189–192,
IEEE, 2006.

[14] F. Gong, S. Basir-Kazeruni, L. Dolecek, and L. He, “A fast estimation
of sram failure rate using probability collectives,” in Proceedings of
the 2012 ACM international symposium on International Symposium on
Physical Design, pp. 41–48, ACM, 2012.

!

!

Authorized licensed use limited to: University of Southern California. Downloaded on March 02,2021 at 18:46:38 UTC from IEEE Xplore. Restrictions apply.

